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Sets of p-multiplicity in locally compact groups
by

I. G. TopoRroV (Belfast) and L. TUROWSKA (Gothenburg)

Abstract. We initiate the study of sets of p-multiplicity in locally compact groups
and their operator versions. We show that a closed subset E of a second countable locally
compact group G is a set of p-multiplicity if and only if E* = {(s,t) : ts~' € E} is a set of
operator p-multiplicity. We exhibit examples of sets of p-multiplicity, establish preservation
properties for unions and direct products, and prove a p-version of the Stone—von Neumann
Theorem.

1. Introduction. The existence of non-zero compact operators acting
on a Hilbert space and leaving invariant a given commutative subspace lat-
tice was first examined in [I0] (see also [6] and the references therein). That
work followed W. B. Arveson’s seminal paper [I], and showed that the pres-
ence of non-zero compact operators in CSL algebras is closely related to
the notion of multiplicity sets in commutative harmonic analysis. This re-
lation was formalised, and generalised to non-commutative locally compact
groups, in [I7], where the notion of sets of operator multiplicity was intro-
duced, and [I8|, where it was shown that a closed subset E of a (second
countable) locally compact group G is a set of multiplicity if and only if
E* ={(s,t) : ts71 € E} is a set of operator multiplicity.

The study of non-zero operators from Schatten p-classes in CSL algebras
was also initiated in [I0], where a link between such operators and pseu-
domeasures on compact abelian groups, whose Fourier transforms belong to
the sequence space ¢P, was exhibited. If /P is replaced by c¢g, this turns into
a special case of the result described in the previous paragraph. It is thus
natural to define and study sets of p-multiplicity, their operator analogues,
and the relation between these two notions.

This is the aim of the present article. In Section[3] given a locally compact
group G, we define a subspace S,(G) of the reduced group C*-algebra C}(G)
of G that plays a role analogous to the role of the Schatten p-class within
the C*-algebra of all compact operators on a Hilbert space. If G is compact,
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the space Sp(G) coincides with the intersection of Cj(G) with the Schatten
p-class on L?*(G). It should be noted that if G is discrete, then S,(GQ) is
equal to C(G), and thus the interest of our work lies in the case where G is
locally compact and non-discrete; for example, when G is connected. After
defining sets of p-multiplicity and their operator versions, we show that a
closed set E C G is a set of p-multiplicity if and only if £* is a set of operator
p-multiplicity. We give a number of examples of sets of p-multiplicity, and
establish preservation properties for unions and direct products. We include
characterisations of the sets of p-multiplicity in the case p =1 and p = 2.

In Section [4] we prove a p-version of the Stone—von Neumann Theorem.
Recall that this result can be stated by saying that the C*-algebra of all
compact operators on L?(G) is generated by C;(G) and the multiplication
algebra of the space Cy(G) of all continuous functions on G vanishing at
infinity. Here, we obtain an analogous result for the Schatten p-class, using
the space Sp(G) in place of CF(G).

In Section using the Fourier theory of compact groups, we give a
different proof of the aforementioned transference theorem for sets of
p-multiplicity, which we believe is interesting in its own right.

Finally, in Section [2] we collect the necessary background material and
set notation.

2. Preliminaries. Let (X, u) and (Y, v) be standard (o-finite) measure
spaces. A subset E C X x Y is called marginally null if E C (M xY)
U (X x N), where M C X and N C Y are null sets. Let T(X,Y) be the
projective tensor product L?(X)® L2(Y). Every h € T(X,Y) can be written
as a series

h=> fi®g, ficl’X), gecI’Y) icN,
=1

where > || fill3 < oo and Y52, ||gil|3 < 0o. Such an h may be considered
either as a function A : X x Y — C, defined up to a marginally null set and
given by

h(z,y) = filx)gi(y),
=1

or as an element of the predual of the space B(L?(X), L?(Y)) of all bounded
linear operators from L?(X) into L?(Y) via the pairing

(e}

(T,h) == (Tfi, )

i=1
We denote by ||h||7 the norm of h € T(X,Y).
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Let 6(X,Y) be the multiplier algebra of T'(X,Y"); by definition, a mea-
surable function w : X xY — C belongs to (X, Y) if the map my, : h — wh
leaves T'(X,Y) invariant, that is, wh coincides almost everywhere with a
function from T'(X,Y), for every h € T(X,Y’). The elements of &(X,Y) are
called (measurable) Schur multipliers; we refer the reader to [15] for relevant
details. If w € &(X,Y), the adjoint of m,,, acting on B(L?(X), L?(Y)), will
be denoted by S,.

Throughout the paper, G is a locally compact group. The Lebesgue spaces
LP(G), p = 1,2,00, are with respect to left Haar measure m; dm(x) is
shortened to dx and the modular function of G is denoted by A. Let A :
G — B(L*(G)), s = s, be the left regular representation. The symbol \ is
also used for the corresponding representation of L'(G) on L?*(G); thus, if
f € LY(G) then \(f) is the operator on L?(G) given by A(f)(g) = f * g.

The reduced group C*-algebra C}(G) of G is the operator norm closure
of {\(f): f € LY(G)}, while the group von Neumann algebra VN(G) of G
is its weak™ closure. The Fourier algebra A(G) of G is the (commutative,
regular, semisimple) Banach algebra consisting of all complex functions u on
G of the form

where &, € L?(G). The norm of an element v € A(G) is by definition the
infimum of the products [|£]] ||n]|, where & and 7 are functions from L?(G)
for which (2.1)) holds. The Banach space dual of A(G) can be canonically
identified with VN(G): for T € VN(G) and u as in (2.1]), the pairing is given
by
(T, u) = (T€,n);
we refer the reader to [8] for this and further properties of A(G).
We set T(G) = T(G,G), 6(G) = &(G,G) and B(L*(Q)) = B(L*(G),
L*(G)). The map P : T(G) — A(G) given by
(22) P(f@g)t) = (M. f@g) = (Mf.) = | F(t s)g(s) ds = g = f(1)
G
(where f(t) = f(t71)) is the predual of the inclusion VN(G) — B(L?(QG)).
Moreover, the following holds (see [I§] for a proof):

PROPOSITION 2.1. For every h € T(G), we have
P(h)(t) =\ h(t"'s,s)ds, teG.
G
Define

N:L®(G) = L®(G xG) by N(f)(s,t)=f(ts™1).
We will often use the fact that if u € A(G) then N(u) € &(G). More
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generally, the set of all continuous functions u : G — C such that N(u) €
&(G) coincides with the algebra M® A(G) of all completely bounded, or Herz-
Schur, multipliers of A(G) [3], [19] (see also [I1]). For v € A(G) and T €
VN(G), let v- T € VN(G) be the element of VN(G) given by
(v-T)u) =(T,vu), ue€ A(G);

we have v - T' = Sy,)(T) (see, e.g., [13]).

We denote by S,(H) the Schatten p-class on a Hilbert space H (here,
1 <p < 0), and we let So(H) be the space of all compact operators on H.
If H is clear from the context, we simply write S,. We write ||T'||, for the
Schatten p-norm of an element 7' € S, 1 < p < 00, and let ||T'||oc = ||T'|| for
the usual operator norm of an element T' € S.

For a function h € L?(G x G), we let Ty, € So(L*(G)) be the operator
given by

(2.3) T(&)(y) = | hy, 2)é(x) de, € LX(G), y € G.

G
We call the function h the integral kernel of T. We note that if h € T(QG)
then T}, € S1(L?*(Q)); conversely, for every operator T € Si(L*(G)) there
exists h € T(G) such that T = Tj,.

For a measure space (X, ) and a function a € L*®(X, u), we let M,
denote the (bounded) operator on L?(X) of multiplication by a, and Pk
the multiplication by the characteristic function x g of a measurable subset
KCX.

3. Definitions and properties. Let G be a locally compact group. For
each 1 < p < o0, let
Sp(G) ={T € C}(G) : PkTPk € S, for all compact subsets K C G}.

Note first that if f € C.(G) then PxA(f)Pg is an integral operator with
integral kernel
(5,1) = Xrxr (s, )AL Lf(st™h).

Thus, PxA(f)Pk is a Hilbert—Schmidt operator. Since every T € C}(G)
can be approximated in the operator norm by operators of the form A(f)
with f € C.(G), we conclude that PxTPix € Soc whenever T € C)(G) and
K C G is compact; thus, Soo(G) = C;(G).

REMARKS. (i) Let v € M®A(G) and T € S,(G). Then v - T € S,(G).
Indeed, for every compact set K C GG, we have

Px(v-T)Pg = PgSnw)(T) P = Snw)(PkTPK) € Sp,

since Schur multipliers leave S, invariant (the latter fact can be easily seen
by using a complex interpolation argument; see [2, [16] and the proof of

Theorem .
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(ii) If p < ¢ then Sp(G) C S,(G).

(iii) If G is discrete, then K C G is compact precisely when it is finite;
thus, in this case, Sp(G) = C;(G) for all values of p.

(iv) If G is compact then S,(G) = C}(G) N S,. Indeed, the inclusion
S,NCEH(G) C Sp(G) holds trivially for any G. If G is compact and T' € S,(G)
then, taking K = G in the definition of S,(G), we see that T' € S,,.

In case G is compact, the previous paragraph shows that S,(G) is an
ideal of C;(G). Moreover, the inclusion S,(G) C S4(G), p < g, is proper if
G is infinite (see Remark [5.2). We do not know whether the spaces Sp(G)
are ideals for other classes of locally compact groups G.

(v) The identity from Remark (iv) fails when G is not compact. Indeed,
it is known (see, e.g., [20]) that in this case VN(G) N Ss = {0}.

(vi) Since for any compact subset K C G and f € C.(G) the operator
Pr A(f)Pxk is Hilbert—Schmidt, we have A(C.(G)) C S2(G).

(vii) Let G be a compact abelian group and G be its dual group. Then
VN(G) and C}(G) can be identified, via Fourier transform, with the spaces

~ ~

(@) and co(G). It is easily seen that, under this identification, S,(G) is

~

sent onto the sequence space £,(G). Thus, in this case we have S,(G) =
VN(G)NS, =CHG)NS,.

(viii) Let G = R and L € R = R be a compact interval. Then x €
L‘X’(]IA%) \ Co(R). Thus, if T is the operator in VN(R) corresponding to x,
via Fourier transform, then 7' ¢ C(R). However, if K C R is compact then
PrT Pk is easily seen to be an integral operator with integral kernel

(s,t) = xXKxK(s,t) S e~ g,
L

Since ||, e~ (5= dz| < m(L) for all s,t € R, the operator PxT Py belongs
to So. This example shows that, in contrast to the compact case, replacing
C(G) by VN(G) in the definition of S,(G) will in general yield different

spaces.

Recall that, given a closed subset £ C G, I(E) (resp. J(E)) is the largest
(resp. the smallest) ideal of A(G) with null set E:

I(E)={ue A(G) :u(s) =0, s € E}

and

J(E) ={u € A(G) : u has compact support disjoint from E}.

For J C A(G) we denote by J* the annihilator of J in VN(G).

Sets of multiplicity (or M-sets) in (general) locally compact groups were
introduced in [4] (see also [5]), while in [18], the notion of M;-set was defined.
We next formulate p-versions of these concepts.
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DEFINITION 3.1. A closed subset £ C G will be called:
(i) an MP-set (or a set of p-multiplicity) if

J(E)' N S,(G) # {0};
(ii) an M7 -set if
I(E)* nS,(G) # {0},
It is clear that every MY-set is an MP-set, and that M{°-sets (resp.
M®°-sets) coincide precisely with M;-sets (resp. M-sets) studied in [18].
Recall that the support supp(T') of an operator T' € VN(G) is defined by
letting

supp(T) = {t € G : u-T # 0 whenever u € A(G) and u(t) # 0}.

Note that J(E)* coincides with the space of all operators T € VN(G) for
which supp(7T') C E. Hence a subset E is an MP-set if and only if there exists
a non-zero operator 1" in S,(G) with supp(T) C E.

Our next aim is to define operator versions of sets of p-multiplicity. We
first recall some concepts from [I] and [7]. Given standard measure spaces
(X,n) and (Y,v), a subset E of X x Y is called w-open if it is marginally
equivalent to the union of a countable set of Borel rectangles. The comple-
ments of w-open sets are called w-closed. A function w : X xY — C is
called w-continuous if w1 (U) is an w-open set for every open set U C C. If
F C X x Y is an w-closed set, an operator T' € B(L?(X), L?(Y)) is said to
be supported on F if

(AXB)QF:@ = PgTP,=0

for all measurable rectangles Ax B C X xY. A masa-bimodule is a subspace
U C B(L*(X), L*(Y)) such that DyUDx C U (where Dx (resp. Dy) is the
masa multiplication of L*°(X) (resp. L>®(Y)). Given a masa-bimodule U,
there exists a smallest, up to marginal equivalence, w-closed subset K C X xY
such that every operator in U is supported by F; we call F' the support
of U. Given an w-closed set k C X x Y, there exist [I], [7] a largest weak*
closed masa-bimodule M ax (k) and a smallest weak* closed masa-bimodule
Mmin (k) with support k. The masa-bimodule My, (k) is the space of all
T € B(L*(X), L*(Y)) supported on .

DEFINITION 3.2. An w-closed subset kK C X x Y will be called

(i) an operator MP-set (or a set of operator p-multiplicity) if

Mumax (k) N Sp # {0};
(ii) an operator MY -set if

Munin (k) NS, # {0}
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REMARKS. (i) Note that if 1 < p < 2 then the two notions introduced in
Definition [3.2] agree; this follows from the fact that every Hilbert-Schmidt
operator is pseudo-integral, while the pseudo-integral operators supported
on a subset k are contained (in fact, weak® dense) in Myin(x). We refer
the reader to [I] for the definition of and more details about the class of
pseudo-integral operators.

(i) A subset k C X x Y is an operator M?2-set if and only if (u x v)(k)
> 0; indeed, the latter condition is equivalent to the existence of non-zero
functions h € L?(X x Y') supported on k.

In [18] we established a connection between sets of multiplicity and sets
of operator multiplicity. The next theorem is a generalisation of this result
to sets of p-multiplicity. For ¢ € T(G), let E, : B(L*(G)) — VN(G) be the
map given by

(Ep(T),u) = (T, pN(u)), T €B(L*(G)),ue AG),

where the pairing on the left hand side is the one between VN(G) and A(G),
and on the right hand side, the one between B(L?(G)) and T(G). It was
proved in [I8, Theorem 3.8] that E,(T") € C;(G) for any ¢ € T'(G) whenever
T is compact.

For £ C GG, we let

E*={(s,t):ts '€ E} C G x G.
We will assume, for the rest of the paper, that G is second countable.

THEOREM 3.3. Let G be a locally compact group, E C G be a closed
subset and p > 1. The following are equivalent:

(i) E is an MP-set (resp. an M} -set);
(i) E* is an operator MP-set (resp. an operator MY -set).

Proof. (i)=-(ii). Suppose that £ C G is an MP-set and let T' be a non-
zero operator in J(E)1NS,(G). Then there exists a compact set K C G such
that PxT Pk is non-zero; by [18, Lemma 3.11|, PkTPx € Mmax(E*) N Sp.

Let E C G be an M/-set. The proof of [18, Theorem 3.12(b)| shows that
I(E)t € Muin(E*). As in the previous paragraph, one can find a non-zero
operator in Muyin(E*) N S,.

(ii)=(i). Assume that E* is an operator MP-set; we will show that E
is an MP-set. If p = oo, this follows from [I8, Theorem 3.11]. Let p = 1
and T be a non-zero trace class operator in Mpax(E*); by virtue of
and the remark following it, write T' = T}, where h = Y2, f; ® g;, with
> 113 < o0 and X [l:]3 < oo.

Fix ¢ € T(G) N 6(G) such that the function ¥ = p(1 ® A) belongs
to 6(G). We will show that E,(T") € Si(G). For every u € A(G), we have
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(Ep(T),u) = (T,oN(u)) = || h(s, t)p(s,tyu(ts™") ds dt
GxG
= || ho7 't e u(r) A(tr™) dr dt
GxG
= | (g h(r= e, ) (r 1, 1) A(t) dt)u(r)A(r_l) dr.
G G
By assumption, ¢ € &(G) and hence ¥h € T(G). By Proposition
P(yh)(r) = | h(r~'t,t)p(r™ 't ) At) dt
G
and hence

(3.1) (Eo(T),u) = | P($h)(r)u(r)A(r™") dr.
G

Let &,n € L?(G) be such that u(r) = (A\.(£),n) for all » € G. Then, by ,
(3.2) (Ep(T)&,n) = (Ep(T), u)
= |} Pun)(m)ACE0 2)n() dr do

GxG
= || P@h)(@y ") Az Hewn(2)Aly™") dy dz
GxG
= || Pwh)(zy™HAG@ " Ew)n(x) dy da.
GxG
Let
(3.3) w(z,y) = P(Yh)(zy " )A@™), =z,yed.

Identity (3.2)) shows that w is an integral kernel and E,(T) =T,,. If K C G
is compact then PxT,, Px = Ty, and

(3.4) wxrxx = N(PWh) (A xk) @ xK),

where N(v)(s,t) = v(st™!) for s,t € G. We have P(yh) € A(G); thus
N(P(yh)) € &(G) and hence N(P(yh)) € &(G). Since (A~ xx) @ xx
€ T(G), identity shows that wxkxx € T(G) and hence PxE,(T) Pk
is in Si. Thus, E,(T') € S1(G).

By [18, Lemma 3.10], there exist ¢,d € L*(G) such that E.gq(T) # 0.
Since the space F of all compactly supported functions in L>°(G) is dense in
L*(@), the continuity of the map ¢ — E,(T) and [18, Proposition 3.8] imply
that we may choose ¢ and d from F. However, in this case dA € L*°(G) and
hence (c®d)(1® A) € 6(G). Letting ¢ = c®d, we then see by the previous
paragraphs that E,(T) # 0, and by the proof of [I8, Theorem 3.11| that
E,(T) € J(E)*. It follows that E is an M!-set.
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To prove the statement for an arbitrary p, we use complex interpolation.
Recall [16] that (Si,S) is a compatible couple, and S, coincides with the
interpolation space between S; and S., with parameter § = p~!. Let, as
above, ¢ € T(G) N &(G) be such that the function ¥ = ¢(1 ® A) is an
element of &(G). For a fixed compact set K C G and p = 1,00, let &), :
S, — B(L?(@)) be the operator given by

@,(T) = PkE,(T)Pr, TE€S,.
By the previous paragraphs, the image of @ is in S;. Moreover,
120 (T ls, = lxiex kwllaa = IN(P@R)A™ xK) & xi) )

< IN(P@M) e (A xK) © xi) 7o)

< [[P@h) | ac) I((A X k) @ xx) ()
¥Rl (A xk) @ X&) @)
m(K)[¥lle@) 1Pl 1A X oo
m(K)[¢lle@ A Xl Tls,

which shows that the operator @1 : S — &7 is bounded. On the other hand,
the image of @ is in Soo and, by [I8, Theorem 3.8],

[Poc (D) < Ml I TN, T € Soo

By complex interpolation, the image of the operator @, is in Sp. The proof
is now completed by choosing ¢ for which E,(T") is non-zero.

We have thus shown that if E* is an operator MP-set then F is an
MP-set. The proof of the case where E* is an operator M?-set follows similar
arguments and uses the fact that E,(T) belongs to I(E)L if T' € Myin(E*)
(see [18, Theorem 3.11]). m

COROLLARY 3.4. A closed subset E of a locally compact group G is an
M -set if and only if it has a non-empty interior.

Proof. Suppose that F is an M'-set. By Theorem , Mmax (E*) con-
tains a non-zero trace class operator; by [7, Theorem 6.7], E* contains a
non-trivial measurable rectangle, say, a x 3. Thus Sa~! C E. By Steinhaus’
Theorem, Sa~ !, and hence E, has a non-empty interior.

Conversely, assume that U is an open subset of F/; we may further assume
that U has a compact closure contained in E. Let u € A(G) be a function
supported in U; then v € LY(G) and thus A(u) € C}(G). It is easy to see
that A(u) € J(E)*. Let K C G be a compact set. Then Px(u)Py is an
integral operator with integral kernel

(t5) = ults™)xr (t)xr(s) A(s) ™"

The function (¢, s) — xx (t)xx (5)A(s) ! belongs to T(G) since xf is com-
pactly supported and A is continuous. Since N (u) € &(G), we conclude that

IN A



84 I. G. Todorov and L. Turowska

the function (t,s) — u(ts™)xx (t)xx (s)A(s)~! belongs to T(G); since this
holds for all compact sets K, we conclude that A(u) € S1(G). =

COROLLARY 3.5. A closed subset E of a locally compact group G is an
M?-set if and only if it has positive Haar measure.

Proof. Note that m(F) > 0 if and only if m x m(E*) > 0. The claim
follows from Theorem and Remark (ii) after Definition n

We next include some examples.

ExAMPLES. (i) J. Froelich [I0, pp. 13-14] has shown that there exists
a closed set £ C T of Lebesgue measure zero which supports a non-zero
measure p whose Fourier transform vanishes at infinity but which does not
support a non-zero pseudomeasure with Fourier transform in ¢P. The set E
is an M-set that is not an MP-set for any p > 1.

(ii) Let T be the group of the unit circle, realised additively as R/27Z. We
identify T" with [—,m)", and view the sphere S"~! = {x € R" : |z| = 1}
as a subset of T". Let u be the normalised surface area measure of S™~ L.
A direct calculation (see, e.g., [21, p. 154]) shows that

fu(k) = Clk|~"= 2/2Jn 2)/2(|kl)

for some constant C, where fi is the Fourier transform of p and J;,_2)/2

is a Bessel function. As |J,(r)| < C,r~ /2 (see |9, Theorem 5.1]), for large
enough r > 0, we obtain

k) = O(1/|R|"D72)  as k] — .

We have
1 1
p
Z k)P < C Z |k [p(n—1)/2 <C S || (n—Dp/2 dz
kezn kezn, [k|>1 2€R™, |z|>1
i n—1
,
= ez

Therefore for p > 2 and n > 14 2/(p — 2), the sequence {fi(k)}rezn belongs
to £P(Z") and hence A(u) € Sp(T"). As A(u) € I(S" 1)+, we conclude that
Sn=L C T™ is an M7-set for p > 2 whenever n > 1+2/(p — 2). Note that, by
Corollary , S"=1 n > 1, is not an MZ-set since S"~! has zero Lebesgue
measure (see Corollary .

(iii) There exists a closed set E C T of Lebesgue measure zero and a
non-zero measure p with supppu = E such that g € P for any p > 2 (see
[23, Theorem 10.12]). Hence E is an M?-set for all p > 2 but not an M?-set
(see Corollary [3.5)).

(iv) In [7, p. 579] an example is given of a set £ C T and a function
f € L*(T) such that A(f) is supported in E and A(f) € S, for any p > 1
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but A\(f) ¢ Si. Remark (iv) from the start of Section 3| implies that F is an
MP-set for all p > 1 but not an M'-set.

Following the established terminology in the classical case, let us call a
closed subset E C GG a set of p-uniqueness if it is not a set of p-multiplicity.
In the remainder of this section, we apply Theorem to establish some
preservation results for sets of p-uniqueness and sets of p-multiplicity.

PRrROPOSITION 3.6. Let G be a locally compact group, 1 < p < oo and
E; C G be a closed subset, 1 = 1,2. Then E1U Es is a set of p-uniqueness if
and only if By and Ey are sets of p-uniqueness.

Proof. To see the “if” part, it suffices, by Theorem to show that if
mtmax(E;k) N Sp = {0} for i = 1, 2, then mtmax((El U EQ)*) N Sp = {O}

Let Dy = Mumax(ES) 1, i = 1,2, and suppose T € Mmax((E1 U E2)*)NSp.
For each 0; € D; N 6(G), i = 1,2, we have 010, € Dy N Do, and since
Dy N Dy = Myax((E1 U Ez)*) 1, we conclude that

(Sp,(T),02) = (T,0:02) = 0.
However, Schur multipliers leave S, invariant; since DoNG(G) is dense in Do
and Es is a set of p-uniqueness, it follows that Sy, (T") = 0. Thus, (T,6:) =0
for all #; € D1 N S(G). Now the density of D; N &(G) in Dy and the fact
that E; is a set of p-uniqueness imply that 7" = 0.

The “only if” part follows from the fact that any closed subset of a set of
p-uniqueness is a set of p-uniqueness. m

PROPOSITION 3.7. Let G; be a locally compact group, 1 < p < oo and
E; C G, be a closed set, i =1,2. If E; is an MP-set (resp. MY -set), i = 1,2,
then E1 x Ey C G x Go is an MP-set (resp. M} -set).

Proof. Let

p:GlXG1XG2XG2—>G1XG2XG1XG2

be the map given by p(s1,t1, s2,t2) = (81, S2,t1,t2). We have (Ey x Ey)* =
p(ET x E3).

By Theorem 3.3 it suffices to show that p(E} x E3) is an operator MP-set

(resp. an operator M?-set). Denoting by ® the algebraic tensor product, we
have (see [1§])

i):nmax(Er) & mmax(E;) c mmax(p(ET X E;))
and
mmin(Eik) ® mmin(E;) g gjtrnln(p(‘E‘ik X E;))

It follows that if T € Mmax(E]) NSy (resp. S; € Mumax(ET) NSp), © = 1,2,
then 71 ® T (resp. S ® S2) is a non-zero operator in Mmax(p(E] X E5)) NS,
(resp. Muin(p(E] x E3)) N Sp)' u
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We finish this section with explicit descriptions of the spaces S1(G) and
S2(G). For the next lemma, recall that if G is compact then &(G) C T(QG)
and hence N(u) € T(G) for every u € A(G).

LEMMA 3.8. Let G be a compact group. If u € A(G) then Ty = A(u).
Proof. 1f ¢,m € L*(G) then, using the unimodularity of G, we have

(Tn@ém) S E(s)n(t) dsdt

- |
SS )y (t) ds dt
S

S (rtt)n(t) drdt = (A(u)(£),n). =

We say that a functlon f belongs to A(G) at the point t € G if there exists
a neighbourhood U of ¢ and a function u € A(G) such that f(s) = u(s) for
all s € U. We let A(G)¢ denote the set of all functions that belong to A(G)
at every point t € G.

LEMMA 3.9. Let w: G x G — C be a measurable function (with respect
to product measure) such that, for every r € G, w(xr,yr) = w(z,y) for
marginally almost all (x,y). Then there exists a measurable function u :
G — C such that, up to a null set, w = N(u).

Proof. Let x € G, and v, : G — C be given by vy(s) = w(s,xs), s € G.
For r € G, the set

{(y,2) € Gx G wlyr, zr) # w(y,2)}
is marginally null. In particular,
Ay =A{(s,xs) € G x G : w(sr,zsr) # w(s,xs)}

is marginally null. This easily implies that the set {s € G : (s,xs) € Az}
is null and hence v;(sr) = v, (s) for almost all s. Using arguments similar
to |14, Lemma 3.2|, one can prove that the function fy(s,7) = vg(sr) is
m x m-measurable. For every r € G, the set {s € G : vy(sr) = vz(s)} is null.
By the Fubini Theorem,

SS | (s7) — v (8)| dsdr = S(S | (s7) — v(8)] ds) dr =0

giving vz (sr) = vx(s) for almost all pairs (s,r). Thus there exists s € G
such that vz (sor) = vz (s¢) for almost all » € G. Hence, there exists u(x) € C
such that v (s) = u(z) for almost all s € G.

The function v : G — C is measurable as the composition of w and
the measurable functions = — (s, xs). Since the functions w and N(u) are
equal almost everywhere on each set of the form {x}*, applying the above
arguments we conclude that w = N(u) almost everywhere. u
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THEOREM 3.10. Let G be a locally compact group. Then

(3.5)  Si1(G) ={T € C*(G) : there exists u € A(G)" such that
PxTPr = Tnw)(A1@1)xix i JOT €ach compact K C G}.
Moreover, if G is compact then
S1(G) ={\(u) : u € A(G)}.
Proof. We first show that S1(G) is contained in the right hand side

of (3.5). By assumption, for every compact set K C G there exists a function
hi € T(G) such that PxT Pg =T}, . If L C G is compact then

Thie(xxnroxxan) = PrALPkT Pk Prar = ProrLTPrnrn = Thy,
= PrnrPLTPLPgnr =

Thus, hx(XknL ® XknL) = hr(XknL @ Xknr) almost everywhere. Since
the functions hg(xxnr ® Xknr) and hr(XKknL ® XKnL) are w-continuous,
[I7, Lemma 2.2] implies that they are equal up to a marginally null set. Let
(K7)S2, be an increasing sequence of compact sets such that G = |J;— | K.
Setting h(s,t) = hg, (s,t) if s,t € K,,, we obtain a function h: G x G — C,
defined up to a marginally null set, which has the property that h|xxx is
marginally equivalent to hxx x for every compact set K C G.

Let L C G be a compact set and &, € L?(G) be supported on L. Fix
s € G and let M C G be a compact set containing both L and Ls™'. Let
p: G — B(L*(G)), s — ps, be the right regular representation given by

psé(x) = \/A(s) &(xs). Then
(Tp8§7 77) = (PMTPMpsé, 77) = (f]’hMpsg7 ,,7)
= | hzy)eys)n(@)v/Als) dedy

ThL (XKNL®XKNL)"

GxG
= |z, zs e VA da da.
GxG

On the other hand,
(psT€,m) = (T€, ps—1n) = (PuTPyE, ps—1n) = (Thy, &, ps—11)
= S h(z', 2)&(2)n(z's~ )/ A(s~1) da’ dz

GxG
= | hlws,2)e(2)n(@)V/Als) dr dz.
GxG

Since T' € C}(G), we have Tps = psT', and hence

VA(s™Y) h(z, zs7Y) = \/A(s) h(zs, 2)
for marginally almost all (x, z) € L x L. Since this holds for every compact

set L, we deduce that \/A(s~1) h(z, zs71) = \/A(s) h(zs, z) for marginally
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almost all (z,z) € G x G. Thus,
h(z,y) = A(s)h(zs, ys)

for marginally almost all (z,y) € G x G.
Let A : G x G — C be given by

h(z,y) = A(x)h(z,y).
If s € G then
h(ws, ys) = Alzs)h(ws,ys) = A(@) A(s)h(zs, ys) = A@)h(z, ) = h(z,y)
for marginally almost all (x,y). By Lemma there exists a measurable
function u : G — C such that, up to a null set, h = N(u). Thus, up to a null
set, h = (A1 ® 1)N(u).

Note that, for every compact set K C G, we have hxxxx € T(G) and
PxT P = Thy s - Thus, it remains to show that u € A(G)°°. We see that
hxixx € T(G) for every compact set K C G. Since T(G) consists of local
Schur multipliers (see [17]), the o-compactness of G implies that A is a local
Schur multiplier. By [I8, Theorem 8.2|, u € A(G)%°.

To see that the right hand side of is contained in S;(G), note first
that for any compact set L and u € A(G)'°¢ there exists v € A(G) such
that u(t) = v(t) for any ¢ € L (see the discussion before [I8, Lemma 6.1]).
Let K be a compact set and let v € A(G) be such that v = v on L =
KK=! Then N(u)xgxx = N(v)xkxk- Since N(v) is a Schur multiplier
and (A7' @ 1)xgxx € T(G), we find that

h(z,y) = N(u)(z,y) A~ (@) xxxx(2,9) € T(G).

If G is compact then G is unimodular and A(G) = A(G)"°°. By Lem-
ma Tn(a) = Mu), and the proof is complete. =

The proof of the next proposition is similar to that of Theorem [3.10] and
is omitted.

PRrROPOSITION 3.11. Let G be a locally compact group. The following are
equivalent, for an operator T € C}(G):

(i) T € $2(G);
(ii) there exists a measurable function u : G — C such that, for every

compact set K C G, we have
N(u)xxxk € L*(G x G) and  PxTPg = Tn(u)(A-11)xsrx-
4. A p-version of the Stone—von Neumann Theorem. The aim of

this section is to establish the following p-version of the Stone—von Neumann
Theorem [22, Theorem 4.23]. We let D = {M, : a € Cy(G)}.
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THEOREM 4.1. Let G be a locally compact group and 1 < p < co. Then
the || - ||p-closed D-bimodule generated by Sp(G) coincides with Sp.

Proof. For p = o0, the statement reduces to the Stone-von Neumann
Theorem. Fix p with 1 < p < o0. Let

S,(G) ={T € C}(G) : PkT, TPk € S, for every compact set K C G}

and

U, = span{M,TMy : a,b € C.(G), T € SZ/)(G)}”‘Hp'
We note first that S,(G) € S,(G) and, by the definition of S,(G), we have

U, C span{M T My - a,b € Co(G), T € S,(G)] " C S,

It follows from the proof of Theorem that for u € A(G) N C.(G),
P A(u), N(u)Px € S1 € Sp, p > 1, which implies that both S,(G) and U,
are non-zero.

We claim that U, is an ideal of Sy. First note that if b € C.(G) and
f € LY(G) then by the Stone-von Neumann Theorem My\(f) can be ap-
proximated in the operator norm by linear combinations » ; A(g*) Mer. Sup-
pose that T € S,(G), S € Sy and a,b,c € C(G). Since M,T € S, we
have

| A asA() = T DT Mo M|

< HMaTHpHMb)\(f) - Z Mg )M || =0

and therefore M,TMyA(f) € U,. Again by the Stone-von Neumann Theo-
rem, S can be approximated by linear combinations of operators of the form
A(f)M,, where f € L}(G) and ¢ € C.(G). Hence the corresponding linear
combination of M,TMyA(f)M, converges in || - ||,-norm to MT'MS. Thus,
M,TMyS € U, and hence U, is a right ideal of S.; similarly, U, is a left ideal
in So. Thus, U, is a non-zero ideal of S, closed in the Schatten p-norm.
This easily implies that

U, = span{M,TM, : a,b € C.(G), T € Sp(G)}H'”p =S5, =

5. The case of compact groups. In this section, we include a direct
proof of Theorem that is, a proof that does not use interpolation, in
the case where GG is a compact group. We first recall some notions from the
Fourier theory for compact groups (see, e.g., [12]).

Let G be a compact group with dual @; thus, Gis a complete family
of pairwise inequivalent continuous unitary representations « : G — B(H)
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of G. We let dr = dim(Hy). For u € A(G) we set
au(m) = S u(s)m(s™1) ds,

understood as a linear operator on the finite-dimensional space H,. Then

S dala(m)]y < oc,

weé

where || - ||; is the trace norm. Moreover, the Fourier algebra A(G) can be
identified with the space of operator fields, indexed over G,

{FM)peg s £(7) € B, D dell f(m) 1 < o0},

reC

the identification being given by the map (which we call the Fourier trans-
form) sending an element u € A(G) to (i(m)), & Its inverse sends (f (7)), .a
to the function f given by f(s) = > _ad:Tr(f(m)n(s)) (where Tr de-
notes the trace). We can therefore identify the dual space of A(G) with
[1.ca B(Hy) through the duality

(5.1) (Tr) e Z dy Tr(Tpi(r)).

In particular, the evaluation functional at s € G corresponds to (7(s)), .a-
The dual space of A(G) is isomorphic to VN(G), and the identification of
VN(G) with [ g B(Hx) is given by (Tn)_ g = @..aTi" € VN(Q),
where

TW =Te...aT.
| ———

k
It follows from Remark (iv) at the start of Section [3| that
(5.2) S,(G) = {T €CHA) Y dallTH]L < oo}.
el

Thus, S,(G) is an ideal not only in C;(G) but also in VN(G).

THEOREM b5.1. Let G be a compact group, p > 1 and £ C G be a closed
subset. The following are equivalent:

(i) E is an MP-set (resp. an M} -set);
(i) E* is an operator MP-set (resp. an operator MY -set).

Proof. (i)=-(ii) follows as in Theorem

(ii)=(i). Suppose that E* is an operator MP-set. If T’ € Max(E*)NSp is
non-zero, by [18, Lemma 3.10] there exist a, b € L>°(G) such that E,gy(T) €
C}(G) is non-zero.
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By the definition of the map Eqgp and Lemma [3.8] for u € A(G) we have
(5:3)  (Eagp(T),u) = (T, N(u)(a @ b)) = (MyT Mg, N(u))
= TI'((MbTM )TN( )) == TI‘((MbTMa))\<’Il))
Let u € A(G) be such that Y7 _~de|a(r)||§ < oo, where ¢ is conjugate
to p. The space of all such elements is dense in A(G) (indeed, it contains

all elements of A(G) whose Fourier transform is finitely supported). By the
Peter-Weyl Theorem,

FEG dTr
and A(@)|g, = @(m). Thus,
(5.4) M@= delli(m)[§ < oo.
el
By (5:3) and (5-3),
R 1/q
(55 Buon(T), ] < lalloclbllol Tl (3 dllim)lg)
el
Let S = Eugp(T). By (5.1), (S,u) = > & dx Tr(Sz(m)). We claim that
(56) S dellSlf < oo.
el

In fact, let S; = V;|Sz| be the polar decomposition of S;. For any finite
family F C G, let u € A(G) be such that

/p
p 1y/,* p .
iy = 4 (8=DP1V2) (Z;d 1155 ) ifme F,
0 ifm ¢ F.
We have
Z dwl!ﬂ(ﬂ)HZ = Z dr Tr(|Sz[7)/ Z d?fHSTng =1
- reF reF
and

S e Ta(Spa(m) = 3 de Tr(15:7)/ (32 dwus,rug)(p*l)/p

rel TeF TeF

= (X aeliselz)”

weF
Inequality (5.5) now implies

1/p
(3= arliSels) ™ < llalloo bl I Ty

TeF
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for any finite F. Inequality (5.6) follows; by (5.2), Eqgs(T) € Sp(G). By the
proof of [I8, Theorem 3.11], E,gp(T) € J(E)—, and the proof is complete
for MP-sets.

The proof of the statement for M?-sets is similar and uses the fact that
Eoop(T) € I(E): if T € Mupin(E*). u

REMARK 5.2. If G is a compact infinite group, then S,(G) is a proper
ideal of S;(G) if p < ¢. In fact, one can easily find {ar} .~ C C such that

Zweédﬂaﬂp < oo while Zweédﬁlaﬂq = oo. Letting now T = a, P,

where P, is a projection on a one-dimensional subspace of H;, and T =

Dce T ﬁd”), we have T' € S,(G) but T' ¢ S;(G). For general locally compact

groups the classes Sp(G) may coincide, e.g. in the case of discrete groups,
where S,(G), p > 1, are all equal to C}(G).
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