Locally convex quasi C*-algebras and noncommutative integration

by

CAMILLO TRAPANI and SALVATORE TRIOLO (Palermo)

Abstract. We continue the analysis undertaken in a series of previous papers on structures arising as completions of C^{*}-algebras under topologies coarser that their norm topology and we focus our attention on the so-called *locally convex quasi* C^{*}-algebras. We show, in particular, that any strongly *-semisimple locally convex quasi C^{*}-algebra $(\mathfrak{X}, \mathfrak{A}_0)$ can be represented in a class of noncommutative local L^2 -spaces.

1. Introduction. The completion \mathfrak{X} of a C*-algebra \mathfrak{A}_0 with respect to a norm weaker than the C*-norm provides a mathematical framework for discussing certain quantum physical systems for which the usual algebraic approach in terms of C*-algebras turned out to be insufficient.

First of all, \mathfrak{X} is a Banach \mathfrak{A}_0 -module and becomes a quasi *-algebra if \mathfrak{X} carries an involution which extends the involution * of \mathfrak{A}_0 . This structure has been called a *proper CQ**-*algebra* in a series of papers [4]–[10], [21]–[22] to which we refer for a detailed analysis. On the other hand, if \mathfrak{X} is endowed with an isometric involution different from that of \mathfrak{A}_0 , then the structure becomes more involved.

CQ*-algebras are examples of more general structures called *locally convex quasi* C*-algebras [3]. They are obtained by completing a C*-algebra with respect to a new locally convex topology τ on \mathfrak{A}_0 compatible with the corresponding $\|\cdot\|$ -topology. Under certain conditions on τ , a quasi *-subalgebra \mathfrak{A} of the completion $\widetilde{\mathfrak{A}}_0[\tau]$ is a locally convex quasi *-algebra which is named a locally convex quasi C*-algebra.

In [9] quasi *-algebras of measurable and/or integrable operators (in the sense of Segal [19], [27] and Nelson [17]) were examined in detail and it was proved that any *-semisimple CQ*-algebra can be realized as a CQ*-algebra of measurable operators, with the help of a particular class of positive bounded sesquilinear forms on \mathfrak{X} .

2010 Mathematics Subject Classification: Primary 46L08; Secondary 46L51, 47L60.

Key words and phrases: Banach C^* -modules, noncommutative integration, partial algebras of operators.

In this paper, after a short overview of the main results obtained on this subject, we continue our study of locally convex quasi C^* -algebras and we generalize to these structures the results obtained in [9] for proper CQ^{*}-algebras.

The main question we pose in the present paper is the following: given a *-semisimple locally convex quasi C*-algebras $(\mathfrak{X}, \mathfrak{A}_0)$ and the universal *-representation of \mathfrak{A}_0 , defined via the Gelfand–Naimark theorem, can \mathfrak{X} be realized as a locally convex quasi C*-algebra of operators of type L^2 ?

The paper is organized as follows. We begin with a short overview of noncommutative L^p -spaces (constructed starting from a von Neumann algebra \mathfrak{M} and a normal, semifinite, faithful trace φ on \mathfrak{M}), considered as CQ*algebras. We also introduce the noncommutative L^p_{loc} -space constructed on a von Neumann algebra possessing a family of mutually orthogonal central projections whose sum is the identity operator. We show that $(L^p_{loc}(\varphi), \mathfrak{M})$ is a locally convex quasi C*-algebra.

Finally we give some results on the structure of locally convex quasi C*-algebras: we prove that any locally convex quasi C*-algebra $(\mathfrak{X}, \mathfrak{A}_0)$ possessing a sufficient family of bounded positive tracial sesquilinear forms can be continuously embedded into a locally convex quasi C*-algebra of measurable operators of the type $(L^2_{loc}(\varphi), \mathfrak{M})$.

1.1. Definitions and results on noncommutative measures. The following basic definitions and results on noncommutative measure theory and integration are needed in what follows. Let \mathfrak{M} be a von Neumann algebra on a Hilbert space \mathcal{H} , and φ a normal faithful semifinite trace defined on \mathfrak{M}_+ .

Set

$$\mathcal{J} = \{ X \in \mathfrak{M} : \varphi(|X|) < \infty \}.$$

Then \mathcal{J} is a *-ideal of \mathfrak{M} .

Let $P \in \operatorname{Proj}(\mathfrak{M})$, the lattice of projections of \mathfrak{M} . Two projections $P, Q \in \operatorname{Proj}(\mathfrak{M})$ are called *equivalent*, written $P \sim Q$, if there is a $U \in \mathfrak{M}$ with $U^*U = P$ and $UU^* = Q$. We write $P \prec Q$ when P is equivalent to a subprojection of Q.

A projection P of a von Neumann algebra \mathfrak{M} is said to be *finite* if $P \sim Q \leq P$ implies P = Q, and *purely infinite* if there is no nonzero finite projection $Q \leq P$ in \mathfrak{M} . A von Neumann algebra \mathfrak{M} is said to be *finite* (respectively, *purely infinite*) if the identity operator \mathbb{I} is finite (respectively, purely infinite).

We say that P is φ -finite if $P \in \mathcal{J}$. Any φ -finite projection is finite. We will need the following result (see [15, Vol. IV, Ex. 6.9.12]).

LEMMA 1.1. Let \mathfrak{M} be a von Neumann algebra on a Hilbert space \mathcal{H} , and φ a normal faithful semifinite trace defined on \mathfrak{M}_+ . There is an orthogonal family $\{Q_j : j \in J\}$ of nonzero central projections in \mathfrak{M} such that $\bigvee_{j\in J} Q_j = \mathbb{I}$ and each Q_j is the sum of an orthogonal family of mutually equivalent finite projections in \mathfrak{M} .

A vector subspace \mathcal{D} of \mathcal{H} is said to be *strongly dense* (resp., *strongly* φ -*dense*) if

- $U'\mathcal{D} \subset \mathcal{D}$ for any unitary U' in \mathfrak{M}' ;
- there exists a sequence $P_n \in \operatorname{Proj}(\mathfrak{M})$ such that $P_n \mathcal{H} \subset \mathcal{D}, P_n^{\perp} \downarrow 0$ and P_n^{\perp} is a finite projection (resp., $\varphi(P_n^{\perp}) < \infty$).

Clearly, every strongly φ -dense domain is strongly dense.

Throughout this paper, when we say that an operator T is affiliated with the von Neumann algebra \mathfrak{M} , written $T \eta \mathfrak{M}$, we always mean that Tis closed, densely defined on \mathcal{H} , and $TU \supseteq UT$ for every unitary operator $U \in \mathfrak{M}'$.

An operator $T \eta \mathfrak{M}$ is called

- measurable (with respect to \mathfrak{M}) if its domain D(T) is strongly dense;
- φ -measurable if D(T) is strongly φ -dense.

From the definition itself it follows that if T is φ -measurable, then there exists $P \in \operatorname{Proj}(\mathfrak{M})$ such that TP is bounded and $\varphi(P^{\perp}) < \infty$.

We recall that any operator affiliated with a finite von Neumann algebra is measurable [19, Cor. 4.1] but not necessarily φ -measurable.

REMARK 1.2. The following statements will be used later:

- (i) Let $T \eta \mathfrak{M}$ and $Q \in \mathfrak{M}$. If $D(TQ) = \{\xi \in \mathcal{H} : Q\xi \in D(T)\}$ is dense in \mathcal{H} , then $TQ \eta \mathfrak{M}$.
- (ii) If $Q \in \operatorname{Proj}(\mathfrak{M})$, then $Q\mathfrak{M}Q = \{QXQ \upharpoonright_{Q\mathcal{H}} : X \in \mathfrak{M}\}$ is a von Neumann algebra on the Hilbert space $Q\mathcal{H}$; moreover $(Q\mathfrak{M}Q)' = Q\mathfrak{M}'Q$. If $T \eta \mathfrak{M}$ and $Q \in \mathfrak{M}$ and $D(TQ) = \{\xi \in \mathcal{H} : Q\xi \in D(T)\}$ is dense in \mathcal{H} , then $QTQ \eta Q\mathfrak{M}Q$.

Let \mathfrak{M} be a von Neumann algebra on a Hilbert space \mathcal{H} , and φ a normal faithful semifinite trace defined on \mathfrak{M}_+ . For each $p \geq 1$, let

$$\mathcal{J}_p = \{ X \in \mathfrak{M} : \varphi(|X|^p) < \infty \}.$$

Then \mathcal{J}_p is a *-ideal of \mathfrak{M} . Following [17], we denote by $L^p(\varphi)$ the Banach space completion of \mathcal{J}_p with respect to the norm

$$||X||_{p,\varphi} := \varphi(|X|^p)^{1/p}, \quad X \in \mathcal{J}_p.$$

One usually defines $L^{\infty}(\varphi) := \mathfrak{M}$. Thus, if φ is a finite trace, then $L^{\infty}(\varphi) \subset L^{p}(\varphi)$ for every $p \geq 1$. As shown in [17], if $X \in L^{p}(\varphi)$, then X is a measurable operator.

If A is a measurable operator and $A \ge 0$, one defines the *integral* of A by

$$\mu(A) = \sup\{\varphi(X) : 0 \le X \le A, X \in \mathcal{J}_1\}.$$

Then the space $L^p(\varphi)$ can also be defined [17] as the space of all measurable operators A such that $\mu(|A|^p) < \infty$.

The integral of an element $A \in L^p(\varphi)$ can be defined, in the obvious way, taking into account that any measurable operator A can be decomposed as $A = B_+ - B_- + iC_+ - iC_-$, where $B = \frac{A+A^*}{2}$ and $C = \frac{A-A^*}{2i}$ and B_+, B_- (resp. C_+, C_-) are the positive and negative parts of B (resp. C).

1.2. Locally convex quasi C*-algebras. In what follows we recall some definitions and facts.

DEFINITION 1.3. Let \mathfrak{X} be a complex vector space and \mathfrak{A}_0 a *-algebra contained in \mathfrak{X} . Then \mathfrak{X} is said a *quasi* *-algebra with distinguished *-algebra \mathfrak{A}_0 (or simply over \mathfrak{A}_0) if

(i) the multiplication of \mathfrak{A}_0 is extended on \mathfrak{X} as follows: the correspondences

 $\mathfrak{X} \times \mathfrak{A}_0 \to \mathfrak{A} : (a, x) \mapsto ax$ (left multiplication of x by a) and $\mathfrak{A}_0 \times \mathfrak{X} \to \mathfrak{A} : (x, a) \mapsto xa$ (right multiplication of x by a)

are always defined and are bilinear;

- (ii) $x_1(x_2a) = (x_1x_2)a, (ax_1)x_2 = a(x_1x_2)$ and $x_1(ax_2) = (x_1a)x_2$, for all $x_1, x_2 \in \mathfrak{A}_0$ and $a \in \mathfrak{X}$;
- (iii) the involution * of \mathfrak{A}_0 is extended on \mathfrak{X} , denoted also by *, and satisfies $(ax)^* = x^*a^*$ and $(xa)^* = a^*x^*$, for all $x \in \mathfrak{A}_0$ and $a \in \mathfrak{X}$.

Thus a quasi *-algebra [18] is a couple $(\mathfrak{X}, \mathfrak{A}_0)$, where \mathfrak{X} is a vector space with involution *, \mathfrak{A}_0 is a *-algebra and a vector subspace of \mathfrak{X} , and \mathfrak{X} is an \mathfrak{A}_0 -bimodule whose module operations and involution extend those of \mathfrak{A}_0 . The unit of $(\mathfrak{X}, \mathfrak{A}_0)$ is an element $e \in \mathfrak{A}_0$ such that xe = ex = x for every $x \in \mathfrak{X}$.

A quasi *-algebra $(\mathfrak{X}, \mathfrak{A}_0)$ is said to be *locally convex* if \mathfrak{X} is endowed with a topology τ which makes \mathfrak{X} a locally convex space such that the involution $a \mapsto a^*$ and the multiplications $a \mapsto ab$, $a \mapsto ba$, $b \in \mathfrak{A}_0$, are continuous. If τ is a norm topology and the involution is isometric with respect to the norm, we say that $(\mathfrak{X}, \mathfrak{A}_0)$ is a *normed quasi* *-algebra, and if it is complete, we say it is a *Banach quasi**-algebra.

Let $\mathfrak{A}_0[\|\cdot\|_0]$ be a C*-algebra. We shall use the symbol $\|\cdot\|_0$ of the C*-norm to also denote the corresponding topology. Suppose that τ is a topology on \mathfrak{A}_0 such that $\mathfrak{A}_0[\tau]$ is a locally convex *-algebra. Then the topologies τ and $\|\cdot\|_0$ on \mathfrak{A}_0 are *compatible* whenever each Cauchy net in both topologies that converges with respect to one of them, also converges with respect to the other.

Under certain conditions on τ , a quasi *-subalgebra \mathfrak{A} of the quasi *algebra $\mathfrak{X} = \widetilde{\mathfrak{A}_0}[\tau]$ over \mathfrak{A}_0 is named a *locally convex quasi* C*-algebra. More precisely, let $\{p_{\lambda}\}_{\lambda \in \Lambda}$ be a directed family of seminorms defining the topology τ . Suppose that τ is compatible with $\|\cdot\|_0$ and has the following properties:

- (T₁) $\mathfrak{A}_0[\tau]$ is a locally convex *-algebra with separately continuous multiplication.
- $(\mathbf{T}_2) \ \tau \preceq \| \cdot \|_0.$

Then the identity map $\mathfrak{A}_0[\|\cdot\|_0] \to \mathfrak{A}_0[\tau]$ extends to a continuous *-linear map $\mathfrak{A}_0[\|\cdot\|_0] \to \widetilde{\mathfrak{A}_0}[\tau]$. Since τ and $\|\cdot\|_0$ are compatible, the C*-algebra $\mathfrak{A}_0[\|\cdot\|_0]$ can be regarded as embedded into $\widetilde{\mathfrak{A}_0}[\tau]$. It is easily shown that $\widetilde{\mathfrak{A}_0}[\tau]$ is a quasi *-algebra over \mathfrak{A}_0 (cf. [13, Section 3]).

We denote by $(\mathfrak{A}_0)_+$ the set of all positive elements of the C*-algebra $\mathfrak{A}_0[\|\cdot\|_0]$.

Further, we employ the following two extra conditions (T_3) , (T_4) for the locally convex topology τ on \mathfrak{A}_0 :

(T₃) For each $\lambda \in \Lambda$, there exists $\lambda' \in \Lambda$ such that

 $p_{\lambda}(xy) \leq ||x||_0 p_{\lambda'}(y)$ for all $x, y \in \mathfrak{A}_0$ with xy = yx.

(T₄) The set $\mathcal{U}(\mathfrak{A}_0)_+ := \{x \in (\mathfrak{A}_0)_+ : ||x||_0 \le 1\}$ is τ -closed.

DEFINITION 1.4. By a locally convex quasi C^* -algebra over \mathfrak{A}_0 (see [3]), we mean any quasi *-subalgebra \mathfrak{A} of the locally convex quasi *-algebra $\mathfrak{X} = \widetilde{\mathfrak{A}_0}[\tau]$ over \mathfrak{A}_0 , where $\mathfrak{A}_0[\|\cdot\|_0]$ is a C*-algebra with identity e and τ a locally convex topology on \mathfrak{A}_0 , defined by a directed family $\{p_\lambda\}_{\lambda \in \Lambda}$ of seminorms satisfying conditions $(T_1)-(T_4)$.

The following examples have been discussed in [3].

EXAMPLE 1.5 (CQ*-algebras). Let \mathfrak{A}_0 be a C*-algebra with norm $\|\cdot\|$ and involution *. Let $\|\cdot\|_1$ be a norm on \mathfrak{A}_0 , weaker than $\|\cdot\|$ and such that, for every $a, b \in \mathfrak{A}$,

- (i) $||ab||_1 \le ||a||_1 ||b||,$
- (ii) $||a^*||_1 = ||a||_1$.

Let \mathfrak{X} denote the $\|\cdot\|_1$ -completion of \mathfrak{A}_0 ; then $(^1)$ the couple $(\mathfrak{X}, \mathfrak{A}_0)$ is called a CQ^* -algebra. Every CQ*-algebra is a locally convex quasi C*-algebra.

 $^(^{1})$ In previous papers this structure was called a *proper* CQ^{*}-algebra. Since this is the sole case we consider here, we will systematically omit the specification *proper*.

EXAMPLE 1.6. The space $L^p([0,1])$ with $1 \le p < \infty$ is a Banach $L^{\infty}([0,1])$ bimodule. The couple $(L^p([0,1]), L^{\infty}([0,1]))$ may be regarded as a CQ^{*}algebra, thus a locally convex quasi C^{*}-algebra over $L^{\infty}([0,1])$.

2. Locally convex quasi C*-algebras of measurable operators. Let \mathfrak{M} be a von Neumann algebra on a Hilbert space \mathcal{H} , and φ a normal faithful semifinite trace on \mathfrak{M}_+ . Then, as shown in [9], $(L^p(\varphi), L^{\infty}(\varphi) \cap L^p(\varphi))$ is a *Banach quasi**-algebra, and if φ is a finite trace, then $(L^p(\varphi), \mathfrak{M})$ is a CQ*-algebra.

In analogy to [9] we consider the following two sets of sesquilinear forms enjoying certain invariance properties.

DEFINITION 2.1. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a locally convex quasi C*-algebra with unit *e*. We denote by $\mathcal{S}(\mathfrak{X})$ the set of all sesquilinear forms Ω on $\mathfrak{X} \times \mathfrak{X}$ with the following properties:

- (i) $\Omega(x, x) \ge 0$ for all $x \in \mathfrak{X}$;
- (ii) $\Omega(xa, b) = \Omega(a, x^*b)$ for all $x \in \mathfrak{X}$ and $a, b \in \mathfrak{A}_0$;
- (iii) $|\Omega(x,y)| \leq p(x)p(y)$ for some τ -continuous seminorm p on \mathfrak{X} and all $x, y \in \mathfrak{X}$;
- (iv) $\Omega(e, e) \leq 1$.

The locally convex quasi C*-algebra $(\mathfrak{X}, \mathfrak{A}_0)$ is called *-semisimple if whenever $x \in \mathfrak{X}$ and $\Omega(x, x) = 0$ for every $\Omega \in \mathcal{S}(\mathfrak{X})$, then x = 0.

We denote by $\mathcal{T}(\mathfrak{X}) \subseteq \mathcal{S}(\mathfrak{X})$ the set of all sesquilinear forms $\Omega \in \mathcal{S}(\mathfrak{X})$ with the following property:

(v) $\Omega(x,x) = \Omega(x^*,x^*)$ for all $x \in \mathfrak{X}$.

Remark 2.2.

• By (v) of Definition 2.1 and by polarization, we get

$$\Omega(y^*, x^*) = \Omega(x, y) \quad \text{for all } x, y \in \mathfrak{X}$$

• The set $\mathcal{T}(\mathfrak{X})$ is convex.

EXAMPLE 2.3. Let \mathfrak{M} be a von Neumann algebra and φ a normal faithful semifinite trace on \mathfrak{M}_+ . Then, $(L^p(\varphi), \mathcal{J}_p), p \geq 2$, is a *-semisimple Banach quasi *-algebra. If φ is a finite trace (we assume $\varphi(\mathbb{I}) = 1$), then $(L^p(\varphi), \mathfrak{M})$, with $p \geq 2$, is a *-semisimple locally convex quasi C*-algebra. If $p \geq 2$ then L^p -spaces possess a sufficient family of positive sesquilinear forms. Indeed, in this case, since $|W|^{p-2} \in L^{p/(p-2)}(\varphi)$ for every $W \in L^p(\varphi)$, the sesquilinear form Ω_W defined by

$$\Omega_W(X,Y) := \frac{\varphi[X(Y|W|^{p-2})^*]}{\|W\|_{p,\varphi}^{p-2}}$$

is positive and satisfies conditions (i)–(iv) of Definition 2.1 (see [9], and [24] for more details). Moreover,

$$\Omega_W(W,W) = \|W\|_{p,\varphi}^p.$$

REMARK 2.4. The notion of *-semisimplicity of locally convex partial *-algebras has been studied in full generality in [2] and [14].

DEFINITION 2.5. Let \mathfrak{M} be a von Neumann algebra and φ a normal faithful semifinite trace defined on \mathfrak{M}_+ . We denote by $L^p_{\text{loc}}(\varphi)$ the set of all measurable operators T such that $TP \in L^p(\varphi)$ for every central φ -finite projection P of \mathfrak{M} .

REMARK 2.6. The von Neumann algebra \mathfrak{M} is a subset of $L^p_{loc}(\varphi)$. Indeed, if $X \in \mathfrak{M}$, then for every φ -finite central projection P of \mathfrak{M} the product XP belongs to the *-ideal \mathcal{J}_p .

Throughout this section we are given a von Neumann algebra \mathfrak{M} on a Hilbert space \mathcal{H} with a family $\{P_j\}_{j\in J}$ of φ -finite central projections of \mathfrak{M} such that

- if $l, m \in J$, $l \neq m$, then $P_l P_m = 0$ (i.e., the P_j 's are orthogonal);
- $\bigvee_{j \in J} P_j = \mathbb{I}$, where $\bigvee_{j \in J} P_j$ denotes the projection onto the subspace generated by $\{P_j \mathcal{H} : j \in J\}$.

These conditions always hold in a von Neumann algebra with a faithful normal semifinite trace (see Lemma 1.1 and [15, 20] for more details).

If φ is a normal faithful semifinite trace on \mathfrak{M}_+ , we define, for each $X \in \mathfrak{M}$, the seminorms $q_j(X) := ||XP_j||_{p,\varphi}, j \in J$. The translation-invariant locally convex topology defined by the system $\{q_j : j \in J\}$ is denoted by τ_p .

DEFINITION 2.7. Let \mathfrak{M} be a von Neumann algebra and φ a normal faithful semifinite trace defined on \mathfrak{M}_+ . We denote by $\widetilde{\mathfrak{M}}^{\tau_p}$ the τ_p -completion of \mathfrak{M} .

PROPOSITION 2.8. Let \mathfrak{M} be a von Neumann algebra and φ a normal faithful semifinite trace on \mathfrak{M}_+ . Then $L^p_{loc}(\varphi) \subseteq \widetilde{\mathfrak{M}}^{\tau_p}$. Moreover, if there exists a family $\{P_j\}_{j\in J}$ as above with all P_j 's mutually equivalent, then $L^p_{loc}(\varphi) = \widetilde{\mathfrak{M}}^{\tau_p}$.

Proof. From Remark 2.6, $\mathfrak{M} \subseteq L^p_{\text{loc}}(\varphi)$. If $Y \in L^p_{\text{loc}}(\varphi)$, for every $j \in J$ we have $YP_j \in L^p(\varphi)$. Hence, for every $j \in J$, there exist $(X_n^j)_{n=1}^{\infty} \subseteq \mathcal{J}_p$ such that $\|X_n^j - YP_j\|_{p,\varphi} \to 0$ as $n \to \infty$.

Let \mathbb{F}_J be the family of finite subsets of J ordered by inclusion, and let $F \in \mathbb{F}_J$. We set

$$T_{n,F} := \sum_{j \in F} X_n^j P_j \in \mathfrak{M}.$$

Then the net $(T_{n,F})$ converges to Y with respect to τ_p . Indeed, for every $m \in J$,

$$q_m(T_{n,F} - Y) = \|(T_{n,F} - Y)P_m\|_{p,\varphi} = \|(X_n^m - Y)P_m\|_{p,\varphi}$$

for sufficiently large F. Thus, $\|(X_n^m - Y)P_m\|_{p,\varphi} \le \|X_n^m - YP_m\|_{p,\varphi}$ implies that $q_m(T_{n,F} - Y) \xrightarrow[n,F]{} 0.$

Hence $L^p_{\text{loc}}(\varphi) \subseteq \widetilde{\mathfrak{M}}^{\tau_p}$.

Now, assume that all P_j 's are mutually equivalent. If $Y \in \widetilde{\mathfrak{M}}^{\tau_p}$, there exists a net $(X_{\alpha}) \subseteq \mathfrak{M}$ such that $X_{\alpha} \to Y$ with respect to τ_p ; hence

(2.1)
$$X_{\alpha}P_j \to YP_j \in L^p(\varphi) \quad \text{in } \|\cdot\|_{p,\varphi}.$$

But for each central φ -finite projection P we have

(2.2)
$$\varphi(P) = \varphi\left(P\sum_{j\in J} P_j\right) = \sum_{j\in J} \varphi(PP_j).$$

By our assumption, for any $l, m \in J$ we may pick $U \in \mathfrak{M}$ so that $U^*U = P_l$ and $UU^* = P_m$, hence

$$\varphi(PP_l) = \varphi(PU^*U) = \varphi(UPU^*) = \varphi(PUU^*) = \varphi(PP_m).$$

So, all terms on the right hand side of (2.2) are equal, and since the above series converges, only a finite number of them can be nonzero. Thus, for some $s \in \mathbb{N}$ we may write $J = \{1, \ldots, s\}$ and then

(2.3)
$$P = P \sum_{j \in J} P_j = P \sum_{j=1}^s P_j = \sum_{j=1}^s P P_j$$

and hence

(2.4)
$$YP = \sum_{j=1}^{s} YPP_j = \sum_{j=1}^{s} YP_j P \in L^p(\varphi).$$

Therefore, if $Y \in \widetilde{\mathfrak{M}}^{\tau_p}$, then for each central φ -finite projection P we have $YP \in L^p(\varphi)$. Hence $L^p_{\text{loc}}(\varphi) \supseteq \widetilde{\mathfrak{M}}^{\tau_p}$.

REMARK 2.9. In general, a von Neumann algebra need not have an orthogonal family $\{P_j\}_{j\in J}$ of mutually equivalent finite central projections such that $\bigvee_{j\in J} P_j = \mathbb{I}$, but if this is the case, then $L^p_{\text{loc}}(\varphi) = \widetilde{\mathfrak{M}}^{\tau_p}$.

THEOREM 2.10. Let \mathfrak{M} be a von Neumann algebra on a Hilbert space \mathcal{H} , and φ a normal faithful semifinite trace on \mathfrak{M}_+ . Then $(\widetilde{\mathfrak{M}}^{\tau_p}, \mathfrak{M})$ is a locally convex quasi C^* -algebra with respect to τ_p , consisting of measurable operators.

Proof. The topology τ_p has properties $(T_1)-(T_4)$. We will just prove $(T_3)-(T_4)$ here.

(T₃) For each
$$\lambda \in J$$
,
 $q_{\lambda}(XY) = \|P_{\lambda}XY\|_{p,\varphi} \le \|X\| \|P_{\lambda}Y\|_{p,\varphi} = \|X\|q_{\lambda}(Y), \quad \forall X, Y \in \mathfrak{M}$

 (T_4) The set $\mathcal{U}(\mathfrak{M})_+ := \{X \in (\mathfrak{M})_+ : ||X|| \leq 1\}$ is τ_p -closed. To see this, consider a net $\{F_\alpha\}$ in $\mathcal{U}(\mathfrak{M})_+$ with $F_\alpha \to F$ in the topology τ_p . Then for each $j \in J$, $||(F_\alpha - F)P_j||_{p,\varphi} \to 0$. By assumption on P_j , the trace φ is a normal faithful finite trace on the von Neumann algebra $P_j\mathfrak{M}_+$. Then (see [9]) $(L^p(\varphi), P_j\mathfrak{M})$ is a CQ*-algebra. Therefore, using (T_4) for $(L^p(\varphi), P_j\mathfrak{M})$, we have $FP_j \in \mathcal{U}(P_j\mathfrak{M})_+$ for each $j \in J$. This, by definition, implies that $F \in$ \mathfrak{M} . Indeed, for every

$$h = \sum_{j \in J} P_j h \in \mathcal{H} = \bigoplus_{j \in J} P_j \mathcal{H}$$

we have

$$\|Fh\|_{\mathcal{H}}^2 = \sum_{j \in J} \|FP_jh\|^2 = \sum_{j \in J} \|FP_jP_jh\|^2 \le \sum_{j \in J} \|P_jh\|^2 = \|h\|_{\mathcal{H}}^2.$$

Hence $F \in \mathcal{U}(\mathfrak{M})_+$.

REMARK 2.11. By Proposition 2.8, $(L^p_{loc}(\varphi), \mathfrak{M})$ itself is a *locally convex* quasi C^* -algebra with respect to τ_p .

3. Representation theorems. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a locally convex quasi C^{*}-algebra with a unit *e*. For each $\Omega \in \mathcal{T}(\mathfrak{X})$, we define a linear functional ω_{Ω} on \mathfrak{A}_0 by

$$\omega_{\Omega}(a) := \Omega(a, e), \quad a \in \mathfrak{A}_0.$$

We have

$$\omega_{\Omega}(a^*a) = \Omega(a^*a, e) = \Omega(a, a) = \Omega(a^*, a^*) = \omega_{\Omega}(aa^*) \ge 0$$

This shows at once that ω_{Ω} is positive and tracial.

By the Gelfand–Naimark theorem each C^{*}-algebra is isometrically ^{*}isomorphic to a C^{*}-algebra of bounded operators in Hilbert space. This isometric ^{*}-isomorphism is called the *universal* ^{*}-representation. We denote it by π .

For every $\Omega \in \mathcal{T}(\mathfrak{X})$ and $a \in \mathfrak{A}_0$, we set

$$\varphi_{\Omega}(\pi(a)) = \omega_{\Omega}(a)$$

Then, for each $\Omega \in \mathcal{T}(\mathfrak{X})$, φ_{Ω} is a positive bounded linear functional on the operator algebra $\pi(\mathfrak{A}_0)$.

Clearly,

$$\varphi_{\Omega}(\pi(a)) = \omega_{\Omega}(a) = \Omega(a, e).$$

Since $\{p_{\lambda}\}$ is directed, there exist $\gamma > 0$ and $\lambda \in \Lambda$ such that

$$|\varphi_{\Omega}(\pi(a))| = |\omega_{\Omega}(a)| = |\Omega(a, e)| \le \gamma^2 p_{\lambda}(ae) p_{\lambda}(e).$$

Then by (T_3) , for some $\lambda' \in \Lambda$,

 $|\varphi_{\Omega}(\pi(a))| \le \gamma^2 ||a||_0 p_{\lambda'}(e)^2.$

Thus φ_{Ω} is continuous on $\pi(\mathfrak{A}_0)$.

By [15, Vol. 2, Proposition 10.1.1], φ_{Ω} is weakly continuous and so it extends uniquely to $\pi(\mathfrak{A}_0)''$, by the Hahn–Banach theorem. Moreover, since φ_{Ω} is a trace on $\pi(\mathfrak{A}_0)$, the extension $\widetilde{\varphi_{\Omega}}$ is also a trace on the von Neumann algebra $\mathfrak{M} := \pi(\mathfrak{A}_0)''$ generated by $\pi(\mathfrak{A}_0)$.

Clearly, the set $\mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0) = \{\widetilde{\varphi}_{\Omega} : \Omega \in \mathcal{T}(\mathfrak{X})\}$ is convex.

DEFINITION 3.1. The locally convex quasi C*-algebra $(\mathfrak{X}, \mathfrak{A}_0)$ is said to be strongly *-semisimple if

(a) the equality $\Omega(x, x) = 0$ for every $\Omega \in \mathcal{T}(\mathfrak{X})$ implies x = 0;

(b) the set $\mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0)$ is w^* -closed.

REMARK 3.2. If $(\mathfrak{X}, \mathfrak{A}_0)$ is a CQ*-algebra, then by [9, Proposition 4.1], (b) is automatically satisfied.

EXAMPLE 3.3. Let \mathfrak{M} be a von Neumann algebra and φ a normal faithful semifinite trace on \mathfrak{M}_+ . Then, as seen in Example 2.3, if φ is a finite trace, then $(L^p(\varphi), \mathfrak{M})$, with $p \geq 2$, is a *-semisimple locally convex quasi C*algebra. Conditions (a) and (b) of Definition 3.1 are satisfied. Indeed, in this case, the set $\mathfrak{N}_{\mathcal{T}}(\mathfrak{M})$ is w^* -closed by [9, Proposition 4.1]. Therefore $(L^p(\varphi), \mathfrak{M})$, with φ finite, is a strongly *-semisimple locally convex quasi C*-algebra.

Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a locally convex quasi C*-algebra with unit e, π the universal representation of \mathfrak{A}_0 , and $\mathfrak{M} = \pi(\mathfrak{A}_0)''$. Denote by $||f||^{\sharp}$ the norm of a bounded functional f on \mathfrak{M} , and by \mathfrak{M}^{\sharp} the topological dual of \mathfrak{M} . Then the norm $\|\widetilde{\varphi_{\Omega}}\|^{\sharp}$ of $\widetilde{\varphi_{\Omega}}$ as a linear functional on \mathfrak{M} equals the norm of φ_{Ω} as a functional on $\pi(\mathfrak{A}_0)$.

By (iv) of Definition 2.1, $\|\widetilde{\varphi_{\Omega}}\|^{\sharp} = \widetilde{\varphi}_{\Omega}(\pi(e)) = \Omega(e, e) \leq 1.$

Hence, if (b) of Definition 3.1 is satisfied, then the set $\mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0)$, being a w^* -closed subset of the unit ball of \mathfrak{M}^{\sharp} , is w^* -compact.

Let $\mathfrak{EN}_{\mathcal{T}}(\mathfrak{A}_0)$ be the set of extreme points of $\mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0)$; then $\mathfrak{N}_{\mathcal{T}}(\mathfrak{A}_0)$ coincides with the w^* -closure of the convex hull of $\mathfrak{EN}_{\mathcal{T}}(\mathfrak{A}_0)$.

Thus $\mathfrak{EN}_{\mathcal{T}}(\mathfrak{A}_0)$ is a family of normal finite traces on the von Neumann algebra \mathfrak{M} .

We define $\mathcal{F} := \{ \Omega \in \mathcal{T}(\mathfrak{X}) : \widetilde{\varphi_{\Omega}} \in \mathfrak{EN}_{\mathcal{T}}(\mathfrak{A}_0) \}$ and denote by P_{Ω} the support projection corresponding to the trace $\widetilde{\varphi_{\Omega}}$. By [9, Lemma 3.5], $\{P_{\Omega}\}_{\Omega \in \mathcal{F}}$ consists of mutually orthogonal projections and if $Q := \bigvee_{\Omega \in \mathcal{F}} P_{\Omega}$ then

$$\mu = \sum_{\widetilde{\varphi_{\Omega}} \in \mathfrak{EN}_{\mathcal{T}}(\mathfrak{A}_0)} \widetilde{\varphi_{\Omega}}$$

is a normal faithful semifinite trace defined on the direct sum (see [20] and [26]) of von Neumann algebras

$$Q\mathfrak{M} = \bigoplus_{\Omega \in \mathcal{F}} P_{\Omega}\mathfrak{M}$$

THEOREM 3.4. Let $(\mathfrak{X}, \mathfrak{A}_0)$ be a strongly *-semisimple locally convex quasi C*-algebra with unit e. Then there exists a monomorphism

$$\Phi: \mathfrak{X} \ni x \mapsto \Phi(x) := \widetilde{X} \in \widetilde{Q\mathfrak{M}}^{T}$$

with the following properties:

- (i) Φ extends the isometry $\pi : \mathfrak{A}_0 \hookrightarrow \mathcal{B}(\mathcal{H})$ given by the Gelfand-Naimark theorem;
- (ii) $\Phi(x^*) = \Phi(x)^*$ for every $x \in \mathfrak{X}$;
- (iii) $\Phi(xy) = \Phi(x)\Phi(y)$ for all $x, y \in \mathfrak{X}$ such that $x \in \mathfrak{A}_0$ or $y \in \mathfrak{A}_0$.

Proof. Let $\{p_{\lambda}\}_{\lambda \in \Lambda}$ be, as before, the family of seminorms defining the topology τ of \mathfrak{X} . For fixed $x \in \mathfrak{X}$, there exists a net $\{a_{\alpha} : \alpha \in \Delta\}$ of elements of \mathfrak{A}_0 such that $p_{\lambda}(a_{\alpha} - x) \to 0$ for each $\lambda \in \Lambda$. We write $X_{\alpha} = \pi(a_{\alpha})$.

By (iii) of Definition 2.1, for every $\Omega \in \mathcal{T}(\mathfrak{X})$, there exist $\gamma > 0$ and $\lambda' \in \Lambda$ such that for each $\alpha, \beta \in \Delta$,

$$\begin{split} \|P_{\Omega}(X_{\alpha} - X_{\beta})\|_{2,\widetilde{\varphi_{\Omega}}} &= \|P_{\Omega}(\pi(a_{\alpha}) - \pi(a_{\beta}))\|_{2,\widetilde{\varphi_{\Omega}}} \\ &= [\widetilde{\varphi_{\Omega}}(|P_{\Omega}(\pi(a_{\alpha}) - \pi(a_{\beta}))|^2)]^{1/2} \\ &= [\Omega\left((a_{\alpha} - a_{\beta})^*(a_{\alpha} - a_{\beta}), e\right)]^{1/2} \\ &= [\Omega(a_{\alpha} - a_{\beta}, a_{\alpha} - a_{\beta})]^{1/2} \leq \gamma p_{\lambda'}(a_{\alpha} - a_{\beta}) \xrightarrow[\alpha,\beta]{\alpha,\beta} 0. \end{split}$$

Let $\widetilde{X_{\Omega}}$ be the $\|\cdot\|_{2,\widetilde{\varphi_{\Omega}}}$ -limit of the net $(P_{\Omega}X_{\alpha})$ in $L^{2}(\widetilde{\varphi_{\Omega}})$. Clearly $\widetilde{X_{\Omega}} = P_{\Omega}\widetilde{X_{\Omega}}$. We define

$$\Phi(x) := \sum_{\Omega \in \mathcal{F}} P_{\Omega} \widetilde{X_{\Omega}} =: \widetilde{X}.$$

Clearly $\widetilde{X} \in \widetilde{Q\mathfrak{M}}^{\tau_2}$.

It is easy to see that the map $\mathfrak{X} \ni x \mapsto \widetilde{X} \in \widetilde{Q\mathfrak{M}}^{\tau_2}$ is well defined and injective. Indeed, if $a_{\alpha} \to 0$, there exist $\gamma > 0$ and $\lambda' \in \Lambda$ such that

$$\begin{aligned} \|P_{\Omega}X_{\alpha}\|_{2,\widetilde{\varphi}_{\Omega}} &= \|P_{\Omega}\pi(a_{\alpha})\|_{2,\widetilde{\varphi}_{\Omega}} = [\widetilde{\varphi}_{\Omega}(|P_{\Omega}(\pi(a_{\alpha})|^{2})]^{1/2} \\ &= [\Omega(a_{\alpha}^{*}a_{\alpha},e)]^{1/2} = [\Omega(a_{\alpha},a_{\alpha})]^{1/2} \leq \gamma p_{\lambda'}(a_{\alpha}) \to 0. \end{aligned}$$

Thus $P_{\Omega}(X_{\alpha}) = 0$ for every $\Omega \in \mathcal{T}(\mathfrak{X})$, and so $\widetilde{X} = 0$. Moreover if $P_{\Omega}\widetilde{X} = 0$ for each $\Omega \in \mathcal{F}$, then $\Omega(x, x) = 0$ for every $\Omega \in \mathcal{F}$. Since every $\Omega \in \mathcal{T}(\mathfrak{X})$ is a w^* -limit of convex combinations of elements of \mathcal{F} , we get $\Omega(x, x) = 0$ for every $\Omega \in \mathcal{T}(\mathfrak{X})$. Therefore, by assumption, x = 0.

REMARK 3.5. In the same way we can prove that:

• If $(\mathfrak{X},\mathfrak{A}_0)$ is a strongly *-semisimple locally convex quasi C*-algebra and there exists a faithful $\Omega \in \mathcal{T}(\mathfrak{X})$ (i.e., $\Omega(x, x) = 0$ implies x = 0) then there exists a monomorphism

$$\Phi: \mathfrak{X} \ni x \to \Phi(x) := \widetilde{X} \in L^2(\widetilde{\varphi_{\Omega}})$$

with the following properties:

- (i) Φ extends the isometry $\pi : \mathfrak{A}_0 \hookrightarrow \mathcal{B}(\mathcal{H})$ given by the Gelfand–Naimark theorem;
- (ii) $\Phi(x^*) = \Phi(x)^*$ for every $x \in \mathfrak{X}$,
- (iii) $\Phi(xy) = \Phi(x)\Phi(y)$ for all $x, y \in \mathfrak{X}$ such that $x \in \mathfrak{A}_0$ or $y \in \mathfrak{A}_0$.
- If the semifinite von Neumann algebra $\pi(\mathfrak{A}_0)''$ admits an orthogonal family $\{P'_i : i \in I\}$ of mutually equivalent projections such that $\sum_{i \in I} P'_i = \mathbb{I}$, then it is easy to see that the map $\mathfrak{X} \ni x \mapsto \widetilde{X} \in L^2_{\text{loc}}(\tau)$ is a monomorphism.

Acknowledgements. The authors wish to express their gratitude to the referee for pointing out several inaccuracies in a previous version of the paper and for his/her fruitful comments.

References

- J.-P. Antoine, A. Inoue and C. Trapani, Partial *-algebras and their Operator Realizations, Kluwer, Dordrecht, 2002.
- [2] J.-P. Antoine, G. Bellomonte and C. Trapani, Fully representable and *-semisimple topological partial *-algebras, Studia Math. 208 (2012), 167–194.
- [3] F. Bagarello, M. Fragoulopoulou, A. Inoue and C. Trapani, *Locally convex quasi C^{*}-normed algebras*, J. Math. Anal. Appl. 366 (2010), 593–606.
- F. Bagarello, A. Inoue and C. Trapani, Some classes of topological quasi *-algebras, Proc. Amer. Math. Soc. 129 (2001), 2973–2980.
- [5] F. Bagarello and C. Trapani, States and representations of CQ*-algebras, Ann. Inst. H. Poincaré 61 (1994), 103–133.
- [6] F. Bagarello and C. Trapani, L^p-spaces as quasi *-algebras, J. Math. Anal. Appl. 197 (1996), 810–824.
- [7] F. Bagarello and C. Trapani, CQ*-algebras: structure properties, Publ. RIMS Kyoto Univ. 32 (1996), 85–116.
- [8] F. Bagarello and C. Trapani, Morphisms of certain Banach C^{*}-modules, Publ. RIMS Kyoto Univ. 36 (2000), 681–705.
- F. Bagarello, C. Trapani and S. Triolo, Quasi *-algebras of measurable operators, Studia Math. 172 (2006), 289–305.
- [10] F. Bagarello, C. Trapani and S. Triolo, A note on faithful traces on a von Neumann algebra, Rend. Circ. Mat. Palermo 55 (2006), 21–28.
- F. Bagarello, C. Trapani and S. Triolo, Representable states on quasi-local quasi *-algebras, J. Math. Phys. 52 (2011), 013510, 11 pp.

- [12] B. Bongiorno, C. Trapani and S. Triolo, Extensions of positive linear functionals on a topological *-algebra, Rocky Mount. J. Math. 40 (2010), 1745–1777.
- [13] M. Fragoulopoulou, A. Inoue and K.-D. Kürsten, On the completion of a C*-normed algebra under a locally convex algebra topology, in: Contemp. Math. 427, Amer. Math. Soc., 2007, 155–166.
- [14] M. Fragoulopoulou, C. Trapani and S. Triolo, Locally convex quasi *-algebras with sufficiently many *-representations, J. Math. Anal. Appl. 388 (2012), 1180–1193.
- [15] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vols. 1–4, Academic Press, Orlando, 1986.
- C. La Russa and S. Triolo, Radon-Nikodym theorem in topological quasi *-algebras, J. Operator Theory 69 (2013), 423–433.
- [17] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103– 116.
- [18] K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, Akademie-Verlag, Berlin, 1990.
- [19] I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. 57 (1953), 401–457.
- [20] M. Takesaki, Theory of Operator Algebras. I, Springer, New York, 1979.
- [21] C. Trapani, CQ*-algebras of operators and application to quantum models, in: Proceedings of the Second ISAAC Conference, Fukuoka, Volume 1, Kluwer, 2000, 679– 685.
- [22] C. Trapani and S. Triolo, Representations of modules over a *-algebra and related seminorms, Studia Math. 184 (2008), 133–148.
- [23] C. Trapani and S. Triolo, Faithful representations of left C^{*}-modules, Rend. Circ. Mat. Palermo 59 (2010), 295–302.
- [24] S. Triolo, WQ*-algebras of measurable operators, Indian J. Pure Appl. Math. 43 (2012), 601–617.
- [25] S. Triolo, Moduli di Banach su C*-algebre: rappresentazioni Hilbertiane ed in spazi L_p non commutativi, Boll. Un. Mat. Ital. A 9 (2006), 303–306.
- [26] S. Triolo, Possible extensions of the noncommutative integral, Rend. Circ. Mat. Palermo (2) 60 (2011), 409–416.
- [27] S. Triolo, *Extensions of the noncommutative integration*, Complex Anal. Oper. Theory, submitted.

Salvatore Triolo
Dipartimento DEIM
Università di Palermo
I-90123 Palermo, Italy
E-mail: salvatore.triolo@unipa.it

Received April 18, 2014 Revised version September 1, 2015 (7947)