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Optimal estimates for the fractional Hardy operator

by

Yoshihiro Mizuta (Hiroshima), Aleš Nekvinda (Praha)
and Tetsu Shimomura (Hiroshima)

Abstract. Let Aαf(x) = |B(0, |x|)|−α/n
	
B(0,|x|)

f(t) dt be the n-dimensional frac-

tional Hardy operator, where 0 < α ≤ n. It is well-known that Aα is bounded from Lp

to Lpα with pα = np/(αp − np + n) when n(1 − 1/p) < α ≤ n. We improve this result
within the framework of Banach function spaces, for instance, weighted Lebesgue spaces
and Lorentz spaces. We in fact find a ‘source’ space Sα,Y , which is strictly larger than X,
and a ‘target’ space TY , which is strictly smaller than Y , under the assumption that Aα
is bounded from X into Y and the Hardy–Littlewood maximal operator M is bounded
from Y into Y , and prove that Aα is bounded from Sα,Y into TY . We prove optimality
results for the action of Aα and the associate operator A′α on such spaces, as an extension
of the results of Mizuta et al. (2013) and Nekvinda and Pick (2011). We also study the
duals of optimal spaces for Aα.

1. Introduction. Let Rn denote the n-dimensional Euclidean space and
Ω be an open subset of Rn. For an integrable function u on a measurable
set E ⊂ Rn of positive measure, we define the integral mean over E by

�

E

u(x) dx =
1

|E|

�

E

u(x) dx,

where |E| denotes the Lebesgue measure of E. We denote by B(x, r) the
open ball with center x and of radius r > 0, and by |B(x, r)| its Lebesgue
measure, i.e. |B(x, r)| = σnr

n, where σn is the volume of the unit ball in Rn.
For a locally integrable function f on Ω and 0 < α ≤ n, we consider the
fractional Hardy operator Aα, defined by

Aαf(x) =
1

|B(0, |x|)|α/n
�

B(0,|x|)

f(t) dt,
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the Hardy averaging operator A, defined by

Af(x) =
�

B(0,|x|)

f(t) dt,

and the centered Hardy–Littlewood maximal operator M , defined by

Mf(x) = sup
r>0

�

B(x,r)

|f(y)| dy

by setting f = 0 outside Ω (for the fundamental properties of maximal
functions, see Stein [14]). In the case α = n, Aαf(x) = Af(x).

Let 1 < p <∞, 1/p+ 1/p′ = 1 and

pα =
np′

αp′ − n
=

np

αp− np+ n
.

We know that Aα is bounded from Lp to Lpα provided n(1− 1/p) < α ≤ n.
Clearly, pα ≥ p > 1.

In this paper we improve the result of the second author and Pick [12]
in the case when α = n = 1 and Ω is a bounded interval, and that of the
authors [8] within the framework of generalized Banach function spaces. Let
↪→ denote continuous embedding and→ denote boundedness of an operator.
Under the assumptions that Aα : X → Y and M : Y → Y , we find a ‘source’
space Sα,Y and a ‘target’ space TY such that:

(i) the Hardy averaging operator Aα satisfies

Aα : Sα,Y → TY ;

(ii) this result improves the classical estimate

Aα : X → Y

in the sense that
X ↪→ Sα,Y , TY ↪→ Y ;

(iii) this result cannot be improved any further, at least not within the
environment of generalized Banach function spaces in the sense that
whenever Z is a generalized Banach function space strictly larger
than Sα,Y , then

Aα : Z 9 TY

and, likewise, when Z is a generalized Banach function space strictly
smaller than TY , then

Aα : Sα,Y 9 Z.

The paper is structured as follows. In Section 2, we introduce generalized
Banach function spaces (briefly GBFS), and collect some of their properties.
In Section 3, we introduce the spaces TY and Sα,Y , and show that Aα :
Sα,Y → TY . In Section 4, we prove a key lemma to obtain optimality results
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for the action of Aα (see Lemma 4.2). In Section 5, we prove optimality
results for the action of Aα on Lp spaces. In Section 6, we prove optimality
results for the action of Aα on weighted Lebesgue spaces. In Section 7, we
prove optimality results for the action of Aα on Lorentz spaces. In Section 8,
we also prove optimality results for the action of the associate operator A′α.
In the last section, we study the duals of the optimal spaces for Aα. For
related results, see [2] and [13].

2. Preliminaries. Throughout this paper, let C denote various con-
stants independent of the variables in question, and C(a, b, . . .) a constant
that depends on a, b, . . . .

LetM(Rn) denote the space of measurable functions on Rn with values
in [−∞,∞]. Denote by χE the characteristic function of E. Let |f | stand
for the modulus of a function f ∈M(Rn).

Recall the frequently used definition of Banach function spaces which
can be found for instance in [1].

Definition 2.1. We say that a normed linear space (X, ‖ · ‖X) is a Ba-
nach function space (BFS for short) if the following conditions are satisfied:

‖f‖X is defined for all f ∈M(Rn) and(2.1)

f ∈ X if and only if ‖f‖X <∞;

‖f‖X = ‖ |f | ‖X for every f ∈M(Rn);(2.2)

if 0 ≤ fn ↗ f a.e. in Rn, then ‖fn‖X ↗ ‖f‖X ;(2.3)

if E ⊂ Rn is a measurable set of finite measure, then χE ∈ X;(2.4)

for every measurable set E ⊂ Rn of finite measure, there exists(2.5)

a positive constant CE such that
	
E |f(x)| dx ≤ CE‖f‖X .

Denote by B = B(Rn) the class of all BFSs defined on Rn.

We will work with more general spaces where conditions (2.4) and (2.5)
are omitted.

Definition 2.2. We say that a normed linear space (X, ‖ · ‖X) is a
generalized Banach function space (briefly GBFS) if the following conditions
are satisfied:

‖f‖X is defined for all f ∈M(Rn), and(2.6)

f ∈ X if and only if ‖f‖X <∞;

‖f‖X = ‖ |f | ‖X for every f ∈M(Rn);(2.7)

if 0 ≤ fn ↗ f a.e. in Rn, then ‖fn‖X ↗ ‖f‖X .(2.8)

Denote by G = G(Rn) the class of all GBFSs defined on Rn.
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Recall that condition (2.8) immediately yields the following property:

(2.9) if 0 ≤ f ≤ g, then ‖f‖X ≤ ‖g‖X .
To see this it suffices to set f1 = f , fn = g for n ≥ 2 in (2.8). It is well-known
that each BFS is complete, and so it is a Banach space (see [1, Theorem
1.6]). We know that each GBFS is complete (see [8]).

Let X,Y be Banach spaces (not necessarily generalized Banach function
spaces). We write X ↪→ Y if X ⊂ Y and there is C > 0 such that ‖f‖Y ≤
C‖f‖X for all f ∈ X. Well-known theorems on Banach function spaces (see
[1, Theorem 1.8]) yield the implication

(‖f‖X <∞⇒ ‖f‖Y <∞) ⇒ X ↪→ Y.

In what follows we need a generalization of this remark as in [8].

Definition 2.3. Let (X, ‖ · ‖X) be a GBFS. Say that a mapping T :
(X, ‖ · ‖X) →M(Rn) is a sublinear nondecreasing operator if the following
conditions are satisfied for all α ∈ R and f, g ∈ X:

(i) T (αf) = αT (f) and T (f + g) ≤ T (f) + T (g) almost everywhere;
(ii) 0 ≤ f ≤ g almost everywhere implies 0 ≤ Tf ≤ Tg almost every-

where.

Lemma 2.4 ([8, Lemma 2.7]). Let (X, ‖ · ‖X), (Y, ‖ · ‖Y ) be GBFSs and
T a sublinear nondecreasing operator on M(Rn). Then the following two
conditions are equivalent:

(i) ‖f‖X <∞⇒ ‖Tf‖Y <∞;
(ii) there is C > 0 such that ‖Tf‖Y ≤ C‖f‖X for all f ∈ X.

3. Spaces TY , Sα,Y and boundedness of Aα from Sα,Y . Given a
measurable function f on Rn set

f̃(x) = ess sup
|t|≥|x|

|f(t)|.

If x is a Lebesgue point of f , then |f(x)| ≤ f̃(x), so that

(3.1) |f(x)| ≤ f̃(x) a.e.

Definition 3.1. Let Y be a GBFS and let f be a measurable function
on Rn. Set

‖f‖TY = ‖f̃‖Y
and define the corresponding space

TY = {f : f̃ ∈ Y }.
Note that TY is a GBFS [8, Lemma 3.2].

Lemma 3.2. Let Y be a GBFS and Y 6= 0. Then TY ↪→ Y , and we have
TY ( Y provided lim|En|→0 ‖χEn‖Y = 0 for measurable sets En ⊂ Rn.
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Proof. By [8, Theorem 3.3], the embedding TY ↪→ Y holds. Since Y 6= 0,
there exist x0 ∈ Rn and a nondecreasing sequence 0 ≤ a1 ≤ a2 ≤ · · ·
such that ‖ajχAj‖Y ≥ j, where Aj = B(x0, 2

−j) \ B(x0, 2
−j−1). By our

assumption, there is a sequence of numbers 2−j−1 < bj < 2−j such that
‖ajχBj‖Y ≤ 1/j2, where Bj = B(x0, 2

−j) \B(x0, bj). Set

f(x) =

∞∑
j=1

ajχBj (x).

Then

‖f‖Y ≤
∞∑
j=1

‖ajχBj‖Y ≤
∞∑
j=1

1

j2
<∞,

so that f ∈ Y .
Now, it is easy to see that

f̃(x) =

∞∑
j=1

ajχAj (x).

Then
‖f‖TY = ‖f̃‖Y ≥ ‖ajχAj (x)‖Y ≥ j

for each j, and so f /∈ TY .

Lemma 3.3. There is C > 0 with

(3.2) Ãα|f |(x) ≤ CM(Aα|f |)(x), x ∈ Rn.
Proof. Fix x ∈ Rn. If |x| ≤ |y| ≤ 2|x|, then

Aα|f |(y) =
1

|B(0, |y|)|α/n
�

B(0,|y|)

|f(w)| dw

≥ C

|x|α
�

B(0,|x|)

|f(w)| dw = CAα|f |(x).

Now, for |y| ≥ |x| we have B(0, 2|y|) ⊂ B(x, 3|y|), and therefore

M(Aα|f |)(x) ≥
�

B(x,3|y|)

Aα|f |(w) dw ≥ C|y|−n
�

B(0,2|y|)

Aα|f |(w) dw

≥ C|y|−n
�

{w: |y|≤|w|≤2|y|}

Aα|f |(w) dw

≥ C|y|−n
�

{w: |y|≤|w|≤2|y|}

Aα|f |(y) dw ≥ CAα|f |(y).

Hence
Ãα|f |(x) ≤ CM(Aα|f |)(x)

for x ∈ Rn, as desired.
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Lemma 3.4. Let X,Y be GBFSs and suppose that

(3.3) Aα : X → Y, M : Y → Y.

Then
Aα : X → TY .

Proof. By (3.2) and (3.3), we have

‖Aαf‖TY ≤ ‖Ãα|f |‖Y ≤ C‖M(Aα|f |)‖Y ≤ C‖Aα|f |‖Y ≤ C‖f‖X ,
as desired.

Definition 3.5. Let Y be a GBFS and let f be a measurable function
on Rn. Set

‖f‖Sα,Y = ‖Aα|f | ‖TY
and consider the corresponding space

Sα,Y = {f : Ãα|f | ∈ Y }.
Note that Sα,Y is a GBFS. Indeed, we can prove this as in [8, proof of Lemma
3.6].

Lemma 3.6. Let X,Y be GBFSs and Aα : X → TY . Then Aα : Sα,Y →
TY and X ↪→ Sα,Y .

Proof. By the definitions of Sα,Y and TY , we have Aα : Sα,Y → TY .
Let now ‖f‖X <∞. Then

‖f‖Sα,Y = ‖Aα|f | ‖TY ≤ C‖f‖X <∞
by our assumption.

By Lemmas 3.4 and 3.6, we readily have the following result.

Lemma 3.7. Let X,Y be GBFSs and Aα : X → Y , M : Y → Y . Then
Aα : Sα,Y → TY and X ↪→ Sα,Y .

We recall the definition of a rearrangement invariant space. Given f
on Rn, the symmetric decreasing rearrangement of f is defined by

f∗(x) =

∞�

0

χEf (t)∗(x) dt,

where E∗ = {x : |B(0, |x|)| < |E|} and Ef (t) = {y : |f(y)| > t}.
Note that:

(R1) |Ef (t)| = |Ef∗(t)| for t > 0;
(R2) if |f | ≤ |g|, then f∗ ≤ g∗;
(R3) (cf)∗ = |c|f∗;
(R4) (f + g)∗(x) ≤ (2f)∗(2−1/nx) + (2g)∗(2−1/nx),

when f, g are measurable on Rn and c is a real number.
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(R1), (R2) and (R3) are easy. To show (R4), we first see that

|Ef+g(t)| ≤ |Ef (t/2)|+ |Eg(t/2)|
= |Ef∗(t/2)|+ |Eg∗(t/2)|,

and hence

(f + g)∗(x) =

∞�

0

χ{t: |B(0,|x|)|≤|E(f+g)(t)|} dt

≤
∞�

0

χ{t: |B(0,|x|)|≤|E(2f)∗ (t)|+|E(2g)∗ (t)|} dt

=

∞�

0

χ{t: |B(0,|x|)|≤2|E(2f)∗ (t)|} dt+

∞�

0

χ{t: |B(0,|x|)|≤2|E(2g)∗ (t)|} dt

≤ (2f)∗(2−1/nx) + (2g)∗(2−1/nx),

as required.

Definition 3.8. Let X ∈ G. Say that X is a rearrangement invariant
space if ‖f‖X = ‖f∗‖X for each f . Denote by R the class of all rearrangement
invariant spaces.

Theorem 3.9. Let X ∈ G, and suppose

(A) f(cx) ∈ X for all f ∈ X and c > 0.

Then there is a unique Y ∈ R such that TX = TY and the norms in both
spaces are equal. Moreover, if Z ∈ R is such that TZ ↪→ Y , then Z ↪→ Y .

Proof. Set ‖f‖Y = ‖f∗‖X and consider the corresponding family

Y = {f : f∗ ∈ X}.
By (A) we see that Y is a linear space. Since

‖f∗‖Y = ‖(f∗)∗‖X = ‖f∗‖X = ‖f‖Y ,
we have Y ∈ R. Since

‖f‖TY = ‖f̃‖Y = ‖(f̃ )∗‖X = ‖f̃‖X = ‖f‖TX ,
we have TY = TX , which proves existence.

Assume that Y1, Y2 ∈ R, TY1 = TY2 and Y1 6= Y2. Suppose Y2 \ Y1 6= ∅
without loss of generality, and take f ∈ Y2 \ Y1. Then f∗ ∈ Y2 \ Y1 and so

‖f∗‖TY2 = ‖f̃∗‖Y2 = ‖f∗‖Y2 <∞, ‖f∗‖TY1 = ‖f̃∗‖Y1 = ‖f∗‖Y1 =∞.
Consequently, TY1 and TY2 do not coincide.

Now, fix f . Then

‖f‖Y = ‖f∗‖Y ≤ C‖f∗‖TZ = C‖f̃∗‖Z = C‖f∗‖Z = C‖f‖Z ,
which proves Z ↪→ Y .



8 Y. Mizuta et al.

4. Optimal pairs

Definition 4.1. Let S ⊂ G. Assume X,Y ∈ S. Say that (X,Y ) is an
optimal pair for Aα with respect to S if

Aα : X → Y,(4.1)

if Z ∈ S with Aα : Z → Y, then Z ↪→ X,(4.2)

if Z ∈ S with Aα : X → Z, then Y ↪→ Z.(4.3)

Lemma 4.2. Let X,Y ∈ G and Aα : X → TY . Suppose

(4.4) Aα[|x|α−nh(x)] ∈ TY for h ∈ TY .
Then (Sα,Y , TY ) is an optimal pair for Aα with respect to G.

Proof. Let Z ∈ G be such that Z \Sα,Y 6= ∅. Choose f ∈ Z \Sα,Y . Since
‖f‖Sα,Y = ‖Aα|f | ‖TY =∞, we have Aα : Z 9 TY .

Let Z ∈ G be such that TY \Z 6= ∅. Choose h ∈ TY \Z. Then h̃ ∈ Y \Z.

Set f(x) = |x|α−nh̃(x). Since h̃ is radially non-increasing, Aαf ≥ ch̃ for some

c > 0. Since h̃ /∈ Z, Aαf /∈ Z. By the fact that h̃ ∈ TY and our assumption
(4.4), Aαf ∈ TY . Hence f ∈ Sα,Y , which implies Aα : Sα,Y 9 Z.

Remark 4.3. We note that (4.4) holds if and only if

‖Aα[|x|α−ng]‖Y ≤ C‖g‖Y
for every radial symmetric non-increasing function g. Inequalities such as
(4.4) are investigated for many function spaces. See for example [4].

By Lemmas 3.4 and 4.2, we have the following lemma.

Lemma 4.4. Let X,Y ∈ G and Aα : X → Y , M : Y → Y . Suppose
(4.4) holds. Then (Sα,Y , TY ) is an optimal pair for Aα with respect to G.

5. Lp spaces and Aα. In this section we discuss optimal pairs for Aα
with respect to G in Lemma 3.7. Recall that

1/pα = 1/p− (n− α)/n.

Let us begin with the boundedness of Aα.

Lemma 5.1. Let p > 1 and n(1− 1/p) < α ≤ n. Then
Aα : Lp(Rn)→ Lpα(Rn).

Proof. Assume ‖f‖Lp(Rn) ≤ 1. If 0 < δ < 2|x|, then

Aα|f |(x) = C|x|n−α
�

B(0,|x|)

|f(y)| dy ≤ C|x|n−α
( �

B(0,|x|)

|f(y)|p dy
)1/p

≤ C|x|n−α−n/p ≤ Cδn−α−n/p.
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If δ ≥ 2|x|, then

Aα|f |(x) = C|x|n−α
�

B(0,|x|)

|f(y)| dy ≤ C|x|n−αMf(x) ≤ Cδn−αMf(x),

so that
Aα|f |(x) ≤ Cδn−αMf(x) + Cδn−α−n/p.

Now, letting δ = [Mf(x)]−p/n, we have

Aα|f |(x) ≤ C(Mf(x))1−(n−α)p/n = C(Mf(x))p/pα ,

so that �

Rn
(Aα|f |(x))pα dx ≤ C

�

Rn
(Mf(x))p dx ≤ C

�

Rn
|f(y)|p dy = C,

as required.

Lemma 5.2. Suppose q > 1, α ≤ n and n < αq. Assume h ∈ Lq(Rn)
and set f(y) = |y|α−n|h(y)|. Then

‖Ãαf‖q ≤ C‖h‖q.
Proof. Set f(y) = |y|α−n|h(y)| for h ∈ Lq(Rn). By (3.2) and Lemma 6.2

below, we have

‖Ãαf‖qq ≤ C‖M(Aαf)‖qq ≤ C
�

Rn
|Aαf(x)|q dx

≤ C
�

Rn

(
|x|n−αMf(x)g

)q
dx ≤ C

�

Rn

(
|y|n−αf(y)

)q
dy

= C
�

Rn
|h(y)|q dy = C‖h‖qq,

as required.

Theorem 5.3. Let p > 1 and n(1 − 1/p) < α ≤ n. If X = Lp(Rn) and
Y = Lpα(Rn), then (Sα,Y , TY ) is an optimal pair for Aα.

Proof. First we see from Lemmas 3.4 and 5.1 that Aα : X → TY . By
Lemma 5.2 with q = pα, (4.4) holds. Hence it follows from Lemma 4.2 that
(Sα,Y , TY ) is an optimal pair for Aα.

6. Weighted Lebesgue spaces and Aα

Definition 6.1. Let q ≥ 1 and v be a weight. Recall that the weighted
Lebesgue space Lq(Rn, v) is the set of all functions f with

‖f‖Lq(Rn,v) =
( �

Rn
|f(x)|qv(x) dx

)1/q
<∞.

Recall the well-known result on the maximal operator (see Mucken-
houpt [9]).
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Lemma 6.2. Let q > 1 and −n < β < n(q − 1). Then

M : Lq(Rn, |x|β)→ Lq(Rn, |x|β).

Proof. It suffices to verify that the weight |x|β belongs to the Muck-
enhoupt class Aq. For this, see, for example, Heinonen, Kilpeläinen and
Martio [6].

Now we prove the boundedness of Aα on weighted Lebesgue spaces.

Lemma 6.3. Let p, q > 1 and n(1− 1/p) < α ≤ n. Then
Aα : Lq(Rn, |x|n(q/p−1))→ Lq(Rn, |x|n(q/pα−1)).

Proof. Set X = Lq(Rn, |x|n(q/p−1)) and Y = Lq(Rn, |x|n(q/pα−1)). Since
p > 1, |x|β ∈ Aq with β = n(q/p− 1). By Lemma 6.2, we have

‖Aαf‖qY =
�

Rn
|Aαf(x)|q|x|n(q/pα−1) dx

=
�

Rn

(
1

|B(0, |x|)|α/n
�

B(0,|x|)

|f(t)| dt
)q
|x|n(q/pα−1) dx

= C
�

Rn

(
1

|x|n
�

B(0,|x|)

|f(t)| dt
)q
|x|n(q/pα−1)+q(n−α) dx

= C
�

Rn

(
1

|x|n
�

B(0,|x|)

|f(t)| dt
)q
|x|β dx

≤ C
�

Rn
(Mf(x))q|x|β dx ≤ C

�

Rn
|f(x)|q|x|β dx = C‖f‖qX ,

as required.

Setting α = n in the previous lemma we obtain the next remark.

Remark 6.4. Let p, q > 1. Then

A : Lq(Rn, |x|n(q/p−1))→ Lq(Rn, |x|n(q/p−1)).
As an immediate consequence of Lemmas 6.2, 6.3 and 3.4, we obtain the

following lemma.

Lemma 6.5. Let p, q > 1 and n(1− 1/p) < α ≤ n. Then
(6.1) Aα : Lq(Rn, |x|n(q/p−1))→ TLq(Rn,|x|n(q/pα−1)).

Rewrite (6.1) as

(6.2)
( �

Rn
(Ãαf(x))q|x|n(q/pα−1) dx

)1/q
≤ C

( �

Rn
|f(y)|q|y|n(q/p−1) dy

)1/q
.

In fact, inequality (6.2) can be derived as a special case of Theorem 4.1
from [3], but our proof is different and shorter.
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Lemma 6.6. Let p, q>1, n(1−1/p) < α ≤ n and Y =Lq(Rn, |x|n(q/pα−1)).
Assume h ∈ TY and set f(x) = |x|α−nh(x). Then�

Rn
(Ãαf(x))q|x|n(q/pα−1) dx ≤ C

�

Rn
h̃(x)q|x|n(q/pα−1) dx.

Proof. Let h ∈ TY . By (6.2) with f(x) = |x|α−nh(x), we have�

Rn
(Ãαf(x))q|x|n(q/pα−1) dx ≤ C

�

Rn
|f(x)|q|x|n(q/p−1) dx

= C
�

Rn
(|x|α−n|h(x)|)q|x|n(q/p−1) dx

= C
�

Rn
|h(x)|q|x|n(q/pα−1) dx

≤ C
�

Rn
h̃(x)q|x|n(q/pα−1) dx,

as required.

We discuss optimal pairs for Aα with respect to G in Lemma 3.7. By
Lemmas 6.5, 6.6 and 4.2, we obtain the following theorem.

Theorem 6.7. Let p, q > 1 and n(1 − 1/p) < α ≤ n. If X =
Lq(Rn, |x|n(q/p−1)) and Y = Lq(Rn, |x|n(q/pα−1)), then (Sα,Y , TY ) is an op-
timal pair for Aα.

Proof. Note from Lemma 6.5 that Aα : X → TY . Let h ∈ TY and
f(x) = |x|α−nh(x). By Lemma 6.6, (4.4) holds. Hence, Lemma 4.2 shows
that (Sα,Y , TY ) is an optimal pair for Aα.

7. Lorentz spaces and Aα

Definition 7.1. Let p, q ≥ 1. Recall that the Lorentz space Lp,q(Rn) is
the set of all functions f with

‖f‖Lp,q(Rn) =
( �

Rn
f∗(x)q|x|n(q/p−1) dx

)1/q
<∞.

Note that

‖f‖Lp,q(Rn) ∼
(∞�

0

f∗(t)
qtq/p−1 dt

)1/q
<∞,

where f∗ denotes the usual one-dimensional nonincreasing rearrangement
of f . (Here f ∼ g means that C−1g ≤ f ≤ Cg for a constant C > 0.)

In view of Hardy’s inequality (see [7]), if q > 1 and α < n/q′, then for
nonnegative measurable functions f on Rn,

(7.1)
�

Rn

(
|y|α−n

�

B(0,|y|)

f(x)|x|−α dx
)q
dy ≤ C

�

Rn
f(x)q dx,
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and if q > 1 and α > n/q′, then

(7.2)
�

Rn

(
|y|α−n

�

Rn\B(0,|y|)

f(x)|x|−α dx
)q
dy ≤ C

�

Rn
f(x)q dx.

Note from (7.1) that if q > 1 and α < n/q′, then

(7.3) ‖An−α(|x|−αf)‖q ≤ C‖f‖q.
Lemma 7.2. Let p > 0, q > 1 and n(1− 1/p) < α ≤ n. Then�

Rn
(Ãαf(x))q|x|n(q/pα−1) dx ≤ C

�

Rn
(Af(x))q|x|n(q/p−1) dx

for nonnegative measurable functions f on Rn.

Proof. We have

Ãαf(x) = ess sup
|y|≥|x|

1

|B(0, |y|)|α/n
�

B(0,|y|)

f(t) dt

≤ C
∞∑
j=0

(2j |x|)−α
�

B(0,2j+1|x|)

f(t) dt

≤ C
�

{y: |y|≥|x|}

(
|y|−α

�

B(0,|y|)

f(t) dt
)
|y|−n dy

= C
�

{y: |y|≥|x|}

|y|−αAf(y) dy.

Note here that α + n(1/p − 1/q) > n/q′ by our assumption α > n/p′, and
α+ n(1/p− 1/q)− n = n(1/pα − 1/q). Hence, in view of (7.2), we obtain
�

Rn
(Ãαf(x))q|x|n(q/pα−1) dx

≤ C
�

Rn

( �

{y: |y|≥|x|}

|y|−αAf(y) dy
)q
|x|n(q/pα−1) dx

= C
�

Rn

( �

{y: |y|≥|x|}

|y|−{α+n(1/p−1/q)}Af(y)|y|n(1/p−1/q) dy
)q
|x|n(q/pα−1) dx

≤ C
�

Rn
(Af(x))q|x|n(q/p−1) dx,

as required.

In view of Lemma 7.2, we can prove the boundedness of Aα for Lorentz
spaces.

Lemma 7.3. Let p, q > 1. Let n(1−1/p) < α ≤ n. Then Aα : Lp,q(Rn)→
TLpα,q(Rn).
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Proof. Let f ≥ 0 be measurable. Since Af(x) ≤ A(f∗)(x), by Lemma
7.2 and Remark 6.4 we have

‖Aαf‖qTLpα,q(Rn)
= ‖Ãαf‖qLpα,q(Rn) =

�

Rn
((Ãαf)∗(x))q|x|n(q/pα−1) dx

=
�

Rn
(Ãαf(x))q|x|n(q/pα−1) dx ≤ C

�

Rn
(Af(x))q|x|n(q/p−1) dx

≤ C
�

Rn
(A(f∗)(x))q|x|n(q/p−1) dx

≤ C
�

Rn
f∗(x)q|x|n(q/p−1) dx = C‖f‖qLp,q(Rn),

as desired.

We discuss optimal pairs for Aα.

Theorem 7.4. Let p, q > 1. Let n(1 − 1/p) < α ≤ n. If X = Lp,q(Rn)
and Y = Lpα,q(Rn), then (Sα,Y , TY ) is an optimal pair for Aα.

Proof. Note from Lemma 7.3 that Aα : X → TY . Let h ∈ TY . Then
h̃ ∈ Y . Set f(x) = |x|α−nh̃(x). By Lemma 7.3, we have

�

Rn
((Ãαf)∗(x))q|x|n(q/pα−1) dx ≤ C

�

Rn
f∗(x)q|x|n(q/p−1) dx

= C
�

Rn
((|x|α−nh̃(x))∗)q|x|n(q/p−1) dx

= C
�

Rn
(|x|α−nh̃(x))q|x|n(q/p−1) dx

= C
�

Rn
h̃(x)q|x|n(q/pα−1) dx

= C
�

Rn
((h̃)∗(x))q|x|n(q/pα−1) dx.

Since h̃ ∈ TY , (4.4) holds. Hence, Lemma 4.2 implies that (Sα,Y , TY ) is an
optimal pair for Aα.

8. Associate operator A′α. Note that the associate operator A′α to Aα
is given by

A′αf(y) = σ−α/nn

�

{x: |y|≤|x|}

|x|−αf(x) dx

for a locally integrable function f on Rn, where σn is the volume of the unit
ball in Rn.
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In fact,

(8.1)
�

Rn
Aαg(x)f(x) dx =

�

Rn
g(y)

(
σ−α/nn

�

{x: |y|≤|x|}

|x|−αf(x) dx
)
dy

for nonnegative measurable functions f and g on Rn.

Lemma 8.1. Let p > 1 and n(1− 1/p) < α ≤ n. Then�

Rn
A′αf(x)pα dx ∼

�

Rn
Aαf(x)pα dx

for nonnegative measurable functions f on Rn.

Proof. Integrating by parts, we find

A′(Aαf)(x) = C
�

{z: |x|≤|z|}

Aαf(z)|z|−ndz ≥ CA′αf(x).

By the boundedness of A′ (see, e.g., [8, Lemma 8.1]), we have�

Rn
A′αf(x)pα dx ≤ C

�

Rn
(A′(Aαf)(x))pα dx ≤ C

�

Rn
Aαf(x)pα dx.

We show the converse inequality. By Fubini’s theorem, we find

Aαf(x) ≤ C|x|−α
�

{y: |y|≤|x|}

A′αf(y)|y|α−n dy ≤ CAα(|x|α−nA′αf)(x).

By (7.3) with α and q replaced by n− α and pα respectively, we have

‖Aα(|x|α−nA′αf)‖pα ≤ C‖A′αf‖pα .
Hence �

Rn
Aαf(x)pα dx ≤ C

�

Rn
A′αf(y)pα dy,

as required.

Note that Sα,pα(Rn) ≡ Sα,Lpα (Rn) = {f ∈ M(Rn) : Aα|f | ∈ Lpα(Rn)},
in view of (3.2). Set Uα,pα(Rn) = {f ∈M(Rn) : A′α|f | ∈ Lpα(Rn)}.

By Lemma 8.1, we have the following lemma.

Lemma 8.2. If p > 1 and n(1− 1/p) < α ≤ n, then
Sα,pα(Rn) = Uα,pα(Rn).

By Lemmas 8.1 and 5.1, we have the following lemma.

Lemma 8.3. Let p > 1 and n(1− 1/p) < α ≤ n. Then
A′α : Lp(Rn)→ Lpα(Rn).

Theorem 8.4. Let p > 1 and n(1 − 1/p) < α ≤ n. If X = Lp(Rn) and
Y = Lpα(Rn), then (Sα,Y , TY ) is an optimal pair for A′α.
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Proof. First we see from Lemmas 3.4 and 8.3 that A′α : X → TY . Let
h ∈ TY . Set f(y) = |y|α−n|h(y)|. By Lemmas 8.1 and 5.2 with q = pα, (4.4)
holds. Hence Lemma 4.2 shows that (Sα,Y , TY ) is an optimal pair for A′α.

9. Duals. Recall the well-known fact (following from Muckenhoupt’s
condition):

(9.1)
�

Rn
(Mf(x))p|x|β dx ≤ C

�

Rn
|f(x)|p|x|β dx,

if and only if −n < β < n(p− 1).
Recall also the Hardy inequality (it can be easily obtained from the

1-dimensional version): If f is a nonnegative radial function and α > −n
then

(9.2)
�

Rn

( �

|y|≥|x|

f(y)

|y|n
dy

)p
|x|α dx ≤ C

�

Rn
f(x)p|x|α dx.

In fact, since n+α/p > n/p′ by our assumption α > −n and {(n+α/p)
− n}p = α, we obtain by (7.2),

�

Rn

( �

|y|≥|x|

f(y)

|y|n
dy

)p
|x|α dx

=
�

Rn

( �

{y: |y|≥|x|}

|y|−(n+α/p)f(y)|y|α/p dy
)p
|x|α dx

≤ C
�

Rn
f(x)p|x|α dx.

For simplicity, write

Xp,q(Rn) = Lq(Rn, |x|n(q/p−1))
and

‖f‖Xp,q(Rn) = ‖f‖Lq(Rn,|x|n(q/p−1)).

Note that the associate operator A′ to A is given by

A′f(y) = σ−1n

�

{x: |y|≤|x|}

|x|−nf(x) dx

for a locally integrable function f on Rn. In the case α = n, A′αf(y) =
A′f(y).

Theorem 9.1. Let n(1− 1/p) < α ≤ n and assume q′/p′ < q. Then

(TXp′,q′ (Rn))
′ = Sα,Xpα,q(Rn).

Remark 9.2. The referee kindly suggested that Theorem 9.1 can be
obtained by the methods in [11] for the one-dimensional case (see also [10]).
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We here give a proof of Theorem 9.1 by a careful application of our results
above.

Proof of Theorem 9.1. An easy calculation gives, for each 0 6= y ∈ Rn,
�

B(0,|2y|)\B(0,|y|)

1

|x|n
dx = ωn−1 log 2,

where ωn−1 stands for the (n − 1)-Hausdorff measure of the unit sphere.
Thus, by Fubini’s theorem we have

�

Rn

1

|x|n
�

B(0,|2x|)\B(0,|x|)

h(y) dy dx =
�

Rn
h(y)

�

B(0,|y|)\B(0,|y|/2)

1

|x|n
dx dy

= ωn−1 log 2
�

Rn
h(y) dy.

Setting h(y) = f(y)g(y) for f, g ≥ 0 on Rn, we have
�

Rn
f(x)g(x) dx =

1

ωn−1 log 2

�

Rn

1

|x|n
�

B(0,|2x|)\B(0,|x|)

f(y)g(y) dy dx

≤ 1

ωn−1 log 2

�

Rn
f̃(x)

(
1

|x|n
�

B(0,2|x|)\B(0,|x|)

g(y) dy

)
dx.

Hence, by Hölder’s inequality we obtain
�

Rn
f(x)g(x) dx ≤ C

�

Rn
|x|α−nf̃(x)Aαg(2x) dx

= C
�

Rn
(|x|n(1/p′−1/q′)f̃(x))(|x|n(1/pα−1/q)Aαg(2x)) dx

≤ C
( �

Rn
|x|n(q′/p′−1)(f̃(x))q

′
dx
)1/q′( �

Rn
|x|n(q/pα−1)(Aαg(2x))q dx

)1/q
≤ C‖f̃‖Xp′,q′ (Rn)

( �

Rn
|x|n(q/pα−1)(Aαg(x))q dx

)1/q
≤ C‖f̃‖Xp′,q′ (Rn)

( �

Rn
|x|n(q/pα−1)(Ãαg(x))q dx

)1/q
= C‖f̃‖Xp′,q′ (Rn)‖g‖Sα,Xpα,q(Rn)

,

so that

‖g‖(T
Xp
′,q′ (Rn)

)′ = sup
‖f‖T

Xp
′,q′ (Rn)

≤1

�

Rn
f(x)g(x) dx

≤ C‖g‖Sα,Xpα,q(Rn)
.
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Conversely, letting ‖g‖Sα,Xpα,q(Rn)
= 1, we set

(9.3) |x|n(1/p′−1/q′)f(x) = (|x|n(1/pα−1/q)Aαg(x))q−1.

Then f(x) = (CAnq′/p′g(x))q−1, so that by Lemma 3.3,

f̃(x) ≤ C(M(Anq′/p′g)(x))q−1.

Hence, by the assumption q′/p′ < q and (9.1) we have�

Rn
(M(Anq′/p′g)(x))q|x|n(q′/p′−1) dx ≤ C

�

Rn
(Anq′/p′g(x))q|x|n(q′/p′−1) dx,

and so

(‖f‖T
Xp
′,q′ (Rn)

)q
′

=
�

Rn
f̃(x)q

′ |x|n(q′/p′−1) dx

≤ C
�

Rn
(M(Anq′/p′g)(x))q|x|n(q′/p′−1) dx

≤ C
�

Rn
(Anq′/p′g(x))q|x|n(q′/p′−1) dx

= C
�

Rn
(Aαg(x))q|x|n(q/pα−1) dx

≤ C
�

Rn
(Ãαg(x))q|x|n(q/pα−1) dx

= C(‖g‖Sα,Xpα,q(Rn)
)q = C.

Consequently, by (9.2) we have

‖A′f̃‖T
Xp
′,q′ (Rn)

≤ C‖f̃‖T
Xp
′,q′ (Rn)

≤ C.

Again by Lemma 3.3 and (9.1) we can write

(‖g‖Sα,Xpα,q(Rn)
)q =

�

Rn

(
|y|n(1/pα−1/q)Ãαg(y)

)q
dy

≤
�

Rn
(M(Aαg)(y))q|y|n(q/pα−1) dy ≤ C

�

Rn
(Aαg(y))q|y|n(q/pα−1) dy.

Thus, by (9.3)

‖g‖(T
Xp
′,q′ (Rn)

)′ ≥ C
�

Rn
(A′f̃(x))g(x) dx

≥ C
�

Rn
|y|α−nf̃(y)Aαg(y) dy

≥ C
�

Rn
(|y|n(1/pα−1/q)Aαg(y))q dy

≥ C(‖g‖Sα,Xpα,q(Rn)
)q = C.
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This implies that

‖g‖(T
Xp
′,q′ (Rn)

)′ ≥ C‖g‖Sα,Xpα,q(Rn)

for all g ∈ Sα,Xpα,q(Rn).
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