# Optimal estimates for the fractional Hardy operator 

by<br>Yoshihiro Mizuta (Hiroshima), Aleš Nekvinda (Praha) and Tetsu Shimomura (Hiroshima)


#### Abstract

Let $A_{\alpha} f(x)=|B(0,|x|)|^{-\alpha / n} \int_{B(0,|x|)} f(t) d t$ be the $n$-dimensional fractional Hardy operator, where $0<\alpha \leq n$. It is well-known that $A_{\alpha}$ is bounded from $L^{p}$ to $L^{p_{\alpha}}$ with $p_{\alpha}=n p /(\alpha p-n p+n)$ when $n(1-1 / p)<\alpha \leq n$. We improve this result within the framework of Banach function spaces, for instance, weighted Lebesgue spaces and Lorentz spaces. We in fact find a 'source' space $S_{\alpha, Y}$, which is strictly larger than $X$, and a 'target' space $T_{Y}$, which is strictly smaller than $Y$, under the assumption that $A_{\alpha}$ is bounded from $X$ into $Y$ and the Hardy-Littlewood maximal operator $M$ is bounded from $Y$ into $Y$, and prove that $A_{\alpha}$ is bounded from $S_{\alpha, Y}$ into $T_{Y}$. We prove optimality results for the action of $A_{\alpha}$ and the associate operator $A_{\alpha}^{\prime}$ on such spaces, as an extension of the results of Mizuta et al. (2013) and Nekvinda and Pick (2011). We also study the duals of optimal spaces for $A_{\alpha}$.


1. Introduction. Let $\mathbb{R}^{n}$ denote the $n$-dimensional Euclidean space and $\Omega$ be an open subset of $\mathbb{R}^{n}$. For an integrable function $u$ on a measurable set $E \subset \mathbb{R}^{n}$ of positive measure, we define the integral mean over $E$ by

$$
\int_{E} u(x) d x=\frac{1}{|E|} \int_{E} u(x) d x
$$

where $|E|$ denotes the Lebesgue measure of $E$. We denote by $B(x, r)$ the open ball with center $x$ and of radius $r>0$, and by $|B(x, r)|$ its Lebesgue measure, i.e. $|B(x, r)|=\sigma_{n} r^{n}$, where $\sigma_{n}$ is the volume of the unit ball in $\mathbb{R}^{n}$. For a locally integrable function $f$ on $\Omega$ and $0<\alpha \leq n$, we consider the fractional Hardy operator $A_{\alpha}$, defined by

$$
A_{\alpha} f(x)=\frac{1}{|B(0,|x|)|^{\alpha / n}} \int_{B(0,|x|)} f(t) d t
$$

[^0]the Hardy averaging operator $A$, defined by
$$
A f(x)=f_{B(0,|x|)} f(t) d t
$$
and the centered Hardy-Littlewood maximal operator $M$, defined by
$$
M f(x)=\sup _{r>0} f_{B(x, r)}|f(y)| d y
$$
by setting $f=0$ outside $\Omega$ (for the fundamental properties of maximal functions, see Stein [14]). In the case $\alpha=n, A_{\alpha} f(x)=A f(x)$.

Let $1<p<\infty, 1 / p+1 / p^{\prime}=1$ and

$$
p_{\alpha}=\frac{n p^{\prime}}{\alpha p^{\prime}-n}=\frac{n p}{\alpha p-n p+n} .
$$

We know that $A_{\alpha}$ is bounded from $L^{p}$ to $L^{p_{\alpha}}$ provided $n(1-1 / p)<\alpha \leq n$. Clearly, $p_{\alpha} \geq p>1$.

In this paper we improve the result of the second author and Pick [12] in the case when $\alpha=n=1$ and $\Omega$ is a bounded interval, and that of the authors 8 within the framework of generalized Banach function spaces. Let $\hookrightarrow$ denote continuous embedding and $\rightarrow$ denote boundedness of an operator. Under the assumptions that $A_{\alpha}: X \rightarrow Y$ and $M: Y \rightarrow Y$, we find a 'source' space $S_{\alpha, Y}$ and a 'target' space $T_{Y}$ such that:
(i) the Hardy averaging operator $A_{\alpha}$ satisfies

$$
A_{\alpha}: S_{\alpha, Y} \rightarrow T_{Y}
$$

(ii) this result improves the classical estimate

$$
A_{\alpha}: X \rightarrow Y
$$

in the sense that

$$
X \hookrightarrow S_{\alpha, Y}, \quad T_{Y} \hookrightarrow Y ;
$$

(iii) this result cannot be improved any further, at least not within the environment of generalized Banach function spaces in the sense that whenever $Z$ is a generalized Banach function space strictly larger than $S_{\alpha, Y}$, then

$$
A_{\alpha}: Z \nrightarrow T_{Y}
$$

and, likewise, when $Z$ is a generalized Banach function space strictly smaller than $T_{Y}$, then

$$
A_{\alpha}: S_{\alpha, Y} \nrightarrow Z
$$

The paper is structured as follows. In Section 2, we introduce generalized Banach function spaces (briefly GBFS), and collect some of their properties. In Section 3, we introduce the spaces $T_{Y}$ and $S_{\alpha, Y}$, and show that $A_{\alpha}$ : $S_{\alpha, Y} \rightarrow T_{Y}$. In Section 4, we prove a key lemma to obtain optimality results
for the action of $A_{\alpha}$ (see Lemma 4.2). In Section 5, we prove optimality results for the action of $A_{\alpha}$ on $L^{p}$ spaces. In Section 6, we prove optimality results for the action of $A_{\alpha}$ on weighted Lebesgue spaces. In Section 7, we prove optimality results for the action of $A_{\alpha}$ on Lorentz spaces. In Section 8, we also prove optimality results for the action of the associate operator $A_{\alpha}^{\prime}$. In the last section, we study the duals of the optimal spaces for $A_{\alpha}$. For related results, see [2] and [13].
2. Preliminaries. Throughout this paper, let $C$ denote various constants independent of the variables in question, and $C(a, b, \ldots)$ a constant that depends on $a, b, \ldots$

Let $\mathcal{M}\left(\mathbb{R}^{n}\right)$ denote the space of measurable functions on $\mathbb{R}^{n}$ with values in $[-\infty, \infty]$. Denote by $\chi_{E}$ the characteristic function of $E$. Let $|f|$ stand for the modulus of a function $f \in \mathcal{M}\left(\mathbb{R}^{n}\right)$.

Recall the frequently used definition of Banach function spaces which can be found for instance in [1].

Definition 2.1. We say that a normed linear space $\left(X,\|\cdot\|_{X}\right)$ is a Banach function space (BFS for short) if the following conditions are satisfied:
(2.4) if $E \subset \mathbb{R}^{n}$ is a measurable set of finite measure, then $\chi_{E} \in X$;
(2.5) for every measurable set $E \subset \mathbb{R}^{n}$ of finite measure, there exists a positive constant $C_{E}$ such that $\int_{E}|f(x)| d x \leq C_{E}\|f\|_{X}$.
Denote by $\mathfrak{B}=\mathfrak{B}\left(\mathbb{R}^{n}\right)$ the class of all BFSs defined on $\mathbb{R}^{n}$.
We will work with more general spaces where conditions 2.4 and 2.5 are omitted.

Definition 2.2. We say that a normed linear space $\left(X,\|\cdot\|_{X}\right)$ is a generalized Banach function space (briefly GBFS) if the following conditions are satisfied:
(2.8) if $0 \leq f_{n} \nearrow f$ a.e. in $\mathbb{R}^{n}$, then $\left\|f_{n}\right\|_{X} \nearrow\|f\|_{X}$.

Denote by $\mathfrak{G}=\mathfrak{G}\left(\mathbb{R}^{n}\right)$ the class of all GBFSs defined on $\mathbb{R}^{n}$.

Recall that condition (2.8) immediately yields the following property:

$$
\begin{equation*}
\text { if } \quad 0 \leq f \leq g, \quad \text { then } \quad\|f\|_{X} \leq\|g\|_{X} \tag{2.9}
\end{equation*}
$$

To see this it suffices to set $f_{1}=f, f_{n}=g$ for $n \geq 2$ in (2.8). It is well-known that each BFS is complete, and so it is a Banach space (see [1, Theorem 1.6]). We know that each GBFS is complete (see [8]).

Let $X, Y$ be Banach spaces (not necessarily generalized Banach function spaces). We write $X \hookrightarrow Y$ if $X \subset Y$ and there is $C>0$ such that $\|f\|_{Y} \leq$ $C\|f\|_{X}$ for all $f \in X$. Well-known theorems on Banach function spaces (see [1, Theorem 1.8]) yield the implication

$$
\left(\|f\|_{X}<\infty \Rightarrow\|f\|_{Y}<\infty\right) \Rightarrow X \hookrightarrow Y
$$

In what follows we need a generalization of this remark as in [8].
Definition 2.3. Let $\left(X,\|\cdot\|_{X}\right)$ be a GBFS. Say that a mapping $T$ : $\left(X,\|\cdot\|_{X}\right) \rightarrow \mathcal{M}\left(\mathbb{R}^{n}\right)$ is a sublinear nondecreasing operator if the following conditions are satisfied for all $\alpha \in \mathbb{R}$ and $f, g \in X$ :
(i) $T(\alpha f)=\alpha T(f)$ and $T(f+g) \leq T(f)+T(g)$ almost everywhere;
(ii) $0 \leq f \leq g$ almost everywhere implies $0 \leq T f \leq T g$ almost everywhere.

Lemma 2.4 ([8, Lemma 2.7]). Let $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)$ be GBFSs and $T$ a sublinear nondecreasing operator on $\mathcal{M}\left(\mathbb{R}^{n}\right)$. Then the following two conditions are equivalent:
(i) $\|f\|_{X}<\infty \Rightarrow\|T f\|_{Y}<\infty$;
(ii) there is $C>0$ such that $\|T f\|_{Y} \leq C\|f\|_{X}$ for all $f \in X$.
3. Spaces $T_{Y}, S_{\alpha, Y}$ and boundedness of $A_{\alpha}$ from $S_{\alpha, Y}$. Given a measurable function $f$ on $\mathbb{R}^{n}$ set

$$
\widetilde{f}(x)=\underset{|t| \geq|x|}{\operatorname{ess} \sup }|f(t)|
$$

If $x$ is a Lebesgue point of $f$, then $|f(x)| \leq \widetilde{f}(x)$, so that

$$
\begin{equation*}
|f(x)| \leq \widetilde{f}(x) \quad \text { a.e. } \tag{3.1}
\end{equation*}
$$

Definition 3.1. Let $Y$ be a GBFS and let $f$ be a measurable function on $\mathbb{R}^{n}$. Set

$$
\|f\|_{T_{Y}}=\|\widetilde{f}\|_{Y}
$$

and define the corresponding space

$$
T_{Y}=\{f: \tilde{f} \in Y\}
$$

Note that $T_{Y}$ is a GBFS [8, Lemma 3.2].
Lemma 3.2. Let $Y$ be a GBFS and $Y \neq 0$. Then $T_{Y} \hookrightarrow Y$, and we have $T_{Y} \subsetneq Y$ provided $\lim _{\left|E_{n}\right| \rightarrow 0}\left\|\chi_{E_{n}}\right\|_{Y}=0$ for measurable sets $E_{n} \subset \mathbb{R}^{n}$.

Proof. By [8, Theorem 3.3], the embedding $T_{Y} \hookrightarrow Y$ holds. Since $Y \neq 0$, there exist $x_{0} \in \mathbb{R}^{n}$ and a nondecreasing sequence $0 \leq a_{1} \leq a_{2} \leq \cdots$ such that $\left\|a_{j} \chi_{A_{j}}\right\|_{Y} \geq j$, where $A_{j}=B\left(x_{0}, 2^{-j}\right) \backslash B\left(x_{0}, 2^{-j-1}\right)$. By our assumption, there is a sequence of numbers $2^{-j-1}<b_{j}<2^{-j}$ such that $\left\|a_{j} \chi_{B_{j}}\right\|_{Y} \leq 1 / j^{2}$, where $B_{j}=B\left(x_{0}, 2^{-j}\right) \backslash B\left(x_{0}, b_{j}\right)$. Set

$$
f(x)=\sum_{j=1}^{\infty} a_{j} \chi_{B_{j}}(x) .
$$

Then

$$
\|f\|_{Y} \leq \sum_{j=1}^{\infty}\left\|a_{j} \chi_{B_{j}}\right\|_{Y} \leq \sum_{j=1}^{\infty} \frac{1}{j^{2}}<\infty,
$$

so that $f \in Y$.
Now, it is easy to see that

$$
\widetilde{f}(x)=\sum_{j=1}^{\infty} a_{j} \chi_{A_{j}}(x) .
$$

Then

$$
\|f\|_{T_{Y}}=\|\widetilde{f}\|_{Y} \geq\left\|a_{j} \chi_{A_{j}}(x)\right\|_{Y} \geq j
$$

for each $j$, and so $f \notin T_{Y}$.
Lemma 3.3. There is $C>0$ with

$$
\begin{equation*}
\widetilde{A_{\alpha}|f|}(x) \leq C M\left(A_{\alpha}|f|\right)(x), \quad x \in \mathbb{R}^{n} . \tag{3.2}
\end{equation*}
$$

Proof. Fix $x \in \mathbb{R}^{n}$. If $|x| \leq|y| \leq 2|x|$, then

$$
\begin{aligned}
A_{\alpha}|f|(y) & =\frac{1}{|B(0,|y|)|^{\alpha / n}} \int_{B(0,|y|)}|f(w)| d w \\
& \geq \frac{C}{|x|^{\alpha}} \int_{B(0,|x|)}|f(w)| d w=C A_{\alpha}|f|(x) .
\end{aligned}
$$

Now, for $|y| \geq|x|$ we have $B(0,2|y|) \subset B(x, 3|y|)$, and therefore

$$
\begin{aligned}
M\left(A_{\alpha}|f|\right)(x) & \geq \int_{B(x, 3|y|)} A_{\alpha}|f|(w) d w \geq C|y|^{-n} \int_{B(0,2|y|)} A_{\alpha}|f|(w) d w \\
& \geq C|y|^{-n} \int_{\{w:|y| \leq|w| \leq 2|y|\}} A_{\alpha}|f|(w) d w \\
& \geq C|y|^{-n} \int_{\{w:|y| \leq|w| \leq 2|y|\}} A_{\alpha}|f|(y) d w \geq C A_{\alpha}|f|(y) .
\end{aligned}
$$

Hence

$$
\widetilde{A_{\alpha}|f|}(x) \leq C M\left(A_{\alpha}|f|\right)(x)
$$

for $x \in \mathbb{R}^{n}$, as desired.

Lemma 3.4. Let $X, Y$ be GBFSs and suppose that

$$
\begin{equation*}
A_{\alpha}: X \rightarrow Y, \quad M: Y \rightarrow Y \tag{3.3}
\end{equation*}
$$

Then

$$
A_{\alpha}: X \rightarrow T_{Y}
$$

Proof. By (3.2) and (3.3), we have

$$
\left\|A_{\alpha} f\right\|_{T_{Y}} \leq \widetilde{A_{\alpha}|f|}\left\|_{Y} \leq C\right\| M\left(A_{\alpha}|f|\right)\left\|_{Y} \leq C\right\| A_{\alpha}|f|\left\|_{Y} \leq C\right\| f \|_{X}
$$

as desired.
Definition 3.5. Let $Y$ be a GBFS and let $f$ be a measurable function on $\mathbb{R}^{n}$. Set

$$
\|f\|_{S_{\alpha, Y}}=\left\|A_{\alpha}|f|\right\|_{T_{Y}}
$$

and consider the corresponding space

$$
S_{\alpha, Y}=\left\{f: \widetilde{A_{\alpha}|f|} \in Y\right\}
$$

Note that $S_{\alpha, Y}$ is a GBFS. Indeed, we can prove this as in [8, proof of Lemma 3.6].

Lemma 3.6. Let $X, Y$ be GBFSs and $A_{\alpha}: X \rightarrow T_{Y}$. Then $A_{\alpha}: S_{\alpha, Y} \rightarrow$ $T_{Y}$ and $X \hookrightarrow S_{\alpha, Y}$.

Proof. By the definitions of $S_{\alpha, Y}$ and $T_{Y}$, we have $A_{\alpha}: S_{\alpha, Y} \rightarrow T_{Y}$.
Let now $\|f\|_{X}<\infty$. Then

$$
\|f\|_{S_{\alpha, Y}}=\left\|A_{\alpha}|f|\right\|_{T_{Y}} \leq C\|f\|_{X}<\infty
$$

by our assumption.
By Lemmas 3.4 and 3.6, we readily have the following result.
Lemma 3.7. Let $X, Y$ be GBFSs and $A_{\alpha}: X \rightarrow Y, M: Y \rightarrow Y$. Then $A_{\alpha}: S_{\alpha, Y} \rightarrow T_{Y}$ and $X \hookrightarrow S_{\alpha, Y}$.

We recall the definition of a rearrangement invariant space. Given $f$ on $\mathbb{R}^{n}$, the symmetric decreasing rearrangement of $f$ is defined by

$$
f^{*}(x)=\int_{0}^{\infty} \chi_{E_{f}(t)^{*}}(x) d t
$$

where $E^{*}=\{x:|B(0,|x|)|<|E|\}$ and $E_{f}(t)=\{y:|f(y)|>t\}$.
Note that:
$(\mathrm{R} 1)\left|E_{f}(t)\right|=\left|E_{f^{*}}(t)\right|$ for $t>0$;
(R2) if $|f| \leq|g|$, then $f^{*} \leq g^{*}$;
(R3) $(c f)^{*}=|c| f^{*}$;
(R4) $(f+g)^{*}(x) \leq(2 f)^{*}\left(2^{-1 / n} x\right)+(2 g)^{*}\left(2^{-1 / n} x\right)$,
when $f, g$ are measurable on $\mathbb{R}^{n}$ and $c$ is a real number.
(R1), (R2) and (R3) are easy. To show (R4), we first see that

$$
\begin{aligned}
\left|E_{f+g}(t)\right| & \leq\left|E_{f}(t / 2)\right|+\left|E_{g}(t / 2)\right| \\
& =\left|E_{f^{*}}(t / 2)\right|+\left|E_{g^{*}}(t / 2)\right|
\end{aligned}
$$

and hence

$$
\begin{aligned}
(f+g)^{*}(x) & =\int_{0}^{\infty} \chi_{\left\{t:|B(0,|x|)| \leq\left|E_{(f+g)}(t)\right|\right\}} d t \\
& \leq \int_{0}^{\infty} \chi_{\left\{t:|B(0,|x|)| \leq\left|E_{(2 f)^{*}}(t)\right|+\mid E_{\left.(2 g)^{*}(t) \mid\right\}} d t\right.} \\
& =\int_{0}^{\infty} \chi_{\left\{t:|B(0,|x|)| \leq 2\left|E_{(2 f)^{*}}(t)\right|\right\}} d t+\int_{0}^{\infty} \chi_{\left\{t:|B(0,|x|)| \leq 2\left|E_{(2 g)^{*}}(t)\right|\right\}} d t \\
& \leq(2 f)^{*}\left(2^{-1 / n} x\right)+(2 g)^{*}\left(2^{-1 / n} x\right)
\end{aligned}
$$

as required.
Definition 3.8. Let $X \in \mathfrak{G}$. Say that $X$ is a rearrangement invariant space if $\|f\|_{X}=\left\|f^{*}\right\|_{X}$ for each $f$. Denote by $\mathfrak{R}$ the class of all rearrangement invariant spaces.

Theorem 3.9. Let $X \in \mathfrak{G}$, and suppose

$$
\begin{equation*}
f(c x) \in X \quad \text { for all } f \in X \text { and } c>0 \tag{A}
\end{equation*}
$$

Then there is a unique $Y \in \mathfrak{R}$ such that $T_{X}=T_{Y}$ and the norms in both spaces are equal. Moreover, if $Z \in \Re$ is such that $T_{Z} \hookrightarrow Y$, then $Z \hookrightarrow Y$.

Proof. Set $\|f\|_{Y}=\left\|f^{*}\right\|_{X}$ and consider the corresponding family

$$
Y=\left\{f: f^{*} \in X\right\}
$$

By (A) we see that $Y$ is a linear space. Since

$$
\left\|f^{*}\right\|_{Y}=\left\|\left(f^{*}\right)^{*}\right\|_{X}=\left\|f^{*}\right\|_{X}=\|f\|_{Y}
$$

we have $Y \in \Re$. Since

$$
\|f\|_{T_{Y}}=\|\widetilde{f}\|_{Y}=\left\|(\widetilde{f})^{*}\right\|_{X}=\|\widetilde{f}\|_{X}=\|f\|_{T_{X}}
$$

we have $T_{Y}=T_{X}$, which proves existence.
Assume that $Y_{1}, Y_{2} \in \Re, T_{Y_{1}}=T_{Y_{2}}$ and $Y_{1} \neq Y_{2}$. Suppose $Y_{2} \backslash Y_{1} \neq \emptyset$ without loss of generality, and take $f \in Y_{2} \backslash Y_{1}$. Then $f^{*} \in Y_{2} \backslash Y_{1}$ and so

$$
\left\|f^{*}\right\|_{T_{Y_{2}}}=\left\|\widetilde{f^{*}}\right\|_{Y_{2}}=\left\|f^{*}\right\|_{Y_{2}}<\infty, \quad\left\|f^{*}\right\|_{T_{Y_{1}}}=\left\|\widetilde{f^{*}}\right\|_{Y_{1}}=\left\|f^{*}\right\|_{Y_{1}}=\infty
$$

Consequently, $T_{Y_{1}}$ and $T_{Y_{2}}$ do not coincide.
Now, fix $f$. Then

$$
\|f\|_{Y}=\left\|f^{*}\right\|_{Y} \leq C\left\|f^{*}\right\|_{T_{Z}}=C\left\|\widetilde{f^{*}}\right\|_{Z}=C\left\|f^{*}\right\|_{Z}=C\|f\|_{Z}
$$

which proves $Z \hookrightarrow Y$.

## 4. Optimal pairs

Definition 4.1. Let $\mathfrak{S} \subset \mathfrak{G}$. Assume $X, Y \in \mathfrak{S}$. Say that $(X, Y)$ is an optimal pair for $A_{\alpha}$ with respect to $\mathfrak{S}$ if

$$
\begin{align*}
& A_{\alpha}: X \rightarrow Y,  \tag{4.1}\\
& \text { if } Z \in \mathfrak{S} \text { with } A_{\alpha}: Z \rightarrow Y \text {, then } Z \hookrightarrow X,  \tag{4.2}\\
& \text { if } Z \in \mathfrak{S} \text { with } A_{\alpha}: X \rightarrow Z \text {, then } Y \hookrightarrow Z . \tag{4.3}
\end{align*}
$$

Lemma 4.2. Let $X, Y \in \mathfrak{G}$ and $A_{\alpha}: X \rightarrow T_{Y}$. Suppose

$$
\begin{equation*}
A_{\alpha}\left[|x|^{\alpha-n} h(x)\right] \in T_{Y} \quad \text { for } h \in T_{Y} . \tag{4.4}
\end{equation*}
$$

Then $\left(S_{\alpha, Y}, T_{Y}\right)$ is an optimal pair for $A_{\alpha}$ with respect to $\mathfrak{G}$.
Proof. Let $Z \in \mathfrak{G}$ be such that $Z \backslash S_{\alpha, Y} \neq \emptyset$. Choose $f \in Z \backslash S_{\alpha, Y}$. Since $\|f\|_{S_{\alpha, Y}}=\left\|A_{\alpha}|f|\right\|_{T_{Y}}=\infty$, we have $A_{\alpha}: Z \nrightarrow T_{Y}$.

Let $Z \in \mathfrak{G}$ be such that $T_{Y} \backslash Z \neq \emptyset$. Choose $h \in T_{Y} \backslash Z$. Then $\widetilde{h} \in Y \backslash Z$. Set $f(x)=|x|^{\alpha-n} \widetilde{h}(x)$. Since $\widetilde{h}$ is radially non-increasing, $A_{\alpha} f \geq c \widetilde{h}$ for some $c>0$. Since $\widetilde{h} \notin Z, A_{\alpha} f \notin Z$. By the fact that $\widetilde{h} \in T_{Y}$ and our assumption (4.4), $A_{\alpha} f \in T_{Y}$. Hence $f \in S_{\alpha, Y}$, which implies $A_{\alpha}: S_{\alpha, Y} \nrightarrow Z$.

Remark 4.3. We note that (4.4) holds if and only if

$$
\left\|A_{\alpha}\left[|x|^{\alpha-n} g\right]\right\|_{Y} \leq C\|g\|_{Y}
$$

for every radial symmetric non-increasing function $g$. Inequalities such as (4.4) are investigated for many function spaces. See for example (4).

By Lemmas 3.4 and 4.2 , we have the following lemma.
Lemma 4.4. Let $X, Y \in \mathfrak{G}$ and $A_{\alpha}: X \rightarrow Y, M: Y \rightarrow Y$. Suppose (4.4) holds. Then $\left(S_{\alpha, Y}, T_{Y}\right)$ is an optimal pair for $A_{\alpha}$ with respect to $\mathfrak{G}$.
5. $L^{p}$ spaces and $A_{\alpha}$. In this section we discuss optimal pairs for $A_{\alpha}$ with respect to $\mathfrak{G}$ in Lemma 3.7. Recall that

$$
1 / p_{\alpha}=1 / p-(n-\alpha) / n .
$$

Let us begin with the boundedness of $A_{\alpha}$.
Lemma 5.1. Let $p>1$ and $n(1-1 / p)<\alpha \leq n$. Then

$$
A_{\alpha}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p_{\alpha}}\left(\mathbb{R}^{n}\right)
$$

Proof. Assume $\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq 1$. If $0<\delta<2|x|$, then

$$
\begin{aligned}
A_{\alpha}|f|(x) & =C|x|^{n-\alpha} \underset{B(0,|x|)}{f}|f(y)| d y \leq C|x|^{n-\alpha}\left(f_{B(0,|x|)}|f(y)|^{p} d y\right)^{1 / p} \\
& \leq C|x|^{n-\alpha-n / p} \leq C \delta^{n-\alpha-n / p}
\end{aligned}
$$

If $\delta \geq 2|x|$, then

$$
A_{\alpha}|f|(x)=C|x|^{n-\alpha} f_{B(0,|x|)}|f(y)| d y \leq C|x|^{n-\alpha} M f(x) \leq C \delta^{n-\alpha} M f(x)
$$

so that

$$
A_{\alpha}|f|(x) \leq C \delta^{n-\alpha} M f(x)+C \delta^{n-\alpha-n / p}
$$

Now, letting $\delta=[M f(x)]^{-p / n}$, we have

$$
A_{\alpha}|f|(x) \leq C(M f(x))^{1-(n-\alpha) p / n}=C(M f(x))^{p / p_{\alpha}}
$$

so that

$$
\int_{\mathbb{R}^{n}}\left(A_{\alpha}|f|(x)\right)^{p_{\alpha}} d x \leq C \int_{\mathbb{R}^{n}}(M f(x))^{p} d x \leq C \int_{\mathbb{R}^{n}}|f(y)|^{p} d y=C
$$

as required. -
Lemma 5.2. Suppose $q>1, \alpha \leq n$ and $n<\alpha q$. Assume $h \in L^{q}\left(\mathbb{R}^{n}\right)$ and set $f(y)=|y|^{\alpha-n}|h(y)|$. Then

$$
\left\|\widetilde{A_{\alpha} f}\right\|_{q} \leq C\|h\|_{q}
$$

Proof. Set $f(y)=|y|^{\alpha-n}|h(y)|$ for $h \in L^{q}\left(\mathbb{R}^{n}\right)$. By (3.2) and Lemma 6.2 below, we have

$$
\begin{aligned}
\left\|\widetilde{A_{\alpha} f}\right\|_{q}^{q} & \leq C\left\|M\left(A_{\alpha} f\right)\right\|_{q}^{q} \leq C \int_{\mathbb{R}^{n}}\left|A_{\alpha} f(x)\right|^{q} d x \\
& \leq C \int_{\mathbb{R}^{n}}\left(|x|^{n-\alpha} M f(x) g\right)^{q} d x \leq C \int_{\mathbb{R}^{n}}\left(|y|^{n-\alpha} f(y)\right)^{q} d y \\
& =C \int_{\mathbb{R}^{n}}|h(y)|^{q} d y=C\|h\|_{q}^{q}
\end{aligned}
$$

as required.
TheOrem 5.3. Let $p>1$ and $n(1-1 / p)<\alpha \leq n$. If $X=L^{p}\left(\mathbb{R}^{n}\right)$ and $Y=L^{p_{\alpha}}\left(\mathbb{R}^{n}\right)$, then $\left(S_{\alpha, Y}, T_{Y}\right)$ is an optimal pair for $A_{\alpha}$.

Proof. First we see from Lemmas 3.4 and 5.1 that $A_{\alpha}: X \rightarrow T_{Y}$. By Lemma 5.2 with $q=p_{\alpha}, 4.4$ holds. Hence it follows from Lemma 4.2 that $\left(S_{\alpha, Y}, T_{Y}\right)$ is an optimal pair for $A_{\alpha}$.

## 6. Weighted Lebesgue spaces and $A_{\alpha}$

Definition 6.1. Let $q \geq 1$ and $v$ be a weight. Recall that the weighted Lebesgue space $L^{q}\left(\mathbb{R}^{n}, v\right)$ is the set of all functions $f$ with

$$
\|f\|_{L^{q}\left(\mathbb{R}^{n}, v\right)}=\left(\int_{\mathbb{R}^{n}}|f(x)|^{q} v(x) d x\right)^{1 / q}<\infty
$$

Recall the well-known result on the maximal operator (see Muckenhoupt [9]).

Lemma 6.2. Let $q>1$ and $-n<\beta<n(q-1)$. Then

$$
M: L^{q}\left(\mathbb{R}^{n},|x|^{\beta}\right) \rightarrow L^{q}\left(\mathbb{R}^{n},|x|^{\beta}\right)
$$

Proof. It suffices to verify that the weight $|x|^{\beta}$ belongs to the Muckenhoupt class $\mathcal{A}_{q}$. For this, see, for example, Heinonen, Kilpeläinen and Martio [6].

Now we prove the boundedness of $A_{\alpha}$ on weighted Lebesgue spaces.
Lemma 6.3. Let $p, q>1$ and $n(1-1 / p)<\alpha \leq n$. Then

$$
A_{\alpha}: L^{q}\left(\mathbb{R}^{n},|x|^{n(q / p-1)}\right) \rightarrow L^{q}\left(\mathbb{R}^{n},|x|^{n\left(q / p_{\alpha}-1\right)}\right)
$$

Proof. Set $X=L^{q}\left(\mathbb{R}^{n},|x|^{n(q / p-1)}\right)$ and $Y=L^{q}\left(\mathbb{R}^{n},|x|^{n\left(q / p_{\alpha}-1\right)}\right)$. Since $p>1,|x|^{\beta} \in \mathcal{A}_{q}$ with $\beta=n(q / p-1)$. By Lemma 6.2, we have

$$
\begin{aligned}
\left\|A_{\alpha} f\right\|_{Y}^{q} & =\int_{\mathbb{R}^{n}}\left|A_{\alpha} f(x)\right|^{q}|x|^{n\left(q / p_{\alpha}-1\right)} d x \\
& =\int_{\mathbb{R}^{n}}\left(\frac{1}{|B(0,|x|)|^{\alpha / n}} \int_{B(0,|x|)}|f(t)| d t\right)^{q}|x|^{n\left(q / p_{\alpha}-1\right)} d x \\
& =C \int_{\mathbb{R}^{n}}\left(\frac{1}{|x|^{n}} \int_{B(0,|x|)}|f(t)| d t\right)^{q}|x|^{n\left(q / p_{\alpha}-1\right)+q(n-\alpha)} d x \\
& =C \int_{\mathbb{R}^{n}}\left(\frac{1}{|x|^{n}} \int_{B(0,|x|)}|f(t)| d t\right)^{q}|x|^{\beta} d x \\
& \leq C \int_{\mathbb{R}^{n}}(M f(x))^{q}|x|^{\beta} d x \leq C \int_{\mathbb{R}^{n}}|f(x)|^{q}|x|^{\beta} d x=C\|f\|_{X}^{q},
\end{aligned}
$$

as required.
Setting $\alpha=n$ in the previous lemma we obtain the next remark.
Remark 6.4. Let $p, q>1$. Then

$$
A: L^{q}\left(\mathbb{R}^{n},|x|^{n(q / p-1)}\right) \rightarrow L^{q}\left(\mathbb{R}^{n},|x|^{n(q / p-1)}\right)
$$

As an immediate consequence of Lemmas 6.2, 6.3 and 3.4, we obtain the following lemma.

Lemma 6.5. Let $p, q>1$ and $n(1-1 / p)<\alpha \leq n$. Then

$$
\begin{equation*}
A_{\alpha}: L^{q}\left(\mathbb{R}^{n},|x|^{n(q / p-1)}\right) \rightarrow T_{L^{q}\left(\mathbb{R}^{n},|x|^{n\left(q / p_{\alpha}-1\right)}\right)} \tag{6.1}
\end{equation*}
$$

Rewrite (6.1) as

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{n}}\left(\widetilde{A_{\alpha} f}(x)\right)^{q}|x|^{n\left(q / p_{\alpha}-1\right)} d x\right)^{1 / q} \leq C\left(\int_{\mathbb{R}^{n}}|f(y)|^{q}|y|^{n(q / p-1)} d y\right)^{1 / q} \tag{6.2}
\end{equation*}
$$

In fact, inequality 6.2 can be derived as a special case of Theorem 4.1 from [3], but our proof is different and shorter.

Lemma 6.6. Let $p, q>1, n(1-1 / p)<\alpha \leq n$ and $Y=L^{q}\left(\mathbb{R}^{n},|x|^{n\left(q / p_{\alpha}-1\right)}\right)$. Assume $h \in T_{Y}$ and set $f(x)=|x|^{\alpha-n} h(x)$. Then

$$
\int_{\mathbb{R}^{n}}\left(\widetilde{A_{\alpha} f}(x)\right)^{q}|x|^{n\left(q / p_{\alpha}-1\right)} d x \leq C \int_{\mathbb{R}^{n}} \widetilde{h}(x)^{q}|x|^{n\left(q / p_{\alpha}-1\right)} d x
$$

Proof. Let $h \in T_{Y}$. By (6.2) with $f(x)=|x|^{\alpha-n} h(x)$, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left(\widetilde{A_{\alpha}} f(x)\right)^{q}|x|^{n\left(q / p_{\alpha}-1\right)} d x & \leq C \int_{\mathbb{R}^{n}}|f(x)|^{q}|x|^{n(q / p-1)} d x \\
& =C \int_{\mathbb{R}^{n}}\left(|x|^{\alpha-n}|h(x)|\right)^{q}|x|^{n(q / p-1)} d x \\
& =C \int_{\mathbb{R}^{n}}|h(x)|^{q}|x|^{n\left(q / p_{\alpha}-1\right)} d x \\
& \leq C \int_{\mathbb{R}^{n}} \widetilde{h}(x)^{q}|x|^{n\left(q / p_{\alpha}-1\right)} d x
\end{aligned}
$$

as required.
We discuss optimal pairs for $A_{\alpha}$ with respect to $\mathfrak{G}$ in Lemma 3.7. By Lemmas 6.5, 6.6 and 4.2 , we obtain the following theorem.

THEOREM 6.7. Let $p, q>1$ and $n(1-1 / p)<\alpha \leq n$. If $X=$ $L^{q}\left(\mathbb{R}^{n},|x|^{n(q / p-1)}\right)$ and $Y=L^{q}\left(\mathbb{R}^{n},|x|^{n\left(q / p_{\alpha}-1\right)}\right)$, then $\left(S_{\alpha, Y}, T_{Y}\right)$ is an optimal pair for $A_{\alpha}$.

Proof. Note from Lemma 6.5 that $A_{\alpha}: X \rightarrow T_{Y}$. Let $h \in T_{Y}$ and $f(x)=|x|^{\alpha-n} h(x)$. By Lemma 6.6, (4.4) holds. Hence, Lemma 4.2 shows that $\left(S_{\alpha, Y}, T_{Y}\right)$ is an optimal pair for $A_{\alpha}$.

## 7. Lorentz spaces and $A_{\alpha}$

Definition 7.1. Let $p, q \geq 1$. Recall that the Lorentz space $L^{p, q}\left(\mathbb{R}^{n}\right)$ is the set of all functions $f$ with

$$
\|f\|_{L^{p, q}\left(\mathbb{R}^{n}\right)}=\left(\int_{\mathbb{R}^{n}} f^{*}(x)^{q}|x|^{n(q / p-1)} d x\right)^{1 / q}<\infty
$$

Note that

$$
\|f\|_{L^{p, q}\left(\mathbb{R}^{n}\right)} \sim\left(\int_{0}^{\infty} f_{*}(t)^{q} t^{q / p-1} d t\right)^{1 / q}<\infty
$$

where $f_{*}$ denotes the usual one-dimensional nonincreasing rearrangement of $f$. (Here $f \sim g$ means that $C^{-1} g \leq f \leq C g$ for a constant $C>0$.)

In view of Hardy's inequality (see [7]), if $q>1$ and $\alpha<n / q^{\prime}$, then for nonnegative measurable functions $f$ on $\mathbb{R}^{n}$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left(|y|^{\alpha-n} \int_{B(0,|y|)} f(x)|x|^{-\alpha} d x\right)^{q} d y \leq C \int_{\mathbb{R}^{n}} f(x)^{q} d x \tag{7.1}
\end{equation*}
$$

and if $q>1$ and $\alpha>n / q^{\prime}$, then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left(|y|^{\alpha-n} \int_{\mathbb{R}^{n} \backslash B(0,|y|)} f(x)|x|^{-\alpha} d x\right)^{q} d y \leq C \int_{\mathbb{R}^{n}} f(x)^{q} d x \tag{7.2}
\end{equation*}
$$

Note from (7.1) that if $q>1$ and $\alpha<n / q^{\prime}$, then

$$
\begin{equation*}
\left\|A_{n-\alpha}\left(|x|^{-\alpha} f\right)\right\|_{q} \leq C\|f\|_{q} \tag{7.3}
\end{equation*}
$$

LEMMA 7.2. Let $p>0, q>1$ and $n(1-1 / p)<\alpha \leq n$. Then

$$
\int_{\mathbb{R}^{n}}\left(\widetilde{A_{\alpha} f}(x)\right)^{q}|x|^{n\left(q / p_{\alpha}-1\right)} d x \leq C \int_{\mathbb{R}^{n}}(A f(x))^{q}|x|^{n(q / p-1)} d x
$$

for nonnegative measurable functions $f$ on $\mathbb{R}^{n}$.
Proof. We have

$$
\begin{aligned}
\widetilde{A_{\alpha}} f(x) & =\underset{|y| \geq|x|}{\operatorname{ess} \sup } \frac{1}{|B(0,|y|)|^{\alpha / n}} \int_{B(0,|y|)} f(t) d t \\
& \leq C \sum_{j=0}^{\infty}\left(2^{j}|x|\right)^{-\alpha} \int_{B\left(0,2^{j+1}|x|\right)} f(t) d t \\
& \leq C \int_{\{y:|y| \geq|x|\}}\left(|y|^{-\alpha} \int_{B(0,|y|)} f(t) d t\right)|y|^{-n} d y \\
& =C \int_{\{y:|y| \geq|x|\}}|y|^{-\alpha} A f(y) d y .
\end{aligned}
$$

Note here that $\alpha+n(1 / p-1 / q)>n / q^{\prime}$ by our assumption $\alpha>n / p^{\prime}$, and $\alpha+n(1 / p-1 / q)-n=n\left(1 / p_{\alpha}-1 / q\right)$. Hence, in view of 7.2$)$, we obtain

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} & \left(\widetilde{A_{\alpha} f}(x)\right)^{q}|x|^{n\left(q / p_{\alpha}-1\right)} d x \\
& \leq C \int_{\mathbb{R}^{n}}\left(\int_{\{y:|y| \geq|x|\}}|y|^{-\alpha} A f(y) d y\right)^{q}|x|^{n\left(q / p_{\alpha}-1\right)} d x \\
& =C \int_{\mathbb{R}^{n}}\left(\int_{\{y:|y| \geq|x|\}}|y|^{-\{\alpha+n(1 / p-1 / q)\}} A f(y)|y|^{n(1 / p-1 / q)} d y\right)^{q}|x|^{n\left(q / p_{\alpha}-1\right)} d x \\
& \leq C \int_{\mathbb{R}^{n}}(A f(x))^{q}|x|^{n(q / p-1)} d x
\end{aligned}
$$

as required.
In view of Lemma 7.2 , we can prove the boundedness of $A_{\alpha}$ for Lorentz spaces.

LEMmA 7.3. Let $p, q>1$. Let $n(1-1 / p)<\alpha \leq n$. Then $A_{\alpha}: L^{p, q}\left(\mathbb{R}^{n}\right) \rightarrow$ $T_{L^{p_{\alpha}, q}\left(\mathbb{R}^{n}\right)}$.

Proof. Let $f \geq 0$ be measurable. Since $A f(x) \leq A\left(f^{*}\right)(x)$, by Lemma 7.2 and Remark 6.4 we have

$$
\begin{aligned}
\left\|A_{\alpha} f\right\|_{T_{L^{p_{\alpha}, q}\left(\mathbb{R}^{n}\right)}^{q}}^{q} & =\left\|\widetilde{A_{\alpha} f}\right\|_{L^{p_{\alpha}, q}\left(\mathbb{R}^{n}\right)}^{q}=\int_{\mathbb{R}^{n}}\left(\left(\widetilde{A_{\alpha} f}\right)^{*}(x)\right)^{q}|x|^{n\left(q / p_{\alpha}-1\right)} d x \\
& =\int_{\mathbb{R}^{n}}\left(\widetilde{A_{\alpha}} f(x)\right)^{q}|x|^{n\left(q / p_{\alpha}-1\right)} d x \leq C \int_{\mathbb{R}^{n}}(A f(x))^{q}|x|^{n(q / p-1)} d x \\
& \leq C \int_{\mathbb{R}^{n}}\left(A\left(f^{*}\right)(x)\right)^{q}|x|^{n(q / p-1)} d x \\
& \leq C \int_{\mathbb{R}^{n}} f^{*}(x)^{q}|x|^{n(q / p-1)} d x=C\|f\|_{L^{p, q}\left(\mathbb{R}^{n}\right)}^{q}
\end{aligned}
$$

as desired.
We discuss optimal pairs for $A_{\alpha}$.
Theorem 7.4. Let $p, q>1$. Let $n(1-1 / p)<\alpha \leq n$. If $X=L^{p, q}\left(\mathbb{R}^{n}\right)$ and $Y=L^{p_{\alpha}, q}\left(\mathbb{R}^{n}\right)$, then $\left(S_{\alpha, Y}, T_{Y}\right)$ is an optimal pair for $A_{\alpha}$.

Proof. Note from Lemma 7.3 that $A_{\alpha}: X \rightarrow T_{Y}$. Let $h \in T_{Y}$. Then $\widetilde{h} \in Y$. Set $f(x)=|x|^{\alpha-n} \widetilde{h}(x)$. By Lemma 7.3, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left(\left(\widetilde{A_{\alpha} f}\right)^{*}(x)\right)^{q}|x|^{n\left(q / p_{\alpha}-1\right)} d x & \leq C \int_{\mathbb{R}^{n}} f^{*}(x)^{q}|x|^{n(q / p-1)} d x \\
& =C \int_{\mathbb{R}^{n}}\left(\left(|x|^{\alpha-n} \widetilde{h}(x)\right)^{*}\right)^{q}|x|^{n(q / p-1)} d x \\
& =C \int_{\mathbb{R}^{n}}\left(|x|^{\alpha-n} \widetilde{h}(x)\right)^{q}|x|^{n(q / p-1)} d x \\
& =C \int_{\mathbb{R}^{n}} \widetilde{h}(x)^{q}|x|^{n\left(q / p_{\alpha}-1\right)} d x \\
& =C \int_{\mathbb{R}^{n}}\left((\widetilde{h})^{*}(x)\right)^{q}|x|^{n\left(q / p_{\alpha}-1\right)} d x
\end{aligned}
$$

Since $\widetilde{h} \in T_{Y}, 4.4$ holds. Hence, Lemma 4.2 implies that $\left(S_{\alpha, Y}, T_{Y}\right)$ is an optimal pair for $A_{\alpha}$.
8. Associate operator $A_{\alpha}^{\prime}$. Note that the associate operator $A_{\alpha}^{\prime}$ to $A_{\alpha}$ is given by

$$
A_{\alpha}^{\prime} f(y)=\sigma_{n}^{-\alpha / n} \int_{\{x:|y| \leq|x|\}}|x|^{-\alpha} f(x) d x
$$

for a locally integrable function $f$ on $\mathbb{R}^{n}$, where $\sigma_{n}$ is the volume of the unit ball in $\mathbb{R}^{n}$.

In fact,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} A_{\alpha} g(x) f(x) d x=\int_{\mathbb{R}^{n}} g(y)\left(\sigma_{n}^{-\alpha / n} \int_{\{x:|y| \leq|x|\}}|x|^{-\alpha} f(x) d x\right) d y \tag{8.1}
\end{equation*}
$$

for nonnegative measurable functions $f$ and $g$ on $\mathbb{R}^{n}$.
Lemma 8.1. Let $p>1$ and $n(1-1 / p)<\alpha \leq n$. Then

$$
\int_{\mathbb{R}^{n}} A_{\alpha}^{\prime} f(x)^{p_{\alpha}} d x \sim \int_{\mathbb{R}^{n}} A_{\alpha} f(x)^{p_{\alpha}} d x
$$

for nonnegative measurable functions $f$ on $\mathbb{R}^{n}$.
Proof. Integrating by parts, we find

$$
A^{\prime}\left(A_{\alpha} f\right)(x)=C \int_{\{z:|x| \leq|z|\}} A_{\alpha} f(z)|z|^{-n} d z \geq C A_{\alpha}^{\prime} f(x)
$$

By the boundedness of $A^{\prime}$ (see, e.g., [8, Lemma 8.1]), we have

$$
\int_{\mathbb{R}^{n}} A_{\alpha}^{\prime} f(x)^{p_{\alpha}} d x \leq C \int_{\mathbb{R}^{n}}\left(A^{\prime}\left(A_{\alpha} f\right)(x)\right)^{p_{\alpha}} d x \leq C \int_{\mathbb{R}^{n}} A_{\alpha} f(x)^{p_{\alpha}} d x
$$

We show the converse inequality. By Fubini's theorem, we find

$$
A_{\alpha} f(x) \leq C|x|^{-\alpha} \int_{\{y:|y| \leq|x|\}} A_{\alpha}^{\prime} f(y)|y|^{\alpha-n} d y \leq C A_{\alpha}\left(|x|^{\alpha-n} A_{\alpha}^{\prime} f\right)(x)
$$

By (7.3) with $\alpha$ and $q$ replaced by $n-\alpha$ and $p_{\alpha}$ respectively, we have

$$
\left\|A_{\alpha}\left(|x|^{\alpha-n} A_{\alpha}^{\prime} f\right)\right\|_{p_{\alpha}} \leq C\left\|A_{\alpha}^{\prime} f\right\|_{p_{\alpha}}
$$

Hence

$$
\int_{\mathbb{R}^{n}} A_{\alpha} f(x)^{p_{\alpha}} d x \leq C \int_{\mathbb{R}^{n}} A_{\alpha}^{\prime} f(y)^{p_{\alpha}} d y
$$

as required.
Note that $S_{\alpha, p_{\alpha}}\left(\mathbb{R}^{n}\right) \equiv S_{\alpha, L^{p_{\alpha}}\left(\mathbb{R}^{n}\right)}=\left\{f \in \mathcal{M}\left(\mathbb{R}^{n}\right): A_{\alpha}|f| \in L^{p_{\alpha}}\left(\mathbb{R}^{n}\right)\right\}$, in view of (3.2). Set $U_{\alpha, p_{\alpha}}\left(\mathbb{R}^{n}\right)=\left\{f \in \mathcal{M}\left(\mathbb{R}^{n}\right): A_{\alpha}^{\prime}|f| \in L^{p_{\alpha}}\left(\mathbb{R}^{n}\right)\right\}$.

By Lemma 8.1, we have the following lemma.
Lemma 8.2. If $p>1$ and $n(1-1 / p)<\alpha \leq n$, then

$$
S_{\alpha, p_{\alpha}}\left(\mathbb{R}^{n}\right)=U_{\alpha, p_{\alpha}}\left(\mathbb{R}^{n}\right)
$$

By Lemmas 8.1 and 5.1, we have the following lemma.
Lemma 8.3. Let $p>1$ and $n(1-1 / p)<\alpha \leq n$. Then

$$
A_{\alpha}^{\prime}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p_{\alpha}}\left(\mathbb{R}^{n}\right)
$$

THEOREM 8.4. Let $p>1$ and $n(1-1 / p)<\alpha \leq n$. If $X=L^{p}\left(\mathbb{R}^{n}\right)$ and $Y=L^{p_{\alpha}}\left(\mathbb{R}^{n}\right)$, then $\left(S_{\alpha, Y}, T_{Y}\right)$ is an optimal pair for $A_{\alpha}^{\prime}$.

Proof. First we see from Lemmas 3.4 and 8.3 that $A_{\alpha}^{\prime}: X \rightarrow T_{Y}$. Let $h \in T_{Y}$. Set $f(y)=|y|^{\alpha-n}|h(y)|$. By Lemmas 8.1 and 5.2 with $q=p_{\alpha}$, 4.4) holds. Hence Lemma 4.2 shows that $\left(S_{\alpha, Y}, T_{Y}\right)$ is an optimal pair for $A_{\alpha}^{\prime}$. ■
9. Duals. Recall the well-known fact (following from Muckenhoupt's condition):

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}(M f(x))^{p}|x|^{\beta} d x \leq C \int_{\mathbb{R}^{n}}|f(x)|^{p}|x|^{\beta} d x \tag{9.1}
\end{equation*}
$$

if and only if $-n<\beta<n(p-1)$.
Recall also the Hardy inequality (it can be easily obtained from the 1-dimensional version): If $f$ is a nonnegative radial function and $\alpha>-n$ then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}\left(\int_{|y| \geq|x|} \frac{f(y)}{|y|^{n}} d y\right)^{p}|x|^{\alpha} d x \leq C \int_{\mathbb{R}^{n}} f(x)^{p}|x|^{\alpha} d x \tag{9.2}
\end{equation*}
$$

In fact, since $n+\alpha / p>n / p^{\prime}$ by our assumption $\alpha>-n$ and $\{(n+\alpha / p)$ $-n\} p=\alpha$, we obtain by 7.2 ,

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left(\int_{|y| \geq|x|} \frac{f(y)}{|y|^{n}} d y\right)^{p}|x|^{\alpha} d x \\
&=\int_{\mathbb{R}^{n}}\left(\int_{\{y:|y| \geq|x|\}}|y|^{-(n+\alpha / p)} f(y)|y|^{\alpha / p} d y\right)^{p}|x|^{\alpha} d x \\
& \leq C \int_{\mathbb{R}^{n}} f(x)^{p}|x|^{\alpha} d x
\end{aligned}
$$

For simplicity, write

$$
X^{p, q}\left(\mathbb{R}^{n}\right)=L^{q}\left(\mathbb{R}^{n},|x|^{n(q / p-1)}\right)
$$

and

$$
\|f\|_{X^{p, q}\left(\mathbb{R}^{n}\right)}=\|f\|_{L^{q}\left(\mathbb{R}^{n},|x|^{n(q / p-1)}\right)}
$$

Note that the associate operator $A^{\prime}$ to $A$ is given by

$$
A^{\prime} f(y)=\sigma_{n}^{-1} \int_{\{x:|y| \leq|x|\}}|x|^{-n} f(x) d x
$$

for a locally integrable function $f$ on $\mathbb{R}^{n}$. In the case $\alpha=n, A_{\alpha}^{\prime} f(y)=$ $A^{\prime} f(y)$.

ThEOREM 9.1. Let $n(1-1 / p)<\alpha \leq n$ and assume $q^{\prime} / p^{\prime}<q$. Then

$$
\left(T_{X^{p^{\prime}, q^{\prime}}\left(\mathbb{R}^{n}\right)}\right)^{\prime}=S_{\alpha, X^{p_{\alpha}, q}\left(\mathbb{R}^{n}\right)} .
$$

REmark 9.2. The referee kindly suggested that Theorem 9.1 can be obtained by the methods in [11] for the one-dimensional case (see also [10]).

We here give a proof of Theorem 9.1 by a careful application of our results above.

Proof of Theorem 9.1. An easy calculation gives, for each $0 \neq y \in \mathbb{R}^{n}$,

$$
\int_{B(0,|2 y|) \backslash B(0,|y|)} \frac{1}{|x|^{n}} d x=\omega_{n-1} \log 2,
$$

where $\omega_{n-1}$ stands for the $(n-1)$-Hausdorff measure of the unit sphere. Thus, by Fubini's theorem we have

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \frac{1}{|x|^{n}} \int_{B(0,|2 x|) \backslash B(0,|x|)} h(y) d y d x & =\int_{\mathbb{R}^{n}} h(y) \int_{B(0,|y|) \backslash B(0,|y| / 2)} \frac{1}{|x|^{n}} d x d y \\
& =\omega_{n-1} \log 2 \int_{\mathbb{R}^{n}} h(y) d y
\end{aligned}
$$

Setting $h(y)=f(y) g(y)$ for $f, g \geq 0$ on $\mathbb{R}^{n}$, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} f(x) g(x) d x & =\frac{1}{\omega_{n-1} \log 2} \int_{\mathbb{R}^{n}} \frac{1}{|x|^{n}} \int_{B(0,|2 x|) \backslash B(0,|x|)} f(y) g(y) d y d x \\
& \leq \frac{1}{\omega_{n-1} \log 2} \int_{\mathbb{R}^{n}} \tilde{f}(x)\left(\frac{1}{|x|^{n}} \int_{B(0,2|x|) \backslash B(0,|x|)} g(y) d y\right) d x
\end{aligned}
$$

Hence, by Hölder's inequality we obtain

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} f(x) g(x) d x \leq C \int_{\mathbb{R}^{n}}|x|^{\alpha-n} \tilde{f}(x) A_{\alpha} g(2 x) d x \\
& \quad=C \int_{\mathbb{R}^{n}}\left(|x|^{n\left(1 / p^{\prime}-1 / q^{\prime}\right)} \tilde{f}(x)\right)\left(|x|^{n\left(1 / p_{\alpha}-1 / q\right)} A_{\alpha} g(2 x)\right) d x \\
& \quad \leq C\left(\int_{\mathbb{R}^{n}}|x|^{n\left(q^{\prime} / p^{\prime}-1\right)}(\tilde{f}(x))^{q^{\prime}} d x\right)^{1 / q^{\prime}}\left(\int_{\mathbb{R}^{n}}|x|^{n\left(q / p_{\alpha}-1\right)}\left(A_{\alpha} g(2 x)\right)^{q} d x\right)^{1 / q} \\
& \quad \leq C\|\tilde{f}\|_{X^{p^{\prime}, q^{\prime}}\left(\mathbb{R}^{n}\right)}\left(\int_{\mathbb{R}^{n}}|x|^{n\left(q / p_{\alpha}-1\right)}\left(A_{\alpha} g(x)\right)^{q} d x\right)^{1 / q} \\
& \quad \leq C\|\tilde{f}\|_{X^{p^{\prime}, q^{\prime}\left(\mathbb{R}^{n}\right)}}\left(\int_{\mathbb{R}^{n}}|x|^{n\left(q / p_{\alpha}-1\right)}\left(\widetilde{A_{\alpha} g}(x)\right)^{q} d x\right)^{1 / q} \\
& \quad=C\|\tilde{f}\|_{X^{p^{\prime}, q^{\prime}}\left(\mathbb{R}^{n}\right)}\|g\|_{S_{\alpha, X^{\left.p_{\alpha}, q_{(\mathbb{R}}\right)}}}
\end{aligned}
$$

so that

$$
\begin{aligned}
\|g\|_{\left(T_{X{ }^{p^{\prime}, q^{\prime}\left(\mathbb{R}^{n}\right)}}\right)^{\prime}} & \sup _{\|f\|_{T_{X^{p^{\prime}, q^{\prime}\left(\mathbb{R}^{n}\right)}} \leq 1} \int_{\mathbb{R}^{n}} f(x) g(x) d x} \\
& \leq C\|g\|_{S_{\alpha, X} p_{\alpha}, q\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

Conversely, letting $\|g\|_{S_{\alpha, X^{p} \alpha, q\left(\mathbb{R}^{n}\right)}}=1$, we set

$$
\begin{equation*}
|x|^{n\left(1 / p^{\prime}-1 / q^{\prime}\right)} f(x)=\left(|x|^{n\left(1 / p_{\alpha}-1 / q\right)} A_{\alpha} g(x)\right)^{q-1} . \tag{9.3}
\end{equation*}
$$

Then $f(x)=\left(C A_{n q^{\prime} / p^{\prime}} g(x)\right)^{q-1}$, so that by Lemma 3.3.

$$
\tilde{f}(x) \leq C\left(M\left(A_{n q^{\prime} / p^{\prime}} g\right)(x)\right)^{q-1} .
$$

Hence, by the assumption $q^{\prime} / p^{\prime}<q$ and (9.1) we have

$$
\int_{\mathbb{R}^{n}}\left(M\left(A_{n q^{\prime} / p^{\prime}} g\right)(x)\right)^{q}|x|^{n\left(q^{\prime} / p^{\prime}-1\right)} d x \leq C \int_{\mathbb{R}^{n}}\left(A_{n q^{\prime} / p^{\prime}} g(x)\right)^{q}|x|^{n\left(q^{\prime} / p^{\prime}-1\right)} d x,
$$

and so

$$
\begin{aligned}
\left(\|f\|_{T_{X p^{\prime}, q^{\prime}\left(\mathbb{R}^{n}\right)}}\right)^{q^{\prime}} & =\int_{\mathbb{R}^{n}} \tilde{f}(x)^{q^{\prime}}|x|^{n\left(q^{\prime} / p^{\prime}-1\right)} d x \\
& \leq C \int_{\mathbb{R}^{n}}\left(M\left(A_{n q^{\prime} / p^{\prime}} g\right)(x)\right)^{q}|x|^{n\left(q^{\prime} / p^{\prime}-1\right)} d x \\
& \leq C \int_{\mathbb{R}^{n}}\left(A_{n q^{\prime} / p^{\prime}} g(x)\right)^{q}|x|^{n\left(q^{\prime} / p^{\prime}-1\right)} d x \\
& =C \int_{\mathbb{R}^{n}}\left(A_{\alpha} g(x)\right)^{q}|x|^{n\left(q / p_{\alpha}-1\right)} d x \\
& \leq C \int_{\mathbb{R}^{n}}\left(\widetilde{A_{\alpha} g}(x)\right)^{q}|x|^{n\left(q / p_{\alpha}-1\right)} d x \\
& =C\left(\|g\|_{\left.S_{\alpha, X^{p} \alpha, q\left(\mathbb{R}^{n}\right)}\right)^{q}=C .} .\right.
\end{aligned}
$$

Consequently, by 9.2 we have

$$
\left\|A^{\prime} \tilde{\tilde{f}}\right\|_{T_{X^{\prime}, q^{\prime}\left(\mathbb{R}^{n}\right)}} \leq C\|\tilde{f}\|_{T_{x^{p^{\prime}, q^{\prime}\left(\mathbb{R}^{n}\right)}}} \leq C .
$$

Again by Lemma 3.3 and (9.1) we can write

$$
\begin{aligned}
& \left(\|g\|_{S_{\alpha, X^{\alpha}, q_{( }\left(\mathbb{R}^{n}\right)}}\right)^{q}=\int_{\mathbb{R}^{n}}\left(|y|^{n\left(1 / p_{\alpha}-1 / q\right)} \widetilde{A_{\alpha} g}(y)\right)^{q} d y \\
& \quad \leq \int_{\mathbb{R}^{n}}\left(M\left(A_{\alpha} g\right)(y)\right)^{q}|y|^{n\left(q / p_{\alpha}-1\right)} d y \leq C \int_{\mathbb{R}^{n}}\left(A_{\alpha} g(y)\right)^{q}|y|^{n\left(q / p_{\alpha}-1\right)} d y .
\end{aligned}
$$

Thus, by 9.3)

$$
\begin{aligned}
\|g\|_{\left(T_{X^{p^{\prime}, q^{\prime}\left(\mathbb{R}^{n}\right)}}\right)^{\prime}} & \geq C \int_{\mathbb{R}^{n}}\left(A^{\prime} \tilde{f}(x)\right) g(x) d x \\
& \geq C \int_{\mathbb{R}^{n}}|y|^{\alpha-n} \tilde{f}(y) A_{\alpha} g(y) d y \\
& \geq C \int_{\mathbb{R}^{n}}\left(|y|^{n\left(1 / p_{\alpha}-1 / q\right)} A_{\alpha} g(y)\right)^{q} d y \\
& \geq C\left(\|g\|_{\left.S_{\alpha, X^{p}, q\left(\mathbb{R}^{n}\right)}\right)^{q}}=C .\right.
\end{aligned}
$$

This implies that
for all $g \in S_{\alpha, X^{p_{\alpha}, q}\left(\mathbb{R}^{n}\right)}$.
Acknowledgements. We would like to express our thanks to the referee for his kind comments and suggestions.

The first author was partially supported by Grant-in-Aid for Scientific Research (C), No. 22540192, Japan Society for the Promotion of Science. The second author was supported by grant no. MSM 201/08/0383 of the Grant Agency of the Czech Republic. The third author was partially supported by Grant-in-Aid for Scientific Research (C), No. 21540183, Japan Society for the Promotion of Science.

## References

[1] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, New York, 1988.
[2] D. E. Edmunds and A. Nekvinda, Averaging operators on $l^{\left\{p_{n}\right\}}$ and $L^{p(x)}$, Math. Inequal. Appl. 5 (2002), 235-246.
[3] A. Gogatishvili, B. Opic and L. Pick, Weighted inequalities for Hardy-type operators involving suprema, Collect. Math. 57 (2006), 227-255.
[4] A. Gogatishvili and V. D. Stepanov, Reduction theorems for weighted integral inequalities on the cone of monotone functions, Uspekhi Mat. Nauk 68 (2013), no. 4 (412), 3-68 (in Russian).
[5] K.-G. Grosse-Erdmann, The Blocking Technique, Weighted Mean Operators and Hardy's Inequality, Lecture Notes in Math. 1679, Springer, Berlin, 1998.
[6] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford, 1993.
[7] A. Kufner and L. E. Persson, Weighted Inequalities of Hardy Type, World Sci., River Edge, NJ, 2003.
[8] Y. Mizuta, A. Nekvinda and T. Shimomura, Hardy averaging operator on generalized Banach function spaces and duality, Z. Anal. Anwend. 32 (2013), 233-255.
[9] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
[10] R. Ch. Mustafayev and T. Ünver, Embeddings between weighted local Morrey-type spaces and weighted Lebesgue spaces, J. Math. Inequal. 9 (2015), 277-296.
[11] R. Ch. Mustafayev and T. Ünver, Reverse Hardy-type inequalities for supremal operators with measures, Math. Inequal. Appl., to appear.
[12] A. Nekvinda and L. Pick, Optimal estimates for the Hardy averaging operator, Math. Nachr. 283 (2010), 262-271.
[13] A. Nekvinda and L. Pick, Duals of optimal spaces for the Hardy averaging operator, Z. Anal. Anwend. 30 (2011), 435-456.
[14] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970.

Yoshihiro Mizuta<br>Department of Mechanical Systems Engineering Hiroshima Institute of Technology<br>2-1-1 Miyake Saeki-ku, Hiroshima 731-5193, Japan<br>E-mail: yomizuta@hiroshima-u.ac.jp<br>Aleš Nekvinda<br>Faculty of Civil Engineering<br>Czech Technical University<br>Thákurova 7<br>16629 Praha 6, Czech Republic<br>E-mail: nekvinda@fsv.cvut.cz<br>Tetsu Shimomura<br>Department of Mathematics<br>Graduate School of Education<br>Hiroshima University<br>Higashi-Hiroshima 739-8524, Japan<br>E-mail: tshimo@hiroshima-u.ac.jp


[^0]:    2010 Mathematics Subject Classification: Primary 47G10.
    Key words and phrases: fractional Hardy operator, Banach function space, optimal spaces, weighted Lebesgue spaces, Lorentz spaces.

