## The minimal displacement problem in subspaces of the space of continuous functions of finite codimension

by

## KRZYSZTOF BOLIBOK (Lublin)

**Abstract.** We show that every subspace of finite codimension of the space C[0, 1] is extremal with respect to the minimal displacement problem.

1. Introduction. In 1930 Schauder [14] proved that convex and compact subsets of Banach spaces have the fixed point property (fpp for short) for continuous mappings. Kakutani [10] was probably the first to give examples of bounded, closed and convex subsets in infinite-dimensional Banach spaces without fpp for continuous (even lipschitzian) mappings. Much stronger results concerning the failure of Schauder's theorem have been obtained by Klee [11], Nowak [13], Benyamini and Sternfeld [3] and Sternfeld and Lin [12].

In 1973 Goebel [8] introduced the notion of minimal displacement. Let C be a bounded, closed and convex subset of an infinite-dimensional Banach space X, and let  $T: C \to C$ . The *minimal displacement* of T is the number

$$d_T = \inf\{\|x - Tx\| : x \in C\}.$$

Goebel showed that  $d_T$  can be positive for lipschitzian mappings and he proved a basic property of the minimal displacement for lipschitzian mappings:

$$d_T \le (1 - 1/k)r(C) \qquad \text{for } k \ge 1,$$

where

$$r(C) = \inf \left\{ \sup \{ \|x - y\| : y \in C \} : x \in C \right\}$$

is the Chebyshev radius of C and k is a Lipschitz constant of T. There are some spaces and sets for which  $d_T = (1 - 1/k)r(C)$ . Goebel also introduced the so called *minimal displacement characteristic* of X. This is a function

2010 Mathematics Subject Classification: Primary 47H09, 47H10.

Key words and phrases: minimal displacement, extremal space, subspaces of C[0, 1].

defined for  $k \ge 1$  as

$$\psi_X(k) = \sup\{d_T : T : B \to B, T \in L(k)\},\$$

where B is the closed unit ball in X and L(k) denotes the class of lipschitzian mappings with constant k. It is known that

$$\psi_X(k) \le 1 - 1/k$$

for any space X. There exist some "extremal" spaces for which  $\psi_X(k) = 1 - 1/k$ . Examples of such spaces are  $C[0, 1], c_0$  and some others [9]. We show that the class of extremal spaces contains all subspaces of C[0, 1] of finite codimension.

Such spaces are also important because of the retraction problem. It is known that in every infinite-dimensional Banach space there exists a lipschitzian retraction  $R: B \to S$ , where S denotes the unit sphere (see [3], [13]). But it is still an open problem to find a minimal Lipschitz constant of such a retraction for a given infinite-dimensional Banach space X. Some authors constructed lipschitzian retraction of the unit ball onto the unit sphere with relatively small Lipschitz constant using lipschitzian mappings with positive displacement (see [7], [5], [6] and [1]). Using such methods, the best known upper bound of the retraction constant is in "extremal spaces".

2. Results. We start with two technical lemmas [4].

LEMMA 1. For every k > 1 there exists a mapping  $T : B \to S$  of class L(k) with  $d_T = 1 - 1/k$  and such that

$$(Tx)(0) = -1$$
 and  $(Tx)(1) = 1$ 

for every  $x \in B$ .

*Proof.* Define  $T_1: B \to C[0, 1]$  by  $(T_1x)(t) = x(t) + 4t - 2$  and  $T: B \to S$  by  $(Tx)(t) = f((T_1x)(t))$ , where the function  $f: \mathbb{R} \to [-1, 1]$  is given for positive k as

$$f(t) = \begin{cases} -1 & \text{if } t \in (-\infty, -1/k), \\ kt & \text{if } t \in [-1/k, 1/k], \\ 1 & \text{if } t \in (1/k, \infty). \end{cases}$$

The mapping  $T_1$  is nonexpansive and the function f is lipschitzian with constant k, which implies that  $T \in L(k)$ . Observe that (Tx)(0) = -1 and (Tx)(1)= 1 for every  $x \in B$ . Moreover, if  $(T_1x)(1/2) \ge 0$ , then from the condition  $(T_1x)(0) \le -1$  for every  $x \in B$  we infer that there exists  $t_0 \in (0, 1/2)$  such that  $(T_1x)(t_0) = -1/k$ . From this equality we obtain

$$x(t_0) > (T_1 x)(t_0) = -1/k > -1 = (Tx)(t_0),$$

which implies ||x - Tx|| > 1 - 1/k. Analogously if  $(T_1x)(1/2) < 0$ , the condition  $(T_1x)(1) \ge 1$  implies that there exists  $t_1 \in (1/2, 1)$  for which

194

 $(T_1x)(t_1) = 1/k$ . This yields

 $x(t_1) < (T_1 x)(t_1) = 1/k < 1 = (T x)(t_1),$ 

and further ||x - Tx|| > 1 - 1/k. This combined with the basic property of the minimal displacement implies that  $d_T = 1 - 1/k$ , which ends the proof.

REMARK 2. From the above proof we conclude that the infimum in the definition of the minimal displacement is not attained for any  $x \in B$ .

REMARK 3. For k = 1 the map T will be given by

$$(Tx)(t) = \max\{-1, \min\{1, (T_1x)(t)\}\}.$$

This map is fixed point free because (Tx)(t) > x(t) for some t > 1/2 or (Tx)(t) < x(t) for some t < 1/2.

From Lemma 1 and the two remarks above, and from the fact that the spaces  $C[\alpha, \beta]$  and C[0, 1] are isometric, we deduce the following lemma.

LEMMA 4. Let  $0 \leq \alpha < \beta \leq 1$ . Then for every  $k \geq 1$  there exists a mapping  $T_{[\alpha,\beta]}: B \to S$  of class L(k) such that for every  $x \in B$ ,

$$(T_{[\alpha,\beta]}x)(t) = 0$$
 for every  $t \in [0,\alpha] \cup [\beta,1]$ 

and

$$\max_{t \in [\alpha,\beta]} |x(t) - (T_{[\alpha,\beta]}x)(t)| > 1 - 1/k.$$

*Proof.* If  $0 < \alpha < \beta < 1$  we choose  $\alpha < \gamma < \delta < \beta$  and apply Lemma 1 to the space  $C[\gamma, \delta]$ . Then there exists a map  $\overline{T} : B_{C[\gamma, \delta]} \to S_{C[\gamma, \delta]}$  of class L(k) such that

$$\max_{t \in [\gamma,\delta]} |x(t) - (\overline{T}x)(t)| > 1 - 1/k, \quad (\overline{T}x)(\gamma) = -1 \quad \text{and} \quad (\overline{T}x)(\delta) = 1$$

for every  $x \in B_{C[\gamma,\delta]}$ . Now we can define  $T_{[\alpha,\beta]} : B \to S$  by  $(T_{[\alpha,\beta]}x)(t) = (\overline{T}x)(t)$  if  $t \in [\gamma, \delta]$ ,  $(T_{[\alpha,\beta]}x)(t) = 0$  for any  $t \in [0,\alpha] \cup [\beta, 1]$ , and on the intervals  $(\alpha, \gamma)$  and  $(\delta, \beta)$  we define  $T_{[\alpha,\beta]}$  as an affine map so as to obtain a continuous map. It is easy to check that this map satisfies the desired conditions. If  $\alpha = 0$  or  $\beta = 1$  then the proof is very similar. For instance if  $\alpha = 0$  and  $\beta < 1$  we define  $(T_{[\alpha,\beta]}x)(\alpha) = 0$  and on the intervals  $(\alpha, \gamma)$ ,  $[\gamma, \delta]$ ,  $(\delta, \beta)$  and  $[\beta, 1]$  we define  $T_{[\alpha,\beta]}$  as in the case  $0 < \alpha < \beta < 1$ .

After these technical lemmas we consider the minimal displacement problem in subspaces of codimension one of C[0, 1]. From the Riesz Theorem it is known that each such subspace can be written as

$$C_{\mu}[0,1] = \Big\{ x \in C[0,1] : \int_{[0,1]} x \, d\mu = 0 \Big\},\$$

where  $\mu$  is bounded, real Borel signed measure on [0, 1]. Let  $\mu = \mu^+ - \mu^-$  be the Jordan decomposition of  $\mu$ .

## K. Bolibok

THEOREM 5. Let  $C_{\mu}[0,1]$  be a subspace of C[0,1] of codimension one. Then for every  $0 \le \alpha < \beta \le 1$  and  $k \ge 1$  there exists a mapping  $T: B \to S$ of class L(k) such that for every  $x \in B$ ,

$$(Tx)(t) = 0 \quad for \ t \in [0, \alpha] \cup [\beta, 1]$$

and

$$\max_{t \in [\alpha,\beta]} |x(t) - (Tx)(t)| > 1 - 1/k.$$

*Proof.* Let  $0 \le \alpha < \beta \le 1$  and let  $|\mu|$  denote the absolute value of the measure  $\mu$ , i.e.  $|\mu| = \mu^+ + \mu^-$ . We consider two cases.

(i) If there exists an interval  $[c, d] \subset [\alpha, \beta]$  such that  $|\mu|([c, d]) = 0$ , then we define  $T = T_{[c,d]}$  (see Lemma 4).

(ii) If (i) does not hold then  $|\mu|([a,b]) \neq 0$  for any subinterval [a,b] of  $[\alpha,\beta]$ . This implies that there exists  $[a,b] \subset (\alpha,\beta)$  such that  $\mu([a,b]) \neq 0$ . Without loss of generality we can assume that  $\mu([a,b]) > 0$ . Observe that it is possible to find an interval  $[c,d] \subset (\alpha,\beta)$  disjoint from [a,b] and such that  $|\mu|([c,d]) < \mu([a,b])$ . Let  $T_{[c,d]}$  satisfy the conditions of Lemma 4. Proceeding to the second part of the construction observe that there exists  $\delta > 0$  for which  $[a - \delta, b + \delta]$  is contained in  $(\alpha, \beta)$  and disjoint from [c,d] and the following condition holds:

$$\begin{split} |\mu|([a-\delta,a)\cup(b,b+\delta]\cup[c,d]) \\ &= |\mu|([a-\delta,a)) + |\mu|((b,b+\delta]) + |\mu|([c,d]) < \mu([a,b]). \end{split}$$

Now for  $h \in [-1,1]$  consider a mapping  $d_h : [0,1] \to [-1,1]$  defined as:  $d_h(t) = h$  if  $t \in [a,b]$ , and  $d_h(t) = 0$  if  $t \notin [a - \delta, b + \delta]$ . On  $[a - \delta, a)$  and  $(b, b + \delta]$  we define  $d_h$  as an affine map so that the function  $d_h$  is continuous. For the function x and  $h \in [-1,1]$  let us consider the expression

$$\begin{split} I(h) &= \int_{0}^{1} \left( (T_{[c,d]}x)(t) + d_{h}(t) \right) d\mu(t) \\ &= \int_{[a-\delta,a)} d_{h}(t) d\mu(t) + h\mu([a,b]) + \int_{(b,b+\delta]} d_{h}(t) d\mu(t) \\ &+ \int_{[c,d]} (T_{[c,d]}x)(t) d\mu(t). \end{split}$$

Observe that for h = -1 we have

 $I(-1) \le |\mu|([a-\delta,a)) - \mu([a,b]) + |\mu|((b,b+\delta]) + |\mu|([c,d]) < 0.$ 

Analogously for h = 1 we get

$$I(1) \ge -|\mu|([a-\delta,a)) + \mu([a,b]) - |\mu|((b,b+\delta]) - |\mu|([c,d]) > 0.$$

Thus there exists a constant  $h = h_x$  for which  $I(h_x) = 0$ , which means that  $d_{h_x} + T_{[c,d]}x \in C_{\mu}[0,1]$ . We prove that the notation  $h = h_x$  is justified, i.e.

the constant h for which I(h) = 0 is unique. Suppose that  $I(h_1) = I(h_2) = 0$  for  $h_1 \neq h_2$ . Then

$$\int_{[0,1]} d_{h_1}(t) \, d\mu(t) = \int_{[0,1]} d_{h_2}(t) \, d\mu(t),$$

which means that

$$\int_{[a-\delta,a)\cup(b,b+\delta]} d_{h_1}(t) \, d\mu(t) + h_1\mu([a,b]) = \int_{[a-\delta,a)\cup(b,b+\delta]} d_{h_2}(t) \, d\mu(t) + h_2\mu([a,b]).$$

This leads to a contradiction:

$$|h_1 - h_2|\mu([a, b]) = \left| \int_{[a-\delta, a)\cup(b, b+\delta]} (d_{h_1}(t) - d_{h_2}(t)) d\mu(t) \right|$$
  
$$\leq \int_{[a-\delta, a)\cup(b, b+\delta]} |d_{h_1}(t) - d_{h_2}(t)| |d\mu(t)|$$
  
$$\leq |h_1 - h_2| |\mu|([a-\delta, a)) \cup (b, b+\delta])$$
  
$$< |h_1 - h_2| \mu([a, b]).$$

Now we can define a map  $T: B \to S$  by

$$Tx = d_{h_x} + T_{[c,d]}x.$$

Observe that indeed ||Tx|| = 1 for any  $x \in B$  because  $||T_{[c,d]}x|| = 1$  and  $\operatorname{supp} d_h \cap \operatorname{supp} T_{[c,d]} = \emptyset$ .

We show that  $T \in L(k)$ . Observe that it is sufficient to show that  $Dx := d_{h_x} \in L(k)$  (because  $\operatorname{supp} d_h \cap \operatorname{supp} T_{[c,d]} = \emptyset$ ). It is easy to see that  $\|Dx - Dy\| = |h_x - h_y|$ . Suppose that  $D \notin L(k)$ . Then there exist  $x, y \in B$  and a constant  $k_1 > k$  such that  $\|Dx - Dy\| = k_1 \|x - y\|$ . Recall that for all  $x, y \in B$  we have

$$\int_{[0,1]} \left( (Dx)(t) + (T_{[c,d]}x)(t) \right) d\mu(t) = \int_{[0,1]} \left( (Dy)(t) + (T_{[c,d]}y)(t) \right) d\mu(t) = 0.$$

This can be written equivalently as

$$\int_{[a-\delta,a)\cup(b,b+\delta]} Dx \, d\mu + \int_{[c,d]} T_{[c,d]} x \, d\mu + h_x \mu([a,b]) \\ = \int_{[a-\delta,a)\cup(b,b+\delta]} Dy \, d\mu + \int_{[c,d]} T_{[c,d]} y \, d\mu + h_y \mu([a,b]),$$

which implies

$$|h_x \mu([a,b]) - h_y \mu([a,b])| = \Big| \int_{[a-\delta,a)\cup(b,b+\delta]} (Dx - Dy) \, d\mu + \int_{[c,d]} (T_{[c,d]}x - T_{[c,d]}y) \, d\mu \Big|.$$

We obtain

$$|h_x \mu([a,b]) - h_y \mu([a,b])| = |h_x - h_y| \mu([a,b])$$
  
=  $\mu([a,b]) ||Dx - Dy||$   
=  $k_1 \mu([a,b]) ||x - y||,$ 

and on the other hand

$$\begin{split} \Big| \int_{[a-\delta,a)\cup(b,b+\delta]} (Dx - Dy) \, d\mu + \int_{[c,d]} (T_{[c,d]}x - T_{[c,d]}y) \, d\mu \Big| \\ &\leq \int_{[a-\delta,a)\cup(b,b+\delta]} \|Dx - Dy\| \, d|\mu| + \int_{[c,d]} \|T_{[c,d]}x - T_{[c,d]}y\| \, d|\mu| \\ &\leq k_1 |\mu| ([a-\delta,a)\cup(b,b+\delta]) \|x - y\| + k |\mu| ([c,d]) \|x - y\| \\ &< k_1 \mu([a,b]) \|x - y\|. \end{split}$$

This contradiction shows that  $D \in L(k)$ .

Finally, observe that

$$\max_{t \in [\alpha,\beta]} |x(t) - (Tx)(t)| \ge \max_{t \in [c,d]} |x(t) - (T_{[c,d]}x)(t)| > 1 - 1/k. \blacksquare$$

Now we generalize this theorem to all subspaces of C[0, 1] of finite codimension. Recall that each such subspace can be written as

$$C_{\mu_1,\dots,\mu_n}[0,1] = \Big\{ x \in C[0,1] : \int_{[0,1]} x \, d\mu_i = 0, \, i = 1,\dots,n \Big\},\$$

where the  $\mu_i$  are independent, bounded real Borel measures on [0, 1].

THEOREM 6. Let  $C_{\mu_1,\ldots,\mu_n}[0,1]$  be a subspace of C[0,1] of finite codimension. Then for  $0 \le \alpha < \beta \le 1$  and for any  $k \ge 1$  there exists a mapping  $T: B \to S$  of class L(k) such that for every  $x \in B$ ,

$$(Tx)(t) = 0$$
 for every  $t \in [0, \alpha] \cup [\beta, 1]$ 

and

$$\max_{t \in [\alpha,\beta]} |x(t) - (Tx)(t)| > 1 - 1/k.$$

*Proof.* We argue by induction on n. If n = 1, then the conclusion is Theorem 5. Now let  $\mu_1, \ldots, \mu_{n+1}$  be independent measures on [0, 1]. For brevity set, for any  $l \in \mathbb{N}$ ,

$$B_l = B_{C_{\mu_1,\dots,\mu_l}[0,1]}, \quad S_l = S_{C_{\mu_1,\dots,\mu_l}[0,1]}$$

Let  $0 \leq \alpha < \beta \leq 1$  and assume that for all  $\gamma, \delta$  such that  $\alpha < \gamma < \delta < \beta$ there exists a lipschitzian mapping  $\overline{T} : B_n \to S_n$  with constant  $k \geq 1$  such that for any  $x \in B_n$ ,

$$(\overline{T}x)(t) = 0$$
 for any  $t \in [0, \gamma] \cup [\delta, 1]$ 

198

and

$$\max_{t \in [\gamma, \delta]} |x(t) - (\overline{T}x)(t)| > 1 - 1/k.$$

Let us consider two cases.

(i) There exists an interval  $[a,b] \subset (\alpha,\beta)$  such that  $\int_{[a,b]} \overline{T}x \, d\mu_{n+1} = 0$ for every  $x \in B_{n+1}$ . Then we can define  $T : B_{n+1} \to S_{n+1}$  to be  $\overline{T}$ , where  $\gamma = a, \delta = b$ . Observe that  $T \in L(k)$  and moreover

$$\max_{t \in [\alpha,\beta]} |x(t) - (Tx)(t)| \ge \max_{t \in [a,b]} |x(t) - (\overline{T}x)(t)| > 1 - 1/k.$$

(ii) If (i) does not hold then there exists an interval  $[a, b] \subset (\alpha, \beta)$  and a function  $x_0 \in B_{n+1}$  with  $\operatorname{supp} \overline{T} x_0 \subset [a, b]$  (it is enough to take  $\gamma = a, \delta = b$ ) such that  $\int_{[a,b]} \overline{T} x_0 d\mu_{n+1} \neq 0$ . Without loss of generality we may assume that  $\int_{[a,b]} \overline{T} x_0 d\mu_{n+1} > 0$ . Now we can choose an interval  $[c, d] \subset (\alpha, \beta)$  disjoint from [a, b] and such that

$$|\mu_{n+1}|([c,d]) < \int_{[a,b]} \overline{T} x_0 \, d\mu_{n+1}.$$

From the induction assumption we know that there exists a mapping  $\widetilde{T}$ :  $B_n \to S_n$  of class  $L(k), k \ge 1$ , such that for every  $x \in B_n$ ,

 $(\widetilde{T}x)(t) = 0$  for every  $t \in [0, c] \cup [d, 1]$ 

and

$$\max_{t \in [c,d]} |x(t) - (\widetilde{T}x)(t)| > 1 - 1/k.$$

For any  $x \in B_{n+1}$  and every  $h \in [-1, 1]$  define  $T_h x = h\overline{T}x_0 + \widetilde{T}x$ . Observe that for h = -1 we have

$$\int_{[0,1]} T_{-1}x \, d\mu_{n+1} = -\int_{[a,b]} \overline{T}x_0 \, d\mu_{n+1} + \int_{[c,d]} \widetilde{T}x \, d\mu_{n+1}$$
$$\leq -\int_{[a,b]} \overline{T}x_0 \, d\mu_{n+1} + |\mu_{n+1}|([c,d]) < 0$$

On the other hand for h = 1 we get

$$\int_{[0,1]} T_1 x \, d\mu_{n+1} = \int_{[a,b]} \overline{T} x_0 \, d\mu_{n+1} + \int_{[c,d]} \widetilde{T} x \, d\mu_{n+1}$$
$$\geq \int_{[a,b]} \overline{T} x_0 \, d\mu_{n+1} - |\mu_{n+1}|([c,d]) > 0.$$

Those two facts imply that there exists  $h \in (-1, 1)$  such that

$$\int_{[0,1]} T_h x \, d\mu_{n+1} = 0,$$

so that  $T_h x \in C_{\mu_1,\dots,\mu_{n+1}}[0,1]$ . We show that for every  $x \in B_{n+1}$  there exists a unique constant  $h = h_x$  for which the above condition is satisfied. Suppose there are constants  $h_1 \neq h_2$  such that

$$\int_{[0,1]} T_{h_1} x \, d\mu_{n+1} = \int_{[0,1]} T_{h_2} x \, d\mu_{n+1} = 0.$$

This can be written as

$$\int_{[a,b]} h_1 \overline{T} x_0 \, d\mu_{n+1} + \int_{[c,d]} \widetilde{T} x \, d\mu_{n+1} = \int_{[a,b]} h_2 \overline{T} x_0 \, d\mu_{n+1} + \int_{[c,d]} \widetilde{T} x \, d\mu_{n+1},$$

which means

$$0 = \int_{[a,b]} (h_1 - h_2) \overline{T} x_0 \, d\mu_{n+1} = (h_1 - h_2) \int_{[a,b]} \overline{T} x_0 \, d\mu_{n+1},$$

a contradiction.

Now define  $T: B_{n+1} \to S_{n+1}$  by

$$Tx = h_x \overline{T} x_0 + \widetilde{T} x.$$

Because  $\|\widetilde{T}x\| = 1$  for any  $x \in B_{n+1}$  and  $\operatorname{supp} \overline{T}x_0 \cap \operatorname{supp} \widetilde{T}x = \emptyset$ , it follows that  $\|Tx\| = 1$ .

To show that  $T \in L(k)$ , we should prove that

$$\begin{aligned} |h_x - h_y| &\leq k \|x - y\| \\ \text{for all } x, y \in B_{n+1}. \text{ Let } M = \int_{[a,b]} \overline{T} x_0 \, d\mu_{n+1}. \text{ We have} \\ 0 &= \int_{[0,1]} Tx \, d\mu_{n+1} = \int_{[a,b]} h_x \overline{T} x_0 \, d\mu_{n+1} + \int_{[c,d]} \widetilde{T} x \, d\mu_{n+1} \\ &= h_x \int_{[a,b]} \overline{T} x_0 \, d\mu_{n+1} + \int_{[c,d]} \widetilde{T} x \, d\mu_{n+1} \\ &= h_x M + \int_{[c,d]} \widetilde{T} x \, d\mu_{n+1}. \end{aligned}$$

From this we get

$$\begin{aligned} |h_x - h_y| &= M^{-1} \Big| \int_{[c,d]} (\widetilde{T}x - \widetilde{T}y) \, d\mu_{n+1} \Big| \\ &\leq M^{-1} \int_{[c,d]} k ||x - y|| \, d|\mu_{n+1}| \\ &= k M^{-1} |\mu_{n+1}| ([c,d]) ||x - y|| \\ &\leq k ||x - y||. \end{aligned}$$

Finally, observe that

$$\max_{t \in [\alpha,\beta]} |x(t) - (Tx)(t)| \ge \max_{t \in [c,d]} |x(t) - (\widetilde{T}x)(t)| > 1 - 1/k. \blacksquare$$

Acknowledgments. This paper is partially supported by MNiSW grant N N201 393737.

## References

- M. Baronti, E. Casini, and C. Franchetti, *The retraction constant in some Banach spaces*, J. Approx. Theory 120 (2003), 296–308.
- Y. Benyamini, The uniform classification of Banach spaces, in: Texas Functional Analysis Seminar 1984–1985, Longhorn Notes, Univ. Texas Press, Austin, 1985, 1–29.
- [3] Y. Benyamini and Y. Sternfeld, Spheres in infinite-dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc. 88 (1983), 439–445.
- [4] K. Bolibok, A remark on the minimal displacement problem in spaces uniformly rotund in every direction, Comment. Math. Univ. Carolin. 44 (2003), 85–90.
- K. Bolibok and K. Goebel, A note on minimal displacement and retraction problems, J. Math. Anal. Appl. 206 (1997), 308–314.
- [6] K. Bolibok and K. Goebel, A minimal displacement problem and related topics, in: Proc. 1st Polish Symposium on Nonlinear Analysis (1997), Łódź, 61–76.
- C. Franchetti, Lipschitz maps and the geometry of the unit ball in normed spaces, Arch. Math. (Basel) 46 (1986), 76–84.
- [8] K. Goebel, On the minimal displacement of points under lipschitzian mappings, Pacific J. Math. 48 (1973), 151–163.
- [9] K. Goebel and W. A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge Univ. Press, Cambridge, 1990.
- S. Kakutani, Topological properties of the unit sphere of a Hilbert space, Proc. Imp. Acad. Tokyo 14 (1943), 242–245.
- [11] V. Klee, Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1953), 30–45.
- [12] P. K. Lin and Y. Sternfeld, Convex sets with the Lipschitz fixed point property are compact, Proc. Amer. Math. Soc. 93 (1985), 633–639.
- [13] B. Nowak, On the Lipschitzian retraction of the unit ball in infinite-dimensional Banach spaces onto its boundary, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 861–864.
- [14] J. Schauder, Der Fixpunktsatz in Funkionalräumen, Studia Math. 2 (1930), 171–180.

Krzysztof Bolibok Institute of Mathematics Maria Curie-Skłodowska University 20-031 Lublin, Poland E-mail: bolibok@hektor.umcs.lublin.pl

> Received September 30, 2012 Revised version December 17, 2014 (70

(7635)