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Invariant means on a class of von Neumann algebras
related to ultraspherical hypergroups

by

Nageswaran Shravan Kumar (Delhi)

Abstract. Let K be an ultraspherical hypergroup associated to a locally compact
group G and a spherical projector π and let VN(K) denote the dual of the Fourier algebra
A(K) corresponding toK. In this note, invariant means on VN(K) are defined and studied.
We show that the set of invariant means on VN(K) is nonempty. Also, we prove that, if H
is an open subhypergroup of K, then the number of invariant means on VN(H) is equal
to the number of invariant means on VN(K). We also show that a unique topological
invariant mean exists precisely when K is discrete. Finally, we show that the set TIM(K̂)
becomes uncountable if K is nondiscrete.

1. Introduction. Let G be a locally compact group and let A(G) and
VN(G) denote the Fourier algebra and its Banach space dual respectively.
Invariant means on VN(G) were defined and studied by Renaud [9]. He
proved that a locally compact group G is discrete if and only if VN(G)
admits a unique invariant mean. Cho-Ho Chu and A. T. M. Lau [3] have
extended the results of Renaud to the case of homogeneous spaces.

Let K be an ultraspherical hypergroup associated to a locally compact
group G and a spherical projector π. Let A(K) denote the Fourier algebra
corresponding to the hypergroupK and let VN(K) be its Banach space dual.
In this paper, a systematic study of invariant means on VN(K) is carried
out. As a result, we extend some of the results of Renaud [9] to the case of
ultraspherical hypergroups.

In Section 3, we define and study means on VN(K). Invariant means
on VN(K) are defined in Section 4, and some of their basic properties are
derived. In Section 5, we prove that if H is an open subhypergroup of K,
then the number of invariant means on VN(H) is equal to the number of
invariant means on VN(K). We use this to prove that a unique invariant
mean exists precisely when K is discrete. Finally, in Section 6, we show that
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when K is nondiscrete, the number of invariant means is actually uncount-
able.

We begin with some preliminaries in the next section.

2. Preliminaries. Let G be a locally compact group. Fix a left Haar
measure mG on G. Let σ be a unitary representation of G on a Hilbert
space Hσ. For u, v ∈ Hσ, let σu,v denote the coefficient function correspond-
ing to σ, u and v. The Fourier–Stieltjes algebra of G, introduced by Eymard
[5, p. 192] and denoted B(G), is defined as the collection of all coefficient
functions arising from all the unitary representations. Eymard showed that
it is also the dual of the group C∗-algebra C∗(G). With the dual norm,
B(G) becomes a commutative Banach algebra with pointwise addition and
multiplication.

The left regular representation ρ of G on the Hilbert space L2(G) is given
by ρ(x)(f)(y) = f(x−1y). Via integration, ρ extends to a representation of
L1(G) given as ρ(f)(g) = f ∗ g. The closed linear span in B(G) of all coeffi-
cient functions arising only from the left regular representation is called the
Fourier algebra of G, denoted A(G). For more on the Fourier algebra and the
Fourier–Stieltjes algebra, we refer to the fundamental paper of Eymard [5].

We shall now define the notion of a spherical projector on a locally com-
pact group [8, Definition 2.1].

Definition 2.1. A map π : Cc(G)→ Cc(G) is called a spherical projec-
tor if for all f, g ∈ Cc(G) :

1. We have

(i) π2 = π and π is positivity preserving;
(ii) π(π(f)g) = π(f)π(g);
(iii) 〈π(f), g〉 = 〈f, π(g)〉;
(iv)

	
G π(f)(x) dx =

	
G f(x) dx.

2. π(π(f) ∗ π(g)) = π(f) ∗ π(g).
3. Let π∗ : M(G) → M(G) denote the transpose of π and let Ox =

supp(π∗(δx)), x ∈ G. Then for all x, y ∈ G:

(i) either Ox ∩ Oy = ∅ or Ox = Oy;
(ii) x ∈ Oy ⇒ y−1 ∈ Ox−1 ;
(iii) Oxy = Oe ⇒ Oy = Ox−1 ;
(iv) the map x 7→ Ox from G to K(G) is continuous, where K(G)

denotes the space of all nonempty compact subsets of G equipped
with the Michael topology.

Note that π extends to a norm decreasing linear map on various function
spaces, including Lp(G), 1 ≤ p ≤ ∞, and A(G). A function f is called
π-radial if π(f) = f , and a measure µ is called π-radial if π∗(µ) = µ.
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Let K = {Ox : x ∈ G} with the natural quotient topology under the
quotient map p : G → K. We identify M(K) with the space of all π-radial
measures on G. Restricting the convolution onM(G) toM(K) makesM(K)
a Banach algebra. With this convolution structure,K becomes a hypergroup,
called a spherical hypergroup [8]. See [1, 6] for more details on hypergroups.

A spherical hypergroup is called ultraspherical if the modular function on
G is π-radial. The most common example of an ultraspherical hypergroup is
the double coset hypergroup G//C corresponding to the spherical projector
π given by

π(f)(x) =
�

C

�

C

f(c′xc) dc dc′,

where C is a compact subgroup of a locally compact group G. A Haar mea-
sure on a hypergroup K is a regular measure µ such that δx ∗ µ = µ for all
x ∈ K. On an ultraspherical hypergroup, a Haar measure always exists [8].

The Fourier algebra of an ultraspherical hypergroup K, denoted A(K),
was defined and studied by Muruganandam [8]. The Fourier algebra A(K)
is defined as the range of π. Thus a function in A(K) can be treated as
a function on both G and K. The algebra A(K) is a commutative Banach
algebra with the Gelfand spectrum homeomorphic to K [8].

As in the group case, the Fourier–Stieltjes algebra, denoted B(K), can
be defined as the closed linear span of positive definite functions on K. Note
that B(K) can be identified with the algebra of all π-radial functions in
B(G). It is shown in [7] that B(K) is the dual of the C∗-algebra C∗ρ(K). For
definition and details on C∗ρ(K) see [7]. Just as in the group case, A(K) is
also an ideal in B(K).

For a locally compact group G, there is a naturally associated von Neu-
mann algebra, called the group von Neumann algebra and denoted VN(G);
it is the weak operator topology closure of the span of {ρ(x) : x ∈ G}. By
[5, p. 210], the dual of A(G) is isometrically isomorphic to VN(G). Observe
that VN(G) is also equal to the weak operator topology closure of the span
of {ρ(f) : f ∈ L1(G)}. Let VN(K) be the weak operator topology closure
of the span of {ρ(f) : f ∈ L1(K)}. The algebra VN(K) is a von Neumann
algebra and by [7], it is isometrically isomorphic to the dual of A(K).

For ϕ ∈ B(K) and T ∈ VN(K), define ϕ.T ∈ VN(K) by

〈ψ,ϕ.T 〉 := 〈ϕψ, T 〉 ∀ψ ∈ A(K).

With this action, VN(K) becomes a B(K)-module. Further, if m ∈ VN(K)∗

and ϕ ∈ B(K), define ϕ.m ∈ VN(K)∗ by

〈T, ϕ.m〉 := 〈ϕ.T,m〉 ∀T ∈ VN(K).

This action makes VN(K)∗ also into a B(K)-module.
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We now define a multiplication on VN(K)∗, called Arens multiplication,
as follows. For m ∈ VN(K)∗ and T ∈ VN(K) define m� T ∈ VN(K) by

〈ψ,m� T 〉 := 〈ψ.T,m〉 ∀ψ ∈ A(K).

For m,n ∈ VN(K)∗ define m� n ∈ VN(K)∗ by

〈T,m� n〉 = 〈n� T,m〉 ∀T ∈ VN(K).

This multiplication makes VN(K)∗ into a Banach algebra.
Throughout this paper, K will denote an ultraspherical hypergroup as-

sociated with a locally compact group G and a spherical projector π, and
p : G → K will denote the canonical quotient map. Also, for any x ∈ G,
ẋ will denote the corresponding element ofK.We shall denote by ι the canon-
ical inclusion of A(K) into its double dual VN(K)∗, and by j the natural
inclusion map j : A(K)→ A(G).

3. Means on VN(K). In this section, we define the notion of a mean
on the space VN(K) and prove some of its properties. The main aim of this
section is to prove Theorem 3.5.

Definition 3.1. A linear functional m on VN(K) is called a mean if

‖m‖ = m(I) = 1.

Note that, by [10, p. 38], m is a positive linear functional on VN(K). Let
M denote the set of all means on VN(K). Notice thatM is a weak∗ compact
convex subset of VN(K)∗.

Let
MA(K) := {ϕ ∈ A(K) : ‖ϕ‖A(K) = ϕ(ė) = 1}.

Similarly, let

MB(K) := {ϕ ∈ B(K) : ‖ϕ‖B(K) = ϕ(ė) = 1}.

The next lemma lists some trivial properties of MA(K) and MB(K).

Lemma 3.2. Let K be an ultraspherical hypergroup.

(i) MA(K) and MB(K) are convex subsets of A(K) and B(K) respec-
tively.

(ii) MA(K) and MB(K) are abelian semigroups under pointwise multipli-
cation.

(iii) If ϕ ∈MB(K) and m ∈M, then ϕ.m ∈M .
(iv) If ι denotes the canonical inclusion of A(K) into its second dual,

then
ι(MA(K)) ⊂M.
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Proof. It is enough to prove (iii) as others are clear. Let ϕ ∈MB(K) and
m ∈M. Then

1 = ‖m‖ = ‖ϕ‖B(K)‖m‖ ≥ ‖ϕ.m‖ ≥ 〈I, ϕ.m〉
= 〈ϕ.I,m〉 = 〈ϕ(ė)I,m〉 = 〈I,m〉 = ‖m‖.

Thus ‖ϕ.m‖ = ϕ.m(I) = 1.

Proposition 3.3. There exists a mean m ∈ M such that ϕ.m = m for
all ϕ ∈MA(K).

Proof. By Lemma 3.2, the conclusion follows from the Markov–Kakutani
fixed point theorem, as MA(K) acts on the dual of VN(K) as an abelian
semigroup of weak∗ continuous affine operators.

We now show the existence of a certain kind of function.

Proposition 3.4. Let Ṽ be a neighbourhood of ė in K. Then there exists
a function ϕ ∈ A(K) such that:

(a) 0 ≤ ϕ ≤ 1;
(b) ‖ϕ‖A(K) = ϕ(ė) = 1;

(c) supp(ϕ) ⊂ Ṽ .

Proof. Let Ũ be a symmetric, relatively compact neighbourhood of ė in
K such that Ũ ⊂ Ṽ . Then ϕ = 1

mK(Ũ)
χ
Ũ
∗ χ

Ũ
satisfies the requirements.

Theorem 3.5. If m ∈ M is as in Proposition 3.3, then ϕ.m = ϕ(ė)m
for all ϕ ∈ B(K).

Proof. (i) If φ ∈ B(K) is such that φ = 1 on a neighbourhood Ṽ of
ė in K, let ψ be the function as in Proposition 3.4 corresponding to the
neighbourhood Ṽ . Then ψφ = ψ. Therefore,

φ.m = φ.(ψ.m) = (φψ).m = ψ.m = m.

(ii) Let φ ∈ A(K) be such that φ(ė) = 0. By [4, Lemma 3.8 and Theorem
3.1], {ė} is a set of spectral synthesis and hence there exists a sequence
{φn} ∈ jA(K) ({ė}) such that ‖φn − φ‖A(K) → 0. Further, by (i), m =
(1− φn).m = m− φn.m, and hence φn.m = 0. Therefore,

‖φ.m‖ = ‖(φ− φn).m‖ ≤ ‖φ− φn‖ ‖m‖ → 0.

Hence, φ.m = 0.
(iii) Let ϕ ∈ B(K) be such that ϕ(ė) 6= 0. Let φ ∈ MA(K) and let

ψ ∈ A(K) be such that ψ = 1 on some neighbourhood Ṽ of ė. As ϕφ
ϕ(ė)−ψ = 0

on ė, by (ii), ϕφ
ϕ(ė) .m = ψ.m. Then by (i),

ϕ

ϕ(ė)
.m =

ϕ

ϕ(ė)
.(φ.m) =

(
ϕφ

ϕ(ė)

)
.m = ψ.m = m.
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(iv) It remains to prove the assertion for ϕ ∈ B(K) such that ϕ(ė) = 0.
Choose φ ∈ A(K) such that φ(ė) = 1. Then ((1 − ϕ)φ)(ė) = 1 and hence
from (iii), ((1− ϕ)φ).m = m, and so ϕ.(φ.m) = 0. Thus, again by (iii),

ϕ.m = ϕ.(φ.m) = 0 = ϕ(ė)m,

which is what we intended to show.

4. Invariant means. In this section, invariant means are defined and
their basic properties are studied in the spirit of [9].

Definition 4.1. A linear functional m on VN(K) is said to be topolog-
ically invariant if ϕ.m = ϕ(ė)m for all ϕ ∈ A(K), i.e.,

〈T, ϕ.m〉 = 〈ϕ.T,m〉 = ϕ(ė)〈T,m〉 ∀T ∈ VN(K), ∀ϕ ∈ A(K).

We denote by TIM(K̂) the set of all topological invariant means on
VN(K). Note that, by Theorem 3.5, the set TIM(K̂) is nonempty.

Before we move on to the main theorems, we note the action of A(G) on
VN(K) in the following lemma.

Lemma 4.2. If j : A(K) → A(G) denotes the canonical inclusion map,
then, for T ′ ∈ VN(K) and ϕ ∈ A(G), we have j∗(ϕ.π∗(T ′)) = π(ϕ).T ′.

The following theorem gives some properties of an invariant functional.

Theorem 4.3.

(i) For m ∈ VN(K)∗, m is invariant if and only if ι(ϕ) �m = ϕ(ė)m
for all ϕ ∈ A(K).

(ii) Let m,n ∈ VN(K)∗. If m is invariant, then so is m� n.
(iii) If m ∈ VN(K)∗ is invariant, then so is j∗∗(m) as an element of

VN(G)∗.

(iv) Let m ∈ TIM(Ĝ) and m′ ∈ VN(K)∗ be invariant. Then m�j∗∗(m′)
is an invariant element of VN(G) and ‖m ◦ j∗∗(m′)‖ = ‖m′‖.

Proof. (i) This follows from the fact that if ϕ ∈ A(K) and m ∈ VN(K)∗,
then for T ∈ VN(K) we have

〈T, ι(ϕ)�m〉 = 〈m� T, ι(ϕ)〉 = 〈ϕ,m� T 〉 = 〈ϕ.T,m〉.

(ii) This follows from (i) if we observe that, for m,n ∈ VN(K)∗ and
ϕ ∈ A(K),

ι(ϕ)� (m� n) = (ι(ϕ)�m)� n.

(iii) This follows from the fact that if ϕ ∈ A(G) and T ∈ VN(G), then
by Lemma 4.2,

〈ϕ.T, j∗∗(m)〉 = 〈π(ϕ).j∗(T ),m〉.
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(iv) By (ii) and (iii), m � j∗∗(m′) ∈ VN(G)∗ and is in fact invariant.
Further, ‖m � j∗∗(m′)‖ ≤ ‖m‖ ‖j∗∗(m′)‖. Hence it is enough to prove the
opposite inequality.

Notice that, by Lemma 4.2, for ϕ ∈ A(G) we have

〈ϕ, j∗∗(m′)� π∗(T ′)〉 = 〈ϕ.π∗(T ′), j∗∗(m′)〉
= 〈j∗(ϕ.π∗(T ′)),m′〉
= 〈π(ϕ).T ′,m′〉 (by Lemma 4.2)
= π(ϕ)(ė)〈T ′,m′〉 (by definition)
= 〈T ′,m′〉ρ(δė)(π(ϕ)).

Thus j∗∗(m′)� π∗(T ′) = 〈T ′,m′〉ρ(e).
Let ε > 0. Choose T ′ ∈ VN(K) such that ‖T ′‖ ≤ 1 and |〈T,m′〉| ≥

‖m′‖ − ε. Then
|〈π∗(T ′),m� j∗∗(m′)〉| = |〈j∗∗(m′)� π∗(T ′),m〉|

=
∣∣〈〈T ′,m′〉ρ(e),m〉∣∣

= |〈T ′,m′〉| ≥ ‖m′‖ − ε.
As ε > 0 is arbitrary, ‖m� j∗∗(m′)‖ ≥ ‖m′‖.

We now collect some properties of invariant means. In the proof, some of
the ideas are adapted from [9].

Theorem 4.4.

(i) If TIM(K̂) contains more than one element then so does TIM(Ĝ).
(ii) If K is discrete, then TIM(K̂) ∩A(K) 6= ∅.
(iii) If TIM(K̂) ∩A(K) 6= ∅ then K is discrete.
(iv) If K is not discrete and m ∈ TIM(K̂), then m(T ) = 0 for all

T ∈ C∗ρ(K).

(v) If K is nondiscrete, φ ∈MA(K) and m ∈ TIM(K̂) then ‖φ−m‖ = 2.

Proof. (i) Let m ∈ TIM(K̂). By Theorem 4.3(iv), the map m′ 7→ m �
j∗∗(m′) from TIM(K̂) to TIM(K̂) is an isometry, from which the statement
follows.

(ii) Since K is discrete, χ{ė} ∈ L2(K) and hence by [7], ϕ = χ{ė} ∗χ{ė} ∈
A(K) and ‖ϕ‖A(K) = 1. By Lemma 3.2(iv), ι(ϕ) ∈M and is in fact invariant.

(iii) Let ϕ ∈ A(K) be such that ι(ϕ) is a topologically invariant mean on
VN(K). Suppose that K is not discrete. Then there exists ẋ 6= ė such that
ϕ(ẋ) 6= 0. Let Ṽ be a compact neighbourhood of ė such that ẋ /∈ Ṽ . Let ψ
be the function as in Proposition 3.4 corresponding to Ṽ . Then

ψϕ = ψ.ι(ϕ) = ι(ϕ) = ϕ

and ϕ(ẋ) = ψ(ẋ)ϕ(ẋ) = 0, which is a contradiction.
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(iv) Let T ∈ C∗ρ(K). Let ε > 0. Since L1(K) is dense in C∗ρ(K), there
exists f ∈ L1(K) such that ‖T − ρ(f)‖ < ε/2. Let Ũ be a neighbourhood of
ė such that ‖fχ

Ũ
‖ < ε/2. Let φ ∈MA(K) be such that supp(φ) ⊂ Ũ . Thus

|〈T,m〉| = |〈T, φ.m〉| = |〈φ.T,m〉| ≤ ‖φ.T‖
≤ ‖φ.(T − ρ(f))‖+ ‖φ.ρ(f)‖ < ε/2 + ‖φ.ρ(f.χ

Ũ
)‖ < ε.

Since ε > 0 is arbitrary, m(T ) = 0.

(v) Let φ ∈MA(K). As MA(K) ⊂ Bρ(K), by [8, Theorem 3.15], φ can be
considered as a positive linear functional on C∗ρ(K). By [10, Corollary 3.5],
C∗ρ(K) has an approximate identity and hence, for any ε > 0, there exists
S ∈ C∗ρ(K) such that 0 ≤ S ≤ I and 〈S, φ〉 ≥ 1−ε. Let T = 2S−I ∈ VN(K).

Then for m ∈ TIM(K̂),

〈T, ι(φ)−m〉 = 2〈S, ι(φ)−m〉 ≥ 2〈S, φ〉 ≥ 2(1− ε).

Since ε > 0 is arbitrary and ‖T‖ ≤ 1, we have ‖φ−m‖ = 2.

5. Open subhypergroups and invariant means. In this section we
prove that the cardinalities of the sets of all invariant means on VN(H) and
on VN(K) are equal. At the end of this section, we prove a necessary and
sufficient condition for the uniqueness of invariant means, which is our main
aim in this section.

We first state some functorial properties of A(K) in the spirit of [5]. As
the proofs follows the same lines as in [5], we omit them.

Lemma 5.1. Let H be a closed subhypergroup of K. For ϕ ∈ A(H) let
ϕ◦ denote the function on K that is ϕ on H and vanishes outside H.

(i) If H is open, then ϕ 7→ ϕ◦ is an isometric isomorphism of A(H)
onto A(K)◦ = {ϕ◦ : ϕ ∈ A(H)}

(ii) The restriction map from A(K) to A(H) is a contractive homomor-
phism.

Let rK : A(K) → A(H) and eK : A(H) → A(G) denote the restriction
and extension maps, respectively, of the above lemma. Notice that rKeK is
the identity on A(H). In the remaining part of this section, H will denote
an open subhypergroup of K.

We now prove some lemmas which will be used in the proof of Theo-
rem 5.6.

Lemma 5.2. For ϕ ∈ A(K) and T ∈ VN(K), we have

e∗K(ϕ.T ) = rK(ϕ).e∗K(T ).
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Proof. For any ψ ∈ A(K),

〈ψ, e∗K(ϕ.T )〉 = 〈eK(ψ), ϕ.T 〉 = 〈ϕeK(ψ), T 〉
= 〈eK(rK(ϕ)ψ), T 〉 = 〈rK(ϕ)ψ, e∗K(T )〉
= 〈ψ, rK(ϕ).e∗K(T )〉.

Lemma 5.3. For ψ ∈ A(K) and T ∈ VN(K), we have

r∗K(ψ.T ) = eK(ψ).r∗K(T ).

Proof. For any ϕ ∈ A(K),

〈ϕ, r∗K(ψ.T )〉 = 〈rK(ϕ), ψ.T 〉 = 〈ψrK(ϕ), T 〉
= 〈rK(eK(ψ)ϕ), T 〉 = 〈eK(ψ)ϕ, r∗K(T )〉
= 〈ϕ, eK(ψ).r∗K(T )〉.

Lemma 5.4. For ϕ ∈ A(H) and T ∈ VN(K), we have

r∗K(ϕ.e∗K(T )) = eK(ϕ).T.

Proof. For any ψ ∈ A(K),

〈ψ, r∗K(ϕ.e∗K(T ))〉 = 〈rK(ψ), ϕ.e∗K(T )〉 = 〈ϕrK(ψ), e∗K(T )〉
= 〈eK(ϕ.rK(ψ)), T )〉 = 〈eK(ϕ)ψ, T 〉
= 〈ψ, eK(ϕ).T 〉.

Lemma 5.5. The second adjoint e∗∗K : A(H)∗∗ → A(K)∗∗ is an isometry.

Proof. By Lemma 5.1, the restriction map rK : A(K) → A(H) is a
contraction and hence ‖r∗∗K ‖ = ‖rK‖ ≤ 1. Since r∗∗K e

∗∗
K is the identity map

on A(H)∗∗, we have ‖m‖ = ‖r∗∗K e∗∗K (m)‖ for any m ∈ A(K)∗∗. Suppose
‖e∗∗K (m)‖ < ‖m‖ for some m ∈ A(K)∗∗. Then

‖m‖ = ‖r∗∗K e∗∗K (m)‖ ≤ ‖e∗∗K (m)‖ < ‖m‖,
which is a contradiction.

We now proceed to prove the main results of this section.

Theorem 5.6. Let H be an open subhypergroup of K. Then
e∗∗K (TIM(Ĥ)) = TIM(K̂).

Proof. (i) We first prove e∗∗K (TIM(Ĥ)) ⊆ TIM(K̂). In fact, let m be an
invariant mean. Let ϕ ∈ A(K) and T ∈ VN(K). Then, by Lemma 5.2,

〈ϕ.T, e∗∗K (m)〉 = 〈e∗K(ϕ.T ),m〉 = 〈rK(ϕ).e∗K(T ),m〉
= rK(ϕ)(ė)〈e∗K(T,m)〉 = ϕ(ė)〈T, e∗∗K (m)〉.

Hence the claim.
(ii) We now claim that r∗∗K (TIM(K̂)) = TIM(Ĥ). Since r∗∗K e

∗∗
K is the

identity map on A(H)∗∗, by (i) we have

TIM(Ĥ) = r∗∗K e
∗∗
K (TIM(Ĥ)) ⊆ r∗∗K (TIM(K̂)).
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We now prove the reverse inclusion. If m ∈ TIM(K̂), then for ψ ∈ A(H) and
T ∈ VN(H) we have, by Lemma 5.3,

〈ψ.T, r∗∗K (m)〉 = 〈r∗K(ψ.T ),m〉 = 〈eK(ψ).r∗K(T ),m〉
= eK(ψ)(ė)〈r∗K(T ),m〉 = ψ(ė)〈T, r∗∗K (m)〉.

Hence the claim.
(iii) We next claim that e∗∗K r

∗∗
K (m) = m for any m ∈ TIM(K̂). Indeed,

let m ∈ TIM(K̂). By (ii), m′ = r∗∗K (m) ∈ TIM(Ĥ). Let ϕ ∈ A(H) be such
that ϕ(ė) = 1 and let T ∈ VN(K). By Lemma 5.4,

〈T,m〉 = ϕ(ė)〈T,m〉 = eK(ϕ)(ė)〈T,m〉
= 〈eK(ϕ).T,m〉 = 〈r∗K(ϕ.e∗K(T )),m〉
= 〈ϕ.e∗K(T ), r∗∗K (m)〉 = 〈e∗K(T ), r∗∗K (m)〉
= 〈T, e∗∗K r∗∗K (m)〉.

Thus e∗∗K r
∗∗
K (m) = m.

(iv) We now prove the remaining inclusion of the theorem. By (ii), m′ =
r∗∗K (m) ∈ TIM(Ĥ). By (iii), e∗∗K (m′) = m and hence the reverse inclusion
follows.

Here is the promised result on the cardinality of the sets of invariant
means, whose proof is immediate from Theorem 5.6. Here #X denotes the
cardinality of the set X.

Corollary 5.7. If H is an open subhypergroup of K, then

(a) #TIM(Ĥ) = #TIM(K̂);

(b) TIM(Ĥ) is separable if and only if TIM(K̂) is separable.

The following corollary generalizes Theorem 1 of [9].

Corollary 5.8. If K is discrete, then there exists a unique topological
invariant mean on VN(K).

Proof. Choose H = {ė} in Corollary 5.7(a).

The converse to the above corollary is the next theorem which also gen-
eralizes Theorem 11 of [9]. Moreover, the proof of the theorem below is a
modification of the proof given for the case of locally compact groups in [9].

Theorem 5.9. Let K be a second countable ultraspherical hypergroup. If
VN(K) admits a unique topological invariant mean, then K is discrete.

Proof. Let U be a neighbourhood base of ė such that each element of U
is a compact set. Since K is second countable, without loss of generality, we
can even assume that U is countable. So let U be the sequence {Ũn} such
that Ũn → {ė}. For each n ∈ N, let ψn ∈MA(K) with supp(ψn) ⊆ Ũn.
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Let ψ ∈ MA(K) and ε > 0. Note that the set of compactly supported
elements in MA(K) is dense in MA(K). Hence there exists ψ′ ∈ MA(K) with
compact support such that ‖ψ−ψ′‖ < ε/2. By regularity of A(K) [8, Proposi-
tion 2.22], there exists ϕ ∈ A(K) such that ϕ is 1 on supp(ψ′). Since ψ′(ė) = 1
and ė ∈ supp(ψ′), we have (ψ′ − ϕ)(ė) = 0. By [4, Theorem 3.1 and Lemma
3.8], {ė} is a set of spectral synthesis and hence there exists χ ∈ A(K) such
that ‖ψ′ − ϕ − χ‖ < ε/2 and χ(W̃ ) = 0 for some neighbourhood W̃ of ė.
Further, for any n ∈ N such that Ũn ⊂ W̃ ∩supp(ψ′), we have ψnϕ = ψn and
ψnχ = 0. Thus, by a standard ε/2 argument, it follows that ‖ψψn−ψn‖ < ε.

Note that every weak∗ accumulation point of {ψn} in A(K)∗∗ is a topo-
logical invariant mean. By the assumption that the topological invariant
mean is unique and as the set of topological invariant means on VN(K) is
nonempty, let m be the unique topological invariant mean on VN(K). Also
A(K) is the predual of the von Neumann algebra VN(K) and hence, by [10,
Corollary 5.2], A(K) is weakly sequentially complete. Thus {ψn} converges
to m weakly in A(K), which means that m ∈ A(K). Hence by Theorem 4.4,
it follows that K is open.

6. Cardinality of the set of invariant means. In this section, we
take up the case of K nondiscrete. We prove that the number of invariant
means is then uncountable.

Definition 6.1. A net {ψα} in MA(K) is called a TI-net if
lim
α
‖ψψα − ψα‖ = 0 for all ψ ∈MA(K).

Remark. It follows from the first half of the proof of Theorem 5.9 that
if the ultraspherical hypergroup K is second countable, then TI-sequences
exist. This proof can also be imitated to show that a TI-net always exists
in MA(K) for every ultraspherical hypergroup K.

Lemma 6.2. If {ψα} is a TI-net and ψ ∈MA(K), then ‖ψ − ψα‖ → 2.

Proof. Suppose that ‖ψ − ψα‖ does not converge to 2 for some ψ
in MA(K). Then there exists a subnet {ψβ} ⊂ {ψα} and an ε > 0 such
that ‖ψ−ψβ‖ ≤ 2−ε. If m is the weak∗ limit of {ψβ}, then ‖ψ−m‖ ≤ 2−ε,
which contradicts Theorem 4.4(v).

Proposition 6.3. Let K be a second countable ultraspherical hypergroup
such that K is not discrete. Let {ψn} be a TI-sequence inMA(K). There exist
positive integers n1 < n2 < · · · and a sequence {ϕj} ⊂MA(K) such that

(i) limj ‖ψnj − ϕj‖ = 0,
(ii) the ϕj’s are mutually orthogonal, i.e., ‖ϕi − ϕj‖ = ‖ϕi‖ + ‖ϕj‖

whenever i 6= j,
(iii) {ϕj} is a TI-sequence.
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Proof. This follows from [2, Theorem 2.4] and the previous lemma.

Before we state the main result of this section, here is some notation.
Let F = {O ∈ (`∞)∗ : O(f) = 0 if f ∈ `∞ and limn f(n) = 0} and
F1 = {O ∈ F : O ≥ 0 and ‖O‖ = 1}. The theorem below is a generalization
of [2, Theorem 3.3].

Theorem 6.4. Let K be a nondiscrete second countable ultraspheri-
cal hypergroup. Let {ϕn} be an orthogonal TI-sequence in MA(K). Let σ :
VN(K)→ `∞ be defined by

σ(T )(n) = 〈T, ϕn〉, T ∈ VN(K), n ∈ N.
Then

(i) σ is a positive linear mapping of VN(K) onto `∞ with ‖σ‖ = 1.
(ii) Its adjoint σ∗ is a linear isometry of (`∞)∗ into VN(K)∗.
(iii) If O ∈ F , then σ∗(O) is topologically invariant.
(iv) If O ∈ F1, then σ∗(O) ∈ TIM(K̂).

Proof. (i) It is clear that σ is a positive linear mapping with ‖σ‖ = 1. It
remains to prove that σ is an onto map. Let {an} ∈ `∞. By the assumption
that the projections Pn of ϕn are mutually orthogonal, the series

∞∑
n=1

anPn

converges in the weak∗ topology of VN(K), say to T ∈ VN(K). Since ϕn ∈
A(K), it follows that

σ(T )(n) = 〈T, ϕn〉 =
∞∑
n=1

an〈Pn, ϕn〉 = an.

Thus σ is onto.
The proofs of (ii)–(iv) are clear.
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