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Abstract. In this article, via fractional Hajłasz gradients, the authors introduce a
class of fractional Hajłasz–Morrey–Sobolev spaces, and investigate the relations among
these spaces, (grand) Morrey–Triebel–Lizorkin spaces and Triebel–Lizorkin-type spaces
on both Euclidean spaces and RD-spaces.

1. Introduction. Morrey spaces were originally introduced and studied
by Morrey [22] within the theory of partial differential equations, and serve
as a natural generalization of Lebesgue spaces. Recall that Morrey spaces on
a space X of homogeneous type are defined as follows.

Definition 1.1. Let 0 < p ≤ q ≤ ∞. The Morrey space Mq
p(X ) is

defined to be the space of all measurable functions f on X such that

(1.1) ‖f‖Mq
p(X ) := sup

B⊂X
[µ(B)]1/q−1/p

[ �
B

|f(x)|p dµ(x)
]1/p

<∞,

where the supremum is taken over all balls in X .
In recent years, due to application in partial differential equations, there

is an increasing interest in function spaces based on Morrey spaces, such as
Morrey–Sobolev spaces, Morrey-Besov spaces and Morrey–Triebel–Lizorkin
spaces; see, for example, [18, 21, 30, 23, 33, 26, 27]. These spaces are defined
via replacing the Lebesgue norm in the definitions of some classical spaces
(for example, Sobolev spaces and Besov spaces) by the Morrey norm.

On the other hand, the study of Sobolev type spaces on metric measure
spaces has achieved a great progress in the last two decades. Hajłasz [6] in
1996 introduced the notion of Hajłasz gradients, which became an effective
tool to introduce Sobolev spaces on metric measure spaces. From then on,

2010Mathematics Subject Classification: Primary 46E35; Secondary 42B25, 42B35, 30L99.
Key words and phrases: Sobolev space, Morrey space, Morrey–Sobolev space, Hajłasz
gradient, space of homogeneous type, maximal operator.

DOI: 10.4064/sm226-2-1 [95] c© Instytut Matematyczny PAN, 2015



96 W. Yuan et al.

several different approaches to introduce Sobolev spaces on metric measure
spaces were developed; see, for example, [14, 5, 25, 8, 7, 12, 31, 15, 11]. Using
Hajłasz gradients, Hajłasz–Morrey–Sobolev spaces were recently introduced
and investigated in [19].

In 2003, Yang [31] and Hu [12] introduced a fractional version of Haj-
łasz gradients, called s-Hajłasz gradients, and used these to introduce and
investigate fractional Hajłasz–Sobolev spaces on metric measure spaces. Mo-
tivated by this, the main purpose of this article is to investigate the Morrey
version of fractional Hajłasz–Sobolev spaces on metric measure spaces.

In this article, if there are no additional assumptions, (X , d, µ) always
denotes a metric measure space of homogeneous type. Recall that a triple
(X , d, µ) is called a space of homogeneous type in the sense of Coifman and
Weiss [3, 4] if d is a quasi-metric on X , that is,

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X ;
(iii) there exists a constant K ∈ [1,∞) such that, for all x, y, z ∈ X ,

(1.2) d(x, y) ≤ K[d(x, z) + d(z, y)],

and µ is a non-trivial Borel regular measure satisfying the following con-
dition: there exists a constant C0 ∈ [1,∞) such that, for all x ∈ X and
r ∈ (0,∞),

(1.3) µ(B(x, 2r)) ≤ C0µ(B(x, r)) (doubling property).

It is known that any quasi-metric on X determines a topology on X and the
class of all balls of X is a basis on X , where a ball is defined to be the set

B(x, r) := {y ∈ X : d(x, y) < r}
whenever x ∈ X and r ∈ (0,∞). If K = 1 in (1.2), then (X , d, µ) is called a
metric measure space of homogeneous type.

It is easy to see that, if µ is doubling, then, for any λ ∈ (0,∞), there
exists a positive constant Cλ, depending only on λ and C0 in (1.3), such
that, for all r ∈ (0,∞) and x ∈ X ,

µ(B(x, λr)) ≤ Cλµ(B(x, r)).

We now recall the notion of s-Hajłasz gradients from [31].

Definition 1.2. Let (X , d, µ) be a quasi-metric measure space, s ∈
(0,∞) and f be a measurable function on X . A non-negative measurable
function g is called an s-Hajłasz gradient of f if

(1.4) |f(x)− f(y)| ≤ [d(x, y)]s[g(x) + g(y)]

for µ-almost all x, y ∈ X . Moreover, denote by Ds(f) the collection of all
s-Hajłasz gradients of f .

Obviously, 1-Hajłasz gradients are just Hajłasz gradients introduced in [6].



Fractional Hajłasz–Morrey–Sobolev spaces 97

Definition 1.3. Let (X , d, µ) be a quasi-metric measure space, s ∈
(0,∞) and 0 < p ≤ q ≤ ∞. The homogeneous fractional Hajłasz–Morrey–
Sobolev space HṀ s

p,q(X ) is defined to be the set of all measurable functions
f on X which have an s-Hajłasz gradient gf ∈ Mq

p(X ). Moreover, for all
f ∈ HṀ s

p,q(X ), let

(1.5) ‖f‖HṀs
p,q(X ) := inf

gf∈Ds(f)∩Mq
p(X )
‖gf‖Mq

p(X ).

The inhomogeneous fractional Hajłasz–Morrey–Sobolev space HM s
p,q(X )

is then defined as HM s
p,q(X ) := HṀ s

p,q(X ) ∩ Mq
p(X ) endowed with the

quasi-norm
‖ · ‖HMs

p,q(X ) := ‖ · ‖Mq
p(X ) + ‖ · ‖HṀs

p,q(X ).

The main purpose of this article is to investigate the relations among
fractional Hajłasz–Morrey–Sobolev spaces, (grand) Morrey–Triebel–Lizorkin
spaces and Triebel–Lizorkin-type spaces on both Euclidean spaces and RD-
spaces. Recall that an RD-space is a metric space endowed with a measure
satisfying both the doubling and the reverse doubling conditions, which was
originally introduced in [10] (see also [35]).

First, in Section 2, in the Euclidean setting, we prove that fractional
Hajłasz–Morrey–Sobolev spaces coincide with someMorrey–Triebel–Lizorkin
spaces (see [30, 23]) and Triebel–Lizorkin-type spaces (see [32, 33]), and also
their grand version (see Theorem 2.5). As a byproduct, the coincidence be-
tween Hajłasz–Morrey–Sobolev spaces and Hardy-Morrey–Sobolev spaces on
Rn is also established (see Theorem 2.11).

Section 3 is devoted to establishing the coincidence between fractional
Hajłasz–Morrey–Sobolev spaces and grand Morrey–Triebel–Lizorkin spaces
on RD-spaces (see Theorem 3.3). This result generalizes [16, Theorem 5.2]
to the level of Morrey spaces. Due to the difference between Lebesgue and
Morrey norms, compared with the proof of [16, Theorem 5.2], the proof of
Theorem 3.3 is much more complicated and needs some additional tools
such as Christ’s dyadic cubes and the construction of a partition of unity on
metric measure spaces of homogeneous type (see Lemma 3.4).

To end this section, we make some conventions on notation. Throughout,
we denote by C a positive constant which is independent of the main pa-
rameters, but it may vary from line to line. The symbols A . B and A & B
mean A ≤ CB and A ≥ CB, respectively, where C is a positive constant. If
A . B and B . A, then we write A ≈ B. For any ball B and f ∈ L1(B),�
B f(x)dµ(x) denotes the integral mean of f on B,

�

B

f(x) dµ(x) :=
1

µ(B)

�

B

f(x) dµ(x).
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2. Characterizations of Hajłasz–Morrey–Sobolev spaces on Rn.
In this section, we concentrate on Rn and consider relations among Hajłasz–
Morrey–Sobolev spaces, Morrey–Triebel–Lizorkin spaces in [23, 24], and also
Triebel–Lizorkin-type spaces in [36, 33, 24].

To introduce Morrey–Triebel–Lizorkin spaces on X , we need the following
notion of s-Hajłasz gradients at level k ∈ Z, which was originally introduced
in [17]. Compared with s-Hajłasz gradients, the s-Hajłasz gradients at level
k have an additional restriction on the distance of the points x and y.

Definition 2.1. Let (X , d, µ) be a quasi-metric measure space, s ∈
(0,∞), k ∈ Z and f be a measurable function on X . A non-negative mea-
surable function g on X is called an s-Hajłasz gradient of f at level k if
(1.4) holds for µ-almost all x, y ∈ X satisfying 2−k−1 ≤ d(x, y) < 2−k. If, for
each k ∈ Z, gk is an s-Hajłasz gradient of f at level k, then the sequence
~g := {gk}k∈Z is called a fractional s-Hajłasz gradient of f . Let Ds(f) denote
the collection of all fractional s-Hajłasz gradients of f .

With these gradients, we now introduce the following Morrey–Triebel–
Lizorkin spaces.

Definition 2.2. Let (X , d, µ) be a quasi-metric measure space, s ∈
(0,∞), 0 < p ≤ q ≤ ∞ and r ∈ (0,∞]. The homogeneous Hajłasz–Morrey–
Triebel–Lizorkin space Ṁ s

p,q,r(X ) is defined to be the collection of all mea-
surable functions f satisfying

‖f‖Ṁs
p,q,r(X ) := inf

~g∈Ds(f)
‖~g‖Mq

p(X ,lr)(2.1)

:= inf
~g∈Ds(f)

∥∥∥{∑
k∈Z
|gk|r

}1/r∥∥∥
Mq

p(X )
<∞.

The inhomogeneous Hajłasz–Morrey–Triebel–Lizorkin space M s
p,q,r(X ) is

then defined as M s
p,q,r(X ) := Ṁ s

p,q,r(X ) ∩Mq
p(X ) endowed with the quasi-

norm
‖ · ‖Ms

p,q,r(X ) := ‖ · ‖Mq
p(X ) + ‖ · ‖Ṁs

p,q,r(X ).

The following conclusion is frequently used in this section.

Proposition 2.3. Let (X , d, µ) be a quasi-metric measure space. Then,
for all s ∈ (0,∞) and 0 < p ≤ q ≤ ∞,

Ṁ s
p,q,∞(X ) = HṀ s

p,q(X ) and M s
p,q,∞(X ) = HM s

p,q(X )

with equivalent quasi-norms.

Proof. We only prove the homogeneous case. Let f ∈ HṀ s
p,q(X ) and

g ∈ Ds(f) be such that ‖g‖Mq
p(X ) . ‖f‖HṀs

p,q(X ). For all k ∈ Z, let gk := g.
Then ~g := {gk}k∈Z ∈ Ds(f) and ‖supk∈Z gk‖Mq

p(X ) = ‖g‖Mq
p(X ). This implies
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that f ∈ Ṁ s
p,q,∞(X ) and

‖f‖Ṁs
p,q,∞(X ) . ‖f‖HṀs

p,q(X ).

Therefore, HṀ s
p,q(X ) ⊂ Ṁ s

p,q,∞(X ).
To see the converse embedding, let f ∈ Ṁ s

p,q,∞(X ). Then there exists a
sequence ~g := {gk}k∈Z ∈ Ds(f) such that∥∥∥sup

k∈Z
gk

∥∥∥
Mq

p(X )
. ‖f‖Ṁs

p,q,∞(X ).

Define g := supk∈Z gk. Then g ∈ Ds(f) and
‖f‖HṀs

p,q(X ) ≤ ‖~g‖Mq
p(X ,l∞) . ‖f‖Ṁs

p,q,∞(X ).

Therefore, f ∈ HṀ s
p,q(X ) and hence Ṁ s

p,q,∞(X ) ⊂ HṀ s
p,q(X ).

Now we go back to the Euclidean setting and recall Morrey–Triebel–
Lizorkin spaces [30, 23] and Triebel–Lizorkin-type spaces [32, 33] (see also
[24, 36, 26, 27]). Let S(Rn) denote the set of all Schwartz functions on Rn,
S∞(Rn) the set of all φ ∈ S(Rn) such that

	
Rn φ(x)xγ dx = 0 for all multi-

indices γ ∈ Zn+, and S ′∞(Rn) its topological dual; here and hereafter Z+ :=
{0, 1, . . .}. Let ϕ ∈ S(Rn) be such that

supp ϕ̂ ⊂ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 2} and |ϕ̂(ξ)| ≥ c if 3/5 ≤ |ξ| ≤ 5/3,

where c is a positive constant independent of ξ. Let s ∈ R and r ∈ (0,∞].
The Morrey–Triebel–Lizorkin space Ėsp,q,r(Rn) with 0 < p ≤ q ≤ ∞ is defined
to be the set of all f ∈ S ′∞(Rn) such that

‖f‖Ėsp,q,r(Rn) :=
∥∥∥[∑

j∈Z
2jsr|ϕj ∗ f |r

]1/r∥∥∥
Mq

p(Rn)
<∞,

while the Triebel–Lizorkin-type space Ḟ s,τp,r (Rn) with p ∈ (0,∞) and τ ∈
[0,∞) is defined to be the set of all f ∈ S ′∞(Rn) such that

‖f‖Ḟ s,τp,r (Rn) := sup
x∈Rn
k∈Z

2knτ
{ �

B(x,2−k)

[ ∞∑
j=k

2jsr|ϕj ∗ f(y)|r
]p/r

dy
}1/p

<∞.

It was proved in [24, Theorem 1.1(ii)] that Ėsp,q,r(Rn) = Ḟ
s,1/p−1/q
p,r (Rn).

We also recall the “grand” counterparts of these spaces. For all N ∈
Z+ ∪ {−1} and m, l ∈ Z+, let

AlN,m(Rn) :=
{
φ ∈ S(Rn) :

�

Rn
φ(x)xγ dx = 0 if |γ| ≤ N,

and ‖φ‖SN+l+1,m(Rn) ≤ 1
}
,

where
‖φ‖Si,j(Rn) := sup

|γ|≤i, x∈Rn
(1 + |x|)j |∂γφ(x)|.
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Then the grand Morrey–Triebel–Lizorkin space AlN,mĖsp,q,r(Rn) and the grand
Triebel–Lizorkin-type space AlN,mḞ

s,τ
p,r (Rn) are defined, respectively, in the

same way as Ėsp,q,r(Rn) and Ḟ s,τp,r (Rn) with |ϕj ∗ f | replaced by

sup
φ∈AlN,m(Rn)

|φj ∗ f |.

Recall that the space AlN,mḞ
s,τ
p,r (Rn) was first introduced by Soto [28], and

it was proved therein that, if τ ∈ [0, 1/p],

N + 1 > max{s, n/min{1, p, r} − n− s}

and m > max{n/min{1, p, r}, n+N + 1}, then

AlN,mḞ s,τp,r (Rn) = Ḟ s,τp,r (Rn).

From this, we easily deduce that

AlN,mĖsp,q,r(Rn) = AlN,mḞ s,1/p−1/qp,r (Rn) = Ḟ s,1/p−1/qp,r (Rn) = Ėsp,q,r(Rn).

Via fractional s-Hajłasz gradients, the space Ṁ s,τ
p,r (Rn) was also defined

in [28] to be the set of all measurable functions f such that

(2.2) ‖f‖Ṁs,τ
p,r (Rn)

:= inf
~g∈Ds(f)

sup
x∈Rn
k∈Z

2knτ
{ �

B(x,2−k)

( ∞∑
j=k

[gj(y)]r
)p/r

dy
}1/p

<∞.

We have the following conclusion.

Proposition 2.4. Let s ∈ R, 0 < p ≤ q ≤ ∞ and r ∈ (0,∞]. Then
Ṁ

s,1/p−1/q
p,r (Rn) = Ṁ s

p,q,r(Rn) with equivalent quasi-norms.

Proof. It is easy to deduce from the definitions of the quasi-norms (2.1)
and (2.2) that, for all f ∈ Ṁ s

p,q,r(Rn),

‖f‖
Ṁ
s,1/p−1/q
p,r (Rn) . ‖f‖Ṁs

p,q,r(Rn)
<∞

and hence f ∈ Ṁ s,1/p−1/q
p,r (Rn). This shows that

Ṁ s,1/p−1/q
p,r (Rn) ⊂ Ṁ s

p,q,r(Rn).

We now prove the opposite inclusion. The case p = q is obvious. For
p < q, when r =∞, we pick f ∈ Ṁ s

p,q,∞(Rn) and ~g ∈ Ds(f) such that∥∥∥sup
j∈Z

gj

∥∥∥
Mq

p(Rn)
. ‖f‖Ṁs

p,q,∞(Rn).
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Then, for any x ∈ Rn and k ∈ Z, we have

2kn(1/p−1/q)
{ �

B(x,2−k)

sup
j≥k

[gj(y)]p dy
}1/p

≤ 2kn(1/p−1/q)
{ �

B(x,2−k)

sup
j∈Z

[gj(y)]p dy
}1/p

≤
∥∥∥sup
j∈Z

gj

∥∥∥
Mq

p(Rn)
. ‖f‖Ṁs

p,q,∞(Rn),

from which we deduce that ‖f‖
Ṁ
s,1/p−1/q
p,∞ (Rn) . ‖f‖Ṁs

p,q,∞(Rn). Thus, in this

case, we have Ṁ s
p,q,∞(Rn) ⊂ Ṁ s,1/p−1/q

p,∞ (Rn).
When r <∞, by the triangle inequality, if p ≤ r, then

(2.3) 2kn(1/p−1/q)
{ �

B(x,2−k)

( k−1∑
j=−∞

[gj(y)]r
)p/r

dy
}1/p

≤ 2kn(1/p−1/q)
{ k−1∑
j=−∞

�

B(x,2−k)

[gj(y)]p dy
}1/p

. sup
i∈Z

2in(1/p−1/q)
{ �

B(x,2−i)

[gi(y)]p dy
}1/p

;

and if p > r, then by the Minkowski inequality,

(2.4) 2kn(1/p−1/q)
{ �

B(x,2−k)

( k−1∑
j=−∞

[gj(y)]r
)p/r

dy
}1/p

≤ 2kn(1/p−1/q)
{ k−1∑
j=−∞

( �

B(x,2−k)

[gj(y)]p dy
)r/p}1/r

. sup
i∈Z

2in(1/p−1/q)
{ �

B(x,2−i)

[gi(y)]p dy
}1/p

.

Now, by the quasi-linearity of ‖ · ‖Mq
p(Rn,lr), (2.3) and (2.4), we have

‖f‖
Ṁ
s,1/p−1/q
p,r (Rn) . ‖f‖Ṁs

p,q,r(Rn)
,

which implies that Ṁ s
p,q,r(Rn) ⊂ Ṁ s,1/p−1/q

p,r (Rn).
The main result of this section reads as follows.
Theorem 2.5.
(i) Let s ∈ (0, 1) and n/(n + s) < p ≤ q < ∞. If A := Al0,m(Rn) with

l ∈ Z+ and m ∈ (n+ 1,∞), then
HṀ s

p,q(Rn) = AḞ s,1/p−1/qp,∞ (Rn) = Ḟ s,1/p−1/qp,∞ (Rn)

with equivalent quasi-norms.
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(ii) If n/(n + 1) < p ≤ q < ∞, then HṀ1
p,q(Rn) = Ḟ

1,1/p−1/q
p,2 (Rn) with

equivalent quasi-norms.

To prove Theorem 2.5(ii), we need the following Hardy–Morrey spaces
introduced by Jia and Wang [13].

Definition 2.6. Let 0 < p ≤ q ≤ ∞, ψ ∈ S(Rn) with
	
Rn ψ(x) dx = 1

and suppψ ⊂ {x ∈ Rn : |x| ≤ 1}. The Hardy–Morrey space HM q
p (Rn) is

defined to be the set of all f ∈ S ′(Rn) such that Mψf ∈ Mq
p(Rn), where,

for all x ∈ Rn,
Mψf(x) := sup

t>0
|f ∗ ψt(x)|

and, for all t ∈ (0,∞), ψt(·) := t−nψ(·/t). Moreover, let

‖f‖HMq
p (Rn) := ‖Mψf‖Mq

p(Rn).

Remark 2.7. (i) From [29, p. 57] and the boundedness of the Hardy–
Littlewood maximal operator on Mq

p(Rn), it follows that, when 1 < p ≤ q
≤ ∞, we haveMq

p(Rn) = HM q
p (Rn) with equivalent norms.

(ii) By the results in [13, Section 2], HM q
p (Rn) is independent of the

choice of ψ as in Definition 2.6.
(iii) It was proved in [24, Corollary 3.2] that, for all 0 < p ≤ q <∞, the

Hardy–Morrey space HM q
p (Rn) and the space Ḟ 0,1/p−1/q

p,2 (Rn) coincide with
equivalent quasi-norms.

The Hardy–Morrey–Sobolev space is then defined as follows.

Definition 2.8. Let 0 < p ≤ q ≤ ∞. The homogeneous Hardy–Morrey–
Sobolev space HṀ1

p,q(Rn) is defined to be the set of all f ∈ S ′∞(Rn) such
that Djf ∈ HM q

p (Rn) for all j ∈ {1, . . . , n}, where Djf denotes the jth
distributional derivative of f . Moreover,

‖f‖HṀ1
p,q(Rn)

:=

n∑
j=1

‖Djf‖HMq
p (Rn).

Proposition 2.9. Let 0<p≤q<∞. Then HṀ1
p,q(Rn)= Ḟ

1,1/p−1/q
p,2 (Rn)

with equivalent quasi-norms.

Proof. We first show HṀ1
p,q(Rn) ⊂ Ḟ 1,1/p−1/q

p,2 (Rn). Let f ∈ HṀ1
p,q(Rn).

Then, for all j ∈ {1, . . . , n}, Djf ∈ HM q
p (Rn) and

‖Djf‖HMq
p (Rn) ≤ ‖f‖HṀ1

p,q(Rn)
.

Recall that, by [24, Corollary 3.2], HM q
p (Rn) = Ḟ

0,1/p−1/q
p,2 (Rn) with equiv-

alent quasi-norms. Thus Djf ∈ Ḟ 0,1/p−1/q
p,2 (Rn) and

(2.5) ‖Djf‖Ḟ 0,1/p−1/q
p,2 (Rn) . ‖f‖HṀ1

p,q(Rn)
.
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For j ∈ {1, . . . , n}, let Rj be the Riesz transform defined by setting, for
all g ∈ S ′∞(Rn),

(Rjg)∧(ξ) := −i ξj
|ξ|
ĝ(ξ), ξ ∈ Rn \ {0},

and Iσ with σ ∈ R the Riesz potential operator defined by setting, for all
g ∈ S ′∞(Rn),

(Iσg)∧(ξ) := |ξ|σ ĝ(ξ), ξ ∈ Rn \ {0}.

Then it is well known that

(2.6) Djf = −I1Rjf in S ′∞(Rn).

Recall that, by [33, Proposition 3.5], f ∈ Ḟ s+σ,τp,r (Rn) if and only if Iσf ∈
Ḟ s,τp,r (Rn), and ‖f‖Ḟ s+σ,τp,r (Rn)≈‖Iσf‖Ḟ s,τp,r (Rn). Hence, byDjf ∈ Ḟ 0,1/p−1/q

p,2 (Rn)

and (2.6), together with (2.5), we know that Rjf ∈ Ḟ 1,1/p−1/q
p,2 (Rn) and

‖Rjf‖Ḟ 1,1/p−1/q
p,2 (Rn) ≈ ‖Djf‖Ḟ 0,1/p−1/q

p,2 (Rn) . ‖f‖HṀ1
p,q(Rn)

for all j ∈ {1, . . . , n}.
On the other hand, by the mapping properties of Fourier multipliers on

Triebel–Lizorkin-type spaces [34, Theorem 1.5], Rj is a bounded operator on
Ḟ

1,1/p−1/q
p,2 (Rn) and hence RjRjf ∈ Ḟ

1,1/p−1/q
p,2 (Rn), which, combined with

the fact that

f =
n∑
j=1

RjRjf in S ′∞(Rn),

further implies that f ∈ Ḟ 1,1/p−1/q
p,2 (Rn) and ‖f‖

Ḟ
1,1/p−1/q
p,2 (Rn).‖f‖HṀ1

p,q(Rn)
.

This finishes the proof of HṀ1
p,q(Rn) ⊂ Ḟ 1,1/p−1/q

p,2 (Rn).

To prove the opposite inclusion, let f ∈ Ḟ
1,1/p−1/q
p,2 (Rn). Then, by the

mapping properties of pseudo-differential operators on Triebel–Lizorkin-type
spaces from [24, Theorem 1.5], for all j ∈ {1, . . . , n} we have Djf ∈
Ḟ

0,1/p−1/q
p,2 (Rn) = HM q

p (Rn) and

‖Djf‖HMq
p (Rn) ≈ ‖Djf‖Ḟ 0,1/p−1/q

p,2 (Rn) . ‖f‖Ḟ 1,1/p−1/q
p,2 (Rn).

This implies that Ḟ 1,1/p−1/q
p,2 (Rn) ⊂ HṀ1

p,q(Rn).

In particular, when p = q, Proposition 2.9 reduces to the known coin-
cidence between Hardy-Sobolev spaces and Triebel–Lizorkin spaces. By [36,
Proposition 8.2], we know that Ḟ 0,1/p−1/q

p,2 (Rn) ⊂ L1
loc(Rn) in the sense of

S ′∞(Rn), which, together with Proposition 2.9, implies the following conclu-
sion, the details being omitted.
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Corollary 2.10. Let 0 < p ≤ q < ∞. Then HṀ1
p,q(Rn) ⊂ L1

loc(Rn) in
the sense of S ′∞(Rn).

As an application of Corollary 2.10, we have the following conclusion.

Theorem 2.11. Let n/(n + 1) < p ≤ q ≤ ∞. Then HṀ1
p,q(Rn) =

HṀ1
p,q(Rn) with equivalent quasi-norms.

Proof. The case q = ∞ is a special case of [6, Theorem 1], so we only
need to consider q < ∞. Assume first that f ∈ HṀ1

p,q(Rn). Then, by Defi-
nition 2.8, Djf ∈ HM q

p (Rn) for each j ∈ {1, . . . , n}. By Corollary 2.10 and
[15, Theorem 7], for each ball B ⊂ Rn there exists a set E ⊂ Rn of measure
zero such that, for all x, y ∈ B \ E,

|f(x)− f(y)| . |x− y|[M1(Df)(x) +M1(Df)(y)],

where we used the notation of [15]: for all x ∈ Rn,

M1(Df)(x) := max
j∈{1,...,n}

M1(Djf)(x) := max
j∈{1,...,n}

sup |〈Djf, ϕ〉|,

with the supremum taken over all compactly supported smooth functions ϕ
such that, for some r ∈ (0,∞) and all j ∈ {1, . . . , n},

(2.7) suppϕ ⊂ B(x, r), ‖ϕ‖L∞(Rn) ≤ r−n and ‖Djϕ‖L∞(Rn) ≤ r−n−1.

Therefore, by the definition of Hajłasz gradients, g := M1(Df) is a Hajłasz
gradient of f modulo constants.

Let ψ satisfy (2.7) and
	
Rn ψ(x) dx = 1. Using Remark 2.7(ii) and re-

peating the proofs of [13, Lemmas 2.1 and 2.4], we find that, if n/(n+ 1) <
1 ≤ q <∞, then

‖g‖Mq
p(Rn) ≈

n∑
j=1

‖Mψ(Djf)‖Mq
p(Rn),

which, combined with Definitions 2.6 and 2.8, implies that

‖g‖Mq
p(Rn) ≈

n∑
j=1

‖Mψ(Djf)‖Mq
p(Rn) ≈

n∑
j=1

‖Djf‖HMq
p (Rn) ≈ ‖f‖HṀ1

p,q(Rn)
.

Thus, f ∈ HṀ1
p,q(Rn) and ‖f‖HṀ1

p,q(Rn)
. ‖f‖HṀ1

p,q(Rn)
. This proves that

HṀ1
p,q(Rn) ⊂ HṀ1

p,q(Rn).
Conversely, let f ∈ HṀ1

p,q(Rn). Then, by Definition 1.3, there exists a
Hajłasz gradient g ∈ Mq

p(Rn) of f such that ‖g‖Mq
p(Rn) ≤ 2‖f‖HṀ1

p,q(Rn)
.

Notice that, for any ball B(a, r) ⊂ Rn with center a ∈ Rn and radius r > 0,
by the Hölder inequality, we have g ∈ Lploc(B(a, 2r)) ⊂ L

n/(n+1)
loc (B(a, 2r)),
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since p > n/(n+ 1). From this and [15, Proposition 5], it follows that

inf
c∈R

1

|B(a, r)|

�

B(a,r)

|f(x)− c| dx

. r
{ 1

|B(a, 2r)|

�

B(a,2r)

[g(x)]n/(n+1) dx
}(n+1)/n

,

which implies f ∈ L1
loc(Rn) and

(2.8)
1

|B(a, r)|

�

B(a,r)

|f(x)− fB(a,r)| dx

. r
{ 1

|B(a, 2r)|

�

B(a,2r)

[g(x)]n/(n+1) dx
}(n+1)/n

.

By this and the Hölder inequality, we conclude that, for all φ ∈ S∞(Rn),∣∣∣ �

Rn
f(x)φ(x) dx

∣∣∣
=
∣∣∣ �

Rn
[f(x)− fB(0,1)]φ(x) dx

∣∣∣
.

�

B(0,1)

|f(x)− fB(0,1)|
(1 + |x|)N

dx+
∞∑
i=1

�

B(0,2i)\B(0,2i−1)

|f(x)− fB(0,1)|
(1 + |x|)N

dx

.
{ �

B(0,2)

[g(x)]n/(n+1) dx
}(n+1)/n

+
∞∑
i=1

2−i(N−n)

|B(0, 2i)|

�

B(0,2i)

|f(x)− fB(0,2i)| dx

.
∞∑
i=0

2−i(N−n−1)
{ 1

|B(0, 2i+1)|

�

B(0,2i+1)

[g(x)]p dx
}1/p

.
∞∑
i=0

2−i(N−n−1+n/q)‖g‖Mq
p(Rn) . ‖f‖HṀ1

p,q(Rn)
,

where we have chosen N > n+ 1− n/q. Thus, f ∈ S ′∞(Rn).
Moreover, similar to the proof of [15, Theorem 1], by (2.8), we conclude

that

Mψ(Djf)(x) . [M(gn/(n+1))(x)](n+1)/n, x ∈ Rn,(2.9)

where M denotes the Hardy–Littlewood maximal operator, namely, for any
locally integrable function f on Rn and x ∈ Rn,

(2.10) Mf(x) := sup
B3x

�

B

f(y) dy,

where the supremum is taken over all balls B containing x. By the bound-
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edness of M on M(n+1)q/n
(n+1)p/n(Rn), together with 1 < n+1

n p ≤ n+1
n q ≤ ∞, we

know that
M(gn/(n+1)) ∈M(n+1)q/n

(n+1)p/n(Rn),

which, combined with (2.9) and (1.1), implies that Mψ(Djf) ∈ Mq
p(Rn)

and ‖Mψ(Djf)‖Mq
p(Rn) . ‖g‖Mq

p(Rn). Therefore, by Definition 2.8 and the
choice of g, we find that f ∈ HṀ1

p,q(Rn) and

‖f‖HṀ1
p,q(Rn)

. ‖g‖Mq
p(Rn) . ‖f‖HṀ1

p,q(Rn)
,

which completes the proof of Theorem 2.11.

Theorem 2.11 generalizes [15, Theorem 1] by taking p = q.
We are now ready to prove Theorem 2.5.

Proof of Theorem 2.5. Clause (i) is deduced from the following equalities:
for s ∈ (0, 1) and n/(n+ s) < p ≤ q <∞,

HṀ s
p,q(Rn) = Ṁ s

p,q,∞(Rn) = Ṁ s,1/p−1/q
p,∞ (Rn)

= AḞ s,1/p−1/qp,∞ (Rn) = Ḟ s,1/p−1/qp,∞ (Rn)

with equivalent quasi-norms, where the first equality is Proposition 2.3, the
second follows from Proposition 2.4, and the third and fourth ones come
from [28, Theorems 1.1(i) and 1.2(i)].

By combining Proposition 2.9 and Theorem 2.11, we obtain (ii).

3. Characterizations of Hajłasz–Morrey–Sobolev spaces on RD-
spaces. In this section, we focus on the corresponding conclusion of Theo-
rem 2.5 on RD-spaces, that is, metric measure spaces of homogeneous type
satisfying also the following inverse doubling condition: there exists a con-
stant c0 ∈ (1,∞) such that, for all x ∈ X and r ∈ (0,diam(X )/2),

µ(B(x, 2r)) ≥ c0µ(B(x, r)),

here and hereafter, for any subset E of X , diam(E) denotes its diameter,

diam(E) := sup
x, y∈E

d(x, y).

See also [10, 35] for several equivalent definitions of RD-spaces.
To show the coincidence of Hajłasz–Morrey–Sobolev spaces and grand

Morrey–Triebel–Lizorkin spaces, we need first to recall certain test functions
and approximations of the identity on metric measure spaces of homogeneous
type. For any r ∈ (0,∞) and x, y ∈ X , let

V (x, y) := µ(B(x, d(x, y))) and Vr(x) := µ(B(x, r)).

It is easy to see that V (x, y) ≈ V (y, x) for all x, y ∈ X .
The following test functions were originally introduced in [9, Definition

2.2] (see also [10, Definition 2.8]).
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Definition 3.1. Let (X , d, µ) be a metric measure space of homogeneous
type, x1 ∈ X , r ∈ (0,∞), β ∈ (0, 1] and γ ∈ (0,∞). A function ϕ on X is
said to be in the space G(x1, r, β, γ) if there exists a non-negative constant
C̃ such that

(i) |ϕ(x)| ≤ C̃ 1

Vr(x1) + V (x1, x)

[
r

r + d(x1, x)

]γ
for all x ∈ X ;

(ii) |ϕ(x) − ϕ(y)| ≤ C̃

[
d(x, y)

r + d(x1, x)

]β 1

Vr(x1) + V (x1, x)

[
r

r + d(x1, x)

]γ
for all x, y ∈ X satisfying that d(x, y) ≤ [r + d(x1, x)]/2.

Moreover, for any ϕ ∈ G(x1, r, β, γ), its norm is defined by

‖ϕ‖G(x1,r,β,γ) := inf{C̃ : (i) and (ii) hold true}.

Fixing x1 ∈ X , let G(β, γ) := G(x1, 1, β, γ) and

G̊(β, γ) :=
{
f ∈ G(β, γ) :

�

X
f(x) dµ(x) = 0

}
.

Denote by (G(β, γ))′ and (G̊(β, γ))′ the respective dual spaces of G(β, γ) and
G̊(β, γ). Obviously, by the definition of G̊(β, γ),

(G̊(β, γ))′ = (G(β, γ))′/C.

Let A := {Ak(x)}x∈X , k∈Z with

(3.1) Ak(x) := {φ ∈ G̊(1, 2) : ‖φ‖G(x,2−k,1,2) ≤ 1}

for all x ∈ X (see [16, Definition 5.2]).
The following notion of approximations of the identity with bounded

supports was first introduced in [10, Definition 2.3].

Definition 3.2. Let (X , d, µ) be a metric measure space of homogeneous
type. A sequence {Sk}k∈Z of bounded linear integral operators is called an
approximation of the identity of order 1 (for short, 1-AOTI) with bounded
support if there exist positive constants C3 and C4 such that, for all k ∈ Z
and x, x̃, y, ỹ ∈ X , Sk(x, y), the integral kernel of Sk, is a measurable function
from X × X into C satisfying

(i) Sk(x, y) = 0 if d(x, y) > C42
−k, and

|Sk(x, y)| ≤ C3
1

V2−k(x) + V2−k(y)
;

(ii) if d(x, x̃) ≤ max{C4, 1}21−k, then

|Sk(x, y)− Sk(x̃, y)| ≤ C32
kd(x, x̃)

1

V2−k(x) + V2−k(y)
;
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(iii) if d(x, x̃) ≤ max{C4, 1}21−k, then

|Sk(y, x)− Sk(y, x̃)| ≤ C32
kd(x, x̃)

1

V2−k(x) + V2−k(y)
;

(iv) if d(x, x̃) ≤ max{C4, 1}21−k and d(y, ỹ) ≤ max{C4, 1}21−k, then

|[Sk(x, y)−Sk(x, ỹ)]−[Sk(x̃, y)−Sk(x̃, ỹ)]| ≤ C32
2k d(x, x̃)d(y, ỹ)

V2−k(x) + V2−k(y)
;

(v)
	
X Sk(x, y) dµ(y) = 1 =

	
X Sk(x, y) dµ(x).

It is known that there always exists a 1-AOTI with bounded support on
a space of homogeneous type (see [10, Theorem 2.6]).

Let (X , d, µ) be a metric measure space of homogeneous type, s ∈ (0, 1],
p ∈ (0,∞), q ∈ [p,∞] and r ∈ (0,∞]. The homogeneous grand Morrey–
Triebel–Lizorkin space AḞ sp,q,r(X ) is defined to be the set of all f ∈ (G(1, 2))′

such that

‖f‖AḞ sp,q,r(X ) :=
∥∥∥{∑

k∈Z
2ksr sup

φ∈Ak(·)
|〈f, φ〉|r

}1/r∥∥∥
Mq

p(X )
<∞

with the usual modification when r =∞.

Theorem 3.3. Let (X , d, µ) be an RD-space. If s ∈ (0, 1], p ∈ ( n
n+s ,∞)

and q ∈ [p,∞], then AḞ sp,q,∞(X ) = HṀ s
p,q(X ) with equivalent quasi-norms.

To prove this theorem, we need the following partition of unity for X ,
which is obtained by using Christ’s dyadic cube decomposition for spaces of
homogeneous type in [2, Theorem 11], and the construction of a partition of
unity by Macías and Segovia [20, Lemmas (2.9) and (2.16)].

Lemma 3.4. Let (X , d, µ) be a metric measure space of homogeneous
type. Then there exist a sequence {Bj}j of open balls with the finite intersec-
tion property and a sequence {φj}j of non-negative functions in G(1, 2) such
that µ(X \

⋃
j Bj) = 0, suppφj ⊂ Bj for all j and

∑
j φj(x) = 1 for almost

every x ∈ X .

Proof. By Christ’s dyadic cube decomposition [2, Theorem 11], there ex-
ists a (possibly finite) sequence {Qj}j of open sets such that µ(X \

⋃
j Qj)=0,

Qj∩Qk = ∅ if j 6= k and diam(Qj) ≈ δ for all j and some constant δ ∈ (0, 1).
Furthermore, there exist positive constants C1, C2 and points {xj}j such that
Bj,1 ⊂ Qj ⊂ Bj,2, where Bj,1 := B(xj , C1δ) and Bj,2 := B(xj , C2δ). From
this, we easily deduce that µ(X \

⋃
j Bj,2) = 0 and there exists N ∈ N such

that each Bj,2 intersects at most N balls from {Bk,2}k.
To obtain the functions φj , we apply Macías–Segovia’s method of con-

structing a partition of unity (see [20, Lemma (2.16)]). Let η be an infinitely
differentiable function on [0,∞) such that η(x) = 1 on [0, 1] and η(x) = 0
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on [3/2,∞). For every j and all x ∈ X , let

ψj(x) := η

(
2
d(x, xj)

C2δ

)
.

These functions are obviously non-negative and supported in Bj,2. From the
finite intersection property of {Bj,2}j and the definition of {ψj}j , we see that
1 ≤

∑
j ψj(x) ≤ N for almost every x ∈ X . For all j and x ∈ X , let

φj(x) :=
ψj(x)∑
j ψj(x)

.

Then, for almost every x ∈ X ,
∑

j φj(x) = 1. Moreover, similar to the proof
of [20, Lemma (2.16)], we see that φj ∈ G(1, 2). Therefore, {φj}j and {Bj,2}j
are as desired.

We also need the following two technical lemmas.

Lemma 3.5. Let (X , d, µ) be a metric measure space of homogeneous
type, x, y ∈ X and k0 ∈ Z such that 2−k0−1 < d(x, y) ≤ 2−k0 . Assume that
k ≤ k0. Then there exists a positive constant C̃, independent of k0, k, x and
y, such that

C̃2−k[d(x, y)]−1[Sk(x, ·)− Sk(y, ·)] ∈ Ak(x),

where Ak(x) is as in (3.1).

Proof. For x, y ∈ X and k ∈ Z as in Lemma 3.5, let

φ
(x,y)
k (z) := 2−k[d(x, y)]−1[Sk(x, z)− Sk(y, z)], z ∈ X .

By Definition 3.2(v), it is easy to see that
	
X φ

(x,y)
k (z) dµ(z) = 0. We now

prove that φ(x,y)k satisfies condition (i) of Definition 3.1 with γ = 2 and
r = 2−k, that is, for all z ∈ X ,

(3.2) |φ(x,y)k (z)| . 1

V2−k(x) + V (x, z)

[
2−k

2−k + d(x, z)

]2
.

We consider two cases.

Case 1: d(x, z) > C42
−k and d(y, z) > C42

−k. In this case, (3.2) holds
automatically by Definition 3.2(i).

Case 2: d(x, z) ≤ C42
−k or d(y, z) ≤ C42

−k. In this case, as k ≤ k0 and
hence

(3.3) d(x, y) ≤ 2−k0 ≤ 2−k < max{C4, 1}21−k,
from Definition 3.2(ii) we see that

(3.4) |Sk(x, z)− Sk(y, z)| . 2kd(x, y)
1

V2−k(x) + V2−k(z)
.
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When d(x, z) ≤ C42
−k, by (1.3) we see that

(3.5)
2−k

2−k + d(x, z)
≈ 1 and V2−k(x) + V2−k(z) ≈ V2−k(x) + V (x, z).

When d(y, z) ≤ C42
−k, since k ≤ k0, we know that

d(x, z) ≤ d(x, y) + d(y, z) ≤ 2−k0 + C42
−k ≤ (1 + C4)2

−k.

Thus, in this case, (3.5) also holds. By (3.5) and (3.4), we obtain (3.2).
We now turn to proving that φ(x,y)k satisfies condition (ii) of Definition

3.1 with β = 1, γ = 2 and r = 2−k, that is, for all z, w ∈ X with d(z, w) ≤
[2−k + d(x, z)]/2,

(3.6) |φ(x,y)k (z)− φ(x,y)k (w)|

.
d(z, w)

2−k + d(x, z)

1

V2−k(x) + V (x, z)

[
2−k

2−k + d(x, z)

]2
.

Write

I := |φ(x,y)k (z)− φ(x,y)k (w)|
= 2−k[d(x, y)]−1|[Sk(x, z)− Sk(x,w)]− [Sk(y, z)− Sk(y, w)]|.

We consider three cases.

Case a: d(x, z) ≤ max{C4, 1}21−k. In this case, (3.5) holds and

d(z, w) ≤ [2−k + d(x, z)]/2 ≤ max{C4, 1}21−k.
Thus, by (3.3) and Definition 3.2(iv), we find that

I .
2kd(z, w)

V2−k(x) + V2−k(z)
.

From this and (3.5), we deduce (3.6).

Case b: d(x, z) > max{C4, 1}22−k. Then, by Definition 3.2(i), we know
that Sk(x, z) = 0. Observing that

d(y, z) ≥ d(x, z)− d(x, y) > max{C4, 1}22−k − 2−k > C42
−k,

by Definition 3.2(i) again, we also have Sk(y, z) = 0.

Subcase b1: d(z, w) ≤ d(x, z)/4. Then

d(x,w) ≥ d(x, z)− d(z, w) ≥ 3

4
d(x, z) > C42

−k

and

d(y, w) ≥ d(x, z)− d(x, y)− d(z, w) ≥ 3

4
d(x, z)− d(x, y) > C42

−k.

Thus, Sk(x,w) = Sk(y, w) = 0, and hence I = 0.
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Subcase b2: d(z, w) > d(x, z)/4. Recall that, since d(x, y) ≤ 2−k0

≤ 2−k, we have 2−k + d(y, w) ≈ 2−k + d(x,w) and
V2−k(y) + V (y, w) ≈ V2−k(x) + V (x,w).

Combining this with Sk(y, z) = Sk(x, z) = 0 and Definition 3.2(i) yields
I = 2−k[d(x, y)]−1|Sk(x,w)− Sk(y, w)|(3.7)

.
1

V2−k(x) + V (x,w)

[
2−k

2−k + d(x,w)

]2
.

Observe that, in the present subcase,
d(x, z)/4 < d(z, w) ≤ [2−k + d(x, z)]/2

and d(x, z) ≥ 2−k, which implies that
(3.8) 2−k + d(x,w) ≈ 2−k + d(x, z).

From these estimates, we deduce that
(3.9) V2−k(x) + V (x,w) ≈ V2−k(x) + V (x, z)

and

(3.10) 1 .
d(z, w)

d(x, z)
.

d(z, w)

2−k + d(x, z)
.

Combining (3.7)–(3.10), we obtain (3.6).
Case c: max{C4, 1}21−k< d(x, z) ≤ max{C4, 1}22−k. Then Sk(x, z)=0

and
d(z, w) ≤ 2−k + d(x, z)

2
< max{C4, 1}22−k.

If d(z, w) ≤ max{C4, 1}21−k, the proof is the same as that for Case a. If
max{C4, 1}21−k < d(z, w) ≤ max{C4, 1}22−k,

then d(z, w) ≈ d(x, z) ≈ 2−k and
d(y, z) ≥ d(x, z)− d(x, y) > max{C4, 1}21−k − 2−k0 > C42

−k.

From this and Definition 3.2(i), we see that Sk(y, z) = 0 and, in this case,
I = 2−k[d(x, y)]−1|Sk(x,w)− Sk(y, w)|.

Then, repeating the proof of Case b, we also obtain (3.6).
This lemma implies the following corollary, the details being omitted.
Corollary 3.6. Let (X , d, µ) be a metric measure space of homogeneous

type, x, y ∈ X and k0 ∈ Z such that 2−k0−1 < d(x, y) ≤ 2−k0 . Assume that
k ≤ k0. Then there exists a positive constant C̃, independent of k0, k, x and y,
such that, for all σ ∈ [0, 1],

C̃2−kσ[d(x, y)]−σ[Sk(x, ·)− Sk(y, ·)] ∈ Ak(x),

where Ak(x) is as in (3.1).
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Lemma 3.7. Let (X , d, µ) be a metric measure space of homogeneous
type, x ∈ X and k ∈ Z. Then there exists a positive constant C̃, independent
of k and x, such that

C̃[Sk+1(x, ·)− Sk(x, ·)] ∈ Ak(x).

Proof. For any x ∈ X and k ∈ Z, let

φxk(y) := Sk+1(x, y)− Sk(x, y)

for all y ∈ X . Then
	
X φ

x
k(y) dµ(y) = 0 by Definition 3.2(v). Write

I1 := |Sk+1(x, y)− Sk(x, y)|,
I2 := |[Sk+1(x, y)− Sk(x, y)]− [Sk+1(x, z)− Sk(x, z)]|.

It suffices to show that

(3.11) I1[V2−k(x) + V (x, y)]

[
d(x, y) + 2−k

2−k

]2
. 1

and, for any d(y, z) ≤ [2−k + d(x, y)]/2,

(3.12) I2
[2−k + d(x, y)]3[V2−k(x) + V (x, y)]

2−2kd(y, z)
. 1.

To prove (3.11), we consider two cases.

Case 1: d(x, y) > C42
−k. In this case, from Definition 3.2(i), we deduce

that I1 = 0 and hence (3.11) holds true.

Case 2: d(x, y) ≤ C42
−k. Then, by Definition 3.2(i),

(3.13) I1[V2−k(x) + V (x, y)]

[
d(x, y) + 2−k

2−k

]2
.

V2−k(x) + V (x, y)

V2−k−1(x) + V2−k−1(y)
+
V2−k(x) + V (x, y)

V2−k(x) + V2−k(y)
.

From (1.3), it follows that

(3.14) V (x, y) . V2−k(y), V2−k(x) . V2−k−1(x) and V2−k(y) . V2−k−1(y).

Combining (3.13) and (3.14), we obtain (3.11).
To prove (3.12), we let d(y, z) ≤ [2−k + d(x, y)]/2 and consider three

cases.

Case a: d(y, z) ≤ max{C4, 1}2−k. Then, by (3.14) and Definition 3.2(iii),

I2 ≤ |Sk+1(x, y)− Sk+1(x, z)|+ |Sk(x, y)− Sk(x, z)|(3.15)

.
2kd(y, z)

V2−k(x) + V2−k(y)
.
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If d(x, y) ≤ C42
−k, then (3.15) implies (3.12). If d(x, y) > C42

−k and
d(x, z) > C42

−k, then (3.12) is trivially true, since, by Definition 3.2(i), I2 = 0
in this subcase. If d(x, y) > C42

−k and d(x, z) ≤ C42
−k, then d(x, y) . 2−k

since d(y, z) ≤ [2−k + d(x, y)]/2 and d(x, y) ≤ d(x, z) + d(y, z); thus, in this
subcase, (3.12) also holds true.

Case b: max{C4, 1}2−k < d(y, z) ≤ max{C4, 1}2−k+1. In this case,
by (1.3),

V2−k−1(x) + V (x, y) ≈ V2−k−1(x) + V (x, z)

≈ V2−k(x) + V (x, y) ≈ V2−k(x) + V (x, z).

From this and Definition 3.2(i), we deduce that

(3.16) I2 .
1

V2−k(x) + V (x, y)
.

If d(x, y) ≤ C42
−k or d(x, z) ≤ C42

−k, then, by d(y, z) . 2−k, we always
have d(x, y) . 2−k, which further implies that 2−k + d(x, y) ≈ 1; from
this and (3.16), we conclude that (3.12) holds true. If d(x, y) > C42

−k and
d(x, z) > C42

−k, then, in this subcase, I2 = 0 and (3.12) is trivially true.
Thus, (3.12) always holds in Case b.

Case c: d(y, z) > max{C4, 1}2−k+1. In this case, from

d(y, z) ≤ [2−k + d(x, y)]/2,

we deduce that

(3.17) d(x, y) ≥ 2d(y, z)− 2−k > max{C4, 1}2−k+2 − 2−k > C42
−k+1.

If d(x, z) > C42
−k, then, in this subcase, I2 = 0 and (3.12) is trivially true.

If d(x, z) ≤ C42
−k, then

d(x, y) ≤ d(x, z) + d(y, z) ≤ C42
−k + [2−k + d(x, y)]/2

and hence d(x, y) . 2−k, which, together with (3.17), (1.3) and

d(y, z) ≤ [2−k + d(x, y)]/2,

implies that d(x, y) ≈ 2−k, V (x, y) . V2−k(x), d(y, z) . 2−k and hence
d(y, z) ≈ 2−k; from these estimates and Definition 3.2(i), we finally deduce
that

I2 .
1

V2−k(x) + V2−k(z)
.

1

V2−k(x) + V (x, y)

.
2−2kd(y, z)

[2−k + d(x, y)]3[V2−k(x) + V (x, y)]
.

This finishes the proof of (3.12).
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To prove Theorem 3.3, we also need the following result, whose proof is
similar to those of [7, Theorem 8.1] and [16, Lemma 4.1], the details being
omitted.

Lemma 3.8. Let (X , d, µ) be an RD-space, s ∈ (0, 1], p ∈ (0, n/s) and

p∗ = np/(n− sp).

Then there exists a positive constant C such that u ∈ Lp∗(B0) and

inf
c∈R

[ �
B0

|u(x)− c|p∗ dµ(x)
]1/p∗

≤ Crs0
{ �

2B0

[g(x)]p dµ(x)
}1/p

for all u ∈ HṀ s
p,q(X ), g ∈ Ds(u) and all balls B0 with radius r0.

As a consequence of Lemma 3.8, we have the following conclusion.

Lemma 3.9. Let (X , d, µ) be an RD-space, s ∈ (0, 1], p ∈ [n/(n+s), n/s)
and p∗ := np/(n−sp). Then, for each u ∈ HṀ s

p,q(X ), there exists a constant
C such that

u− C ∈ Lp∗(X ) and ‖u− C‖Lp∗ (X ) ≤ C̃‖u‖HṀs
p,q(X ),

where C̃ is a positive constant independent of u and C.

We are now ready to show Theorem 3.3.

Proof of Theorem 3.3. The proof of HṀ s
p,q(X ) ⊂ AḞ sp,q,∞(X ) is similar

to that of [16, Theorem 1.1]. For completeness, we give some details with
the aid of the last two lemmas.

Let f ∈ HṀ s
p,q(X ). Choose g ∈ Ds(f) such that

‖g‖Mq
p(X ) ≤ 2‖f‖HṀs

p,q(X ).

Then, for all x ∈ X , k ∈ Z and φ ∈ Ak(x1), by the moment condition of φ,

(3.18) I :=
∣∣∣ �
X
f(x)φ(x) dµ(x)

∣∣∣
=
∣∣∣ �
X

[
f(x)−

�

B(x1,2−k)

f(z) dµ(z)
]
φ(x) dµ(x)

∣∣∣
≤

∞∑
i=0

�

B(x1,2i+1−k)\B(x1,2i−k)

∣∣∣f(x)−
�

B(x1,2−k)

f(z) dµ(z)
∣∣∣|φ(x)| dµ(x)

+
�

B(x1,2−k)

∣∣∣f(x)−
�

B(x1,2−k)

f(z) dµ(z)
∣∣∣ |φ(x)| dµ(x)

=: I1 + I2.
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By (3.1) and Definition 3.1(i) with r = 2−k and γ = 2, with the aid of
Lemma 3.8, we know that

I1 .
∞∑
i=0

�

B(x1,2i+1−k)\B(x1,2i−k)

∣∣∣f(x)−
�

B(x1,2−k)

f(z) dµ(z)
∣∣∣(3.19)

× 1

V2−k(x1) + V (x, x1)

[
1

1 + 2kd(x, x1)

]2
dµ(x)

.
∞∑
i=0

2−2i
�

B(x1,2i+1−k)

∣∣∣f(x)−
�

B(x1,2−k)

f(z) dµ(z)
∣∣∣ dµ(x)

.
∞∑
i=0

2−2i
i+1∑
j=0

�

B(x1,2−k+j)

∣∣∣f(x)−
�

B(x1,2−k+j)

f(z) dµ(z)
∣∣∣ dµ(x)

.
∞∑
i=0

2−2i
i+1∑
j=0

2−ks+js
{ �

B(x1,2−k+j+1)

[g(x)]n/(n+s) dµ(x)
}(n+s)/n

.
∞∑
j=0

2−ks2−j(2−s)[M(gn/(n+s))(x1)]
(n+s)/n

. 2−ks[M(gn/(n+s))(x1)]
(n+s)/n;

here and hereafter,M denotes the Hardy–Littlewood maximal operator on X ,
which is defined as in (2.10) with Rn and the Lebesgue measure replaced by
X and the Borel measure µ, respectively. Similarly, due to φ ∈ Ak(x1) and
Definition 3.1, with the aid of Lemma 3.8 again, we have

I2 =
�

B(x1,2−k)

∣∣∣f(x)−
�

B(x1,2−k)

f(z) dµ(z)
∣∣∣ |φ(x)| dµ(x)(3.20)

.
�

B(x1,2−k)

∣∣∣f(x)−
�

B(x1,2−k)

f(z) dµ(z)
∣∣∣ 1

V2−k(x1) + V (x, x1)

×
[

1

1 + 2kd(x, x1)

]2
dµ(x)

.
�

B(x1,2−k)

∣∣∣f(x)−
�

B(x1,2−k)

f(z) dµ(z)
∣∣∣ dµ(x)

. 2−ks[M(gn/(n+s))(x1)]
(n+s)/n.

Combining (3.18)–(3.20), we have

(3.21) I . 2−ks[M(gn/(n+s))(x1)]
(n+s)/n;

since x1 ∈ X , k ∈ Z and φ ∈ Ak(x1) are arbitrary and M is bounded on
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Mq(n+s)/n
p(n+s)/n(X ) for p ∈ (n/(n + s),∞] and q ∈ [p,∞] (see [1] or [19, Lemma

3.4]), this implies that

‖f‖AḞ sp,q,∞(X ) =
∥∥∥sup
k∈Z

2ks sup
φ∈Ak(·)

|〈f, φ〉|
∥∥∥
Mq

p(X )

. ‖[M(gn/(n+s))](n+s)/n‖Mq
p(X )

≈ ‖M(gn/(n+s))‖(n+s)/n
Mq(n+s)/n

p(n+s)/n
(X )
. ‖g‖Mq

p(X ) <∞.

It remains to show that f ∈ (G(1, 2))′. We may assume that

M(gn/(n+s))(x1) <∞

as in the proof of [16, Theorem 1.3]. Then, by borrowing some tricks from
the proofs of [16, Theorem 1.3], Lemma 3.9 and the estimate (3.21) above,
we conclude that f ∈ L1

loc(X ) and, for all ψ ∈ G(1, 2),∣∣∣ �
X
f(x)ψ(x) dµ(x)

∣∣∣ . ‖ψ‖G(1,2),
which implies f ∈ (G(1, 2))′. Thus, f ∈ AḞ sp,q,∞(X ) and

‖f‖AḞ sp,q,∞(X ) . ‖f‖HṀs
p,q(X ).

We now prove
AḞ sp,q,∞(X ) ⊂ HṀ s

p,q(X ).

Let f ∈ AḞ sp,q,∞(X ) and {Sk}k∈Z be a 1-AOTI with bounded support. We
first assume that f is a locally integrable function. In this case, applying [10,
Proposition 2.7], we know that, for almost every x ∈ X ,

lim
k→∞

Sk(f)(x) = f(x),

from which we deduce that, for almost all x, y ∈ X ,

(3.22) |f(x)− f(y)|
≤ |Sk0(f)(x)− Sk0(f)(y)|

+
∑
k≥k0

[|Sk+1(f)(x)− Sk(f)(x)|+ |Sk+1(f)(y)− Sk(f)(y)|],

where k0 ∈ Z such that 2−k0−1 < d(x, y) ≤ 2−k0 . For all k∈Z and x, y, z∈X ,
let

φ
(x,y)
k0

(z) := Sk0(x, z)− Sk0(y, z),

φxk(y) := Sk+1(x, y)− Sk(x, y).

Then, by Lemmas 3.5 and 3.7, there exists a positive constant C̃ such that
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C̃φ
(x,y)
k0
∈ Ak0(x) and C̃φxk ∈ Ak(x). For every x ∈ X , let

(3.23) g(x) := sup
k∈Z

sup
φ∈Ak(x)

2ks|〈f, φ〉|,

where Ak(x) is as in (3.1). Then, as f ∈ AḞ sp,q,∞(X ), we see that g ∈Mq
p(X )

and, by (3.22), (3.23) and the choice of k0, we conclude that

(3.24) |f(x)− f(y)|

. sup
φ∈Ak0 (x)

|〈f, φ〉|+
∑
k≥k0

[
sup

φ∈Ak(x)
|〈f, φ〉|+ sup

φ∈Ak(y)
|〈f, φ〉|

]
.
∑
k≥k0

2−ks[g(x) + g(y)] . [d(x, y)]s[g(x) + g(y)].

Therefore, from (1.5) and g ∈Mq
p(X ), we deduce that f ∈ HṀ s

p,q(X ) and

‖f‖HṀs
p,q(X ) . ‖g‖Mq

p(X ) ≈ ‖f‖AḞ sp,q,∞(X ),

which implies the desired conclusion. Thus, to complete the proof, we only
need to show that, for every f ∈ AḞ sp,q,∞(X ), there exists a locally integrable
function f̃ which coincides with f in (G(1, 2))′. For p ∈ (1,∞), the proof is
similar to that of [16, Theorem 1.1], the details being omitted. We now
assume that p ∈ (n/(n + s), 1]. Let x, y ∈ X . We pick k0 ∈ Z such that
2−k0−1 < d(x, y) ≤ 2−k0 . If k > k0, then, by the same reasoning as in the
proof of (3.24), using Corollary 3.6 with σ = 0 and Lemma 3.7, we see that

(3.25) |Sk(f)(x)− Sk(f)(y)|

.
k−1∑
j=k0

[|Sj+1(f)(x)− Sj(f)(x)|+ |Sj+1(f)(y)− Sj(f)(y)|]

+ |Sk0(f)(x)− Sk0(f)(y)|

.
∞∑
j=k0

2−js[g(x) + g(y)] + 2−k0sg(x) . 2−k0s[g(x) + g(y)]

≈ [d(x, y)]s[g(x) + g(y)].

If k ≤ k0, then, by Corollary 3.6 with σ = s, there exists a positive constant
C̃ such that

C̃2−ks[d(x, y)]−s[Sk(x, ·)− Sk(y, ·)] ∈ Ak(x).

From this, we deduce that

2−ks[d(x, y)]−s
∣∣∣ �
X

[Sk(x, z)− Sk(y, z)]f(z) dµ(z)
∣∣∣ . 2−ksg(x)

and hence
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|Sk(f)(x)− Sk(f)(y)|(3.26)

= 2ks[d(x, y)]s
{

2−ks[d(x, y)]−s
∣∣∣ �
X

[Sk(x, z)− Sk(y, z)]f(z) dµ(z)
∣∣∣}

. [d(x, y)]sg(x) . [d(x, y)]s[g(x) + g(y)].

Thus, by (3.25) and (3.26), g is an s-Hajłasz gradient of Sk(f) for all k ∈ Z.
Fix a bounded set B ⊂ X . By [16, Lemma 4.1], for any k ∈ Z there exists

Ck ∈ R such that Sk(f)− Ck ∈ Lp
∗
(B) and

(3.27)[
1

µ(B)

�

B

|Sk(f)(x)− Ck|p
∗
dµ(x)

]1/p∗
. rB

{
1

µ(2B)

�

2B

[g(x)]p dµ(x)

}1/p

,

where p∗ := np/(n−p) > 1, since p > n/(n+s) and s ∈ (0, 1]. From the weak
compactness of Lp∗(B), it follows that {Sk(f)− Ck}k∈Z has a subsequence,
denoted by {Sk(f) − Ck}k∈Z again, which converges weakly in Lp∗(B) and
hence almost everywhere in B to a certain function f̃B ∈ Lp∗(B). Moreover,
notice that, for all x ∈ X , k ∈ Z and i ∈ N,

|Sk(f)(x)− Sk+i(f)(x)| ≤
i−1∑
j=0

|Sk+j(f)(x)− Sk+j+1(f)(x)|(3.28)

. 2−ksg(x).

Thus, as g ∈Mq
p(X ), we see that Sk(f)− Sk′(f) ∈Mq

p(X ) for all k, k′ ∈ Z.
By the definition ofMq

p(X ), we further know that Sk(f)− Sk′(f) ∈ Lp(B).
On the other hand, from the Hölder inequality, (3.28) and (3.27), we deduce
that, for all k, k′ ∈ Z+,

|Ck − Ck′ | =
1

µ(B)

�

B

|Ck − Ck′ | dµ(x)

≤ 1

µ(B)

�

B

|Sk(f)(x)− Ck − Sk′(f)(x) + Ck′ | dµ(x)

+
1

µ(B)

�

B

|Sk(f)(x)− Sk′(f)(x)| dµ(x)

≤ 1

[µ(B)]1/p∗
[‖Sk(f)− Ck‖Lp∗ (B) + ‖Sk′(f)− Ck′‖Lp∗ (B)]

+
1

[µ(B)]1/p
‖Sk(f)− Sk′(f)‖Lp(B)

. rB

{
1

µ(2B)

�

2B

[g(x)]p dµ(x)

}1/p

+ 2−min(ks,k′s) 1

[µ(B)]1/p
‖g‖Lp(B)

. (rB + 1)[µ(B)]−1/q‖g‖Mq
p(X ).
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Thus, |Ck−Ck′ | is dominated by a positive number depending on B but not
on k, k′ ∈ Z+. This implies that we can choose a subsequence {Ckj}j∈N that
converges to a positive constant C̃B, which depends on B, as j →∞. Since
Skj (f)−Ckj converges almost everywhere in B to f̃B as j →∞, and Sk(f)
converges to f almost everywhere as k →∞, it follows that f coincides with
f̃B+C̃B almost everywhere in B, and hence in (G(1, 2)∩Φ(B))′, where Φ(B)

is the set of all functions on X with supports in B. Write fB := f̃B + C̃B.
Then f = fB in (G(1, 2)∩Φ(B))′ and, since f̃B ∈ Lp∗(B), fB is also a locally
integrable function.

We still need to show that there exists f̃ ∈ L1
loc(X ) such that

〈f, ψ〉 = 〈f̃ , ψ〉

for all ψ ∈ G(1, 2). To this end, by Lemma 3.4, choose a partition of unity,
{φj}j ⊂ G(1, 2), on X and a sequence {Bj}j of open balls, with the finite
intersection property, such that µ(X \ (

⋃
j Bj)) = 0, suppφj ⊂ Bj , φj is

non-negative and
∑

j φj(x) = 1 for almost every x ∈ X .
Let fBj be the locally integrable representation of f in (G(1, 2)∩Φ(Bj))

′

obtained in the previous way, and define f̃ := fBj pointwise on Bj for all j.
Notice that, by the construction of fBj , for almost every x ∈ Bi ∩Bj ,

fBi(x) = f(x) = fBj (x).

Thus, f̃ is well defined. Moreover,
∑

j ψφj converges in G(1, 2) for all ψ in
G(1, 2). Indeed, for any ε ∈ (0,∞), by the construction of {Bj}j and φj in
G(1, 2), in particular the finite intersection property, there exists L ∈ N such
that Bj ∩B(x1, 1/ε) = ∅ for all j ≥ L. It follows that, for x ∈ B(x1, 1/ε),∑

j≥L
|ψ(x)φj(x)| = 0.

For x /∈ B(x1, 1/ε), since
∑

j≥L φj ≤ 1 and ψ ∈ G(1, 2), we see that∑
j≥L
|ψ(x)φj(x)| . 1

[V1(x1) + V (x1, x)]2

[
1

1 + d(x1, x)

]4
.

1

V1(x1)

1

V1(x1) + V (x1, x)

(
1

1 + 1/ε

)2[ 1

1 + d(x1, x)

]2
. ε2

1

V1(x1) + V (x1, x)

[
1

1 + d(x1, x)

]2
.

Therefore, for all x ∈ X ,∑
j≥L
|ψ(x)φj(x)| . ε2 1

V1(x1) + V (x1, x)

[
1

1 + d(x1, x)

]2
.
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Moreover, for all x, y ∈ X such that d(x, y) ≤ [1 + d(x1, x)]/2, we have∑
j≥L
|ψ(x)φj(x)− ψ(y)φj(y)|

. ε2
[

d(x, y)

1 + d(x1, x)

]
1

V1(x1) + V (x1, x)

[
1

1 + d(x1, x)

]2
.

Indeed, if x, y ∈ B(x1, 1/ε), then∑
j≥L
|ψ(x)φj(x)− ψ(y)φj(y)| = 0;

if y ∈ B(x1, 1/ε) but x /∈ B(x1, 1/ε), then φj(y) = 0 for all j ≥ L, and hence∑
j≥L
|ψ(x)φj(x)− ψ(y)φj(y)|

=
∑
j≥L
|ψ(x)φj(x)− ψ(x)φj(y)| =

∑
j≥L
|ψ(x)| |φj(x)− φj(y)|

.
d(x, y)

1 + d(x1, x)

1

[V1(x1) + V (x1, x)]2

[
1

1 + d(x1, x)

]4
. ε2

d(x, y)

1 + d(x1, x)

1

V1(x1) + V (x1, x)

[
1

1 + d(x1, x)

]2
;

if x, y /∈ B(x1, 1/ε), by the finite intersection property of {Bj}j∈N and an
argument similar to that used above, we also have the desired inequality.
Thus,

∑
j∈N ψφj converges in G(1, 2), and therefore

〈f, ψ〉 =
〈
f, ψ

∑
j∈N

φj

〉
=
∑
j∈N
〈f, ψφj〉

=
∑
j∈N
〈fBj , ψφj〉 =

〈
f̃ ,

∞∑
j=1

ψφj

〉
= 〈f̃ , ψ〉.

We remark that Theorem 3.3 for p = q goes back to [16, Theorem 5.2].
However, the proof of Theorem 3.3 is different from that in [16]: it needs
several localized arguments, in which a partition of unity on spaces of ho-
mogeneous type plays a key role (see Lemma 3.4).
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