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Endpoint bounds of square functions associated
with Hankel multipliers

by

JonGcHON KiMm (Madison, WI)

Abstract. We prove endpoint bounds for the square function associated with ra-
dial Fourier multipliers acting on L? radial functions. This is a consequence of endpoint
bounds for a corresponding square function for Hankel multipliers. We obtain a sharp
Marcinkiewicz-type multiplier theorem for multivariate Hankel multipliers and L? bounds
of maximal operators generated by Hankel multipliers as corollaries. The proof is built on
techniques developed by Garrigés and Seeger for characterizations of Hankel multipliers.

1. Introduction. Let S be the Bochner-Riesz mean of order A\ > 0
defined by
€7\
FISA (€)= < - t2> FI©)
+
for t > 0, where F denotes the Fourier transform F f(£) = {pu f(z)e™* da.
One is interested in the convergence S{ f — f as t — oo in various senses. In
this regard, LP estimates of S* := S7' and the maximal operator S f(z) =
sup,~ |57 f ()| have been studied extensively. For A below the critical index
(d —1)/2, it is conjectured that S* is bounded on LP if and only if

2 _ 2
d+i+ox PSSy 12o

and that S? is bounded for the same p-range for p > 2.

Although the conjectures remain open in the full p-range for d > 3, they
are indeed theorems for d = 2 by Carleson and Sjolin [6] and Carbery [2],
respectively. In addition, the work by Carbery, Gasper, and Trebels [5] and
Carbery [3] shows that the results for d = 2 are consequences of more gen-
eral multiplier theorems which apply to all radial Fourier multipliers. This
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involves the square function G¢,

0 dt\ '/
Gf(x) =\ IR f())?— )
(V1 s )
where )
o €| 1€\
FIROf(E) = 2 (1-5)  Fre.
meae =5 (1-5)  Fe

The square function (with S¢*f — S~ f in place of Ry f) was introduced by
Stein [23] in order to prove the L? boundedness of S for A > 0.

Let m be a bounded function on R := (0,00) and 7, be the operator
defined by

FlTmf1(§) = m(|EN)F £ (£)-

Then for a > 1/2 and a fixed non-trivial smooth function ¢ supported on
[1,2], there is a pointwise estimate

(1.1) 9[Tm fl(x) < Cigg [m(t-)dll Lz @) G f(2),

where g is the standard Littlewood—Paley square function and L2(R) is the
L?-Sobolev space (see [3]). Since [|g( T f) || 1o (re) is comparable to || T f || 1» (ra)
for 1 < p < o0, reduces LP estimates of T, to the study of G%, which
is independent of a specific multiplier m. Moreover, it was shown in [3] that
G“ controls the maximal operator generated by 7T, by a pointwise estimate,
which gives effective LP bounds for the maximal functions S when p > 2. We
refer the reader to [19] for an excellent overview of various square functions.

For 1 < p < 2, it is known that G% is bounded on LP if and only if
a>d(l/p—1/2)+1/2 (see [25]). On the other hand, in order for G* to be
bounded on LP(RY) for p > 2, the condition

(L1 1
amax2p,2

is necessary, and is conjectured to be sufficient. The conjecture for d = 2
was verified by Carbery [2] 4], yielding the L* bound for S as a corollary.
For higher dimensions, the conjecture has been verified for p > 2(d + 2)/d
in [18] (see also [7, 22]). Furthermore, LP* — LP endpoint estimates for the
critical index o = d(1/2 — 1/p) and a smaller p-range, p > 2(d+1)/(d — 1),
were obtained in [19], where LP? denotes the Lorentz space.

We show that, on the subspace of radial functions, the endpoint estimate
is valid for the conjectured p-range.

THEOREM 1.1. Let

2d 1 1 1
> _— = _— - -
d>2, d_1<p<oo and « d<2 p>>2
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Then
1G* fllzp, ety < CllFlLr2 ay-

This implies a radial version of the conjecture for G* by real interpolation.
As a consequence, one may obtain a new proof of the sharp estimate for
radial Fourier multipliers acting on radial functions in terms of Sobolev
spaces (see [I4]). A much stronger result is known. Garrigés and Seeger [12]
obtained a necessary and sufficient condition for L ,(R%) boundedness of Ty,
for 1 < p < 2d/(d+1). We note that our proof of Theorem|L.1]is based on [12].

Let My f = sups~q|Tm(.)f|, where we additionally assume that m is
compactly supported in (0,00). For the range 1 < p < 2d/(d + 1), a nec-
essary and sufficient condition for L? ,(R?) boundedness of M, is known
(see [13]). By Theorem we may obtain a sharp sufficient condition for
Lfad boundedness of M, in terms of Sobolev spaces for 2 < p < oo (see
Corollary .

Our primary motivation for Theorem comes from a more general
situation when multipliers and functions are assumed to be multi-radial. Let
neNandd= (di,...,dn) € N". We say that f is d-radial if there is a
function fp on (0,00)" such that f(z1,...,2,) = fo(|lz1l,...,|xn|), where
xj € R% . In this case, we say that f is the d-radial extension of fo-

In this paper, we are interested in the Fourier multiplier transformation
given by a d-radial multiplier m acting on d-radial functions. A typical m
would be a tensor product of radial multipliers. In that case, one may easily
obtain LP bounds by iteration. Unfortunately, this argument fails for gen-
eral m. Nevertheless, it is easy to iterate Theorem [I.I]to obtain estimates for
product square functions. As a consequence, we obtain sharp Marcinkiewicz
type multiplier theorems for the d-radial case. This will be carried out in the
multivariate Hankel multiplier setting, which improves a result of Wrébel
[26] (see Theorem [3.1)).

Here we state a special case of Theorem Let us denote by RY and
(R%) the product space R x --- x R and the subspace of d-radial

functions in LP (RJ), respectively. Let ¢ be a tensor product of n non-trivial
smooth functions supported on the interval [1,2]. It would be convenient to

LP

rad

define the subspace Lloc s(R™) of L2 (R") equipped with the norm
n
Il ey = s o IO TT0 + 1) de
loc,& FE(0,00)”‘ Rn =1
where (£-) denotes the n-parameter dilation (¢ -,...,t,-).

THEOREM 1.2. Let 1 < p < oo and d = (di,...,dy) with d; > 2 for
all j. Assume that m is the d-radial extension of a bounded function mqg in
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L120c Q(Rn) for some & = (a1, e ozn) such that
1 1 1 .
aj>max<2,djp—2‘> for1 <j<n.
Then
1F~ imF Al oy < Climollzz, 1Fll s ey

The paper is organized as follows. In Section|2|7 we formulate Theorem [I.]
in a slightly more general context in terms of a square function associated
with Hankel multipliers. In Section [3] we extend the results in Section
to multivariate Hankel multipliers. We include an application to Bochner—
Riesz type multipliers. In Section [4 product square functions are discussed.
Pointwise estimates for multivariate Hankel multiplier transformations in
terms of the product square functions are obtained, which leads to multiplier
theorems. The rest of the paper is devoted to the proof of Theorem which
is slightly more general than Theorem In Appendix, we give a proof of
LP bounds of a Littlewood—Paley square function considered in this paper.

In what follows, we frequently write A < B if A < CB for some universal
implicit constant C' which may depend on parameters including n, p, CZ
and @. Throughout the paper, we assume that o > 1/2 unless otherwise
stated.

2. Hankel multipliers: Single variable case. Consider a radial func-
tion F on R such that F(x) = f(|z|) for a function f on Ry := (0,00). It
is well-known that the Fourier transform of F' can be expressed by an inte-
gral transform of f which involves the Bessel function. Indeed, Fpa[F](&) =
(2m)9H4f(|€]). Here, Hq is the modified Hankel transform defined by

o

Haf(s) = \ Ba(sr) f(r) dpa(r),

0

where By(z) = x_(d_Q)/QJ(d_Q)/Q (x), Jo denotes the standard Bessel function
of order a, and j14 is the measure on R given by dpug(r) = r¢=1 dr (see [24]).
In what follows, we let d be a real number greater than 1.

The operator H4 enjoys many properties analogous to those of the Fourier
transform including the inversion formula and Plancherel’s theorem. Let
S(R4) be the space of (restrictions to Ry of) even Schwartz functions on R.
Then Hy is an isomorphism on S(Ry) and an isometry of L%(ug) with
H' =M

We are now ready to define a variant of the square function G relevant to
Hankel multipliers. We shall work with H-valued functions f on R, , where
H is a separable Hilbert space, for an iteration argument to be used later in
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Section We define the square function G* by
! T fe% dt 12
g5 = (VIme i )
0
where .
HalRE )(0) = fj(l - ’;) Haf(p) fora>1/2
+
For 1 <p<2, G* is bounded on LP(u4) if and only if a>d(1/p—1/2)
+ 1/2. The proof is essentially contained in the proof of LP(R?) bounds
of G*. For 2 < p < o0, one may verify that G is bounded on LP(pg) only if
a > «a(d,p), where
1.1
p 2[)

This can be done, for instance, by examining its consequences (see e.g.

Corollary . We show that the condition is also sufficient.

1

~.d
2

al(d,p) == max(

THEOREM 2.1. Letd > 1 and 2 < p < oo. Then
1G Lo ua) < CNflr(ua,rry  if and only if o> a(d, p).

This result is obtained by real interpolation between the L?(jq) bound
for « > 1/2 and the following endpoint bounds.

THEOREM 2.2. Let
2d 1 1 1
1, — =d(--=)>=.
d>1, d_1<p<oo and « d<2 p>>2
Then
1G® FllLr(ua) < Cllflr2(ug,m)-

Theorem is an immediate consequence of Theorem Indeed, ob-
serve that G*F(z) = G*f(|z|) if F(z) = f(|x|) and that we may identify
LP4(RT) with LP9(pg). In fact, all results to be discussed in this paper on
Hankel multipliers m(p) with LP%(u4) norm can be similarly translated into
statements on radial Fourier multipliers m(| - |) with L% norm.

REMARK. The Lorentz space L2 in Theorem cannot be replaced by
LP4 for ¢ > 2 (see [19]). We do not know if G is actually bounded from
LP2(pg, H) to LP4(ug) for some ¢ < p, in particular for ¢ = 2.

Next, we shall state multiplier theorems which follow from the square
function estimates. Let m be a bounded function on R4 and 7, be the
operator defined by

Ha[Tm f1(p) = m(p)Haf (p)-
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Let & € S(R4) be such that ¢(0) = 0, and ¢; be a Hankel multiplier
transformation defined by Hq[@:f](p) = @(p/t)Haf(p). We define a Little-
wood—Paley function gg by

¥ ar\ /?
wf) = (Ve i)
0
Then |9 (f)l r(u,) is comparable to || f[| 1r(,,) for 1 < p < oo (see Appendix).
We shall use a specific @ given by ®(p) = po(p), where ¢ is a non-trivial

smooth function supported on the interval [1,2]. Then for a > 1/2, there is
a pointwise estimate similar to (|1.1)),

2.1) 9slTf)(r) < Csup m(t-)o13w 9" F(7)

(see Section . Thus, we obtain the following sharp multiplier theorem in
terms of localized L? Sobolev spaces.

COROLLARY 2.3. Letd > 1,1 < p < o0, and ¢ be a non-trivial smooth
function supported on [1,2]. Suppose that supyq ||m(t-)dllr2@) < oo for
some o > a(d,p). Then the operator Ty, is bounded on LP(ug).

As was discussed in Introduction, Corollaryis not new. See also [15], 8]
for multiplier theorems on L' and Hardy spaces.

Next, we turn to the maximal operators My, f := supss [Ty . f] for a
multiplier m supported in [1/2,2]. From the square function estimate, we
have LP bounds for the maximal operators M, for the range p > 2.

COROLLARY 2.4. Letd > 1 and 2 < p < co. Suppose that m is supported
in [1/2,2] and m € L2(R) for a > a(d,p). Then

M fllLe(ug) < Cllmllz @)l f 1L (ug)-

This is a consequence of the pointwise estimate
(2.2) My f(r) < Clim| 12 @G f(r)
(see Section for a > 1/2.

Corollary[2.4)is sharp in the sense that the required number of derivatives,
a(d,p) cannot be decreased. This can be seen by considering the truncated
Bochner-Riesz multiplier m(p) = (1—p?)} x(p) where y is a smooth function
supported near p = 1, discarding a harmless part near the origin. Corollary
also implies L? | bounds of S for 2 < p < 2d/(d — 1 — 2)), which was
previously obtained by Kanjin [16] @

(*) In fact, the optimal p-range

2d 2d . :
Trifax <P < g—iZ5x Wwas obtained in |16].
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While it is sharp, the L2-Sobolev condition is too restrictive to yield
endpoint bounds. However, we recently proved that

[ M| 109 (ug)— L2 (ug) = [ Hamll oot 0y

for 2d/(d —1) < p < oo and 1 < ¢ < p (see [17]), which covers endpoint
bounds. See [I9] for L' (R%) — LP(R?) bounds of S7 for a smaller p-range.

3. Hankel multipliers: Multivariate case. The goal of this section is
to extend the results of the previous section to the multivariate setting. Fix
neNandd= (di,...,d,) € R™ such that d; > 1. The Hankel transform
H 7 acting on functions on (R )" is defined by H f(s) := Ha, - - Ha, f(5),
where H4, acts only on the kth variable.

For d € N*, H 7 generalizes the Fourier transform of d-radial functions.
Suppose that m is the d-radial extension of a bounded function m on (Ry)™.
Then the study of 75 acting on d-radial functions can be reduced to the
study of T}, defined by H T}, f] = mH zf.

The operators T, have been studied only recently (see e.g. [1, 26] 9]).
In particular, Wrébel [26] proved a Marcinkiewicz type multiplier theorem,
where a smoothness condition was given in terms of a variant of L? Sobolev
space. We introduce some notation in order to simplify the presentation.

Notation. Let p;be the measure on (Ry)"™ given by
n
dpg(s) = [ dpa, (si)-
k=1

For £, 5 € R™, we define the vectors £5 and £/5 to be given by component-wise
product and division, respectively. We write & > if t;, > s; forall1 < k < n.
If s € R, we write £ > s if t;, > s for all k. For 1 < p < oo, let @(d, p) € (R4.)"
be the vector whose kth component is

1 1

p 2 D

1
—.d
max<2, k
For a given @ € (R;)™, we shall denote by Lé(R”) the Sobolev space
equipped with the norm

n

11z @ny = llwaFre[flllL2@n),  where wg(€) = T+ 1geh.
k=1

Let {¢k}1<k<n be a collection of non-trivial smooth functions supported
on [1,2], and let ¢(r) = [[r_; & (rk). It was shown in [26] that T}, is bounded
on LP(uy) for 1 < p < oo if

(3.1) sup [|m () 12 mn) < 00
t>0
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for some @ > @(d, 1). Here we have used the notation (£-) = (t1-,... ¢, ")
for the n-parameter dilation.

By using a product version of Theorem (see Theorem , we may
improve the above result as follows.

THEOREM 3.1. Letd > 1 and 1 < p < 00. Suppose that holds for
some a > o?(d_; p). Then the operator Ty, is bounded on LP(p ).

This is sharp in the sense that &’(J: p) cannot be decreased. One may
verify this from the sharpness of Corollary [2.3] by considering product type
multipliers. Theorem [3.1] implies the following.

COROLLARY 3.2. Letl <p<oo,d €Z", and d > d’(ci p). Suppose that
2tn 2t

3.3 d d
>0 tn t1 1 n
for all B € Z™ with 0 < B < &. Then T, is bounded on LP(pyz). In particular,
B3-2) holds if |DPm(p)| < Cp~? for all0 < § < a.
We may also extend Corollary to the n-parameter maximal operator
My f := supg |Tm(€-)f|'
THEOREM 3.3. Let d > 1 and 2 <p< oo.ﬂSuppose that m 1is supported
in [1/2,2]" and m € L%(R™) for some @ > d@(d, p). Then
M Ly < Cllnl gz oy 1 120y
See Section [4] for the proof of Theorems and [3:3]
3.1. Application to Bochner—Riesz type multipliers. Let m*(p) =
(1 —|p|?)%, where [p|? = p} + -+ + p2, and T* be the operator defined by

H d—[T)‘ fl = m'H gf+ Let us temporarily assume that d € N". Then the
study of the usual Bochner-Riesz means for the Fourier transform acting on
d-radial functions reduces to the study of T*, since

S)‘F(xl,...ja:n) = T)‘f(|x1],...7|xn|)

if F is the d-radial extension of f. Note that T* cannot be bounded on
LP(pg) unless |1/p —1/2] < (1/||d[])(X + 1/2), where ||d|| = >2}_; di. As a
corollary of Theorem we have the following.

COROLLARY 3.4. Letd > 1 and

A > max M—l
1<k<n 2d;, 2’

Then T is bounded on LP(uy) if

(3.3) ';—;'ﬂ@”(H;).
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Unfortunately, Corollary [3.4] does not seem to give any improvement over
the known results for the boundedness of the Bochner—Riesz means even
under the additional assumption on the function side. However, we expect
that one may improve the range of A by taking advantage of m” being radial.
We hope to return to this issue in future work.

To prove Corollary we need the following.

LEMMA 3.5. Let ¢ be a tensor product of n smooth functions supported
n[1,2]. If 0 < B < A+1/2, then
sup ‘|mA({‘)¢"L%(R”) < 0.
>0
Let us show how Corollary follows from Lemma . Assume (j3.3)).
Then there is €(p) > 0 such that if we define

- {t) o

for 1 <k < n, then @ > a(d, p) and ||&@| := ¥}, a; < A+1/2. By Theorem

together with Lemma and the trivial embedding Lﬁ&H — L%, we have
orollary [3.4]

Proof of Lemma[3.5. Although the proof seems to be standard, we in-
clude it for completeness. We apply the standard dyadic decomposition
for the Bochner—Riesz multipliers. Take a smooth function x supported on
1/2 < x < 2 such that > )% x(2'z) = 1if 0 < x < 1. Then one may write

m*(p) = Y120 27 m)(p), where

mi(p) = 22(1 — [pI*)*x(2'(1 — |p])).

893

Then we have
o
¢ —I\ Ar
sup ()02 ey < 027 sup [ ()] 13-
t>0 1=0 t>0

Since m(£-)¢ = 0 if |f] > 1, we may assume that the supremum is taken
over |t] < 1. For [ < 2, it is easy to show that

A —
sup [[m; (t')(z)”L%(R”) < o0

>0
for any g > 0.
For [ > 2, we need to show that
(3.4) sup [ m (F)6 ]2 eny < €212,

t>0

Here, we may further assume that 1/4 < |t| < 1 since ml)‘ is compactly
supported away from the origin. Moreover, by interpolation, it is enough to

show (3.4]) for integer 5 > 0.
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For ||| < B8 and |t] < 1, we have
|DT[m ()]l (p) S 2P %2 (1= [T p*)d(p)
by the Leibniz rule, where x and 6 are finite sums of absolute values of

derivatives of x and ¢, respectively.
Thus, (3.4) follows from

(3.5) sup | [RQ2' (1= |- p*)d(p)[*dp S 27",
1/4<[f|<1
The integral on the left hand side of (3.5]) is bounded by
2tn 2t1
o dpl dpn
oo | R o
. 4 tl tn

Thus, we are led to consider the volume of the intersection between the box
H;L:ﬂtja 2t,] and an annulus of radius and width comparable to 1 and 27,
respectively. Assume, without loss of generality, that ¢y > --- > ¢,. Then
t1 > ¢, for some ¢, > 0 since [t] > 1/4.

We claim that
2t

- d -
| 1@ loP)P o S
t1

provided that ¢; > ¢,, which would imply (3.5). When evaluating the inte-
gral, we may assume that |p/|> < 1—c2 < 1 since p; > ¢,,, where p = (p1,0).
The claim follows from the fact that the p; support of x(2!(1—|p|?)) for each

fixed p/ with |p/|> < 1 — ¢2, is contained in an interval of size O(27!). This

proves the claim, and thus (3.5)). =

4. Product variants

4.1. Product square functions. Let ¥ (p,) = prow(pi) for ¢ as in
Section

n 1 a e 79 o'
Opf =0 @V f and RIf =R ..-RMS,

where @ﬁf)and Rf; ¥ act only on the kth variable. For H-valued functions f,
we define GY by

. . g 1/2
(4.1 6r) = § ImEORS)
(R4 )™

where df/t is the measure [[}_, dtx/t; on (Ry)™; and gg is defined similarly
to (4.1)), with @ in place of RZ.
We first note that for 1 < p < oo, there is a constant C' > 0 such that

C_IHf”LP(u(;,H) <Ngaflleuy < ClfN e (ug,m)-



Square functions associated with Hankel multipliers 133

The second inequality follows from the case n = 1 (see Appendix) by an
iteration argument (see [I1), Section 2]). The first inequality follows from the
second by the polarization identity and ||gs f||12( (ny) = CHfHLz (7 )

There are product versions of the pointwise estimates (2.1)) and (2.2)). For
a > 1/2, we have

(4.2) 9T 1)) < Comp ImE)0l 3 5 G5 (0),
t>
(4.3) M f(r) < Cllml| 3 )G F (1),

where we additionally assume that m is supported in [1/2,2]" in . We
defer the proof of the estimates to the following section.

Given the pointwise estimates, Theorems and are consequences
of the following theorem.

THEOREM 4.1. Letd > 1 and 2 < p < o0o. Then
19% Fl ey < Clfllinupmry if and only if & > a(dp).

Proof. For the necessity, it is enough to consider a function f(r)

[icen fo(re) such that fy € LP(tg,, H). Then GO f(r) = [T7_, G°* fu(rs),
thus the necessity follows from Theorem [2.1]

An iteration argument in [11] gives the sufficiency, but we shall include
the argument for the convenience of the reader. We use induction on n,
with the case n = 1 given by Theorem [2.I] Suppose that the assertion is
true for the dimension n — 1. Let @ = (@', ;) € R"! x R be such that

& > a(d,p). Set F(r',ry,) = R [f(r',)](rn). We regard F as an H-valued
function, where H = L2 (Ry, dty,/tn, H) is a Hilbert space.

We have |F(r',r,)| g = G [f(',-)](rn) and GTf(r) = G¥[F (-, )] ().
Thus, ||gaf||Lp(M is equal to

VoV 18T IPCral ()P dug () dua,, (rn)
0 n

(Ry)n—t ~
SV IEC ) dug () dpa, (ma)
0 (Ry)»t
= | V1GNP dpaa, (ra) dpg ()
R4)m=1 0
<V VIO ) dpa, (ra) dpg (') = CLAN -
(Ry)»=* 0

where the first inequality follows from the induction hypothesis. =
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4.2. Pointwise estimates. In this section, we prove and . The
Riemann—Liouville lemma on fractional differentiation played an important
role for the pointwise estimate given in [3]. We shall need a product
version of that lemma.

Let @ = (o, ...,a,) and & > 0. We define the fractional differentiation
D% for f € L*(R") by

n
FIDUE) = [ (—igo) ™ F 1 (©).
k=1
which coincides with the usual differentiation up to a constant when & € Z".
In addition, let % be the fractional integral defined by

ap—1

gy = | T 25 ) du,

aniny Do)
We shall work with the Sobolev space L%(R"™) defined in Section

LEMMA 4.2 (Riemann-Liouville). Let @ > 1/2. Suppose that f € L%(R™)
and supp f C [[R_;(—oc,ax]. Then supp D¥f C [[p_,(—o0, ax] and

f(2) = D9 f)(z)  ace.

Proof. The proof for n = 1 was given in [3]. It still works for n > 1 with
a few minor changes. For the convenience of the reader, we include the proof
for n = 1 and indicate the changes for n > 1.

First consider the operators D¢ associated with the Fourier multipliers
(€ — €)™ for € > 0. Then Df — D®f in L? as ¢ — 0 by the dominated
convergence theorem.

With the aid of Cauchy’s theorem, one may verify that

98 (@) = Fg (e = i) () = F(1a><—x>i—lefw e L.

Thus, the convolution operator I f = f*g% is the inverse of DY and I® f € L2
For the support condition, observe that

D¢ f(x) = D h(a),

where h = [ f and [a] is the least integer such that [a] > «. Then
supph C (—o0,al]. Moreover, DM h s a linear combination of (non-frac-
tional) derivatives of h, preserving the support of h.

Next, for a fixed x € (—o0, a), one estimates |f(z) — I*(Df)(x)| by

a

1 a—1| —e(u—x) Ho o
mﬂ(u—w) Hem =D f(t) — D f(u)| du
1

a—1 —€(-—x a a
< m”(' —2)* 2, lle (=)pef—D fllz2r,)s

x
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where I, = (z,a). The first norm is finite and the second norm tends to 0
as € — 0.

The proof easily extends to the case n > 1. Indeed, one may extend D¢
by D2 which is associated with the Fourier multipliers [[}_, (€ —i&x)** and
make similar multi-parameter extensions. m

With Lemma product versions of the pointwise estimates given in
[3] can be obtained without much additional work. We conclude this section

with the proofs of (4.2)) and (4.3]).

Proof of (4.2). We may assume that Hm(f')QSHLg(Rn) < oo for each t.

Fix £ € (Ry)", and let h(p) = m(p)¢d(p). Then by the Riemann- Liouville
lemma, the support of D%h is contained in (—o0,2]™. Moreover,

H DT, H (or/te)or(pr/tr)m(p)H ;f (p)
k=1
Pk pr )
=0 L T2 (w=2) " Harop han
Rn k=1 F b7+
n ak—l
—ca § T2 (1- 2" g
[0,2]" k=1 Uktk Utk / 1

for a.e. p € (R4)™. Applying H ; to both sides of the above equality yields

[ PATn f1(r) | =

[ S HUZ’“RO‘ ) D%h(u )du‘H

. 1/2
gp||m< E)l ey (| 1RSSO du)
t> [0,2]7

The proof is completed by taking the L?((R)", df/t) norm and making use
of Fubini’s theorem and a change of variable. m

Proof of (4.3)). First observe that one may write

m(p)

P m(p)x(p)

for a smooth function y supported in [1/4,4]™ if m supported in [1/2,2]™.

We apply the product version of the Riemann-Liouville lemma to the
function my without the use of the square function ¢g. Arguing as in the
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proof of (4.2), we obtain

T iy f ()] =

S gaf(r)HmXHLg(Rn),

where T = (1,...,1), du/u = [[}_, duy,/uy, and we have used the fact that
supp(D[mx]) C (—o0,2]". Finally, ||mx||L2 ®n) S ||mHL2 (rn) since X is a
Schwartz function. m

5. Reductions toward Theorem [2.2]
5.1. Littlewood—Paley theory Split the multiplier of R* as

p(1 = )5 = pxolp) + (1= p)T 'x(p),

where xo,x € S(R4) and xo and x are supported on [0,3/4] and [1/2,2],
respectively. Then g with @(p) = pxo(p) is a standard Littlewood—Paley
function, which is bounded on LP(pug) for 1 < p < co. Thus, we may assume

that B
wire 1) = (1-2) (5 masto)

+

Using this reduction and the Littlewood—Paley theory, we may localize
the t-integral on the interval [1,2]. Choose a cut-off function n € C§°(R™)
supported on (1/8,8) such that n(p) = 1 on [1/4,4] and define the Little-
wood-Paley projection L; by Ha[L;f](p) = n(277p)Haf(p). We have

oo d 27+1 d
G £ = [ 1RE 70 H{ =3V IROR T
0 J 27
2

o dt
Z ‘ 29t ZS 2Jt ?7
J

where the last equality follows from n(p)x(p/t) = x(p/t) for t € [1,2]. Thus
by the LittlewoodfPaley inequality (see ([7.15))), Theorem follows from

o (S Vman )], 2SR

for p=2d/(d — 2a) and 1/2 < a < d/2.

= e— N

Lp(ll‘d) Lp72(/'[/d)
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5.2. Dualization. Let us denote by L? the Hilbert space L?([1, 2], dt/t).
If g; is a function which takes values in LZ(H*), namely that (g;):(r) :=
lg;(r)](t) € H*, then

00 2 00
§ SRS 0500, (03)0r) T dira(r) = §7505), RS05(9)) draa(s),
01 0
where 9 it
Ra(s) = | BS,y01(s)

1
for L?(H*)-valued functions g. Thus by duality, (5.1 is equivalent to

(5.2) H (; !R?gj\%) 1/2‘ iy S H (ZJ: lgj\%%(H)>1/2’

for p=2d/(d +2a) and 1/2 < a < d/2.

LP(uq)

5.3. Decomposition. We make a dyadic decomposition following [12].
For m € Z, we let I, = [2™,2mF1), [ = [2m~1 2m+2) [ — [gm=2 gm+3)
L,, =(0,2™), and R, = [2™,00). Then we may write

RYF =D Bt + 85t + Vit

- ZEﬁm_]f + Z S;)fmf + Z ‘/j?ém—jf>

where £ f, S%, f and VI f are defined by R$(fxr,,) times the charac-
teristic functions xr,,_,, X1+ and xg,, 5, respectively.
We shall prove the following propositions in Section [7}

PROPOSITION 5.1. Let 1/2 < a < d/2 and p = 2d/(d + 2a). Then there

is a constant §(p) > 0 such that
—|ml|é
IV i Fll w2 gy < €271 (p)HfXIWjHmoo(ud,Lg(H)),

where the constant C' does not depend on j or m.

PROPOSITION 5.2. Let a > 1/2 and 1 < p < 2. Then there is a constant
0 > 0 such that

—|m|é
1B i Fl gty < C27 N Xt 20 g, 22000

where the constant C does not depend on j or m. In fact, one may take
d = min(a — 1/2,4d).

We shall use the vector notation f = {f;}; and Sof= {88 fiti

PROPOSITION 5.3. Let aw > 1/2. For each 1 < p < 2,

1S5S o uazcinyy < ClXEn | Lo (g2 (10 (1))

with a constant C' which does not depend on m.
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Proof of given Propositions The proof is just a minor mod-
ification of the proof given in [12], but we include it for the convenience of
the reader. We show (5.2) for >V, first:

m ]m 7
H(Z‘Z Jym= ij‘ )1/2’va2(ud)
<Z(Z“ i Eil )

<22 Im|8(p (SZXIm] )W (r ) o dialr ))1/])’

where we have used Minkowski’s inequality to pull out the sum over m, and
the inclusion [P(Z) C 12(Z). To be more precise, [I2, Lemma 2.1] was used
in order to deal with the Lorentz space LP-2. Next, the trivial bound

5 (Z 550 o)

will finish the proof by making use of the dlsJomtness of x7__. and the

m—j
Im|3(p) except that we

summability of 2~ The proof is similar for )
may show the stronger LP(pq) bounds.

For the case )
many times to get

(Z]ZXW )" s (foﬁDSﬁmfj\%{)” ’
<ZXI**(Z‘ me|H)

JmJ

we shall use the fact that I* overlap only finitely

m ]m’

Thus, by Proposition [5.3]

SIS 500) = (SN 5500) )
(ZHXIm (Z |fa|L2(H)) ‘ 2 ud>>l/p
— H(;Uj@g(m) ‘LT’(/M). )

6. Kernel estimate. Let a > 1/2 be fixed. In what follows, we shall
often suppress the dependence on «.
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6.1. Estimate I. The goal of this section is to obtain an estimate for
the kernel of the operator R}. Note that R f(r) can be written as

00 oo 2 a—1
WH(“?) ( )ft” Ba(277p) Ba(25p) diualp) dpa(s)
+

0 01 0o

— | 2 (21, 278) (5)] dpas).
0
where K (r, s) is a bounded linear operator from L?(H) := L*([1,2],dt/t, H)
to H. For f € L?(H), define the operator K by
2

K1) = | eneu ()

1
where Fgr(p) = (1 — p)¥ *x(p). Then K (r,s)[f] can be written as

2 a—1
F(1-2)  x(5) 5005 Bateo)Batsn) duato)
1

We shall borrow the kernel estimate from [12] for the characterization of
Hankel multipliers to obtain a rather precise estimate for the kernel K(r,s).
We quote here a special case of [12, Proposition 3.1]. Here and in what
follows, we set wy (u) = (1 + |u|)™V

PROPOSITION A. Letd > 1, N > 1, and m € L? be compactly supported

n (0,00). Then for 8,v=0,1,2,...,

o0

7 m(o)Balor) Bulps) diaalp)
0

(6.1)

‘]:]R m]| x wy (£r £ s)
<CNﬁ'yZ — )
2 T+ D + [

where Cn g, does not depend on m,r,s.

It is a routine matter to verify that ( contlnues to Work for functions
m taking values in a Hilbert space. Applylng with Fp Ym] = K[f] we
immediately obtain the following.

PROPOSITION 6.1. Let f € LZ(H). Then for N > 1,

(62) K )fll < Ona S T2 5)
+,

< [(1+7) (1 + s)]d-1/2
where W(f](x) = |K[f]|r * wnta(2).
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6.2. Estimate II. In what follows, we shall write f*(t) =t~ f(¢). The
main result of this section is the following.

PROPOSITION 6.2. Let f € L?(H). Then for all sufficiently large N,

(6.3)  WI[fl(z) < (1—i-1|ac|)a Fo 1 * wn () + W’fﬁf([{)-

In addition, there is a uniform estimate
(6.4) W@ S 1l

Proof. Since W|[f] is a convolution of |K[f]|gz and wnta, it suffices to
prove
65) KU S g F T+ e iz

S Tl (et

(6.6)  [KlfI(Wla S 1flezm):-
Indeed, we may obtain (6.3)) from (6.5 via the inequality

' g 9] * wi ()
(L] (1 +Jaf)>
which follows from (1 + |z —u|)™t < (14 |ul)(1 + |=|) L.
follows from the Cauchy—Schwarz inequality since k € L>(R).
For (6.5)), we need a standard asymptotic formula for x (see [10, p. 48]):

* wN+a(33) N

(6.7) k(u) = Iﬂ;?ei“(iu)o‘ +O(Jul~@*Y)  as u — +oo.

Let us assume |u| > C for some large constant C. By (6.7)),
2 2
K@)l < [Je™ st + [fo(tul=D) st at|
1 1

S Jul = FR @)+ Tl ™D Fl gy
This estimate combined with implies (6.5)). m

7. Proof of the main propositions. Throughout the section, we shall
omit the summation notation ) 44 in the kernel estimate ((6.2]).

7.1. Proof of Proposition By a scaling argument, we may assume
that j = 0. Indeed, we have V5, . f(r) = Vi, [f(277-)](2/r). By (6.2)),

XRyys (NWIf(s)](Fr £5)  dpa(s)
(14 r)ld=1)/2 (1+s)@d-1/2°

Vemf ()l S
I
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Then by the Minkowski integral inequality (for Banach function spaces),
HV()‘fmeLP,Q(Md’H) is bounded by

‘me+3W[f (8)]( - £5)
(14 @172

dpd(s)
Lr2(ug) (L 8)(7D/20

(7.1) C |
Im

The norm inside of the integral is bounded by

XRy s WIS (8)I(£:)

)[Rl )0

LPQ Hd) H 1 + | ’) 2(Vd)
by a change of variable r — r + s and (r £ s) ~ r, where v, is the measure
on R defined by dvg(z) = (1 + |z])*! da.

We claim that (7.2) is bounded by C|f(s)|2(gr), which would imply

dpa(s)
)(1 + 5)(d-1)/2

IVormflLr2 (g, my S S |f()| 2
Im

S0l oo 2200y Pt (L4 )@ s

by a variant of Holder’s inequality in Lorentz spaces (see [20]). The proof is
complete if we observe that

Ixz,, (1+ ')_(d_l)ﬂ”m@l(ud) < min (24P 9—m(d(1/p=1/2)=1/2)y

Here we have used the assumption that 1 < p < 2d/(d + 1).

We turn to the proof of the claim. We separately estimate the main term
and the error term given by Proposition For the error term, we control
the LP? norm by the LP norm to obtain

~

1
(S (1 + ’x|)—p[a+1—(d—1)(1/17_1/2)] d:C) /p’f(5)|L?(H) < ’f(5)|L%(H)
R

For the main term, we apply Holder’s inequality and Plancherel’s identity:

H [P 1o ()]l wn (14| - [) =072
(L+]-P

< 17 L i % o gy 1L+ T Dl syt

Lr2(vg)

2 12
S lleow ey (§ (o) =2 )
1

S () L2y

For the second inequality, o = d(1/p — 1/2) was required.
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7.2. Proof of Proposition By scaling, we may assume that j = 0.

7.2.1. The case m < 0. By (6.2) and the change of variable s — s +r,
Bt ()i S 2™ X1, (r) | WX, ()] (£r £ 5) ds
Im
S 2 xp, () § WX, (s £ 7))(+s) ds.
I3,
By Minkowski’s inequality, || E,, fl|Lr(u,,m) is bounded by

C2m(d=Dgmld-1/p | ( V' Wifxr, (s £r))(£s) dr) s

I*

<2700 §(§ W, (7)) dr)” " ds,
Iy Ixx

since I, + Ly,—o C I¥*. Applying the uniform estimate (6.4)), we get

Lm—2

1ES 2o (uasry S 27N X1 | £ g, 2211
7.2.2. The case m > 0. By (6.2)) and the change of variable s — s +r,

| EG i f ()| o

2N (U ) @D W fx (s 4 )] (5) d
I,

Then we take the LP(ug) norm, and next apply Minkowski’s inequality. With
the use of r < 2™ and (6.3), || £, fllLr(uy,m) is bounded by

(7.3) 02m<d—1>/p§( | W[ijm(sir)](is)pdr)l/pds

17*n Lm—2
1/
S S ( S W [fx1, (r)](s)Prt! dr) " ds ST+10
Ir, Irx
where
- @ p,.d—1 1/p ds
T= § (17 U Ol o GE)lrt = ) P
I, Ix
1/p ds
= d—1
1= S ( S | fx1,,(7) if(H)r d’r) W’
I, Ixr

II is the error term. Observe that

IS 27maHfX[mHLp(Nd7L?(H))
which has the desired decay term 27¢,
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The estimate for the main term I uses the assumption a > 1/2. We first
apply the Cauchy—Schwarz inequality for the s-integral. Then I is bounded
by a constant times

() 27D (§ ([ 1R [, ) o o)prt= ar)as) .
Iy, Ixx

m

By Minkowski’s inequality, Young’s inequality, and Plancherel’s identity,

(7.4) is bounded by

N _ 1/p
27 @D () 1t ()W gy )
0

S 27N X o G 22 ()

7.3. Proof of Proposition We may assume that the function f
is supported on I,,,. To show that the estimate holds for p = 2, it is enough
to show that

1T fill2(ua, )y S 15 L2(ug,L0 ()
uniformly in j. But this easily follows from Plancherel’s identity and the
Cauchy-Schwarz inequality since ||[Hq[RS;,]||L < 1.
Thus it suffices to prove a weak type inequality for p = 1, namely

*ok ao fl C 7
(7.5) pa({r € L) o [Sy fley > A}) < XHfHLl(ud,B)

for A > 0 and B = [?(L(H)), by a vector-valued version of the Marcinkiewicz
interpolation theorem.

We follow the usual strategy for proving weak type 1nequahtles We apply
the Calder6n-Zygmund decomposition, Proposition to get f =g+ b=
g+>, b,, where b, = {b,;}; is supported on J, C I, and has cancellation.
Let us denote by J the interval with the same center as J, and twice its
length and by {2 the union of the J;.

Then for § can be shown as usual by applying the L?(y4, B) bounded-
ness of g% In addition, for b reduces to

Q

(7.6) pa({r € I\ 2 ‘5%5112(H) > A}) < X” _“Ll(ud,B)-
The left hand side of ([7.6]) is bounded by

(7.7 A7 N 1SRb() ) dpalr)

L\2
<A SN 18bug () dppa(r).

viooJ I\
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Let us denote the integral on the right hand side of (7.7) by Z;,. We
claim that there is € > 0 such that

(7.8) Ziw S in(22 |y |, 12715 )7 0wl 1 g, 2 (1) -
Then (|7.8]) implies
D T 5 min(2 L] 2L bl )
J J

S 16wl 21 (g, B)-

Then (|7.7)) is bounded by
CND bl p gy S D #al )

SATf 21 (g, B)>
as desired by Proposition [7-1]
Proof of the claim (7.§). By the kernel estimate (6.2)),

DY by (5))(2 (2 5)) dpa(s)
[(1+277)(1 + 27s)](d=1)/2

S b (M) S xage (r) |
Ju

< Xy (r)

~ om(d—1)

§ 29 W by (5))(2 (2 £ 5)) da(s)

v

using r ~ s ~ 2™, Then

(79 Zi, S\ | 20Wlb(s)](27(£r £ 5)) dr dpa(s)
Ju I3\ T3
SV 29Wb(9))(272) do dpa(s)
Ju |z|>]Jy]/2
SV W)@ dodpa(s)
Ju |2|>20-1|J,|
[ <|fR1[bﬁ,j<s>]|H*wN(x> 16,5 ($)] 22 (a1

<
~ (1+ |z) (14 [a])o+t!

> dz dpa(s).

Ju |z[>2171]Jy |
For the second inequality, we have used the fact that
|£r+s| > |r—s|>|J,|/2

whenever r € I\ J} and s € J,. For the last inequality, we have used
Proposition [6.2
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Choose € = (v —1/2)/2 > 0. Then the main term of (7.9) is bounded by
P 1055 (8)] 1 * wiv(2)

(7.10)  C(2|J,])~ Jgﬂi Tl dzx dpug(s)
S @) V17 (s )i *wn|| L2y dttals)
Jy
S @) 7N 1005(9) | 22y dsals)
Ju

= (NI D)™ Mbvll L2 g, 22a1))
where we have applied the Cauchy—Schwarz inequality, Young’s inequality,
and Plancherel’s identity. The estimation of the error term of is straight-
forward.
Next we seek an inequality which is good when 27|J,| is small. Let s, be
the center of the interval J,. Using the cancellation of b, ;, we may write

S5 b (r) = X1z (1) S 2K (2r,2s) — K(2r, 278,)][bw.j (5)] dpa(s).
Ju
Let f be an L?(H)-valued function. Then [K(2/r,2/s) — K (2/r,275,)][f]
can be written as

| FRIK[£11(p) Ba(27rp) [Ba(27 sp) — Ba(25,p)] dpsa(p)
1
= 995 — 5,) | [ | FRlKIF () Bu2rp) pBU2 s(r)p) dpa(p) dr.
0
where s(7) = s, + 7(s — s1).
We apply (6.1) (with § = 0 and v = 1) to the inner integral above.
Since |s — sy| < |Jy| and r ~ s(7) ~ 2™ for 7 € [0,1], we may bound
24| [K (277,27 5) — K(27r,275,)][f]|g by a constant times

§ 29W [](27 (£r = 5(7)))

2717, | : . = dr
S+ 277) (1 + 275(7))] (4= 1)/2
1 . .
. 209W [£](27 (£r % 5(7)))
<217, T dr.

0

Therefore,

(711 = | 1S0bu(0)|u dua(r)

I5NTS

1
SN | 20Wb,(5))(27 (£r £ 5(7))) dr dpa(s) dr
0.7, Iz \J;
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S V10| | 2 W by (9))(202) da dpa(s)
Ju R

S 21T 6wl £ (g, 2211y

where we have used the fact that 27™@=Drd=1 < 1 if » € [** in the second
line. The last inequality follows by the change of variable # — 277z and
arguing as in ((7.10)) except that we do not need the decay (27|.J,])~¢

Appendix: A note on g-function. In this section, we shall give a
proof of L? bounds of the square function g by Calderén—Zygmund theory
in the vector-valued setting. We shall obtain an analogue of the gradient
condition for the Hankel convolution operator T¥ f := K %4 f. The material
to be discussed is quite standard and well-known, but Lemma does not
seem to appear in the literature.

Calderén—Zygmund decomposition. Let B be a Banach space, and let
LP(ugq, B) be the Bochner space, i.e.

AT ) = S £ ()| dpa(r)

for strongly measurable functions f : Ry — B. Then there is a Calderén—
Zygmund decomposition for functions f € L(ug4, B):

PROPOSITION 7.1. Let f € L'(ug, B) and X\ > 0. Then there are dyadic
intervals J, with disjoint interiors and a decomposition

f=g+b=g+) b,
such that:

(i) lg(s)lp < CX s-a.e. and 9]l (uy,5) < N FI| L2 (10, B) -
(11) by is supported on J, and {b,(s) duq(s) = 0.
(iii) 10w (s)p dpa(s) < )‘,Ud(J)
(iv) 32, () S ANl Lt .
A proof may be found in [I2], but we shall give a sketch. Split f =3, f;
where f; = fxi; and I; = [27,27F1). Define F'(r) by the equation

(7.12) 2V (r) = fi(r)r

and perform the usual Calderon-Zygmund decomposition F; = G; + B; for
the B-valued function F}. Then we obtain f; = g; + b;, where g; and b; are
given by equations similar to ((7.12), and then sum in j.
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The square function gg. Consider the Hankel convolution operator

o0
TXf(r) = K *q f(r) = | 7 K(r)f(s) dpa(s),
0
where 79 is the generalized translation given by H4[7° f](p) = Ba(sp)Haf(p).
See (7.16) and (7.17) for an explicit formula for 7.

As in the Euclidean case (see e.g. [21]), one may extend this to the vector-
valued setting. Let A and B Banach spaces, and K : Ry — L(A, B) be
an operator-valued kernel, where L£(A, B) is the space of bounded linear
operators from A to B.

LEMMA 7.2 (Calderéon-Zygmund). Suppose that T is a bounded opera-
tor from L" (g, A) to L" (ug, B) for somer, 1 <r < oco. In addition, suppose
that
(7.13) | [T K (r) — 7K (r)| c(a.m) dpa(r) < C.

|r—s|>2]s—35|
Then TX is bounded from LP(pug, A) to LP(uuq, B) for 1 < p < oo, and there
s a weak-type inequality

C
pal{r € Ry [T £l > A} < S 1F 121 (ug.)-

This can be shown by using Proposition [7.1 or by the general theory
of spaces of homogeneous type. We provide here a condition on K which

implies and is easier to verify.
LEMMA 7.3. The condition
(7.14) |K'(r)|a) < Cr~ (@Y
implies (7.13]).
Before we turn to the proof of this fact, we give an application for

Littlewood—Paley square functions. Note that the g-function defined in Sec-
tion [2] can be regarded as a vector-valued convolution operator

9o f (r) = Hal®(-/t)] *a f(r),
where we regard Hy[®P(-/t)] as an operator-valued kernel taking values in
L(H, H) for H-valued functions f, where H = L*(R,dt/t, H).

THEOREM 7.4. Let & € S(Ry) with #(0) = 0, and H and gp be as
described above. Then for 1 < p < oo,

o N Neouay < 190 oy < Coll oo iy
Proof. We prove the second inequality. The first follows from the second
via the polarization identity. We may assume that H = (% and f = {f;};,
since, for instance, we may write an H-valued function f as the sum f(x) =
>_; Ii(x)e; for an orthonormal basis {e;};, then using Parseval’s identity.
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First we consider the case p = 2. By Plancherel’s identity,

dt
lg(H1 72, ) SZHHd /0] #a Filliz g T

o d
(U@ Ok t)an]HM = O g

0

Next we verify (7.14). Let K = Hq[®(-/t)] = t"Hq[P](t-). As & € S(R}),

we have

(K (") ooy = K (1) L2yt 2)
(H,H)

¥ a\'’? C
0

REMARK. Choose a cut-off function n € C§°(R™) supported on (1/8,8)
such that n(p) = 1 on [1/4,4] and define the Littlewood—Paley projection
L; by HalL;ifl(p) = n(277p)Haf(p). Consider the I2(H)-valued operator
g(f) ={L;f}. Then by using the above argument, one can verify that

(7.15) N9 e ug 2y < Collfllor(ua,m)

for 1 < p < oco. Moreover, by real interpolation, one can replace LP by the
Lorentz spaces LP? for 1 < g < oo.

For the proof of Lemma|[7.3] we need explicit formulae for the generalized
translation. In what follows, we shall ignore multiplicative constants, and
write A = B if A = CB for a constant C' depending only on d. One has

™

(7.16) 7 f(r) = | £((r, 5)9) dv(0),

0
where (r,5)g = (r? 4 s> — 2rscos0)'/2 and dv(f) is a probability measure on
[0, 7]. One may also write

r+s
(7.17) fr)= | F)dws(0),

|r—s|
where dW;. 4(t) is a probability measure on [|r — s|, 7 + s] (see [15]).

Proof of Lemma [7.3 This observation is a combination of estimates
from [I5], where an analogue of the Hérmander-Mikhlin multiplier theo-
rem for Hankel multipliers is proved. We shall denote by | - | the operator
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norm | - [(4,p)- By (7.16),
| 175K (r) — K ()| dpa(r)
|r—s|>2|s—5|

= | K@ 9)0) = K((r.5)0) dv(0) | dpa(r)

jr—s|>2)s—5] 0
|r—s|>2|s—5|

Let ¥(t) = (r,ts + (1 — t)3)p. Then [¥'(t)| < |s — 3| (see [I5, eq. (2.9)]).
Therefore, the last integral is bounded by

1

i %[K((r, ts+ (1—1)5)g)] dt dV(‘))‘ dpalr).
00

1 T
(718) [s—sl\ | VIE'N((rts + (1 —1)5)g) dv(9) dpa(r) dt
0 0

|r—s|>2|s—5|
1o

< s — 5| | | 7T OTOSK (r)x(r) dppa(r) dt,
00
where x(r) is the characteristic function of the set {r : |r — s| > 2|s — s|}.
Next, we use the identity §7°f(r)g(r) dpa(r) = § f(r)m5g(r) dpqa(r) and
then analyse 7%5T(1=5y (7). It follows by considering (7.17) that

P05 (r) < Xs—sl,o0) (7)
for any ¢ € [0, 1], as was observed in [15] eq. (3.9) and (3.10)]. Thus, ([7.14)
implies that (|7.18)) is bounded by

oo o0
ls—5 | IK'(M)|dug(r) Sls—5 | @i lar < C.
|s—3| |s—3|
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