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Operators on the stopping time space

by

Dimitris Apatsidis (Athens)

Abstract. Let S1 be the stopping time space and B1(S
1) be the Baire-1 elements of

the second dual of S1. To each element x∗∗ in B1(S
1) we associate a positive Borel measure

µx∗∗ on the Cantor set. We use the measures {µx∗∗ : x∗∗ ∈ B1(S
1)} to characterize the

operators T : X → S1, defined on a space X with an unconditional basis, which preserve
a copy of S1. In particular, if X = S1, we show that T preserves a copy of S1 if and only
if {µT∗∗(x∗∗) : x

∗∗ ∈ B1(S
1)} is non-separable as a subset of M(2N).

1. Introduction. The stopping time space S1 was introduced by H. P.
Rosenthal as the unconditional analogue of L1(2N), where 2N denotes the
Cantor set and L1(2N) is the Banach space of equivalence classes of measur-
able functions on 2N which are absolutely integrable on 2N with respect to
the Haar measure.

The space S1 belongs to the wider class of the spaces Sp, 1 ≤ p < ∞,
which we are about to define. We denote by 2<N the dyadic tree and by
c00(2

<N) the vector space of all real valued functions defined on 2<N with
finite support. For 1 ≤ p < ∞ we define the ‖ · ‖Sp norm on c00(2

<N) by
setting, for x ∈ c00(2<N),

‖x‖Sp = sup
(∑
s∈A
|x(s)|p

)1/p
where the supremum is taken over all antichains A of 2<N. The space Sp is
the completion of (c00(2

<N), ‖ · ‖Sp).
The space S1 has a 1-unconditional basis and G. Schechtman, in an

unpublished work, showed that it contains almost all `p isometrically, 1 ≤
p <∞. This result was extended in [6] to all Sp spaces where it was shown
that for every p ≤ q, `q is embedded into Sp. An excellent and detailed study
of the stopping time space S1, in fact in a more general setting, is included
in N. Dew’s Ph.D. thesis [7]. The interested reader will also find therein,
among other things, a proof of Schechtman’s result mentioned above. Also,
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in [3] H. Bang and E. Odell showed that S1 has the weak Banach–Saks and
the Dunford–Pettis properties, as does the space L1(2N).

In what follows, by an operator between Banach spaces, we shall always
mean a bounded linear operator. Let X, Y , Z be Banach spaces and T :
X → Y be an operator. We will say that T preserves a copy of Z if there is
a subspaceW of X which is isomorphic to Z and the restriction of T toW is
an isomorphism. The study of preservation properties of operators on S1 is
important for the isomorphic classification of the complemented subspaces
of S1. The main results of the present paper go in this direction.

In [8] P. Enflo and T. W. Starbird showed that every subspace Y of L1,
isomorphic to L1, contains a subspace which is isomorphic to L1 and com-
plemented in L1. It follows that if a complemented subspace X of L1 con-
tains a subspace isomorphic to L1, then X is isomorphic to L1. Also, if
L1 is isomorphic to an `1-sum of a sequence of Banach spaces, then one of
those spaces is isomorphic to L1. We will prove the same results in the case
of S1.

The present paper is motivated by the following problems.

Problem 1.1. Let T : S1 → S1 be an operator and X an infinite-
dimensional reflexive subspace of S1 such that the restriction of T to X is
an isomorphism. Does T preserve a copy of S1?

Problem 1.2. Let X be a complemented subspace of S1 such that `1
does not embed in X. Is X c0-saturated?

It is well known that a subspace of a space with an unconditional basis is
reflexive if and only if it contains neither c0 nor `1 isomorphically. Therefore,
an affirmative answer to the first problem yields an affirmative answer to the
second one.

To state our main results we need to introduce some notation and ter-
minology. If X is a Banach space, we shall denote by B1(X) the space of
all Baire-1 elements of X∗∗, that is, all x∗∗ ∈ X∗∗ such that there is a se-
quence (xn)n∈N in X with x∗∗ = w∗- limn xn, which from [10] is equal to
the space of all x∗∗ ∈ X∗∗ such that x∗∗|(BX∗ ,w∗) is a Baire-1 function. We
denote by M(2N) the space of all Borel measures on 2N endowed with the
norm ‖µ‖ = sup{|µ(B)| : B is a Borel subset of 2N}. To each x∗∗ ∈ B1(S1)
we will associate a positive Borel measure µx∗∗ on 2N. The definition of µx∗∗
is related to a corresponding concept defined and studied in [1] where the
space V 0

2 is studied. It is worth mentioning that in the case of V 0
2 we have

B1(V 0
2 ) = (V 0

2 )∗∗, i.e. a measure can be assigned to every x∗∗ ∈ (V 0
2 )∗∗. This

is not the case for S1.
We are ready to state the first main result of the paper.
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Theorem 1.3. Let X be a Banach space with an unconditional basis,
Y a closed subspace of X, and T : X → S1 an operator. The following
assertions are equivalent:

(i) {µT ∗∗(y∗∗) : y∗∗ ∈ B1(Y )} is a non-separable subset ofM(2N).
(ii) There exists a subspace Z of Y isomorphic to S1 such that the re-

striction of T to Z is an isomorphism.
(iii) There exists a subspace Z of Y isomorphic to S1 such that the re-

striction of T to Z is an isomorphism and T [Z] is complemented
in S1.

Moreover, if (iii) is satisfied then Z is complemented in X.

Clearly, since the basis of S1 is 1-unconditional, the above theorem holds
in particular for X = S1.

We state some consequences of the above theorem.

Corollary 1.4. Let Y be a closed subspace of S1. Then MB1(Y ) =

{µy∗∗ : y∗∗ ∈ B1(Y )} is a non-separable subset ofM(2N) if and only if there
exists a subspace Z of Y isomorphic to S1 and complemented in S1.

Corollary 1.5. Let Y be a closed subspace of S1 isomorphic to S1.
Then Y contains a subspace Z isomorphic to S1 and complemented in S1.

Corollary 1.6. Let Y be a complemented subspace of S1 such that
{µy∗∗ : y∗∗ ∈ B1(Y )} is a non-separable subset ofM(2N). Then Y is isomor-
phic to S1.

In [4] it is shown that if L1 Gδ-embeds into X, where either X is isomor-
phic to a dual space, or X embeds into L1, then L1 embeds isomorphically
into X. We recall that an operator T : X → Y between Banach spaces is
called a Gδ-embedding if it is injective and T [K] is a Gδ subset of Y for all
closed bounded K.

Corollary 1.7. Suppose S1 is isomorphic to an `1-sum of a sequence
of Banach spaces Xi. Then there is a j such that Xj is isomorphic to S1.

Our second result is the following.

Theorem 1.8. Let X be a Banach space. If S1 Gδ-embeds in X and X
Gδ-embeds in S1, then S1 complementably embeds in X.

As a consequence of the above theorem we obtain

Corollary 1.9. Let X be a closed subspace of S1. If S1 Gδ-embeds
in X, then S1 complementably embeds in X.

The paper is organized as follows. In Section 2, we fix some notation
and recall the definition of S1. In Section 3, we give the definition of the



238 D. Apatsidis

measure µx∗∗ , while in Section 4 we give the proofs of Theorems 1.3 and 1.8
and their corollaries.

2. Preliminaries

2.1. The dyadic tree. For every n ≥ 0, we set 2n = {0, 1}n (where
20 = {∅}). Hence for n ≥ 1, every s ∈ 2n is of the form s = (s(1), . . . , s(n)).
For 0 ≤ m < n and s ∈ 2n, we set s|m = (s(1), . . . , s(m)), where s|0 = ∅.
Also, 2≤n =

⋃n
i=0 2i and 2<N =

⋃∞
n=0 2n. The length |s| of s ∈ 2<N is the

unique n ≥ 0 such that s ∈ 2n. The initial segment partial ordering on 2<N

will be denoted by v (i.e. s v t if m = |s| ≤ |t| and s = t|m). For s, t ∈ 2<N,
s ⊥ t means that s, t are v-incomparable (that is, neither s v t nor t v s).
For s ∈ 2<N, sa0 and sa1 denote the two immediate successors of s which
end with 0 and 1 respectively.

An antichain of 2<N is a subset of 2<N such that s ⊥ t for all distinct
s, t ∈ A. If A,B are subsets of 2<N then we write A ⊥ B if s ⊥ t for all
s ∈ A and t ∈ B. We denote by A the set of all antichains of 2<N. A branch
of 2<N is a maximal totally ordered subset of 2<N.

A subset I of 2<N is called a segment if (I,v) is linearly ordered by v
and for any s @ v @ t, v is in I provided that s, t belong to I. For a finite
segment I of 2<N, max I denotes the v-greatest element of I.

A segment I is called initial if the empty sequence ∅ belongs to I. For
any s ∈ 2<N, let I(s) = {t ∈ 2<N : t v s}. Then clearly I(s) is an initial
segment of 2<N. For s, t ∈ 2<N, the infimum of {s, t} is defined by s ∧ t =
max(I(s) ∩ I(t)).

The lexicographical ordering of 2<N, denoted by ≤lex, is defined as fol-
lows. For s, t ∈ 2<N, s ≤lex t if either s v t, or s ⊥ t, w_0 v s and w_1 v t
where w = s∧t. Also we write s <lex t if s ≤lex t and s 6= t. The lexicograph-
ical ordering is a total ordering of 2<N. This ordering (which identifies 2<N

with N) will be called the natural ordering of 2<N. According to the above,
we can write 2<N as a sequence (sn)n∈N, where n < m if either |sn| < |sm|,
or |sn| = |sm| and sn <lex sm.

A dyadic subtree is a subset T of 2<N such that there is an order iso-
morphism φ : 2<N → T . In this case T is denoted by T = (ts)s∈2<N , where
ts = φ(s). A dyadic subtree (ts)s∈2<N is said to be regular if for every n ∈ N
there exists m ∈ N such that {ts : s ∈ 2n} ⊆ 2m.

Let 2N be the Cantor space, i.e., the set of all infinite sequences σ =
(σ(n))n of elements of 2 = {0, 1}. If σ ∈ 2N andn∈N, let σ|n= (σ(1), . . . , σ(n))
∈ 2n. We say that s ∈ 2n is an initial segment of σ ∈ 2N if s = σ|n; here
σ|0 = ∅. We write s v σ if s is an initial segment of σ.
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2.2. The stopping time space S1. The space S1 is defined to be the
completion of c00(2<N) under the norm∥∥∥∑

s

λses

∥∥∥
S1

= sup
(∑
s∈A
|λs|
)

where the supremum is taken over all antichains A of 2<N; here for every
s ∈ 2<N, we denote by es the characteristic function of {s}. By the definition
of the S1-norm, {es}s∈2<N is a 1-unconditional Schauder basis of S1. Also, for
every infinite chain C of 2<N the subspace of S1 generated by {es : s ∈ C}
is isomorphic to c0, while for every infinite antichain A the corresponding
subspace is isomorphic to `1.

3. Measures associated to elements of Baire-1 space. Our general
notation and terminology is standard and can be found, for instance, in [9].
Let X be a Banach space. As mentioned in the introduction, we denote by
B1(X) the space of all x∗∗ ∈ X∗∗ such that there is a sequence (xn)n∈N in X
with x∗∗ = w∗- limn xn. The aim of this section is to introduce and study
the fundamental properties of a measure µx∗∗ corresponding to an element
x∗∗ ∈ B1(S1). We start with some general results about Banach spaces with
an unconditional basis.

Lemma 3.1. Let X be a Banach space with an unconditional normalized
basis (ei)i∈N and let x∗∗ ∈ B1(X) be such that x∗∗(e∗i ) = 0 for every i ∈ N.
Then x∗∗ = 0.

Proof. Since x∗∗ ∈ B1(X) there exists a sequence (xn)n of elements of X
such that x∗∗ = w∗- limn xn and limn e

∗
i (xn) = 0 for every i ∈ N. By a

classical result of Bessaga and Pełczyński, we may assume that (xn)n is
equivalent to a block basic sequence with respect to (ei)i. Since (ei)i is an
unconditional basis, every block sequence of (ei)i is unconditional. But then
either (xn)n has a subsequence which is equivalent to the usual basis of `1, or
(xn)n is weakly null. Since the basis of `1 is not weakly Cauchy, we conclude
that x∗∗ = 0.

Proposition 3.2. Let X be a Banach space with a 1-unconditional nor-
malized basis (ei)

∞
i=1. Then B1(X) can be identified with the space of all

sequences (ai)i of scalars such that supn ‖
∑n

i=1 aiei‖ < ∞. This correspon-
dence is given by B1(X) 3 x∗∗ ↔ (x∗∗(e∗i ))i. Moreover, for every x∗∗ ∈
B1(X), x∗∗ = w∗- limn

∑n
i=1 x

∗∗(e∗i )ei and

(1) ‖x∗∗‖ = sup
n

∥∥∥ n∑
i=1

x∗∗(e∗i )ei

∥∥∥.
Proof. Let x∗∗ ∈ B1(X) and x∗ ∈ X∗. For n ∈ N, we choose a sequence

(εi)
n
i=1 of signs so that

∑n
i=1 |x∗∗(e∗i )x∗(ei)| =

∑n
i=1 εix

∗∗(e∗i )x
∗(ei). Since
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(ei)i is a 1-unconditional normalized basis ofX, we have ‖
∑n

i=1 εix
∗(ei)ei‖ ≤

‖x∗‖ and
n∑
i=1

|x∗∗(e∗i )x∗(ei)| =
n∑
i=1

εix
∗∗(e∗i )x

∗(ei) = x∗∗
( n∑
i=1

εix
∗(ei)ei

)
≤ ‖x∗∗‖ ‖x∗‖.

Hence, the sequence (
∑n

i=1 x
∗∗(e∗i )ei)n is weakly Cauchy and∥∥∥ n∑

i=1

x∗∗(e∗i )ei

∥∥∥ ≤ ‖x∗∗‖ for all n ∈ N.

Let y∗∗ = w∗- limn
∑n

i=1 x
∗∗(e∗i )ei. Then (y∗∗ − x∗∗)(e∗i ) = 0 for every i ∈ N

and y∗∗ − x∗∗ ∈ B1(X). By Lemma 3.1, we have y∗∗ = x∗∗. Therefore,
x∗∗ = w∗- limn

∑n
i=1 x

∗∗(e∗i )ei. By the above inequality and since (ei)i is a
monotone basis of X, from the weak∗ lower semicontinuity of the second
dual norm we derive that

‖x∗∗‖ = lim
n

∥∥∥ n∑
i=1

x∗∗(e∗i )ei

∥∥∥ = sup
n

∥∥∥ n∑
i=1

x∗∗(e∗i )ei

∥∥∥.
Conversely, let (ai)i be such that C = supn ‖

∑n
i=1 aiei‖ < ∞. For

any x∗ ∈ X∗ and n ∈ N, we choose a sequence (εi)
n
i=1 of signs such that∑n

i=1 |aix∗(ei)| = x∗(
∑n

i=1 εiaiei). As (ei)i is a 1-unconditional normalized
basis of X, we get

∑n
i=1 |aix∗(ei)| ≤ C‖x∗‖. Therefore, (

∑n
i=1 aix

∗(ei))n is
weakly Cauchy. If x∗∗ = w∗- limn

∑n
i=1 aiei, by Lemma 3.1, we conclude that

x∗∗ is the unique x∗∗ ∈ B1(X) such that x∗∗(e∗i ) = ai for every i ∈ N.
If X is a Banach space and M a subset of X, then the closed linear span

of M is denoted by [M ].

Proposition 3.3. Let X be a Banach space with a 1-unconditional nor-
malized basis (ei)

∞
i=1. Then the operator J : B1(X)→ [(e∗i )i]

∗ with J(x∗∗) =
x∗∗|[(e∗i )i] is an isometry and onto.

Proof. The fact that J is an isometry is an immediate consequence
of (1). To show that J is onto, let f ∈ [(e∗i )i]

∗. Then we easily observe that
supn ‖

∑n
i=1 f(e∗i )ei‖ ≤ ‖f‖. Hence by Proposition 3.2, there is x∗∗ ∈ B1(X)

such that x∗∗ = w∗- limn
∑n

i=1 f(e∗i )ei. Therefore x
∗∗(e∗i ) = f(e∗i ) for all i,

and so J(x∗∗) = x∗∗|[(e∗i )i] = f .

Remark 3.4. By Proposition 3.2, for every x∗∗ ∈ B1(S1),

‖x∗∗‖ = sup
n≥0

∥∥∥ ∑
|s|≤n

x∗∗(e∗s)es

∥∥∥ = sup
A∈A

∑
s∈A
|x∗∗(e∗s)|.

We are now ready to give the definition of µx∗∗ , the measure associated
with an element x∗∗ in B1(S1). We first introduce some simple notation. For
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every x∗∗ ∈ B1(S1) and D ⊆ 2<N we set

x∗∗|D(e∗s) =

{
x∗∗(e∗s) if s ∈ D,
0 if s ∈ 2<N \D.

By Remark 3.4,we easilyobserve that x∗∗|D∈B1(S1)and for anyD1,D2⊆2<N

with D1 ⊆ D2,

(2) ‖x∗∗|D1‖ ≤ ‖x∗∗|D2‖ ≤ ‖x∗∗‖,
and if D1 ⊥ D2, then

(3) ‖x∗∗|D1 ∪D2‖ = ‖x∗∗|D1‖+ ‖x∗∗|D2‖.
For every t ∈ 2<N we set Vt = {σ ∈ 2N : t v σ}. Recall that {Vt : t ∈ 2<N}

is the usual basis of 2N, consisting of clopen sets. Also, for t ∈ 2<N andm ≥ 0
we set

Tmt = {s ∈ 2<N : t v s, |s| ≥ m}.
By (3), it is easy to see that for every t ∈ 2<N,

inf
m
‖x∗∗|Tmt ‖ = inf

m
‖x∗∗|Tmta0‖+ inf

m
‖x∗∗|Tmta1‖.

Therefore, by a classical result of Carathéodory, there exists a unique finite
positive Borel measure µx∗∗ on 2N with µx∗∗(Vt) = infm ‖x∗∗|Tmt ‖ for every
t ∈ 2<N.

Definition 3.5. Let x∗∗ ∈ B1(S1). We define µx∗∗ to be the unique
finite positive Borel measure on 2N such that for all t ∈ 2N,

µx∗∗(Vt) = inf
m
‖x∗∗|Tmt ‖.

Remark 3.6. The technique used to define the measure µx∗∗ given x∗∗ ∈
B1(S1) is along the same lines as in [1].

Remark 3.7. Let x∗∗ ∈ B1(S1). By (3) we observe that for every fi-
nite antichain A of 2<N and m ≥ 0, ‖x∗∗|

⋃
t∈A T

m
t ‖ =

∑
t∈A ‖x∗∗|Tmt ‖.

Therefore, µx∗∗(
⋃
t∈A Vt) = infm ‖x∗∗|

⋃
t∈A T

m
t ‖ for every finite antichain A

of 2<N.

The following proposition is easily established.

Proposition 3.8.

(i) For every x∗∗ ∈ B1(S1) and λ ∈ R,
µλx∗∗ = |λ|µx∗∗ .

(ii) For every x∗∗, y∗∗ ∈ B1(S1),

µx∗∗+y∗∗ ≤ µx∗∗ + µy∗∗ .

(iii) For every x∗∗ ∈ B1(S1),

µx∗∗(2
N) = d(x∗∗, S1) = inf{‖x∗∗ − x‖ : x ∈ S1}.
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(iv) For every x∗∗, y∗∗ ∈ B1(S1),

‖µx∗∗ − µy∗∗‖ ≤ ‖x∗∗ − y∗∗‖.
Proposition 3.9. Let x∗∗ ∈ B1(S1). Then for every antichain A of 2<N,

µx∗∗
( ⋃
t∈A

Vt

)
= inf

m

∥∥∥x∗∗∣∣∣ ⋃
t∈A

Tmt

∥∥∥.
Proof. Let A be an antichain of 2<N. If A is finite, then the conclusion

follows by Remark 3.7. Assume that A is infinite and let A = {ti}∞i=1 be an
enumeration. Since limj µx∗∗(

⋃j
i=1 Vti) = µx∗∗(

⋃
t∈A Vt), we have

(4) µx∗∗
( ⋃
t∈A

Vt

)
= lim

j
inf
m

∥∥∥x∗∗∣∣∣ j⋃
i=1

Tmti

∥∥∥ ≤ inf
m

∥∥∥x∗∗∣∣∣ ⋃
t∈A

Tmt

∥∥∥.
We claim that limj ‖x∗∗|

⋃∞
i=j T

0
ti‖ = 0. Indeed, if not, then by Remark

3.4 it is easy to see that there exist ε > 0, a strictly increasing sequence
1 ≤ j1 < j2 < · · · in N and a sequence (Ak)

∞
k=1 of finite antichains of 2<N

such that:

(a) Ak ⊆
⋃jk
i=jk+1 T

0
ti for every k ≥ 1.

(b)
∑

s∈Ak |x
∗∗(e∗s)| > ε for every k ≥ 1.

Clearly the set B =
⋃∞
k=1Ak is an antichain. Hence by (b),

‖x∗∗‖ ≥
∑
s∈B
|x∗∗(e∗s)| =

∞∑
k=1

∑
s∈Ak

|x∗∗(e∗s)| =∞,

a contradiction.
Let ε > 0. By the claim, we choose j0 ∈ N with ‖x∗∗|

⋃∞
i=j0+1 T

0
ti‖ < ε.

Then

inf
m

∥∥∥x∗∗∣∣∣ ∞⋃
i=1

Tmti

∥∥∥ = inf
m

∥∥∥x∗∗∣∣∣ j0⋃
i=1

Tmti

∥∥∥+ inf
m

∥∥∥x∗∗∣∣∣ ∞⋃
i=j0+1

Tmti

∥∥∥
≤ µx∗∗

( j0⋃
i=1

Vti

)
+
∥∥∥x∗∗∣∣∣ ∞⋃

i=j0+1

T 0
ti

∥∥∥
< µx∗∗

( j0⋃
i=1

Vti

)
+ ε ≤ µx∗∗

( ∞⋃
i=1

Vti

)
+ ε.

Therefore,

(5) inf
m

∥∥∥x∗∗∣∣∣ ⋃
t∈A

Tmt

∥∥∥ ≤ µx∗∗( ⋃
t∈A

Vti

)
.

By (4) and (5), the conclusion follows.
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4. Operators preserving a copy of S1. This section is devoted to the
proof of Theorems 1.3 and 1.8 and their corollaries. The next lemma can be
found in [1, Lemma 41, p. 4252].

Lemma 4.1. Let (αs)s∈2<N and (λs)s∈2<N be families of non-negative real
numbers and let n ≥ 0. Then there exists a maximal antichain A of 2≤n and
a family (bt)t∈A of branches of 2≤n such that∑

|s|≤n

λsαs ≤
∑
t∈A

(∑
s∈bt

αs

)
λt

and t ∈ bt for all t ∈ A. Therefore if
∑∞

n=1 ασ|n ≤ C for all σ ∈ 2N, then
for each n ≥ 0 there is an antichain A of 2≤n such that∑

|s|≤n

λsαs ≤ C
∑
s∈A

λs.

Proposition 4.2. Let X be a Banach space and (xs)s∈2<N be a family
of elements of X with the following properties:

(i) (xs)s∈2<N is a K-unconditional basic family.
(ii) There is a constant c > 0 such that for each finite antichain A of

2<N and each family (λs)s∈A of scalars, we have∥∥∥∑
s∈A

λsxs

∥∥∥ ≥ c∑
s∈A
|λs|.

(iii) There is a constant C > 0 such that for every σ ∈ 2N, n ≥ 0 and
every sequence (ak)

n
k=0 of scalars,∥∥∥ n∑
k=0

akxσ|k

∥∥∥ ≤ C max
0≤k≤n

|ak|.

Then the family (xs)s∈2<N is equivalent to the basis (es)s∈2<N of S1. In par-
ticular for every n ≥ 0 and every family (λs)|s|≤n of scalars,

c

K

∥∥∥ ∑
|s|≤n

λses

∥∥∥ ≤ ∥∥∥ ∑
|s|≤n

λsxs

∥∥∥ ≤ C∥∥∥ ∑
|s|≤n

λses

∥∥∥.
Proof. First we show the upper S1-estimate. Fix a family (λs)|s|≤n of

scalars. Let x∗ ∈ (S1)∗ with ‖x∗‖ = 1. By Lemma 4.1 (with |x∗(xs)| in place
of αs), there is an antichain A ⊆ 2≤n and a family (bt)t∈A of branches of 2≤n

such that

(6)
∣∣∣ ∑
|s|≤n

λsx
∗(xs)

∣∣∣ ≤ ∑
|s|≤n

|λs| |x∗(xs)| ≤
∑
t∈A

(∑
s∈bt

|x∗(xs)|
)
|λt|.
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By (iii), we have
∑

s∈bt |x
∗(xs)| ≤ C for every t ∈ A. Hence by (6),∣∣∣ ∑
|s|≤n

λsx
∗(xs)

∣∣∣ ≤ C∑
t∈A
|λt|.

This yields ‖
∑
|s|≤n λsxs‖ ≤ C‖

∑
|s|≤n λses‖.

To show the lower S1-estimate, let A be an antichain of 2≤n such that
‖
∑
|s|≤n λses‖ =

∑
s∈A |λs|. Then by (i) and (ii),

c

K

∥∥∥ ∑
|s|≤n

λses

∥∥∥ =
c

K

∑
s∈A
|λs| ≤

1

K

∥∥∥∑
s∈A

λsxs

∥∥∥ ≤ ∥∥∥ ∑
|s|≤n

λsxs

∥∥∥.
Remark 4.3. By Proposition 4.2, it is easy to see that if (xs)s is a family

in X equivalent to the S1-basis and (ts)s is a dyadic subtree of 2<N, then
(xts)s is equivalent to the S1-basis as well.

Lemma 4.4. Let x∗∗ ∈ B1(S1) and (xn)n be a sequence in S1 which is
weak∗ convergent to x∗∗. If there exists an antichain B of 2<N such that
µx∗∗(

⋃
s∈B Vs) > ρ > 0, then for every k ∈ N, there exist a finite antichain

A of 2<N with A ⊆
⋃
s∈B T

0
s and l > k such that∑
s∈A
|e∗s(xl − xk)| > ρ.

Proof. Let k ∈ N and 0 < 3ε < µx∗∗(
⋃
s∈B Vs)− ρ. Since xk ∈ S1, there

is m ∈ N such that

(7) ‖xk|Tm∅ ‖ < ε.

Choose a finite antichain A of 2<N with A ⊆
⋃
s∈B T

m
s such that

(8) µx∗∗
( ⋃
s∈B

Vs

)
− ε <

∑
s∈A
|x∗∗(e∗s)|.

Moreover since (xn)n converges weak∗ to x∗∗, there is l > k such that

(9)
∣∣∣∑
s∈A
|x∗∗(e∗s)| −

∑
s∈A
|e∗s(xl)|

∣∣∣ < ε.

Then by (7)–(9) we have∑
s∈A
|e∗s(xl − xk)| ≥

∑
s∈A
|e∗s(xl)| −

∑
s∈A
|e∗s(xk)| >

∑
s∈A
|x∗∗(e∗s)| − 2ε

> µx∗∗
( ⋃
s∈B

Vs

)
− 3ε > ρ.

In the following, if Y is a subspace of the Banach space X, then we
identify Y ∗∗ with the subspace Y ⊥⊥ in X∗∗.
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Lemma 4.5. Let X be a Banach space with a 1-unconditional normalized
basis (ei)i, Y a closed subspace of X, and T : X → S1 an operator. Suppose
that there exist y∗∗ ∈ B1(Y ) and an antichain B of 2<N such that

µT ∗∗(y∗∗)

( ⋃
s∈B

Vs

)
> ρ > 0.

Then for every m ∈ N and ε > 0, there exist y ∈ Y , a finite subset F of N
with m < minF , scalars {di}i∈F with 0 ≤ di ≤ 1 for every i ∈ F , and a
finite antichain A of 2<N with A ⊆

⋃
s∈B T

0
s such that∥∥∥y −∑

i∈F
diy
∗∗(e∗i )ei

∥∥∥ < ε and
∑
s∈A
|e∗s(T (y))| > ρ.

Proof. We fix m ∈ N and ε > 0. Let (yn)n be a sequence in Y which is
weak∗ convergent to y∗∗. By Proposition 3.2, the sequence (

∑j
i=1 y

∗∗(e∗i )ei)j
weak∗ converges to y∗∗.Hence (yj−

∑j
i=1 y

∗∗(e∗i )ei)j is weakly null.ByMazur’s
theorem there is a convex block sequence (

∑
j∈Fn rj(yj −

∑j
i=1 y

∗∗(e∗i )ei))n,
where (Fn)n is a sequence of successive finite subsets of N (i.e., maxFn <
minFn+1 for all n ∈ N),

∑
j∈Fn rj = 1 and rj ≥ 0 for all j ∈ Fn, such that

lim
n

∥∥∥ ∑
j∈Fn

rj

(
yj −

j∑
i=1

y∗∗(e∗i )ei

)∥∥∥ = 0.

We choose n1 ∈ N with m < minFn1 and

(10)
∥∥∥ ∑
j∈Fn

rjyj −
∑
j∈Fn

rj

j∑
i=1

y∗∗(e∗i )ei

∥∥∥ < ε/2 for all n ≥ n1.

Since (
∑

j∈Fn rjyj)n is weak∗ convergent to y∗∗, and since T ∗∗ is weak∗-weak∗
continuous and T ∗∗|X = T , we find that (T (

∑
j∈Fn rjyj))n weak∗ converges

to T ∗∗(y∗∗). Applying Lemma 4.4 we deduce that there exist a finite antichain
A of 2<N with A ⊆

⋃
s∈B T

0
s and n2 > n1 such that

(11)
∑
s∈A

∣∣∣e∗s(T( ∑
j∈Fn2

rjyj −
∑
j∈Fn1

rjyj

))∣∣∣ > ρ.

We set y1 =
∑

j∈Fn1
rjyj , y2 =

∑
j∈Fn2

rjyj and y = y2 − y1. Note that

∑
j∈Fn2

rj

j∑
i=1

y∗∗(e∗i )ei −
∑
j∈Fn1

rj

j∑
i=1

y∗∗(e∗i )ei =
∑
i∈F

diy
∗∗(e∗i )ei,

where F is a finite subset of N, m < minF and 0 ≤ di ≤ 1 for every i ∈ F .
Therefore by (10) and (11) the conclusion of the lemma follows.

We recall thatM+(2N) denotes the positive cone ofM(2N).
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Lemma 4.6. Let {µξ}ξ<ω1 be a non-separable subset of M+(2N). Then
there is an uncountable subset Γ of ω1 such that for every ξ ∈ Γ , µξ = λξ+τξ
where λξ, τξ are positive Borel measures on 2N with the following properties:

• For all ξ ∈ Γ , λξ ⊥ τξ and ‖τξ‖ > 0.
• For all ζ < ξ in Γ , µζ ⊥ τξ.

In particular, τζ ⊥ τξ for all ζ < ξ in Γ .

Proof. We may suppose that for some δ > 0, ‖µξ − µζ‖ > δ for all
0 ≤ ζ < ξ < ω1. By transfinite induction we construct a strictly increasing
sequence (ξα)α<ω1 in ω1 such that for each α < ω1, µξα = λξα + τξα with
λξα ⊥ τξα , ‖τξα‖ > 0 and τξα ⊥ µξβ for all β < α. The general inductive step
of the construction is as follows. Suppose that for some α < ω1, (ξβ)β<α has
been defined. Let (βn)n be an enumeration of α and set

ζα = sup
n
ξβn , να =

∑
n

µξβn/2
n, Nα = {ξ < ω1 : ζα < ξ and µξ � να}.

By the Radon–Nikodym theorem, {µξ}ξ∈Nα is isometrically contained in
L1(2

N, να) and therefore it is norm separable. Since we have assumed that
‖µξ − µζ‖ > δ for all 0 ≤ ζ < ξ < ω1, we infer that Nα is countable. Hence
we can choose ξα > supNα. Let µξα = λξα + τξα be the Lebesgue analysis of
µξα where λξα � να and τξα ⊥ να. By the definition of να and ξα, we have
‖τξα‖ > 0, τξα ⊥ µξβ for all β < α, and the inductive step of the construction
has been completed.

Lemma 4.7. Let {τξ}ξ<ω1 be an uncountable family of pairwise singular
positive Borel measures on 2N. Then for every finite family (Γi)

k
i=1 of pairwise

disjoint uncountable subsets of ω1 and every ε > 0 there exist a family (Γ ′i )
k
i=1

with Γ ′i an uncountable subset of Γi and a family (Oi)
k
i=1 of open and pairwise

disjoint subsets of 2N such that τξ(2N \Oi) < ε for all 1 ≤ i ≤ k and ξ ∈ Γ ′i .

Proof. For every α < ω1, we choose (ξαi )ki=1 ∈
∏k
i=1 Γi such that ξαi 6= ξβi

for every α 6= β in ω1 and every 1 ≤ i ≤ k. For each 0 ≤ α < ω1 the
k-tuple (τξiα)ki=1 consists of pairwise singular measures and so we may choose
a k-tuple (Uαi )ki=1 of clopen subsets of 2N with τξαi (2N \ Oαi ) < ε for each i,
and Oαi ∩Oαj = ∅ for i 6= j.

Since the family of all clopen subsets of 2N is countable, there is a k-tuple
(Oi)i and an uncountable subset Γ of ω1 such that Uαi = Oi for all 1 ≤ i ≤ k
and α ∈ Γ . For each 1 ≤ i ≤ k, set Γ ′i = {ξαi : α ∈ Γ}. Then τξ(2N \Oi) < ε
for all 1 ≤ i ≤ k and ξ ∈ Γ ′i .

The following lemma is the main tool used to prove Theorem 1.3.

Lemma 4.8. Let X be a Banach space with a 1-unconditional basis, Y
a closed subspace of X and T : X → S1 an operator. Suppose that B1(Y )
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contains an uncountable family G such that MG = {µT ∗∗(x∗∗) : x∗∗ ∈ G} is
non-separable. Then there is a constant ρ > 0 such that for every ε > 0 there
exist a family (ys)s of elements of Y and a family (As)s of finite antichains
of 2<N such that:

(C1) As ⊥ At for all s ⊥ t.
(C2)

∑
t∈As |e

∗
t (T (ys))| > ρ for every s ∈ 2<N.

(C3) For every σ ∈ 2N and every sequence (ak)
∞
k=0 of scalars,∥∥∥ n∑

k=0

akyσ|k

∥∥∥ ≤ (1 + ε) max
0≤k≤n

|ak| for all n ≥ 0.

Proof. Let {ei}∞i=1 be a 1-unconditional normalized basis of X. Since
µλx∗∗ = |λ|µx∗∗ for all x∗∗ ∈ B1(S1) and λ ∈ R, we may assume that
G ⊆ {y∗∗ ∈ B1(Y ) : ‖y∗∗‖ = 1}. By Lemma 4.6, there is a non-separable
subset {µT ∗∗(y∗∗ξ )}ξ<ω1 ofMG such that µT ∗∗(y∗∗ξ ) = λξ+τξ for all 0 ≤ ξ < ω1,
and τζ ⊥ τξ for all ζ < ξ. By passing to a further uncountable subset and
relabeling, we may also assume that there is ρ0 > 0 such that ‖τξ‖ > ρ0. We
fix ε > 0 and a sequence (εn)n of positive real numbers with

∑∞
n=0 εn < ε/2.

We will construct the following objects:

• a Cantor scheme (Γs)s of uncountable subsets of ω1 (that is, for all
s ∈ 2<N, Γsa0 ∪ Γsa1 ⊆ Γs and Γsa0 ∩ Γsa1 = ∅),
• a family (y∗∗ξs )s with ξs ∈ Γs for all s ∈ 2<N,
• a Cantor scheme (Us)s of open subsets of 2N, Us =

⋃
t∈Bs Vt, where Bs

is an antichain of 2<N for all s ∈ 2<N,
• a family (ys)s in Y ,
• a family (Fs)s of finite subsets of N and a sequence (di)i∈Fs of scalars

with 0 ≤ di ≤ 1 for all i ∈ Fs, and
• a family (As)s of finite antichains of 2<N,

such that for each s ∈ 2<N the following conditions are satisfied:

(i) For every ξ ∈ Γs, τξ(Us) > ρ0/2 and τξ(2N\Us) <
(∑|s|

i=0 2−(i+2)
)
ρ0.

(ii) The element y∗∗ξs is a w∗-condensation point of {y∗∗ξ }ξ∈Γs (by Propo-
sition 3.3, we identify B1(X) with [(e∗i )i]

∗ endowed with the weak∗
topology).

(iii) For all n ≥ 1, s ∈ 2n, ξ ∈ Γs and i ∈ Fs− ,

|y∗∗ξ (e∗i )− y∗∗ξs− (e∗i )| <
εn

#Fs−
, where s− = (s(1), . . . , s(n− 1)).

(iv) maxFσ|n < minFσ|n+1 for all σ ∈ 2N and n ≥ 0.
(v) As ⊆

⋃
t∈Bs T

0
t and

∑
t∈As |e

∗
t (T (ys))| > ρ.
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(vi) For every s ∈ 2<N, ∥∥∥ys −∑
i∈Fs

diy
∗∗
ξs (e∗i )ei

∥∥∥ < ε|s|.

Given the above construction, we set ρ = ρ0/2 and we claim that the
families (ys)s and (As)s satisfy conditions (C1)–(C3). Observe that (C1)
follows from the fact that (Us)s is a Cantor scheme and from the first part
of (v), while (C2) from the second part of (v).

It remains to verify (C3). So let n ≥ 0 and σ ∈ 2N. Then Γσ|k+1 ⊆ Γσ|k
for every k ≥ 0, and so by (iii) we get

(12)
∥∥∥ n∑
k=0

∑
i∈Fσ|k

y∗∗ξσ|k(e∗i )ei

∥∥∥
=
∥∥∥ n−1∑
k=0

∑
i∈Fσ|k

y∗∗ξσ|k(e∗i )ei −
n−1∑
k=0

∑
i∈Fσ|k

y∗∗ξσ|n(e∗i )ei +
n∑
k=0

∑
i∈Fσ|k

y∗∗ξσ|n(e∗i )ei

∥∥∥
≤

n−1∑
k=0

∑
i∈Fσ|k

|y∗∗ξσ|k(e∗i )− y∗∗ξσ|n(e∗i )|+
∥∥∥ n∑
k=0

∑
i∈Fσ|k

y∗∗ξσ|n(e∗i )ei

∥∥∥
<

n−1∑
k=0

εk+1 + ‖y∗∗ξσ|n‖ <
ε

2
+ 1.

As {ei}i is a 1-unconditional normalized basis of X, by (iv) we infer that if
(ak)

∞
k=0 is a sequence of scalars, then

(13)
∥∥∥ n∑
k=0

ak
∑
i∈Fσ|k

diy
∗∗
ξσ|k

(e∗i )ei

∥∥∥ ≤ max
0≤k≤n

|ak|
∥∥∥ n∑
k=0

∑
i∈Fσ|k

y∗∗ξσ|k(e∗i )ei

∥∥∥.
By (12), (13) and (vi) we obtain∥∥∥ n∑

k=0

akyσ|k

∥∥∥ ≤ n∑
k=0

|ak|
∥∥∥yσ|k − ∑

i∈Fσ|k

diy
∗∗
ξσ|k

(e∗i )ei

∥∥∥
+
∥∥∥ n∑
k=0

ak
∑
i∈Fσ|k

diy
∗∗
ξσ|k

(e∗i )ei

∥∥∥
≤ max

0≤k≤n
|ak|
( n∑
k=0

εk

)
+ max

0≤k≤n
|ak|

∥∥∥ n∑
k=0

∑
i∈Fσ|k

y∗∗ξσ|k(e∗i )ei

∥∥∥
≤ (1 + ε) max

0≤k≤n
|ak|.

We now present the general inductive step of the construction. Suppose
that the construction has been carried out for all s ∈ 2≤n. For every s ∈ 2n,
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we define

(14) Γ 1
s = {ξ ∈ Γs : ∀i ∈ Fs, |y∗∗ξ (e∗i )− y∗∗ξs (e∗i )| < εn+1/#Fs}.

Since Fs is a finite subset of N, the set {y∗∗ξ : ξ ∈ Γ 1
s } is a relatively weak∗-

open neighborhood of y∗∗ξs in {y∗∗ξ }ξ∈Γs . By our inductive assumption, y∗∗ξs is
a weak∗-condensation point of {y∗∗ξ }ξ∈Γs and therefore for all s ∈ 2n the set
Γ 1
s is uncountable. For every s ∈ 2n, we choose uncountable disjoint subsets
Γ 1
sa0

and Γ 1
sa1

of Γ 1
s . Applying Lemma 4.7 we obtain a 2n+1-tuple (Os)s∈2n+1

of pairwise disjoint open subsets of 2N and a family (Γ 2
s )s∈2n+1 such that for

each s ∈ 2n+1, Γ 2
s is an uncountable subset of Γ 1

s , and for all ξ ∈ Γ 2
s ,

(15) τξ(2
N \Os) < ρ0/2

n+3.

For every s ∈ 2n+1 we set Us = Os ∩Us− . Notice that Us =
⋃
t∈Bs Vt, where

Bs is an antichain of 2<N. Since Γ 2
s ⊆ Γ 1

s− ⊆ Γs− , (i) implies that for all
s ∈ 2n+1 and all ξ ∈ Γ 2

s ,

τξ(2
N \ Us−) <

( n∑
i=0

2−(i+2)
)
ρ0,

and hence, by (15),

(16) τξ(2
N \ Us) ≤ τξ(2N \Os) + τξ(2

N \ Us−) <
( n+1∑
i=0

2−(i+2)
)
ρ0.

Moreover as (
∑n+1

i=0 2−(i+2))ρ0 < ρ0/2 and ‖τξ‖ > ρ0, we deduce that for all
ξ ∈ Γ 2

s ,

(17) τξ(Us) > ρ0/2.

We set Γs = Γ 2
s and we choose ξs in Γs such that y∗∗ξs is a weak∗-condensation

point of {y∗∗ξ }ξ∈Γs . Since µT ∗∗(y∗∗ξ ) ≥ τξ for all ξ < ω1 Lemma 4.5 implies
that for every s ∈ 2n+1 there exist ys ∈ Y , a finite subset Fs of N, a sequence
{di}i∈Fs of scalars with maxFs− < minFs and 0 ≤ di ≤ 1 for every i ∈ Fs,
and a finite antichain As of 2<N with As ⊆

⋃
t∈Bs T

0
t , such that

(18)
∥∥∥ys −∑

i∈Fs

diy
∗∗
ξs (e∗i )ei

∥∥∥ < εn+1 and
∑
t∈As

|e∗t (T (ys))| > ρ0/2.

By (12)–(18), the proof of the inductive step is complete.

Let (xs)s∈2<N be a family in S1. We will say that (xs)s∈2<N is a block
family in S1 if (xs)s∈2<N is a block sequence of (es)s∈2<N under the natural
ordering of 2<N.

Proposition 4.9. Let (ys)s∈2<N be a block family in S1 and (x∗s)s∈2<N a
family in (S1)∗ with the following properties:

(a) There is a constant c > 0 such that x∗s(ys) ≥ c for all s ∈ 2<N.
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(b) For every s ∈ 2<N, x∗s =
∑

t∈As εte
∗
t , where As is a finite antichain

of 2<N with As ⊆ supp(ys) and εt ∈ {−1, 1} for all t ∈ As.
(c) As ⊥ As′ for all s ⊥ s′.
(d) There is a constant C > 0 such that for every σ ∈ 2N, n ≥ 0 and

every sequence (ak)
n
k=0 of scalars,∥∥∥ n∑
k=0

akyσ|k

∥∥∥ ≤ C max
0≤k≤n

|ak|.

Then:

(i) The family (ys)s∈2<N is equivalent to the basis (es)s∈2<N of S1.
(ii) There exists a projection P : S1 → [(ys)s∈2<N ] with ‖P‖ ≤ C/c.

Proof. (i) Since (ys)s∈2<N is a block family in S1, hence 1-unconditionally
basic, we easily observe that (ys)s∈2<N satisfies the assumptions of Proposi-
tion 4.2. Therefore (i) holds.

(ii) We define P : S1 → S1 by

P (x) =
∑
s∈2<N

x∗s(x)

x∗s(ys)
ys, x ∈ S1.

First we show that P is well defined. By (b) we have P (ys) = ys for every
s ∈ 2<N. Let x ∈ S1, n ≥ 0 and x∗ ∈ (S1)∗ with ‖x∗‖ = 1. By Lemma 4.1
(with |x∗s(x)|/x∗s(ys) in place of λs and |x∗(ys)| in place of αs), there is an
antichain A of 2≤n and a family of branches (bt)t∈A of 2≤n such that∣∣∣∣∑

|s|≤n

x∗s(x)

x∗s(ys)
x∗(ys)

∣∣∣∣ ≤∑
t∈A

(∑
s∈bt

|x∗(ys)|
) |x∗t (x)|
x∗t (yt)

.

By (a)–(c), we obtain
∑

t∈A |x∗t (x)|/x∗t (yt) ≤ ‖x‖/c, and by (d), we have∑
s∈bt |x

∗(ys)| ≤ C for all t ∈ A. Hence∥∥∥∥∑
|s|≤n

x∗s(x)

x∗s(ys)
ys

∥∥∥∥ ≤ C

c
‖x‖.

Since this holds for all x ∈ S1 and n ≥ 0, it follows that P is well defined and,
in addition, it is a bounded projection onto [(ys)s∈2<N ] with ‖P‖ ≤ C/c.

The following lemma is easily proved by using a sliding hump argument.

Lemma 4.10. Let (xs)s be a family in S1 such that for every σ ∈ 2N, the
sequence (xσ|n)n is weakly null. Then for every δ > 0, there exist a dyadic
subtree (ts)s of 2<N and a block family (ws)s in S1 with the natural ordering
of 2<N such that ∑

s∈2<N

‖xts − ws‖ < δ.
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Proposition 4.11. Let X be a Banach space with an unconditional
basis, Y a closed subspace of X, and T : X → S1 an operator such that
{µT ∗∗(y∗∗) : y∗∗ ∈ B1(Y )} is a non-separable subset of M(2N). Then there
exists a subspace Z of Y isomorphic to S1 such that the restriction of T
to Z is an isomorphism and T [Z] is complemented in S1. Moreover Z is
complemented in X.

Proof. By passing to an equivalent norm, we may assume that the basis
of X is 1-unconditional. From Lemma 4.8, there is a constant ρ > 0 such
that for 0 < ε < ρ there exist a family (ys)s of elements of Y and a family
(As)s of finite antichains of 2<N such that:

(C1) As ⊥ At for all s ⊥ t.
(C2)

∑
t∈As |e

∗
t (T (ys))| > ρ for every s ∈ 2<N.

(C3) For every σ ∈ 2N, n ≥ 0 and every sequence (ak)
n
k=0 of scalars,∥∥∥ n∑

k=0

akyσ|k

∥∥∥ ≤ (1 + ε) max
0≤k≤n

|ak|.

As T is bounded, (C3) implies that for every σ ∈ 2N, the sequence (T (yσ|k))k
is weakly null. Therefore by Lemma 4.10, for 0 < δ < ε, there exist a dyadic
subtree (ts)s of 2<N and a block family (ws)s in S1 such that

(19)
∑
s∈2<N

‖T (yts)− ws‖ < δ.

First we will show that the family (ws)s is equivalent to the basis (es)s∈2<N

of S1 and the space [(ws)s] is complemented in S1. Indeed, for every s ∈ 2<N,
let x∗s =

∑
v∈As εve

∗
v, where (εv)v∈As is a family of signs such that

x∗s(T (yts)) =
∑
v∈As

|e∗v(T (yts))| > ρ.

Without loss of generality, we may assume that As ⊆ supp(ws) for every
s ∈ 2<N (otherwise, we replace As by Bs = As ∩ supp(ws)). Then by (19),
it is easy to see that for every finite antichain A of 2<N,

(20) x∗s(ws) > ρ− ε for all s ∈ 2<N.

Since (ws)s is a block family in S1, by (C1) and (20) we find that for every
finite antichain A of 2<N and every family (λs)s∈A of scalars,

(21)
∥∥∥∑
s∈A

λsws

∥∥∥ ≥ (ρ− ε)
∑
s∈A
|λs|.

On the other hand, by (C3), for every σ ∈ 2N, n ≥ 0 and every sequence
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(ak)
n
k=0 of scalars,

(22)
∥∥∥ n∑
k=0

akwtσ|k

∥∥∥ ≤ ((1 + ε)‖T‖+ ε) max
0≤k≤n

|ak|.

By (20)–(22), we see that (ws)s satisfies the assumptions of Proposition 4.9.
Hence (ws)s is equivalent to (es)s∈2<N and the space [(ws)s] is complemented
in S1. Therefore by (19), for δ > 0 sufficiently small, (T (yts))s is equivalent
to (es)s∈2<N and T [Z] is complemented in S1, where Z = [(yts)s]. Now by
(C3), as in the proof of Proposition 4.2, (yts)s has an upper S1-estimate,
which implies that (yts)s is also equivalent to (es)s∈2<N .

We now proceed to show that Z is complemented in X. Let P be a
bounded projection from S1 onto T [Z]. We set Q = T−1PT . Then Q is a
bounded projection from X onto Z.

Lemma 4.12. Let x∗∗ ∈ B1(S1). Then for every ε > 0 there exists n ∈ N
such that for every finite antichain A of 2<N,∥∥∥x∗∗∣∣∣ ⋃

s∈A
Tns

∥∥∥ < µx∗∗
( ⋃
s∈A

Vs

)
+ ε.

Therefore, for every finite antichain A of 2<N with min{|s| : s ∈ A} ≥ n,∑
s∈A
|x∗∗(e∗s)| < µx∗∗

( ⋃
s∈A

Vs

)
+ ε.

Proof. Let ε > 0 and A be a finite antichain of 2<N. By the definition
of µx∗∗ , there exists n ∈ N such that

(23) ‖x∗∗|Tn∅ ‖ < µx∗∗(2
N) + ε.

We choose an antichain A′ of 2<N such that A ∪ A′ is a finite maximal
antichain of 2<N and A ∩A′ = ∅. Then

(24)
∥∥∥x∗∗∣∣∣ ⋃

s∈A
Tns

∥∥∥+
∥∥∥x∗∗∣∣∣ ⋃

s∈A′
Tns

∥∥∥ = ‖x∗∗|Tn∅ ‖

and

(25) µx∗∗(2
N) = µx∗∗

( ⋃
s∈A

Vs

)
+ µx∗∗

( ⋃
s∈A′

Vs

)
.

By (23)–(25), we conclude that for every n ≥ l,∥∥∥x∗∗∣∣∣ ⋃
s∈A

Tns

∥∥∥+
∥∥∥x∗∗∣∣∣ ⋃

s∈A′
Tns

∥∥∥ < µx∗∗
( ⋃
s∈A

Vs

)
+ µx∗∗

( ⋃
s∈A′

Vs

)
+ ε

≤ µx∗∗
( ⋃
s∈A

Vs

)
+
∥∥∥x∗∗∣∣∣ ⋃

s∈A′
Tns

∥∥∥+ ε.

Therefore, ‖x∗∗|
⋃
s∈A T

n
s ‖ < µx∗∗(

⋃
s∈A Vs) + ε.
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Proposition 4.13. Let (ys)s∈2<N be a block family in S1 with the fol-
lowing properties:

(i) There is a constant ρ > 0 such that ‖
∑
|s|=n λsys‖ ≥ ρ

∑
|s|=n |λs|

for every n ≥ 0 and every family (λs)|s|=n of scalars.
(ii) For every σ ∈ 2N, the sequence (yσ|k)

∞
k=0 is equivalent to the basis

of c0.

Then {µy∗∗σ : σ ∈ 2N} is a non-separable subset of M(2N), where y∗∗σ =

w∗- limn
∑n

k=0 yσ|k for every σ ∈ 2N.

Proof. If {µy∗∗σ : σ ∈ 2N} is separable, we can choose a norm-condensation
point µ ∈ M(2N) of {µy∗∗σ : σ ∈ 2N}. Also fix m ∈ N and ε > 0. Then for
uncountably many σ ∈ 2N, we have

(26) ‖µy∗∗σ − µ‖ ≤ ε/m.
Let σ1, . . . , σm ∈ 2N satisfy (26) and let n0 ∈ N be such that σi|n ⊥ σj |n
whenever n ≥ n0 and 1 ≤ i < j ≤ m. By Lemma 4.12, there is k ≥ n0 such
that

(27)
∑
s∈A
|y∗∗σi (e

∗
s)| < µy∗∗σi

( ⋃
s∈A

Vs

)
+ ε/m

for every finite antichain A of 2<N with min{|s| : s ∈ A} ≥ k and each
i = 1, . . . ,m. We choose A such that∥∥∥ m∑

i=1

yσi|k

∥∥∥ =
∑
s∈A

∣∣∣e∗s( m∑
i=1

yσi|k

)∣∣∣
and we set Ai = A ∩ supp(yσi|k). Since (ys)s∈2<N is a block family in S1, we
may assume that min{|s| : s ∈ Ai} ≥ k. Then by (i), (26) and (27),

mρ ≤
∥∥∥ m∑
i=1

yσi|k

∥∥∥ =
∑
s∈A

∣∣∣e∗s( m∑
i=1

yσi|k

)∣∣∣ ≤ m∑
i=1

∑
s∈Ai

|y∗∗σi (e
∗
s)|

<
m∑
i=1

µy∗∗σi

( ⋃
s∈Ai

Vs

)
+ ε ≤ µ

( ⋃
s∈

⋃m
i=1 Ai

Vs

)
+ 2ε ≤ ‖µ‖+ 2ε,

a contradiction for ε sufficiently small.

Lemma 4.14. Let (xn)n and (yn)n be sequences in S1 both equivalent to
the c0-basis, and

∑
n ‖xn − yn‖ <∞. Set

x∗∗ = w∗- lim
n

n∑
k=0

xk and y∗∗ = w∗- lim
n

n∑
k=0

yk.

Then µx∗∗ = µy∗∗ .
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Proof. For every n ∈ N, we set

x∗∗|≥n = w∗- lim
m

m∑
k=n

xk and y∗∗|≥n = w∗- lim
m

m∑
k=n

yk.

By Proposition 3.8(iii), x∗∗−x∗∗|≥n ∈ S
1 and y∗∗−y∗∗|≥n ∈ S

1, so µx∗∗ = µx∗∗|≥n
and µy∗∗ = µy∗∗|≥n . Then from the weak∗ lower semicontinuity of the second
dual norm we get

‖µx∗∗ − µy∗∗‖ = ‖µx∗∗|≥n − µy∗∗|≥n‖ ≤ ‖x
∗∗
|≥n − y

∗∗
|≥n‖

≤ lim inf
m

∥∥∥ m∑
k=n

xk −
m∑
k=n

yk

∥∥∥ ≤ ∞∑
k=n

‖xk − yk‖.

Therefore, letting n→∞ gives ‖µx∗∗ − µy∗∗‖ = 0 and so µx∗∗ = µy∗∗ .

Proposition 4.15. Let X be a Banach space with an unconditional
basis, and T : X → S1 be an operator such that there exists a subspace
Y of X isomorphic to S1 such that the restriction of T to Y is an isomor-
phism. Then {µT ∗∗(y∗∗) : y∗∗ ∈ B1(Y )} is a non-separable subset ofM(2N).

Proof. Since Y is isomorphic to S1, there is a family (ys)s∈2N in Y equiv-
alent to the S1-basis with Y = [(ys)s]. By Lemma 4.10, there exist a dyadic
subtree (ts)s of 2<N and a block family (ws)s in S1 such that

(28)
∑
s∈2<N

‖T (yts)− ws‖ < δ/2

for δ > 0 small enough so that (ws)s is equivalent to the canonical basis
of S1. For every σ ∈ 2N, we set y∗∗σ = w∗- limn

∑n
k=0 ytσ|k and w∗∗σ =

w∗- limn
∑n

k=0wσ|k. Proposition 4.13 shows that {µw∗∗σ : σ ∈ 2N} is a non-
separable subset ofM(2N). Since T ∗∗(y∗∗σ ) = w∗- limn

∑n
k=0 T (ytσ|k), by (28)

and Lemma 4.14 we see that µw∗∗σ = µT ∗∗(y∗∗σ ) for every σ ∈ 2N. Therefore
{µT ∗∗(y∗∗) : y∗∗ ∈ B1(Y )} is non-separable.

Observe that Propositions 4.11 and 4.15 yield Theorem 1.3 from the
introduction.

Remark 4.16. The proof of Theorem 1.3 actually yields a slightly stronger
result, in particular the conclusion holds if X is assumed to be a subspace
of a space with an unconditional basis.

Corollary 4.17. Let Y be a closed subspace of S1. Then MB1(Y ) =

{µy∗∗ : y∗∗ ∈ B1(Y )} is a non-separable subset ofM(2N) if and only if there
exists a subspace Z of Y isomorphic to S1 and complemented in S1.

Proof. Let I : S1 → S1 be the identity operator. We observe that
I∗∗[B1(Y )] = B1(Y ). By Theorem 1.3 the conclusion follows.
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The following is an immediate consequence of Corollary 4.17.

Corollary 4.18. Let Y be a closed subspace of S1 which is isomorphic
to S1. Then Y contains a subspace Z isomorphic to S1 and complemented
in S1.

To state one more consequence of the above theorem we will need

Lemma 4.19. Let Y be a subspace of S1. Suppose that S1 contains a
complemented copy of Y and vice versa. Then Y is isomorphic to S1.

Proof. Notice that

S1 ≈ c0 ⊕ (S1 ⊕ S1 ⊕ · · · )`1 ≈ c0 ⊕ (S1 ⊕ S1 ⊕ · · · )`1 ⊕ (S1 ⊕ S1 ⊕ · · · )`1
≈ S1 ⊕ (S1 ⊕ S1 ⊕ · · · )`1 ≈ (S1 ⊕ S1 ⊕ · · · )`1 ,

and apply the Pełczyński decomposition method [9].

Corollary 4.20. Let Y be a complemented subspace of S1 such that
{µy∗∗ : y∗∗ ∈ B1(Y )} is a non-separable subset ofM(2N). Then Y is isomor-
phic to S1.

Proof. Since Y is a subspace of S1 and {µy∗∗ : y∗∗ ∈ B1(Y )} is non-
separable, by Corollary 4.17 we know that Y contains a complemented copy
of S1. Since Y is complemented in S1, Lemma 4.19 shows that Y is isomor-
phic to S1.

Remark 4.21. A standard argument using Rosenthal’s lemma [11] shows
that if (Xi)i is a sequence of Banach spaces and X = (

∑∞
i=1⊕Xi)`1 then

B1(X) = (
∑∞

i=1⊕B1(Xi))`1 . More precisely, for every x∗∗ ∈ B1(X), there
exists a unique sequence (x∗∗i )i with x∗∗i ∈ B1(Xi) for all i ∈ N and

∑
i ‖x∗∗i ‖

<∞ such that x∗∗ =
∑∞

i=1 x
∗∗
i .

Corollary 4.22. Suppose S1 is isomorphic to an `1-sum of a sequence
of Banach spaces Xi. Then there is a j such that Xj is isomorphic to S1.

Proof. Let X = (
∑∞

i=1⊕Xi)`1 and assume that X is isomorphic to S1.
If we identify X with S1, by Corollary 4.20 it is enough to prove that there
is a j such that {µx∗∗ : x∗∗ ∈ B1(Xj)} is a non-separable subset ofM(2N).

Assume this is not true. Then for every i, {µx∗∗ : x∗∗ ∈ B1(Xi)} is
separable. Therefore for every i there is µi ∈ M+(2N) such that µx∗∗ � µi
for all x∗∗ ∈ B1(Xi). We set

µ =
∞∑
i=1

µi
2i(1 + ‖µi‖)

.

By Proposition 3.8(ii) & (iv), µx∗∗ � µ for every x∗∗ in (
∑

i⊕B1(Xi))`1 ,
which by Remark 4.21 is B1(S1). However, by the Radon–Nikodym theorem,
the set {µx∗∗ : x∗∗ ∈ B1(S1)} is separable, a contradiction.
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Remark 4.23. In [2] H. Bang and E. Odell showed that S1 is primary,
that is, whenever S1 = X ⊕ Y , then either X or Y is isomorphic to S1. We
note that this fact also follows from Corollary 4.22.

The following is an immediate consequence of the main result from [5],
where actually a stronger statement is proven.

Proposition 4.24. Let D be a subset of 2<N such that

lim sup
n→∞

#(D ∩ {s ∈ 2<N : |s| = n})
2n

> 0.

Then D contains a regular dyadic subtree (ts)s of 2<N.

The next proposition can be found in [4, Proposition 2.2, p. 161]. Recall
that an operator T : X → Y between Banach spaces is called a Gδ-embed-
ding if it is injective and T [K] is a Gδ subset of Y for all closed bounded K.

Proposition 4.25. Let X and Y be Banach spaces and T : X → Y be
a Gδ-embedding. If X is isomorphic to c0, then T is an isomorphism.

Theorem 4.26. Let X be a Banach space. If S1 Gδ-embeds in X, and
X Gδ-embeds in S1, then S1 complementably embeds in X.

Proof. Let W : S1 → X and R : X → S1 be Gδ-embeddings and set
T = RW : S1 → S1. By Lemma 4.10, passing to the dyadic subtree, we
may assume that (T (es))s is a block family in S1. For every n ∈ N, we
set xn =

∑
|s|=n 2−nes. Notice that [(xn)n∈N] is isometric to c0. Then by

Proposition 4.25, the restriction of T to [(xn)n∈N] is an isomorphism. Hence
there is ρ > 0 with 2‖T‖ > ρ such that ‖T (xn)‖ ≥ ρ for all n ∈ N. For each n,
we choose a norm one functional x∗n ∈ (S1)∗ such that x∗n(T (xn)) = ‖T (xn)‖
and we set

An = {s ∈ 2<N : x∗n(T (es)) ≥ ρ/2, |s| = n} and D =
⋃
n∈N

An.

Then

ρ ≤ x∗n(T (xn)) =
1

2n

∑
|s|=n

x∗n(T (es))

=
1

2n

∑
s∈An

x∗n(T (es)) +
1

2n

∑
s∈Acn

x∗n(T (es))

≤ 1

2n

(
#An‖T‖+ (2n −#An)

ρ

2

)
.

By the above inequality we get #An
2n ≥

ρ
2‖T‖−ρ . Hence,

(29)
#(D ∩ {s ∈ 2<N : |s| = n})

2n
=

#An
2n
≥ ρ

2‖T‖ − ρ
> 0 for all n∈N.
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By (29) and Proposition 4.24, there is a regular dyadic subtree (ts)s of 2<N

contained in D. Since (T (es))s is a block family, we easily observe that for
every n ≥ 0 and every family (λs)|s|=n of scalars,∥∥∥ ∑

|s|=n

λsT (ets)
∥∥∥ ≥ ρ

2

∑
|s|=n

|λs|.

Therefore, the assumptions of Proposition 4.13 are fulfilled and so {µT ∗∗(σ∗∗) :

σ ∈ 2N} is a non-separable subset ofM(2N), where σ∗∗ = w∗- limn
∑n

k=0 etσ|k
for every σ ∈ 2N. Now by Theorem 1.3 the conclusion follows.

As a consequence of Theorem 4.26, we obtain

Corollary 4.27. Let X be a closed subspace of S1. If S1 Gδ-embeds
in X, then S1 complementably embeds in X.

Remark 4.28. Note that a positive answer to the following question
implies that Problem 1.2 has a positive answer as well. Let T : S1 → S1 be
an operator and X be an infinite-dimensional reflexive subspace of S1 such
that the restriction of T toX is an isomorphism. Is {µT ∗∗(x∗∗) : x∗∗ ∈ B1(S1)}
a non-separable subset ofM(2N)?
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