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Locally convex quasi C∗-algebras and
noncommutative integration
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Camillo Trapani and Salvatore Triolo (Palermo)

Abstract. We continue the analysis undertaken in a series of previous papers on
structures arising as completions of C∗-algebras under topologies coarser that their norm
topology and we focus our attention on the so-called locally convex quasi C∗-algebras.
We show, in particular, that any strongly *-semisimple locally convex quasi C∗-algebra
(X,A0) can be represented in a class of noncommutative local L2-spaces.

1. Introduction. The completion X of a C∗-algebra A0 with respect to
a norm weaker than the C∗-norm provides a mathematical framework for
discussing certain quantum physical systems for which the usual algebraic
approach in terms of C∗-algebras turned out to be insufficient.

First of all, X is a Banach A0-module and becomes a quasi *-algebra if
X carries an involution which extends the involution ∗ of A0. This structure
has been called a proper CQ∗-algebra in a series of papers [4]–[10], [21]–[22]
to which we refer for a detailed analysis. On the other hand, if X is endowed
with an isometric involution different from that of A0, then the structure
becomes more involved.

CQ∗-algebras are examples of more general structures called locally con-
vex quasi C∗-algebras [3]. They are obtained by completing a C∗-algebra with
respect to a new locally convex topology τ on A0 compatible with the corre-
sponding ‖ · ‖-topology. Under certain conditions on τ , a quasi ∗-subalgebra

A of the completion Ã0[τ ] is a locally convex quasi ∗-algebra which is named
a locally convex quasi C∗-algebra.

In [9] quasi ∗-algebras of measurable and/or integrable operators (in the
sense of Segal [19], [27] and Nelson [17]) were examined in detail and it
was proved that any ∗-semisimple CQ∗-algebra can be realized as a CQ∗-
algebra of measurable operators, with the help of a particular class of posi-
tive bounded sesquilinear forms on X.
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In this paper, after a short overview of the main results obtained on this
subject, we continue our study of locally convex quasi C∗-algebras and we
generalize to these structures the results obtained in [9] for proper CQ∗-
algebras.

The main question we pose in the present paper is the following: given
a ∗-semisimple locally convex quasi C∗-algebras (X,A0) and the universal
∗-representation of A0, defined via the Gelfand–Naimark theorem, can X be
realized as a locally convex quasi C∗-algebra of operators of type L2?

The paper is organized as follows. We begin with a short overview of non-
commutative Lp-spaces (constructed starting from a von Neumann algebra
M and a normal, semifinite, faithful trace ϕ on M), considered as CQ∗-
algebras. We also introduce the noncommutative Lploc-space constructed on
a von Neumann algebra possessing a family of mutually orthogonal central
projections whose sum is the identity operator. We show that (Lploc(ϕ),M)
is a locally convex quasi C∗-algebra.

Finally we give some results on the structure of locally convex quasi
C∗-algebras: we prove that any locally convex quasi C∗-algebra (X,A0) pos-
sessing a sufficient family of bounded positive tracial sesquilinear forms can
be continuously embedded into a locally convex quasi C∗-algebra of measur-
able operators of the type (L2

loc(ϕ),M).

1.1. Definitions and results on noncommutative measures. The
following basic definitions and results on noncommutative measure theory
and integration are needed in what follows. Let M be a von Neumann algebra
on a Hilbert spaceH, and ϕ a normal faithful semifinite trace defined on M+.

Set

J = {X ∈M : ϕ(|X|) <∞}.
Then J is a ∗-ideal of M.

Let P ∈ Proj(M), the lattice of projections of M. Two projections P,Q ∈
Proj(M) are called equivalent, written P ∼ Q, if there is a U ∈ M with
U∗U = P and UU∗ = Q. We write P ≺ Q when P is equivalent to a
subprojection of Q.

A projection P of a von Neumann algebra M is said to be finite if
P ∼ Q ≤ P implies P = Q, and purely infinite if there is no nonzero finite
projection Q � P in M. A von Neumann algebra M is said to be finite
(respectively, purely infinite) if the identity operator I is finite (respectively,
purely infinite).

We say that P is ϕ-finite if P ∈ J . Any ϕ-finite projection is finite.

We will need the following result (see [15, Vol. IV, Ex. 6.9.12]).

Lemma 1.1. Let M be a von Neumann algebra on a Hilbert space H,
and ϕ a normal faithful semifinite trace defined on M+. There is an or-
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thogonal family {Qj : j ∈ J} of nonzero central projections in M such that∨
j∈J Qj = I and each Qj is the sum of an orthogonal family of mutually

equivalent finite projections in M.

A vector subspace D of H is said to be strongly dense (resp., strongly
ϕ-dense) if

• U ′D ⊂ D for any unitary U ′ in M′;
• there exists a sequence Pn ∈ Proj(M) such that PnH ⊂ D, P⊥n ↓ 0

and P⊥n is a finite projection (resp., ϕ(P⊥n ) <∞).

Clearly, every strongly ϕ-dense domain is strongly dense.

Throughout this paper, when we say that an operator T is affiliated
with the von Neumann algebra M, written T ηM, we always mean that T
is closed, densely defined on H, and TU ⊇ UT for every unitary operator
U ∈M′.

An operator T ηM is called

• measurable (with respect to M) if its domain D(T ) is strongly dense;
• ϕ-measurable if D(T ) is strongly ϕ-dense.

From the definition itself it follows that if T is ϕ-measurable, then there
exists P ∈ Proj(M) such that TP is bounded and ϕ(P⊥) <∞.

We recall that any operator affiliated with a finite von Neumann algebra
is measurable [19, Cor. 4.1] but not necessarily ϕ-measurable.

Remark 1.2. The following statements will be used later:

(i) Let T ηM and Q ∈ M. If D(TQ) = {ξ ∈ H : Qξ ∈ D(T )} is dense
in H, then TQηM.

(ii) If Q ∈ Proj(M), then QMQ = {QXQ�QH : X ∈ M} is a von
Neumann algebra on the Hilbert space QH; moreover (QMQ)′ =
QM′Q. If T ηM and Q ∈M and D(TQ) = {ξ ∈ H : Qξ ∈ D(T )} is
dense in H, then QTQηQMQ.

Let M be a von Neumann algebra on a Hilbert space H, and ϕ a normal
faithful semifinite trace defined on M+. For each p ≥ 1, let

Jp = {X ∈M : ϕ(|X|p) <∞}.

Then Jp is a ∗-ideal of M. Following [17], we denote by Lp(ϕ) the Banach
space completion of Jp with respect to the norm

‖X‖p,ϕ := ϕ(|X|p)1/p, X ∈ Jp.

One usually defines L∞(ϕ) := M. Thus, if ϕ is a finite trace, then L∞(ϕ) ⊂
Lp(ϕ) for every p ≥ 1. As shown in [17], ifX ∈ Lp(ϕ), thenX is a measurable
operator.
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If A is a measurable operator and A ≥ 0, one defines the integral of A
by

µ(A) = sup{ϕ(X) : 0 ≤ X ≤ A, X ∈ J1}.

Then the space Lp(ϕ) can also be defined [17] as the space of all measurable
operators A such that µ(|A|p) <∞.

The integral of an element A ∈ Lp(ϕ) can be defined, in the obvious way,
taking into account that any measurable operator A can be decomposed as
A = B+ − B− + iC+ − iC−, where B = A+A∗

2 and C = A−A∗
2i and B+, B−

(resp. C+, C−) are the positive and negative parts of B (resp. C).

1.2. Locally convex quasi C∗-algebras. In what follows we recall
some definitions and facts.

Definition 1.3. Let X be a complex vector space and A0 a ∗-algebra
contained in X. Then X is said a quasi ∗-algebra with distinguished ∗-algebra
A0 (or simply over A0) if

(i) the multiplication of A0 is extended on X as follows: the correspon-
dences

X× A0 → A : (a, x) 7→ ax (left multiplication of x by a) and

A0 × X→ A : (x, a) 7→ xa (right multiplication of x by a)

are always defined and are bilinear;
(ii) x1(x2a) = (x1x2)a, (ax1)x2 = a(x1x2) and x1(ax2) = (x1a)x2, for

all x1, x2 ∈ A0 and a ∈ X;
(iii) the involution ∗ of A0 is extended on X, denoted also by ∗, and

satisfies (ax)∗ = x∗a∗ and (xa)∗ = a∗x∗, for all x ∈ A0 and a ∈ X.

Thus a quasi ∗-algebra [18] is a couple (X,A0), where X is a vector space
with involution ∗, A0 is a ∗-algebra and a vector subspace of X, and X is an
A0-bimodule whose module operations and involution extend those of A0.
The unit of (X,A0) is an element e ∈ A0 such that xe = ex = x for every
x ∈ X.

A quasi ∗-algebra (X,A0) is said to be locally convex if X is endowed with
a topology τ which makes X a locally convex space such that the involution
a 7→ a∗ and the multiplications a 7→ ab, a 7→ ba, b ∈ A0, are continuous.
If τ is a norm topology and the involution is isometric with respect to the
norm, we say that (X,A0) is a normed quasi ∗-algebra, and if it is complete,
we say it is a Banach quasi∗-algebra.

Let A0[‖·‖0] be a C∗-algebra. We shall use the symbol ‖·‖0 of the C∗-norm
to also denote the corresponding topology. Suppose that τ is a topology on
A0 such that A0[τ ] is a locally convex ∗-algebra. Then the topologies τ and
‖ · ‖0 on A0 are compatible whenever each Cauchy net in both topologies
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that converges with respect to one of them, also converges with respect to
the other.

Under certain conditions on τ , a quasi ∗-subalgebra A of the quasi ∗-
algebra X = Ã0[τ ] over A0 is named a locally convex quasi C∗-algebra. More
precisely, let {pλ}λ∈Λ be a directed family of seminorms defining the topol-
ogy τ . Suppose that τ is compatible with ‖ · ‖0 and has the following prop-
erties:

(T1) A0[τ ] is a locally convex ∗-algebra with separately continuous mul-
tiplication.

(T2) τ � ‖ · ‖0.

Then the identity map A0[‖ · ‖0] → A0[τ ] extends to a continuous ∗-linear

map A0[‖ · ‖0] → Ã0[τ ]. Since τ and ‖ · ‖0 are compatible, the C∗-algebra

A0[‖ · ‖0] can be regarded as embedded into Ã0[τ ]. It is easily shown that

Ã0[τ ] is a quasi ∗-algebra over A0 (cf. [13, Section 3]).

We denote by (A0)+ the set of all positive elements of the C∗-algebra
A0[‖ · ‖0].

Further, we employ the following two extra conditions (T3), (T4) for the
locally convex topology τ on A0:

(T3) For each λ ∈ Λ, there exists λ′ ∈ Λ such that

pλ(xy) ≤ ‖x‖0pλ′(y) for all x, y ∈ A0 with xy = yx.

(T4) The set U(A0)+ := {x ∈ (A0)+ : ‖x‖0 ≤ 1} is τ -closed.

Definition 1.4. By a locally convex quasi C∗-algebra over A0 (see [3]),
we mean any quasi ∗-subalgebra A of the locally convex quasi ∗-algebra
X = Ã0[τ ] over A0, where A0[‖ · ‖0] is a C∗-algebra with identity e and τ
a locally convex topology on A0, defined by a directed family {pλ}λ∈Λ of
seminorms satisfying conditions (T1)–(T4).

The following examples have been discussed in [3].

Example 1.5 (CQ∗-algebras). Let A0 be a C∗-algebra with norm ‖ · ‖
and involution ∗. Let ‖ ·‖1 be a norm on A0, weaker than ‖ ·‖ and such that,
for every a, b ∈ A,

(i) ‖ab‖1 ≤ ‖a‖1‖b‖,
(ii) ‖a∗‖1 = ‖a‖1.

Let X denote the ‖·‖1-completion of A0; then (1) the couple (X,A0) is called
a CQ∗-algebra. Every CQ∗-algebra is a locally convex quasi C∗-algebra.

(1) In previous papers this structure was called a proper CQ∗-algebra. Since this is
the sole case we consider here, we will systematically omit the specification proper.
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Example 1.6. The spaceLp([0, 1]) with 1≤p<∞ is a BanachL∞([0, 1])-
bimodule. The couple (Lp([0, 1]), L∞([0, 1])) may be regarded as a CQ∗-
algebra, thus a locally convex quasi C∗-algebra over L∞([0, 1]).

2. Locally convex quasi C∗-algebras of measurable operators.
Let M be a von Neumann algebra on a Hilbert space H, and ϕ a normal
faithful semifinite trace on M+. Then, as shown in [9], (Lp(ϕ), L∞(ϕ) ∩
Lp(ϕ)) is a Banach quasi∗-algebra, and if ϕ is a finite trace, then (Lp(ϕ),M)
is a CQ∗-algebra.

In analogy to [9] we consider the following two sets of sesquilinear forms
enjoying certain invariance properties.

Definition 2.1. Let (X,A0) be a locally convex quasi C∗-algebra with
unit e. We denote by S(X) the set of all sesquilinear forms Ω on X×X with
the following properties:

(i) Ω(x, x) ≥ 0 for all x ∈ X;
(ii) Ω(xa, b) = Ω(a, x∗b) for all x ∈ X and a, b ∈ A0;

(iii) |Ω(x, y)| ≤ p(x)p(y) for some τ -continuous seminorm p on X and
all x, y ∈ X;

(iv) Ω(e, e) ≤ 1.

The locally convex quasi C∗-algebra (X,A0) is called ∗-semisimple if
whenever x ∈ X and Ω(x, x) = 0 for every Ω ∈ S(X), then x = 0.

We denote by T (X) ⊆ S(X) the set of all sesquilinear forms Ω ∈ S(X)
with the following property:

(v) Ω(x, x) = Ω(x∗, x∗) for all x ∈ X.

Remark 2.2.

• By (v) of Definition 2.1 and by polarization, we get

Ω(y∗, x∗) = Ω(x, y) for all x, y ∈ X.

• The set T (X) is convex.

Example 2.3. Let M be a von Neumann algebra and ϕ a normal faithful
semifinite trace on M+. Then, (Lp(ϕ),Jp), p ≥ 2, is a ∗-semisimple Banach
quasi ∗-algebra. If ϕ is a finite trace (we assume ϕ(I) = 1), then (Lp(ϕ),M),
with p ≥ 2, is a ∗-semisimple locally convex quasi C∗-algebra. If p ≥ 2 then
Lp-spaces possess a sufficient family of positive sesquilinear forms. Indeed, in
this case, since |W |p−2 ∈ Lp/(p−2)(ϕ) for every W ∈ Lp(ϕ), the sesquilinear
form ΩW defined by

ΩW (X,Y ) :=
ϕ[X(Y |W |p−2)∗]
‖W‖p−2p,ϕ



Quasi C∗-algebras and noncommutative integration 39

is positive and satisfies conditions (i)–(iv) of Definition 2.1 (see [9], and [24]
for more details). Moreover,

ΩW (W,W ) = ‖W‖pp,ϕ.

Remark 2.4. The notion of ∗-semisimplicity of locally convex partial
∗-algebras has been studied in full generality in [2] and [14].

Definition 2.5. Let M be a von Neumann algebra and ϕ a normal
faithful semifinite trace defined on M+. We denote by Lploc(ϕ) the set of
all measurable operators T such that TP ∈ Lp(ϕ) for every central ϕ-finite
projection P of M.

Remark 2.6. The von Neumann algebra M is a subset of Lploc(ϕ). In-
deed, ifX ∈M, then for every ϕ-finite central projection P of M the product
XP belongs to the ∗-ideal Jp.

Throughout this section we are given a von Neumann algebra M on a
Hilbert space H with a family {Pj}j∈J of ϕ-finite central projections of M
such that

• if l,m ∈ J , l 6= m, then PlPm = 0 (i.e., the Pj ’s are orthogonal);
•
∨
j∈J Pj = I, where

∨
j∈J Pj denotes the projection onto the subspace

generated by {PjH : j ∈ J}.

These conditions always hold in a von Neumann algebra with a faithful
normal semifinite trace (see Lemma 1.1 and [15, 20] for more details).

If ϕ is a normal faithful semifinite trace on M+, we define, for each
X ∈M, the seminorms qj(X) := ‖XPj‖p,ϕ, j ∈ J. The translation-invariant
locally convex topology defined by the system {qj : j ∈ J} is denoted by τp.

Definition 2.7. Let M be a von Neumann algebra and ϕ a normal
faithful semifinite trace defined on M+. We denote by M̃τp the τp-completion
of M.

Proposition 2.8. Let M be a von Neumann algebra and ϕ a normal

faithful semifinite trace on M+. Then Lploc(ϕ) ⊆ M̃τp . Moreover, if there
exists a family {Pj}j∈J as above with all Pj’s mutually equivalent, then

Lploc(ϕ) = M̃τp .

Proof. From Remark 2.6, M ⊆ Lploc(ϕ). If Y ∈ Lploc(ϕ), for every j ∈ J
we have Y Pj ∈ Lp(ϕ). Hence, for every j ∈ J , there exist (Xj

n)∞n=1 ⊆ Jp
such that ‖Xj

n − Y Pj‖p,ϕ → 0 as n→∞.

Let FJ be the family of finite subsets of J ordered by inclusion, and let
F ∈ FJ . We set

Tn,F :=
∑
j∈F

Xj
nPj ∈M.
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Then the net (Tn,F ) converges to Y with respect to τp. Indeed, for every
m ∈ J ,

qm(Tn,F − Y ) = ‖(Tn,F − Y )Pm‖p,ϕ = ‖(Xm
n − Y )Pm‖p,ϕ

for sufficiently large F . Thus, ‖(Xm
n − Y )Pm‖p,ϕ ≤ ‖Xm

n − Y Pm‖p,ϕ implies
that qm(Tn,F − Y ) −→

n,F
0.

Hence Lploc(ϕ) ⊆ M̃τp .

Now, assume that all Pj ’ s are mutually equivalent. If Y ∈ M̃τp , there
exists a net (Xα) ⊆M such that Xα → Y with respect to τp; hence

(2.1) XαPj → Y Pj ∈ Lp(ϕ) in ‖ · ‖p,ϕ.
But for each central ϕ-finite projection P we have

(2.2) ϕ(P ) = ϕ
(
P
∑
j∈J

Pj

)
=
∑
j∈J

ϕ(PPj).

By our assumption, for any l,m ∈ J we may pick U ∈ M so that
U∗U = Pl and UU∗ = Pm, hence

ϕ(PPl) = ϕ(PU∗U) = ϕ(UPU∗) = ϕ(PUU∗) = ϕ(PPm).

So, all terms on the right hand side of (2.2) are equal, and since the above
series converges, only a finite number of them can be nonzero. Thus, for
some s ∈ N we may write J = {1, . . . , s} and then

(2.3) P = P
∑
j∈J

Pj = P

s∑
j=1

Pj =

s∑
j=1

PPj ,

and hence

(2.4) Y P =
s∑
j=1

Y PPj =
s∑
j=1

Y PjP ∈ Lp(ϕ).

Therefore, if Y ∈ M̃τp , then for each central ϕ-finite projection P we have
Y P ∈ Lp(ϕ). Hence Lploc(ϕ) ⊇ M̃τp .

Remark 2.9. In general, a von Neumann algebra need not have an
orthogonal family {Pj}j∈J of mutually equivalent finite central projections

such that
∨
j∈J Pj = I, but if this is the case, then Lploc(ϕ) = M̃τp .

Theorem 2.10. Let M be a von Neumann algebra on a Hilbert space H,
and ϕ a normal faithful semifinite trace on M+. Then (M̃τp ,M) is a lo-
cally convex quasi C∗-algebra with respect to τp, consisting of measurable
operators.

Proof. The topology τp has properties (T1)–(T4). We will just prove
(T3)–(T4) here.
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(T3) For each λ ∈ J ,

qλ(XY ) = ‖PλXY ‖p,ϕ ≤ ‖X‖ ‖PλY ‖p,ϕ = ‖X‖qλ(Y ), ∀X,Y ∈M.

(T4) The set U(M)+ := {X ∈ (M)+ : ‖X‖ ≤ 1} is τp-closed. To see this,
consider a net {Fα} in U(M)+ with Fα → F in the topology τp. Then for each
j ∈ J , ‖(Fα − F )Pj‖p,ϕ → 0. By assumption on Pj , the trace ϕ is a normal
faithful finite trace on the von Neumann algebra PjM+. Then (see [9])
(Lp(ϕ), PjM) is a CQ∗-algebra. Therefore, using (T4) for (Lp(ϕ), PjM), we
have FPj ∈ U(PjM)+ for each j ∈ J. This, by definition, implies that F ∈
M. Indeed, for every

h =
∑
j∈J

Pjh ∈ H =
⊕
j∈J

PjH

we have

‖Fh‖2H =
∑
j∈J
‖FPjh‖2 =

∑
j∈J
‖FPjPjh‖2 ≤

∑
j∈J
‖Pjh‖2 = ‖h‖2H.

Hence F ∈ U(M)+.

Remark 2.11. By Proposition 2.8, (Lploc(ϕ),M) itself is a locally convex
quasi C∗-algebra with respect to τp.

3. Representation theorems. Let (X,A0) be a locally convex quasi
C∗-algebra with a unit e. For each Ω ∈ T (X), we define a linear functional
ωΩ on A0 by

ωΩ(a) := Ω(a, e), a ∈ A0.

We have

ωΩ(a∗a) = Ω(a∗a, e) = Ω(a, a) = Ω(a∗, a∗) = ωΩ(aa∗) ≥ 0.

This shows at once that ωΩ is positive and tracial.
By the Gelfand–Naimark theorem each C∗-algebra is isometrically ∗-

isomorphic to a C∗-algebra of bounded operators in Hilbert space. This
isometric ∗-isomorphism is called the universal ∗-representation. We denote
it by π.

For every Ω ∈ T (X) and a ∈ A0, we set

ϕΩ(π(a)) = ωΩ(a).

Then, for each Ω ∈ T (X), ϕΩ is a positive bounded linear functional on the
operator algebra π(A0).

Clearly,

ϕΩ(π(a)) = ωΩ(a) = Ω(a, e).

Since {pλ} is directed, there exist γ > 0 and λ ∈ Λ such that

|ϕΩ(π(a))| = |ωΩ(a)| = |Ω(a, e)| ≤ γ2pλ(ae)pλ(e).
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Then by (T3), for some λ′ ∈ Λ,

|ϕΩ(π(a))| ≤ γ2‖a‖0pλ′(e)2.

Thus ϕΩ is continuous on π(A0).

By [15, Vol. 2, Proposition 10.1.1], ϕΩ is weakly continuous and so it
extends uniquely to π(A0)

′′, by the Hahn–Banach theorem. Moreover, since
ϕΩ is a trace on π(A0), the extension ϕ̃Ω is also a trace on the von Neumann
algebra M := π(A0)

′′ generated by π(A0).

Clearly, the set NT (A0) = {ϕ̃Ω : Ω ∈ T (X)} is convex.

Definition 3.1. The locally convex quasi C∗-algebra (X,A0) is said to
be strongly ∗-semisimple if

(a) the equality Ω(x, x) = 0 for every Ω ∈ T (X) implies x = 0;
(b) the set NT (A0) is w∗-closed.

Remark 3.2. If (X,A0) is a CQ∗-algebra, then by [9, Proposition 4.1],
(b) is automatically satisfied.

Example 3.3. Let M be a von Neumann algebra and ϕ a normal faithful
semifinite trace on M+. Then, as seen in Example 2.3, if ϕ is a finite trace,
then (Lp(ϕ),M), with p ≥ 2, is a ∗-semisimple locally convex quasi C∗-
algebra. Conditions (a) and (b) of Definition 3.1 are satisfied. Indeed, in
this case, the set NT (M) is w∗-closed by [9, Proposition 4.1]. Therefore
(Lp(ϕ),M), with ϕ finite, is a strongly ∗-semisimple locally convex quasi
C∗-algebra.

Let (X,A0) be a locally convex quasi C∗-algebra with unit e, π the uni-
versal representation of A0, and M = π(A0)

′′. Denote by ‖f‖] the norm of
a bounded functional f on M, and by M] the topological dual of M. Then
the norm ‖ϕ̃Ω‖] of ϕ̃Ω as a linear functional on M equals the norm of ϕΩ
as a functional on π(A0).

By (iv) of Definition 2.1, ‖ϕ̃Ω‖] = ϕ̃Ω(π(e)) = Ω(e, e) ≤ 1.

Hence, if (b) of Definition 3.1 is satisfied, then the set NT (A0), being a
w∗-closed subset of the unit ball of M], is w∗-compact.

Let ENT (A0) be the set of extreme points of NT (A0); then NT (A0)
coincides with the w∗-closure of the convex hull of ENT (A0).

Thus ENT (A0) is a family of normal finite traces on the von Neumann
algebra M.

We define F := {Ω ∈ T (X) : ϕ̃Ω ∈ ENT (A0)} and denote by PΩ the sup-
port projection corresponding to the trace ϕ̃Ω. By [9, Lemma 3.5], {PΩ}Ω∈F
consists of mutually orthogonal projections and if Q :=

∨
Ω∈F PΩ then

µ =
∑

ϕ̃Ω∈ENT (A0)

ϕ̃Ω
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is a normal faithful semifinite trace defined on the direct sum (see [20] and
[26]) of von Neumann algebras

QM =
⊕
Ω∈F

PΩM.

Theorem 3.4. Let (X,A0) be a strongly ∗-semisimple locally convex
quasi C∗-algebra with unit e. Then there exists a monomorphism

Φ : X 3 x 7→ Φ(x) := X̃ ∈ Q̃M
τ2

with the following properties:

(i) Φ extends the isometry π : A0 ↪→ B(H) given by the Gelfand–
Naimark theorem;

(ii) Φ(x∗) = Φ(x)∗ for every x ∈ X;
(iii) Φ(xy) = Φ(x)Φ(y) for all x, y ∈ X such that x ∈ A0 or y ∈ A0.

Proof. Let {pλ}λ∈Λ be, as before, the family of seminorms defining the
topology τ of X. For fixed x ∈ X, there exists a net {aα : α ∈ ∆} of elements
of A0 such that pλ(aα − x)→ 0 for each λ ∈ Λ. We write Xα = π(aα).

By (iii) of Definition 2.1, for every Ω ∈ T (X), there exist γ > 0 and
λ′ ∈ Λ such that for each α, β ∈ ∆,

‖PΩ(Xα −Xβ)‖2,ϕ̃Ω = ‖PΩ(π(aα)− π(aβ))‖2,ϕ̃Ω
= [ϕ̃Ω(|PΩ(π(aα)− π(aβ))|2)]1/2

= [Ω ((aα − aβ)∗(aα − aβ), e)]1/2

= [Ω(aα − aβ, aα − aβ)]1/2 ≤ γpλ′(aα − aβ) −→
α,β

0.

Let X̃Ω be the ‖ · ‖2,ϕ̃Ω -limit of the net (PΩXα) in L2(ϕ̃Ω). Clearly

X̃Ω = PΩX̃Ω. We define

Φ(x) :=
∑
Ω∈F

PΩX̃Ω =: X̃.

Clearly X̃ ∈ Q̃M
τ2

.

It is easy to see that the map X 3 x 7→ X̃ ∈ Q̃M
τ2

is well defined and
injective. Indeed, if aα → 0, there exist γ > 0 and λ′ ∈ Λ such that

‖PΩXα‖2,ϕ̃Ω = ‖PΩπ(aα)‖2,ϕ̃Ω = [ϕ̃Ω(|PΩ(π(aα)|2)]1/2

= [Ω(a∗αaα, e)]
1/2 = [Ω(aα, aα)]1/2 ≤ γpλ′(aα)→ 0.

Thus PΩ(Xα) = 0 for every Ω ∈ T (X), and so X̃ = 0. Moreover if PΩX̃ = 0
for each Ω ∈ F , then Ω(x, x) = 0 for every Ω ∈ F . Since every Ω ∈ T (X) is
a w∗-limit of convex combinations of elements of F , we get Ω(x, x) = 0 for
every Ω ∈ T (X). Therefore, by assumption, x = 0.
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Remark 3.5. In the same way we can prove that:

• If (X,A0) is a strongly ∗-semisimple locally convex quasi C∗-algebra
and there exists a faithful Ω ∈ T (X) (i.e., Ω(x, x) = 0 implies x = 0)
then there exists a monomorphism

Φ : X 3 x→ Φ(x) := X̃ ∈ L2(ϕ̃Ω)

with the following properties:

(i) Φ extends the isometry π : A0 ↪→ B(H) given by the Gelfand–
Naimark theorem;

(ii) Φ(x∗) = Φ(x)∗ for every x ∈ X,
(iii) Φ(xy) = Φ(x)Φ(y) for all x, y ∈ X such that x ∈ A0 or y ∈ A0.

• If the semifinite von Neumann algebra π(A0)
′′ admits an orthogo-

nal family {P ′i : i ∈ I} of mutually equivalent projections such that∑
i∈I P

′
i = I, then it is easy to see that the map X 3 x 7→ X̃ ∈ L2

loc(τ)
is a monomorphism.
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