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The strong Morita equivalence for coactions of
a finite-dimensional C*-Hopf algebra on unital C*-algebras

by

KAzUNORI KODAKA (Okinawa) and TAMOTSU TERUYA (Maebashi City)

Abstract. Following Jansen and Waldmann, and Kajiwara and Watatani, we intro-
duce notions of coactions of a finite-dimensional C*-Hopf algebra on a Hilbert C*-bimodule
of finite type in the sense of Kajiwara and Watatani and define their crossed product. We
investigate their basic properties and show that the strong Morita equivalence for coac-
tions preserves the Rokhlin property for coactions of a finite-dimensional C*-Hopf algebra
on unital C*-algebras.

1. Introduction. Let A and B be unital C*-algebras and X a Hilbert
A-B-bimodule of finite type in the sense of Kajiwara and Watatani [8]. Let
H be a finite-dimensional C*-Hopf algebra with dual C*-Hopf algebra HP.
In this paper, following Jansen and Waldmann [7], we shall introduce the
notion of coactions of H? on X and define their crossed product. That is,
for coactions p and o of H? on A and B, respectively, we introduce a linear
map A from X to X ® H?, which is compatible with the coactions p, o and
the left A-module action, the right B-module action and the left A-valued
and right B-valued inner products. Then we can define the crossed product
X %y H, which is a Hilbert A x, H - B x, H-bimodule of finite type. Fur-
thermore, we shall give a duality theorem similar to the ordinary one. The
corresponding theorems in the case of countably discrete group actions and
of Kac systems are found in Kajiwara and Watatani [9] and Guo and Zhang
[5], respectively. The latter result is almost a generalization of our dual-
ity theorem. But our approach to coactions of a finite-dimensional C*-Hopf
algebra on a unital C*-algebra is a useful addition, especially the main re-
sult on preservation of the Rokhlin property under strong Morita equiva-
lence. So, in Section [5] we give a duality theorem, a version of crossed prod-
uct duality for coactions of finite-dimensional C*-Hopf algebras on Hilbert
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C*-bimodules of finite type. Also, if X is an A-B-equivalence bimodule,
we can show that X x) H is an A x, H-B x, H-equivalence bimodule.
Hence A x, H is strongly Morita equivalent to B x, H. Finally, if X is
an A-B-equivalence bimodule and p has the Rokhlin property, then ¢ has
also the Rokhlin property. As an application of this result, we obtain the
following: Under a certain condition, if a unital C*-algebra A has a coac-
tion of HY with the Rokhlin property, then any unital C*-algebra that is
strongly Morita equivalent to A also has a coaction of H? with the Rokhlin
property. In [I3, Section 4], we gave an incorrect example of an action of a
finite-dimensional C*-Hopf algebra on a unital C*-algebra with the Rokhlin
property. But applying the above result to [11}, Section 7], we can give several
such examples.

For an algebra A, we denote by 14 and id4 the unit element in A and the
identity map on A, respectively. If no confusion arises, we denote them by 1
and id, respectively. For each n € N, we denote by M, (C) the n x n-matrix
algebra over C, and I,, denotes the unit element in M, (C).

For projections p, ¢ in a C*-algebra A, we write p ~ ¢ in A if p and ¢ are
Murray—von Neumann equivalent in A.

2. Preliminaries. Let H be a finite-dimensional C*-Hopf algebra. We
denote its comultiplication, counit and antipode by A, € and S, respec-
tively. We shall use Sweedler’s notation A(h) = h(;) ® h(oy for any h € H,
which suppresses a possible summation when we write comultiplications.
We denote by N the dimension of H. Let H° be the dual C*-Hopf al-
gebra of H. We denote its comultiplication, counit and antipode by A,
€® and S, respectively. There is a distinguished projection e in H. We
note that e is the Haar trace on H. Also, there is a distinguished projec-
tion 7 in H° which is the Haar trace on H. Since H is finite-dimensional,
H = @ M}, (C) and H® = @ | My, (C) as C*-algebras. Let {Ufj |
k=1,...,L, 4,7 =1,..., fr} be a system of matrix units of H. Let {wf]
k=1,...,K,i,j = 1,...,dr} be a basis of H satisfying Szymanski and
Peligrad’s [I7, Theorem 2.2,2], which is called a system of comatriz units
of H, that is, the dual basis of a system of matrix units of H?. Also let
{of | k = 1,...,K,i,j = 1,....dp} and {f; | k = 1,...,L,i,j =
1,..., fx} be systems of matrix units and comatrix units of H°, respec-
tively.

Let A and B be unital C*-algebras and X a Hilbert A-B-bimodule
of finite type in the sense of [§]. We regard a C*-Hopf algebra H® as an
HO-HC-equivalence bimodule in the usual way.

Let X ® HY be the exterior tensor product of the Hilbert C*-bimodules
X and H°, which is a Hilbert A ® H?- B ® H°-bimodule.
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LEMMA 2.1. With the above notation, X ® H° is a Hilbert A ® HO -
B ® H -bimodule of finite type. In particular, if X is an A-B-equivalence
bimodule, then X ® H? is an A ® H® - B ® H°-equivalence bimodule.

Proof. Since X is of finite type, there is a right B-basis {u;}}' ; of X.
Then for any z € X and ¢ € H?,

n n

D (i @10 ®1%2® ¢)pem = > _(ui @ 19)((ui, 1) ® ¢) = 2 ® ¢.

i=1 i=1
Thus the family {u; ® 19}, is a right B ® H%basis of X ® H°. In the
same way, we can see that there is a left A @ H -basis of X ® H". Hence
by [8, Proposition 1.12] or [9, Lemma 1.3], X ® H is a Hilbert A ® H°-
B ® HO-bimodule of finite type. Now suppose that X is an A-B-equivalence
bimodule. Since X is full with both-sided inner products, by the definitions
of the left and right inner products of X ® HY, so is X ® H". Moreover, the
associativity condition holds for the left and right inner products of X @ H"
since it holds for the left and right inner products of X. Hence X ® HY is
an A® H- B ® H%equivalence bimodule. m

Let Hom(H, X) be the vector space of all linear maps from H to X.
Then X @ H° and Hom(H, X) are isomorphic as vector spaces. Sometimes,
we identify them.

3. Coactions of a finite-dimensional C*-Hopf algebra on a Hil-
bert C*-bimodule of finite type and strong Morita equivalence.
Let A and B be unital C* algebras and X a Hilbert A-B-bimodule of finite
type. Let H be a finite-dimensional C*-Hopf algebra with dual C*-Hopf
algebra HO. Let p be a weak coaction of H? on A, and X a linear map from
X to X ® H°. Following [7], [9], we introduce several definitions.

DEFINITION 3.1. With the above notation, we say that (A4, X, p, A\, H°)
is a weak left covariant system if:

(1) Maz) = p(a)A(x) for any a € A and x € X,
(2) p(alz,y)) = agno(A(x), A(y)) for any z,y € X,
(3) (idx ® €¥) o A = idx.
We then call A a weak left coaction of H on X with respect to (4, p).

We define the weak action of H on A induced by p as follows: For any
ac€Aand he H,
h-pa = (id @ h)(p(a)),
where we regard H as the dual space of H?. In the same way as above, we
can define the action of H on X induced by A as follows: For any x € X
and h € H,

B = (id® h)(Mz)) = A (h),
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where \(z) is the element in Hom(H, X) induced by A(z) in X ® H°. Then
we obtain the following conditions which are equivalent to conditions (1)—(3)
in Definition respectively:

(1) h-xax = [hay pa][h) -xx] for any a € A,z € X and h € H,
(2) oy ale,5) = 4y 2 21 [S(hty)) 2 ) for any 2,y € X and b € H,
(3) 1g -y =z for any x € X.

DEFINITION 3.2. Let o be a weak coaction of H? on B. With the above
notation, we say that (B, X, o, \, H%) is a weak right covariant system if:

(4) A(xb) = A(x)o(b) for any b € B and x € X,
(5) o({z,y)B) = (M), A(y)) B po for any z,y € X,
(6) (idx ® €) o X = idy.

We then call A a weak right coaction of H® on X with respect to (B, o).
We can also define the weak action of H on X induced by A satisfying
conditions similar to (1)’—(3)’. That is, we have the following conditions
which are equivalent to conditions (4)—(6), respectively:

(4)" h-x xb = [hqy A z][h(2) o D] for any b€ B, x € X and h € H,
(5) b (2.)5 = ((SCh7y) 2 o1, ey b} for amy 2.y € X and h € H.
(6) 1 -y x =z for any z € X.

Let p and o be weak coactions of H? on A and B, respectively. Let X
be a Hilbert A-B-bimodule of finite type.

DEFINITION 3.3. We say that (4, B, X, p,0,\, H®) is a weak covariant
system if:

(1) Max) = p(a)\(z) for any a € A and z € X,

(2) AM(xzb) = A(z)o(b) for any b € B and z € X,
(3) plalz, y)) = agmo(A(x), A(y)) for any z,y € X,
(4) o({z, >B) < (), A(y)) Bgmo for any z,y € X,
(5) (idx ® €?) o X = idx.

We then call A a weak coaction of H® on X with respect to (4, B, p,o). We
note that the above conditions are equivalent to the following conditions,

respectively:

(1) h-xazx = [hy pa][hgy -x x] for any a € A,z € X and h € H,
(2)" h-xxb = [hq) ,\m][h(g) b] for any be B,z € X and h € H,
(3) hpalz,y) = allhq) Ax],[S’(hZ‘Q)) a2 y]) for any x,y € X and h € H,
(4)" h

(5)

4)’ <‘T’y>B: <[S(h?1)) ]7[h(2) )\y]>B for any z,y € X and h € H,
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We extend the above notions to coactions of a finite-dimensional C*-Hopf
algebra on unital C*-algebras.

DEFINITION 3.4. Let A, B and H, H® be as above. Let p and ¢ be coac-
tions of H° on A and B, respectively, and let X be a Hilbert A-B-bimodule
of finite type.

(i) We say that (A, X, p, A\, H°) is a left covariant system if it is a weak
left covariant system and the weak left coaction A of H? on X with respect
to (A, p) satisfies

(¥) A®id) oA = (id ® A%) o A,
which is equivalent to
(x) h-x[l-xz] =hl-\x for any x € X and h,l € H.

We then call X a left coaction of H? on X with respect to (A, p).

(ii) We say that (B, X,0,\, HY) is a right covariant system if it is a
weak right covariant system and the weak right coaction A of HY on X with
respect to (B, o) satisfies (*) or (x)'. We call X a right coaction of HY on X
with respect to (B, o).

(iii) We say that (A, B, X, p,0,\, H°) is a covariant system if it is the
weak covariant system and the weak coaction A with respect to (A, B, p, o)

satisfies () or (x). We then call A a coaction of H? on X with respect to
(A, B, p,0).

Furthermore, we extend the notion of the covariant system to twisted
coactions of a finite-dimensional C*-Hopf algebra on unital C*-algebras. We
recall the definition of a twisted coaction (p,u) of a C*-Hopf algebra H® on
a unital C*-algebra A (see [9], [10]). Let p be a weak coaction of H? on A
and u a unitary element in A® H°® H°. Then we say that (p,u) is a twisted
coaction of HY on A if:

(1) (p®id) o p = Ad(u) o (id ® A% o p,

(2) (u®1%)(id® A’ ®id)(u) = (p ® id ® id)(u)(id ® id ® A%)(u),

(3) ([de@h® ) (u) = (Id® e @ h)(u) = (h)1° for any h € H.

The above conditions are respectively equivalent to:

(1) hop[lpa] = Alhay, L) h)l) -p alu* (hs), l(z) for any a € A and
h,l € H,

(2)" alhqy, la))alhe)le),m) = [hay p Wlay, ma)]ahe), lgme)) for
any h,l,m € H,

(3)" u(h,1) =u(1,h) = e(h)1° for any h € H.

DEFINITION 3.5. Let A, B and H, H° be as above. Let (p,u) and (o, v)

be twisted coactions of H? on A and B, respectively, and let X be a Hilbert
A-B-bimodule of finite type. We say that (A, B, X, p,u,0,v,\, H%) is a
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twisted covariant system if it is a weak covariant system and the weak coac-
tion A of H® with respect to (A, B, p, o) satisfies

() (A ®id)(A(z)) = u(id ® AY)(A\(z))v* for any = € X,
which is equivalent to

(**), h-y [l A 1,‘] = a(h(l), l(l))[h@)l@) ‘A l‘]i}\*(h(g), 1(3)) for any x € X and
hle H,

where @ and v are the elements in Hom(H x H, A) and Hom(H x H, B)
induced by v € A® H° ® HY and v € B® H° ® H?, respectively. We then
call X a twisted coaction of H® on X with respect to (A, B, p,u,o,v).

Next, we introduce the notion of strong Morita equivalence for coactions
of a finite-dimensional C*-Hopf algebra on unital C*-algebras.

DEFINITION 3.6. Let A, B and H, H° be as above.

(i) Let p and o be weak coactions of H? on A and B, respectively. We say
that p is strongly Morita equivalent to o if there are an A-B-equivalence bi-
module X and a weak coaction A of H® on X such that (A4, B, X, p,o, A, H®)
is a weak covariant system.

(ii) Let p and o be coactions of HY on A and B, respectively. We say
that p is strongly Morita equivalent to o if there are an A-B-equivalence
bimodule X and a coaction A of HY on X such that (4, B, X, p, 0, \, H°) is
a covariant system.

(iii) Let (p,u) and (o, v) be twisted coactions of H? on A and B, respec-
tively. We say that (p,u) is strongly Morita equivalent to (o,v) if there are
an A-B-equivalence bimodule X and a twisted coaction A of H° on X such
that (A, B, X, p,u,0,v, A, H°) is a twisted covariant system.

We shall show that the above strong Morita equivalences are equivalence
relations.

PROPOSITION 3.7. The strong Morita equivalence of weak coactions of a
finite-dimensional C*-Hopf algebra on a unital C*-algebra is an equivalence
relation.

Proof. It suffices to show transitivity since the other conditions clearly
hold. Let A, B,C be unital C*-algebras and let X and Y be an A-B-
equivalence bimodule and a B-C-equivalence bimodule, respectively. Let p,
o and v be weak coactions of H? on A, B and C, respectively. We suppose
that p is strongly Morita equivalent to o and that o is strongly Morita equiv-
alent to v. Let A and p be weak coactions of H° on X and Y respectively
satisfying Definition i). Then X ®p Y is an A-C-equivalence bimodule.
We define a bilinear map “ -yg,” from H x (X ®pY) to X ®p Y as follows:
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Foranyze X,yeY and h € H,
hoep (@ @y) = [ha)y x 2] @ [he) -yl

Then we can show that the above map “ -\g,” satisfies conditions (1)’~(5)’
in Definition [3-3] by routine computations. m

COROLLARY 3.8. The strong Morita equivalence of twisted coactions of a
finite-dimensional C*-Hopf algebra on a unital C*-algebra is an equivalence
relation.

Proof. By Proposition we have only to prove condition (*x)" in Def-
inition Let (p,u), (o,v) and (7, w) be twisted coactions of H° on unital
C*-algebras A, B and C, respectively. Let the notation be as in the proof
of Proposition [3.7] For any 2 € X,y € Y and h,l € H,

hoaeu [l asn T @yl = [hay x [y a 2] @ [y u L2y u vl
= u(hqy, L)) [h)lz) 2 2] @ [hg)les) u ylw™ (hey, L))
= U(hy, L) lhele) ren (z @ Y)0*(he), l3))-
Therefore, we obtain the conclusion. =
The notion of strong Morita equivalence of coactions of a finite-dimensio-
nal C*-Hopf algebra on unital C*-algebras is an extension of that of actions
of a finite group on unital C*-algebras. To see this, let G be a finite group
and « an action of G on a unital C*-algebra A. We consider the coaction

of C(G) on A induced by the action o of G on A; we denote it also by a.
That is,

a:A—A®CG), aHZat(a)@)ét
teG
for any a € A, where for any ¢t € G, J; is the projection in C(G) defined by
0 ifs#t,
ols) = {1 if s =t.
Let B be a unital C*-algebra and § an action of G on B. We denote by the
same symbol g the coaction of C'(G) on B induced by f.

ProOPOSITION 3.9. With the above notation, the following conditions are
equivalent:

(1) The actions « and B of G on A and B are strongly Morita equivalent.
(2) The coactions o and B of C(G) on A and B are strongly Morita
equivalent.

Proof. Suppose (1) holds. Then by Raeburn and Williams [I5, Defini-
tion 7.2], there are an A-B-equivalence bimodule X and an action u of G
by linear isomorphisms of X such that

ar(alz,y)) = alue(x), w(y)),  Bel(2,y)B) = (ue(2), w(y)) B
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for any x,y € X and t € G. We note that by [15, Remark 7.3],

ug(ax) = ap(a)ug(z),  ug(ab) = uy(z)Bi(b)
forany a € A, b€ B,z € X and t € G. Let A be a linear map from X to
X ® C(G) defined by setting, for any x € X,

Az) = Zut(x) ® Oy.
teG
Then by routine computations, A is a coaction of C(G) on X with respect
to (A, B, «, 3). Hence we obtain (2).

Conversely, suppose (2) holds. Then there are an A-B-equivalence bi-
module X and a coaction A of C'(G) on X with respect to (4, B, a, 3). We
regard G as a subset of C*(G). For any ¢t € G, we define a linear map u; on
X as follows: for any z € X, us(x) = t-yx. Then for any ¢t,s € G and x € X,

ut(us(z)) =t-x[s-xx] =ts )z = ws(x).

Thus « is an action of G by linear isomorphisms of X, which satisfies the
desired conditions by easy computations. Hence we obtain (1). =

Modifying [15l Example 7.4(b)], we shall obtain the following lemma,
which can give examples of the strong Morita equivalence of coactions of a
finite-dimensional C*-Hopf algebra on a unital C*-algebra. First, we intro-
duce the following definition:

DEFINITION 3.10. Let p and o be weak coactions of H? on A. We say
that p is exterior equivalent to o if there is a unitary element w € A @ H°
such that

oc=Adw)op, (id® ) (w)=1.

LEMMA 3.11. Let p and o be weak coactions of H® on A. Then the
following conditions are equivalent:

(1) p and o are exterior equivalent.

(2) p and o are strongly Morita equivalent via a weak coaction \ from
an A-A-equivalence bimodule 4 A4 to an AQ HY - A® H-equivalence
bimodule sgp0A ® HO 4o 10, where we regard A and A ® H as an
A-A-equivalence bimodule and an A @ H° - A @ H-equivalence bi-
module respectively in the usual way.

Proof. Suppose (1) holds. Then there is a unitary element w € A ® H°
such that o = Ad(w) o p and (id ® €)(w) = 1. Let A be a linear map from
AAA 10 go0A ® HY 4o o defined by A(z) = p(z)w* for any # € 4A4. By
routine computations, \ is a weak coaction of H? on 4A4 with respect to
(A, A, p,0).

Conversely, suppose (2) holds. We note that A is a weak coaction
of H® on oA with respect to (A, A4,p,0). We identify A ® H® with
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End 4570 (A® HY 4 5r0), the C*-algebra of all right A® H%-module maps on
A® H® ggpo. Let w = Ox(1)*,1@10 be the rank-one operator on A ® HY 4o 50
induced by A(1)* and 1® 1°. Then w is a unitary element in End 4570 (A ®
HY 4o 50). Indeed, for any x € A ® H® 5z o,
ww* () = A1) (1@ 1ALz = A1), A1) agpo = o(1)z = 2,
ww(z) = MDAL) 2 = 4gmo (A1), A1)z = p(1)z = .
Also, for any a € A and z € A® HY 45 o,

(wp(a)w™)(x) = w(p(a)A(1)x) = A(1)*A(a)z

= (A1), AMa)) agmo © = o(a)z.
Thus w is a unitary element in AQ H® and o = Ad(w)op. Let z = (id®e?)(w).
Then z is a unitary element in A such that az = za for any a € A since
o = Ad(w)op. Let w; = w(z*®1°). Then w is a unitary element in A® H°
such that ¢ = Ad(wy) o p and (id ® €°)(w1) = 1. Therefore we obtain (1). =

LEMMA 3.12. Let (p,u) and (o,v) be twisted coactions of H? on A. Then
the following conditions are equivalent:

(1) (p,u) and (o,v) are exterior equivalent.

(2) (p,u) and (o,v) are strongly Morita equivalent via a twisted coaction
X\ from an A-A-equivalence bimodule 4Ay to an A @ H°-A @ HO-
equivalence bimodule ,gpo0A ® H0A®H07 where we regard A and
A® HO as an A-A-equivalence bimodule and an A @ H°-A ® HO-
equivalence bimodule respectively in the usual way.

Proof. Suppose (1) holds. Then there is a unitary w € A® H° such that
c=Adw)op, v=(w®1%(p®id)(w)u(id® A%)(w").
Let A be as in the proof of Lemma Then for any x € 4 A4,
(A @ id) 0 N) (@) = ulid ® A)(p(a))u*(p @ id) (") (w* @ 1°)
— u(id & A%)(p(x))(id © A) ()"
= u(id ® A% (\(z))v*.
Thus by Lemma \ is a twisted coaction of H? on 4A4 with respect to
(A7 A7 p7 u, o, ’U).

Conversely, suppose (2) holds. We note that A is a twisted coaction
of HY on 4A4 with respect to (A, A, p,u,0,v). We identify A ® H° with
End 4g50(A @ HO g p0). Let w = Ox(1)*,110 be the rank-one operator on
A® H° 450 induced by A(1)* and 1 ® 1°. Then w is a unitary element in

End 4550 (A ® H® 4o 50) such that o = Ad(w) o p by Lemma We note
that w* = 4gp0(A(1),1® 1Y). Indeed, for any x € A ® H® 4o po,

wr = (1@ 19)(N1)*, 2) agmo = M1)2 = 4gmo(A(1),1® 1%)z.
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Hence w* = 4gp0(A(1),1® 1°). Thus
(p@id)(w*) = (p @ id) (agro(A(1), 1 @ 1%))
= apmopro (A ®id) o X)(1),A(1) ® 1%)
= Anmoemo(u((id ® A%) o \)(1)v*, A\(1) ® 19)
= u((id ® A% o \)(1)v*(A(1)* @ 1Y).
It follows that

(p ® id) (w*)(w* @ 1°)
= u((id ® A%) o M) (1)o* (A(1)" ®1°) (apmo (A1), 1 ®1%) @17)
— u((id ® A%) 0 A) (10" (ML), A1) a0 @ 1°)
= u((id ® A%) o A)(1)o* (o ({1, 1)) @ 17)
— u(id ® A" = ulid ® A (g0 (A1), 10 1°))0"
= u(id ® A%) (w*)v*.

Thus v = (w ® 19)(p ® id) (w)u(id ® A%)(w*), proving (1). =

Next, we discuss relations between innerness, outerness and strong Mo-
rita equivalence. Let pgo be the trivial coaction of H° on A.

LEMMA 3.13. (i) Let p be a weak coaction of H® on A. Then the following
conditions are equivalent:

(1) p is inner.

(2) p is strongly Morita equivalent to pgo.

(ii) Let p be a coaction of H® on A. Then the following conditions are
equivalent:

(1) p is strongly inner,

(2) p is strongly Morita equivalent to pﬁo.

Proof. (i) Suppose that p is inner. Then there is a unitary w € A ® H°
such that p = Ad(w) o p0 and (id ® €”)(w) = 1 (we argue as in the proof
of (2)=(1) in Lemma . Thus p is exterior equivalent to ps,. Hence by
Lemma p is strongly Morita equivalent to pgo.

Conversely, suppose that p is strongly Morita equivalent to p’éo. Then
there are an A-A-equivalence bimodule X and a weak coaction A of H? on
X with respect to (A, A, p, pgo). We note that for any a € A and v € X,

Aza) = )\(m)pflo (a) = XMz)(a ® 19).
For any h € H, let w(h) be a linear map on X defined by setting, for any
x e X,
w(h)r =h -y z.

Then by the above discussion, w(h) is in End(X), the C*-algebra of all
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right A-module maps on X. Since X is an A-A-equivalence bimodule, we
can identify End4(X) with A and regard w(h) as an element in A for any
h € H. Furthermore, since the map h — w(h) is linear, w € Hom(H, A).
Let w € A® H° be induced by @. By the definition, clearly @w(1) = 1. We
show that w is a unitary element in A ® H such that p = Ad(w) o pgo. For
any ¢,y € X and h € H,

(@) (h)a,y) a = (@(hz))a, D(S(h{1))y) 4
= ([h2) x 2, [S(h{y)) aylha = S(h7) - pa (2, y)a = (e(h)z,y)a.
( ) pHO

Thus w*w = 1 ® 1Y. Also, for any xz,y € X and h € H,

hep alw,y) = allhay ], [S(h{g)) 2 yl) = al@(hqy)z, W(S(hey)))y)

= W(h()alz, y)w*(h))-

Hence p = Ad(w) o pf, since X is an A-A-equivalence bimodule. Thus
ww* = wpiho(1)w* = p(1) = 1® 1°. Therefore, the weak coaction p is inner.

(ii) Suppose that p is strongly inner. Then it is exterior equivalent to pgo.

Hence by Lemma p is strongly Morita equivalent to pgo.

Conversely, suppose that p is strongly Morita equivalent to pflo. Then
there are an A-A-equivalence bimodule X and a coaction A of H® on X with
respect to (A, A, p, p4yo). Let w be as in (i). It suffices to show that for any
h,l € H we have w(hl) = w(h)w(l). Indeed, for any = € X and h,l € H,

wh)w(D)x =h-\[l-xz] =hl-\xz=whl)x.
Therefore, p is strongly inner. m

Let p‘l‘_‘lo and pgo be the trivial coactions of H? on A and B, respectively.
Suppose that A and B are strongly Morita equivalent and let X be an A-B-
equivalence bimodule. Then pflo and pflo are strongly Morita equivalent. If
a linear map Ay, from X to X ® H? is defined by A%, (z) = 2 ® 1° for any
x € X, then )\)[_f.o is a coaction of HY on X with respect to (A, B, pﬁo, pgo).

COROLLARY 3.14.

(i) Let p and o be weak coactions of H® on A and B, respectively. If p
is strongly Morita equivalent to o, then p is inner if and only if so
15 0.

(ii) Let p and o be coactions of H® on A and B, respectively. If p is
strongly Morita equivalent to o, then p is strongly inner if and only
if so is 0.

Proof. (i) Suppose that p is inner. Then o is strongly Morita equiva-
lent to pgo by Lemma (i), Proposition and the above discussion.
Therefore, o is inner by Lemma [3.13(1).
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(ii) Suppose that p is strongly inner. Then o is strongly Morita equivalent
to pgo by Lemma (ii), Corollary and the above discussion. Therefore,
o is strongly inner by Lemma [3.131i

PROPOSITION 3.15. Suppose that H® is not trivial. Let p and o be coac-
tions of HY on A and B, respectively. If p is strongly Morita equivalent to o,
then p is outer if and only if so is 0.

Proof. Suppose that p is outer. To show that o is outer, let m be a
surjective C*-Hopf algebra homomorphism of H° onto a non-trivial C*-
Hopf algebra K°. Suppose that (id ® 7) o ¢ is inner. Then (id ® 7) o o is
strongly Morita equivalent to (id ® 7) o p by easy computations. Thus by
Corollary - , (id®m)op is inner. This is a contradiction completing the
proof. =

Furthermore, we also have the following easy lemma:

LEMMA 3.16. Let (p,u) be a twisted coaction of H on A and let
(p ®id,u ® I,) be a twisted coaction of H® on A ® M,(C), where n is a
positive integer and we identify A ®@ H° @ M, (C) with A ® M,(C) @ HY.
Then (p,u) is strongly Morita equivalent to (p ®id,u ® I,,).

Proof. Let f be a minimal projection in M,(C) and define X =
(1® f)(A® M, (C)). We regard it as an A- A® M,,(C)-equivalence bimodule
in the usual way. Let A be the linear map from X to X ® H defined by

M1 fz) =1 f@1%)(p©id)(z)
for any z € A® M, (C), where we identify A® H°® M, (C) with A® M, (C)
® H°. By routine computations, we can see that \ satisfies conditions (1)—(5)
in Definition and condition (¥%). m

4. Crossed products of Hilbert C*-bimodules of finite type by
finite-dimensional C*-Hopf algebras. In this section, we extend the
notion of crossed products of Hilbert C*-bimodules of finite type defined in
[7], [9] to (twisted) coactions of finite-dimensional C*-Hopf algebras.

Let H be a finite-dimensional C*-Hopf algebra with dual C*-Hopf al-
gebra H?. Let A and B be unital C*-algebras and X a Hilbert A- B-bimodule
of finite type. Let (A, B, X, p,u,0,v,\, H) be a twisted covariant system.
Under certain conditions, we define X ) H, a Hilbert A x,,, H-B X, H-
bimodule of finite type, as follows: X x, H is just X ® H (the algebraic
tensor product) as a vector space; and its left action and right action are
given by

(a Xpu h)(x X\ 1) = alhy -x 2]0(hey, [1)) X byl
(.%' X\ l)(b Ao v m) = $[l(1) b]@(l@) m(l)) X 1(3)m(2)
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for any a € A, b € B, z € X and h,I,m € H. Then for any ai,as € A,
xr € X and h,l,m € H,

((a1 X pu h) (a2 Xpu 1)) (z x5 m)
= ar[hqy -pu azlti(h(z), l<1>)[h( )l(z

) x 2]o(haylz), me1)) X hs)laym)
= a1 [h) x a2ll) A 2]]0(hz), L)) D(hez)l) 1)) ¥x hiaylym)
= a1 [y -x azlly x 2]0(L2), m) | 0(hay, Ligymia)) X hisylayms)

= (a1 xpu h) ((CLQ Xpul) (T Nkm))‘

Also, for any b1,b0 € B, x € X and h,l,m € H,

(z 35 h) (b1 %o 1)(b2 X m))
= z[h(1) o b1 [h2) 0w [l1) 0w b2l ]0(h3)s Ui2) )0 (heay L), miny)
XA s)laymz)
= z[h(1) o0 01]U(h(2), L)) 3yl 2) o0 D200 (Ria)l(s), m(1)) XX hs)laymz)
= ((z xx h) (b1 Xgp 1)) (b2 g m).

Thus X <\ H is a left A x,, H- and right B X, H-bimodule. Also, its left
A X, H-valued and right B X, H-valued inner products are given by

A><1p,uI'I<:B AN h’7 ) DY l>
= alz, [S(h)li3)" A ylv(S(hayl)™ l1))) X hiz)ly,
(@ >\ h,y X2 )Buy 1
= G (g, S (1)) BTy o () B0y L) o Pt
for any z,y € X and h,l € H. We shall show that X x, H is a Hilbert
A X,y H-B X4, H-bimodule of finite type by proving that X x, H satisfies
conditions (1)-(10) in [9, Lemma 1.3]. Clearly X x) H is a left A x, H-
and right B %, H-bimodule. Thus conditions (1), (4) in [9, Lemma 1.3] are
satisfied. For any a,b € A, x,y € X and h,l,m € H,
(@ Xy h) Awa(x XL,y X\m)
= alhqy pu a(z, [SU2ym{z)" 2 y[o(SUaymia)* s ma))) k), Lymiy)
Hpou ) layms)
= aa{lh) 2], [S(hiy) x [SUym{s)" 2 9] [S(hiy) 00 D(SUymiy)" m))])
X ﬂ(h(4), l(g)ma)) Np,u h(5)l(4)m2‘5)
= aa(lhqy xal, [S(his)) » [SUym{y)" A yl]0(S(hiy), SUzmis))
(S(he)lymiz)"s ma)v*(S(hiy), S(U{1)))a( k), Lsymis)

X X0 h(7) Z(G) mfﬁ)

X U
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= aA([h( 1) A7, @(S(h* ), S(Laymiy)) NS (haylizym(s)
x 0(S(hlmiy)", ma Wh(z) 1>)*>17( ) M(5) i sy mie)
= a A{[h(1) -» |0 (h(2),l(1))7 [S(haylzmiz)” A ] 0(S(hel@ymiz)™ may))
x 0 (hes), Liaymigy i(hie), Lsymis)) X pu hinlieymie)
= a a([hy x 2]0(he)s L)), [S(hiayl@ymis)™ - yJo(S(h)l@ymiz) s ma)))

><|p,u h(5)l(4)m>(k4)

‘A Y

= Ax,,m(alhy 2 2]o(he), L)) X h)lz), ¥ xam)
= Axp,uH<(a NP,U h’)(x DY l)7y DY m>

Also,

(@ x0x hyy X5 1) By, 1 (D X m)

= &k(h? 2)s S(hﬁ)))[ ? 3) ‘o <~’U7?J>B]5(h>(k4)a 5(1))[h>(k5)l(2) o0 DJU( ?6)5(3)77”(1))

Mo hinlaym()

v*(h%, (2 S(h{y DGy 0w (@ 9) B[y o L) o0 D]]O(A5) L2) )0 (M) Uiy mqa))

nlame)

= 0¥ (hiy)S(hipy)) [Afs) o (2.9} Bl -0 BIJT(A4) L) JO (s Liz), )
Moo h( yoaym2)

= 0 (Wi, Sy [hfs) o (@:9)Bllay o0 D] (B o0 DUy ) J0CR) isymee)
Xow h?6)1(4)m(3)

= v*(hiyy, S(h{y)) sy 0w (@) Bl o D02y, 1)) [O(Rg), Lizymiay)
Mo his)layms)

= <$ DY h7 (y DY l)(b Now m)>B><UvH

Xgw h

Thus conditions (3), (6) in [9, Lemma 1.3] are satisfied. For any z,y € X
and h,l € H,

Ay H(T X0y X 1)

= (I5)hisy, Sy his) [y his) o AUS U hiy) A UIB(S Ukl L), 7))
X p.u l(7)h?6)

= (I iy, Swhy))
< a([Ue)hsy » [SUa)hiay) 3 9] [l Ry o0 DS () by )5 L)) [S Uiy Ay )* o 2])
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—

= u*(l(6)h(s) S(U(5)h(5)))
X al[lnyhiz) 2 [SUayhisy) » 919 (sy sy S Ui 8oy o) S iy ) L))
X &(l(lo)hao)? S(hiy), [SUanhiig)™ z]) Xpu la2)h{1z)

= (e his): S hfs))
x a(@lzyhiny, SUayhin))lle)his) S hiz) -» y]oeyhie) S hiz)s L)
X UA(Z( )h*lo S( (1)))7 [S(l(n h(n ) x]> Hpu l(8)h>(k8)

= a(y, [SU)hiz)" A 2]0(SU1)hiz)™s h))) Xpu lz)hia

= A, H{Y XA Lw Xy h).

Similarly

(2 3\ hyy X5 Dy, om
= 0" (Ui he)s S Ui i) [y hry o DG4y, L) [S (hs)) o0 (9, 2) BIO(S (o)), by )]

Xow U5y (s)
= v*(I{3yhe), Sy hs)) Ly by o v* (S (hay), S(I1)))

x [Ifsyhs) ow [S ( 3)) “ow (U, > ]][l?ﬁ)h( 9) ‘a0 V(S(h(2)), h1))] 2o L7 h(10)
=0(S ((3) 6)" ( ) ) IS (hpylwy) o V(A(g, L))"

x (I h ) ‘0w (¥, %) B ]][(6 h9) o0 U(S(h(2)), (1)) X L7 P(10)
= [[S(hz > 6( (o) t)O(S (ki >> hisyl@)]”

1) [S(h3)) o, <Z/71'>BH[ 9) ‘o0 V(S (h2)), h(1))] Xow 17y h(10)
2)V(S(h{gyl2)h(z)- L) )] [1inhs) o0 [S(h(3)) o (¥: 2) B]
(h2)): h )] >4ml(()‘)h( 10)

3) h(s),S(h(4)))[l( yhie) o [S(R(3)) o (¥, ) B]]
(h(2)), h(1))] Xow L) hs)

= 3(S(12) 11)) [[{3yh(s)S (h< ) o (Y 2) BJU* {4y hie)» S (hz)))

X 15y (7 o0 V(S(h(2)), 1)) Xaw L s)

= 0(S () L) U3, o (s @) BV Uy hays S (hia))isy hs) o0 (S (hi2))s hiay)]

X Z(G)h(ﬁ)
= 0(S(U) L) (L) o0 (s @) BIOW his) S () hiay) )V (L hge)» S (s V)

X lZ‘6)h(7)

= (y Xx L, X\ h) By H-

X

q

= [ (S(h( )5(3))
[l( )h(9) Uv@\(

(4)/Y
0(S(l2))s lay) vl
X Uiy 7y o0 0(S
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Thus conditions (2), (5) in [9, Lemma 1.3] are satisfied. Moreover, for any
beB,z,ye X andl,m € H,
Ay H(T XN L (Y A m) (b Xgp 1))
— (2, [S(Ugymis))" A yI(S (aymiy ) s m) IS Uaymiy)) ) o )
X pu L4y me)
= a(@[lq) o0 B, [SUymiz)" 2 ylo(S(U2ym{z))™s m1))) Xpau liaymiy
= Ax, H{(T XA )b g0 1),y xxm).
Also, for any x,y € X and h,l,m € H,
Ay H(T XN (Y 3 m) (1 Xgp b))
= Ayt (T X0 L y[m) 0,0 (S (h()), b)) T0(mia), hiay) X5 ma)his)
= (@, [SU)heym{s)" A ylma) o v*(hiy), S(hy))B(m 2y, his)]
x DSy hisymin) " me)hia)) 2o L haymis)
= A<9€, [S(Z(z)h(7)m*5))* A ?ﬁ(m(l)a hzﬁg)S( ’(*2)))1?“(m(2)h’("4), S(ha)))]
X B(S(yhemin)"s mhis)) 2pulehemi
= a{z, [S(zyheym(s)” A Yl [SU hEymiy) ow v
x 0(S(wyhaymiy)*s me >h2‘3>)> Xpu Layhrymi)
= a2, [S U hymis)” 2 w0 (S hes )m’&))* ( iz S(hiz))
x v (S hsymis)* m@)h;‘4 L S(hi)) %, h(g)m(6)
= A0y, hry), [S Uy hsymis) ™ 2 yJo(SUyhymiz) s ma)))
X p.u l(4)h(4)ma)
= A><'p,uH<(x XA (1 Mgy h),y Xy m).

Thus we see that for any b € B, x,y € X and h,l,m € H,

(m(l)ha)v S(ha)))]

Ay H{(@ XN D) (D X600 B),y Xam) = as, a1 (T X2 1 (Y X0 m)(bXgy h)*).
We note that for any a € A, z,y € X and h,l,m € H,
((axpuh)(@xx1),y >y m>BxMH
= (1 Xop 1)"((a Xpu h)(x X\ 1),y Xx\ 1)Bxy, a2 (1 Xop m).
Hence in order to show that for any a € A, x,y € X and h,l,m € H,
((a xpu h)(x X\ 1),y XA M) B, 5 = (T X\ (y xxm)(a Xpuh))Buy, . Hs
we have only to show that for any a € A, z,y € X and h € H,

((a xpu h)(x X\ 1),y X\ 1)Buy i = (T X2 1,(a X0 h)*(y X\ 1)) B, 1.
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For any a € A and z,y € X, we have
((aXpu 1) (22 1),y X\ 1)Bxy,m = (ax Xx 1,y X\ 1) By, 1

- <a’x7y>B = <x N)\ 17 (a Np,u 1)*(y N)\ 1)>B>40,UH'

Also, for any x,y € X and h € H,

(T h)(x X2 1),y X2 1) By, H
= ([S(h@) x [hy 2 2]]0(S (hz))s he2y)s [his) 2 ¥]) 5 Yo i)
= <a(5(h(2))’ h(l))xv [h>(k3) ‘A y]>B Ao h*4)
(
= (2> La(S(h)), h) " [his) A Y] X3 hiay) g, i
=(w X\ 1, (1,0 h)*(y ¥x 1)) B, H-
2 :

Thus condition (8) in [9, Lemma 1.3] is satisfied. Moreover, for any a € A,
be B,xe X and h,l,m € H,

(@ Xpqy h)[(zx)1)(b Xy, m)]
= alhqy 2 2l[he2) 0w L) 0w D] 03, L2)) D(haylia), 1)) % hs)layma)
= alhqy x z[o(he), L) [P@)l2) 0w bIU(Rayls), m(1) X his)laym e
= [(a Xpu h)(x xx\ D](b Xgpm).

Thus condition (7) in [9, Lemma 1.3] is satisfied. Since X is of finite type,
there are finite subsets {w;};_; and {z;}J2; in X such that

n m
z =Y wilwi,z)p =Y a(r,2)z
i=1 j=1

for any x € X. Then we have the following lemma:

LEMMA 4.1. With the above notation, if (A, B, X, p,o,\, HY) is a co-
variant system, then for any x € X and h € H,

n
:L'N)\h:Z(’wi XA 1)<wi A 1,1‘ N)\h>B><15H

i=1
m
= ZANPHCE Db\ h,Zj b DY 1>(Zj b DY 1).
j=1
Proof. For any x € X and h € H,
n n

Z(wi X\ 1)<wi X 1,2 Xy h>B>40H:Zwi<wi7$>B >4)\h:$ X\ h.
i=1 i=1
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Also,

m
ZAN,oH(x b DY h, Zj b DY 1>(Zj XA 1)
j=1

I
NE

Allh@)S(hay) x x], [S(hz)™ x 2] [y x 23] X hs)
1

<.
Il

I
NE

[h2) x a([S(hq1)) -x 2], 25) 2] Xx hs)
1

= [h(2) x [S(h()) -a 2]] 0 bz = x x5 h.

Therefore, we obtain the conclusion. =

<.
Il

For any Hilbert C*-bimodule Y, I-Ind[Y] and r-Ind[Y] denote its left and
right indices, respectively.

COROLLARY 4.2. With the above notation and assumptions,
I-Ind[X xy H] = 1-Ind[X] x5 1,  1r-Ind[X x) H] = r-Ind[X] %, 1.

Proof. By the definitions of the left and right indices of a Hilbert C*-
bimodule,
FInd[X x5 H] = > (2,2))5 %o 1 = FInd[X] x4 1,
j=1
r-Ind[X »y H = > a(wi,w;) ¥, 1 =1-Ind[X] x,1. =
i=1
PROPOSITION 4.3. With the above notation and assumptions, X Xy H
is a Hilbert A x, H - B x5 H-bimodule of finite type with

1-Ind[X x H] = 1-Ind[X] %, 1,  r-Ind[X x H] = r-Ind[X] %, 1.

Proof. This is immediate by Lemma Corollary and [9, Lem-
ma 1.3]. | ]

LEMMA 4.4. With the above notation, if (A, B, X, p,u,o,v,\, H%) is a
twisted covariant system and X is an A-B-equivalence bimodule, then for
anyx € X and h € H,

n

JTN)\h—Z w; >4)\1)(wi Xy 1,z >4)\h>B>QU7ZH
i=1

ZAprH x Xy h,zj Xy 1)(25 Xy 1),
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Proof. For any x € X and h € H,

n n
Z(wi DY 1)<wi DY 1,3: DY h>Bxa’vH:Zwi<wi,a:)B >4)\h:.73 X\ h.
=1 i=1

Also,

m
ZAxp,uH@J Xxh,zi xx 1)(z5 3\ 1)
j=1

I
WE

A, [S(hy)™ X 2D [h2) “x 2] X sy

.
Il
-

[
NE

z([S(h1)™ x 2i]s [P2) *x 2j]) B X0 Iya)

<.
Il
—

[
NE

w[hy o (25, 25) B] Xx b2y = & X h.

<.
Il
—-

Therefore, we obtain the conclusion. =

LEMMA 4.5. With the above notation and assumptions, if X is an A-B-
equivalence bimodule, then the Hilbert A x,,, H - B X4, H-bimodule is full
with both-sided inner products.

Proof. For any z,y € X, Ax,,m5(x Xx 1,y xx 1) = a{z,y) X, 1. Since
AXMH(X Xy H, X %y H) is a closed ideal of A x,,, H, for any =,y € X and
h € H we have

(Al y) Xpu 1) (I xpuh) = a(@,y) Xpuh € ax, ,m(X xx H, X x) H).
Since 4(X, X) = A, we obtain
Aan(X Xy H, X xyH)=Ax,, H.
Also, for any x,y € X and h € H,
(@ X\ Ly Xxh) B, i = (2,Y)B Xowh € (X X\ H,X x\ H)Bx, ,H-
Since (X, X)p = B, we conclude that
(X 3\ H,X x\H)Bx, ,H =B Xgy, H. u

COROLLARY 4.6. With the above notation and assumptions, suppose that
X is an A-B-equivalence bimodule. Then X X\ H is an A X, H - B X, H-
equivalence bimodule.

Proof. By Lemma it suffices to show that
Ay HAT X Ry X\ D) (2 xam) = (2 3\ h){y X\ 1,2 X\ m)Bx, 0

for any z,y,z € X and h,l,m € H. Since X is an A-B-equivalence bimodule,
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(> h)(y XX 1,2 X\ M) B, H
= 2[h(1y o0 0" ({2), SU) WNay o0 (¥5 2) BI04y m1y) [0(he2), 1sym2))
X ha) ey ms)
= x[h(l) ‘o U ( (l(l )] [h(z ) [5(3) ow (Y, 2)B ]]
% [h3) ‘o ”(l(4>’ IOy, lsymiz) 2 hs)ligym s)
= z[h(1) o0 V(I (2)3 (1*1)))] (h(2 l(3))[h(3)l(4) ‘o (Y, 2) B
x Uhlis), may) X hs)lieyme)
= 20 (h(1)lfay, SU) Ay 0w (U, 2) BIO(h(s) gy, m1)) Xx hiaylisym(a)-
On the other hand,
Aty H(T X0 hyy X\ 1) (2 300 m)
= (@, [S(hea)l{5))" 2 yIO(S (hy i)™ L)) s gy -x 210(Biay sy ma))
X\ h( >l<6> ( )
= a([S(h)l(3)" A YIO(S(h)l2) " L), [he)l{y » 2]) 50 (Rayl(s), M)
X\ h( )l(ﬁ) (2)
= 20 (ha1)lfay, SU)) h) sy 0w (U, 2) BIO(h(s) gy, m1)) Xx hiaylisym(a)-
This yields the conclusion. =
By the above discussions, we obtain the following;:
COROLLARY 4.7.

(1) Let (A, B, X, p,u,o,v,\, H°) be a twisted covariant system. Suppose
that X is an A-B-equivalent bimodule. Then X x\ H is an Ax,, H -
B x4, H-equivalence bimodule.

(2) Let (A, B, X,p,0,)\, H®) be a covariant system. Then X x\ H is a
Hilbert A x, H - B x5 H-bimodule of finite type.

In the situation of Corollary [4.7(1), let X x H be the crossed product
associated to a twisted covariant system (4, B, X, p, u, o, v, \, H), where X
is an A-B-equivalence bimodule. Then we define the dual covariant system
to X x H as follows: Let p and & be the dual coactions of H on A x,, H

and B X, H of (p,u) and (o, v), respectively. Let X be the dual coaction of
H on X %, H defined by

Az 33 h) = (z % hr)) ® )
for any x € X and h € H. Then by easy computations, we can see that
(A Xy H,B %gy H, X x5 H,p,5,\ H)

is a covariant system. Hence we obtain the following:
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COROLLARY 4.8. Let (p,u) and (o,v) be twisted coactions of H* on A
and B, respectively. Then the following conditions are equivalent:

(1) (p,u) is strongly Morita equivalent to (o,v).
(2) The dual coaction p of (p,u) is strongly Morita equivalent to the dual
coaction & of (o,v).

Proof. By the above discussion, it is clear that (1) implies (2). Con-

versely, suppose (2) holds. Then we can see that p is strongly Morita equiv-

alent to o, where p and & are the dual coactions of p and 7, respectively. By
[1T, Theorem 3.3], there is an isomorphism ¥ of My (A) onto A x,,, H x5 H°

such that ;@\ is exterior equivalent to the twisted coaction
(T®id)o(p®id) oW, (¥ ®idyo ® idyo)(u® In)).

Hence by Lemma |3.12 5\ is strongly Morita equivalent to (p ® id, u ® Iy).
Thus, by Lemma [3.16| and Corollary ,/5\ is strongly Morita equivalent
to (p,u). Similarly & is strongly Morita equivalent to (o,v). Therefore, by
Corollary (p,u) is strongly Morita equivalent to (o,v). =

Also, in the situation of Corollary [4.7(2), we can see that
(Ax, H, By H, X xx H, p, 5, A\ H)

is a covariant system in the same way as above.

5. Duality. In this section, we present a duality theorem for a crossed
product of a Hilbert C*-bimodule of finite type by a (twisted) coaction of a
finite-dimensional C*-Hopf algebra, in the same way as in [11]. As mentioned
in Section |1, Guo and Zhang [5] have already obtained a duality result using
the language of multiplicative unitary elements and Kac systems. We give
our duality result because our approach to coactions of a finite-dimensional
C*-Hopf algebra on a unital C*-algebra is a useful addition to the main
result in Section [6

First, suppose condition (1) or (2) in Corollary holds. In both cases,
we can consider the dual covariant systems

(A% H,B ¥gy H, X x5 H,p,5,\ H),
(Ax, H,B x, H,X x H,p,0,\ H).

Let A be the set of all triplets (¢, j, k) wherei,j =1,...,dyand k= 1,..., K
and S.p d? = N. For each I = (i,5,k) € A, let W/, V{ be elements in
A x,y H x5 H? defined by

Wy = \/@ Hpu wfja Vi = (1 xpu 1L xp7) (W] Nf’\lo)'
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Similarly for each I = (i, j, k) € A, we define elements
W7 =+/di Xou wfj, Vi =1 %50 1 x5 7)(W] x5 10)

in B x,.,H xgH®. We regard My (C) as a Hilbert My (C)-My (C)-bimodule
in the usual way. Let X ® My (C) be the exterior tensor product of X and
Mp(C), which is a Hilbert A® My (C)- B ® My(C)-bimodule. In the same
way as in Lemma we can see that X ® My(C) is of finite type. Let
{fr7}1,7€ be the system of matrix units of My (C). Let ¥x be a linear map
from X ® My(C) to X xx H x5 HY defined by

Wy (Z Ty ® fIJ) = V(s xx 1 x5 10V7
nJ J

for any x7; € X. Let ¥4 and ¥p be isomorphisms of A ® My (C) and
B ® My (C) onto A x,, H >4§H0 and B Xy, H x5 H° defined by

LZ/A(Z@IJ ® fIJ) = VI (ars %pu 1 x510V7,
nJ ,J

Up (Z bry @ fIJ) =Y Vi (ars %ow 1 x5 1°)V7,
17 17

for any ayy € A and bry € B (see [11]).

LEMMA 5.1. With the above notation,

(1) %{((Z ary ® fIJ) (Z Ty ® fIJ))
nJ 07
="y (Z ary ® fIJ)WX(ZJJU ® fIJ)a
LJ nJ
(2) %{((Z T ® fIJ) (Z bry ® fIJ))
1,J 1,J
=Ux <Z Try® fIJ)WB (Z bry ® fIJ)a
nJ L7

() AxipuHxzHO <LDX (Z Ty ® fIJ) 5% (Z Y1 ® fIJ) >
LJ

1,J

)

=y <A®MN(<C)<Z;CIJ ® f11, Y yrs ® fIJ>)a
17 IJ
(4) <WX (; Ty ® fIJ) Ux (; yrg ® fIJ) >Bxa,vHx;,H0

— LPB(<§$U ® f17, %}:yu ® f“>B®MN(<C)>

foranyary € A, by € B, x15,y17 € X and I,J € A.



Strong Morita equivalence for coactions 281

Proof. This is immediate by routine computations. Indeed,
WX((Z ary @ fIJ) (Z Try® fIJ)) = > VP arzps xa1 x5 10V7.
I I,J I,J,L
On the other hand, by [I1, Lemma 3.1],

U2 <12; ary ® fIJ) Ux (;\; rLm ® fLM)

= Z VI (ars »pu 1 x5 1%)(1 x50 1 x5 7) (zar x5 1 x5 1°) Vi)
LM

= Z VIP*(CL[J:L'JM Xx 1 x5 10)V]\52.
1,0,M
Thus we obtain (1). Similarly we can obtain (2). Also, by [11, Lemma 3.1],

Axp,uHx;H0<WX( ﬂ:u@fu),WX(Zyu ®fIJ)>

1,J I,J

> gtV (@ry xa 1 x5 1OVF VE (yr, a1 x5 10)V7)
LI

= Z VI (anpm(@rs xa Lyn g xa 1) x5 7)V]
LJL

0
= Z le*(A<l‘]J,y[1J> Apu Nﬁl )‘/Ipl
IJ,I
On the other hand,

WA(A(@MN C)<Z 1y ® frJ, Z Y15 ® fll,J1>)

Iy,Jx
0
= > Ualalzrsyns) @ fin) = Y VP (alzryns) @pu 1 x510VE.
I LJI

Thus we obtain (3). Furthermore,

<¢’X (Z 1y ® fIJ)A[’X(Z yng ® fIlJ1>>B><10vH><3HO

1,J I, Jh

= Z V7*((xr7,y10)B Xow 1 X5 10)Vj’1
1,J,J1

= WB(<Z$1J ® f17, Z ynn @ fr, >B My (C)>'
I1,J1
Thus we obtain (4). =

From the above lemma, we can see that Wy is injective. Next, we show
that ¥x is surjective.
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LEMMA 5.2. With the above notation,
(X ) H x5 19 (1 X 1 25 7)(B X H x5 1%) = X 3\ H X5 H°,
Proof. Let x € X, h € H and ¢ € H. Since
Z(de X o wfj x5 1%)*(1 Moy 1 X T)(\V/di Mo wfj x51%) =1 Xowl X5 10

i7j7k:

by [10, Proposition 3.18], we have

T A h NX qb
= Z(m i b3 8)(Vdi Xow wly x5 1°)* (1 %60 1 x5 7)
ijik

X (\/ﬁ X w’-"’. X5 10)
= Z dk HZN)\h [¢ ( (S( ]132) wfﬁ) NUUTU;ZJ)] NXT)

1,9,k,J1,52
X (1 Xy w’-“- x5 19)
-~ k k k
= Y ded(wl) (2 xa B)B(S(wh ), wh, )T X wh ) x5 1°)
7:7j7k7j1,j27‘73

X (1 Xgp 1 x57)(1 Mgy wk

Hence we obtain the conclusion. =

Let EY be the canonical conditional expectation from B x,, H to B
defined by E{(b x4, h) = 7(h)b for any b € B and h € H. Let E3 be the
linear map from X %, H onto X defined by

EMxz xyh) =7(h)z
forany r € X and h € H.

LEMMA 5.3. With the above notation, for any x € X and h € H,
> (Ve 2p0 wh)* Y (Vg % pu wh) (@ 33 b)) =z x5 b
05,k

Proof. This is also immediate by routine computations. Indeed, for any
xz € X and h € H, by [I7, Theorem 2.2],

Z(\/@ X p,u Wi ) B} ((\/CTk X pu wfj)(x XN h))

i7j7k

Sk k k k ks
= Z diu*(wgy, , wg;) [w31*32 A [wijl A xH [w5233 o V(w Jm,h(l))]
1,5,k,J1,52,5,51,52,53
>4,\7'(ijh(2)) 539
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= Z koC’l;:k(waz,le)[wg;sgj ‘o,v ’U( ]1j27 h(l))] P T(wJQJh( )) 333

1,5,k,J1,52,52,53

~ kx k N k kx
= > deaO(wiwl hay) vt (W, wh k)T (W) ki) 2wl

1,5,k,J1,52,52,53

= Z dkxT 32] NAS( 352)

J.k,s2

= Z dkxT 32] ) DY S(wJSQh(Q)S(h( )))

i,k,s9

=x X S(7(Nehy)S(hw))) =2 3\ h. =
LEMMA 5.4. With the above notation,
(I xpu I x5 0)(z xx 1 x5 19 =2 %y 1 X5 ¢ = ( x)1 x5 191 x40 1 X5 @)
for any x € X and ¢ € HO.
Proof. For any z € X and ¢ € H?,
(13pu 13050) (35 15 1%) = [p(1) -5 (@ 32 D] X5 @) = 25 1 %5 ¢
= (z 3\ 1 x5 191 %50 1 X5 ¢).
LEMMA 5.5. With the above notation, Wx is surjective.

Proof. By Lemma[5.2] it suffices to show that for any b € B, z € X and
h,l € H, there is y € X ® My(C) such that

Ux(y) = (x x\ h X5 10)(1 Moo 1 XgT)(bXgyl Mg 10).
By Lemma and [10, Proposition 3.18],
zxyh=> W (ENW](x xxh)) xx 1),
I

bXopl=> (E7((bXgw )W) Xy 1)WF.
I

Thus
(2 3 h %5 1°)(1 X0 1 315 7)(b Mg | x5 1)
Z (WP x519) (ENWE (z x5 h)) xx 1 x5 7)
" X (E7((b Xow DWT*) X4y 1 x5 7) (WF x5 1°).
Since
EY(WP(z 33 b)) xx 1357 = (1 Xpy 15 7) (B} (WF (2 3\ 7)) xx 1 x5 1°)
by Lemma we have
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(2 33 h x5 19)(1 Mgy 1 315 7) (b Xgp | x5 17)

= VIEY (WP (m 33 )BT (b Xow DWF) 205 1 x5 1°]V7.
I,J

Since EN(W7 (2 X\ h))E{ ((b X0 )WJ*) € X, we obtain the conclusion. a

Let V7 be the linear map from H to Ax,, H defined by Y//\P(h) =1x,,h
for any h € H. By [10], V? is a unitary element in Hom(H, A x,,, H). Let
VP be the unitary element in (A x,, H) ® H° induced by V7. Similarly,

—~

we also define the unitary elements Vo € Hom(H, B X,, H) and V7 €
(B %o H) ® HC.

LEMMA 5.6. With the above notation, for any x € X and h € H,
[y 2] 20 L= Vo (hqy) (@ 00 DV (i),

Proof. This is also immediate by routine computations. Indeed, for any
reXand he H,

Ve(h)(@ 2 DV (hy)
= [h1) x #][h2) o0 V¥ (S(hz), hs))(hs), S(he))) X hiayS(hes))
= [h1) -x 2]8(h2), S(hes) ) he))0* (B3 S (hea)) bury) @a L =[h-xa] x5 1. m
THEOREM 5.7 (cf. Guo and Zhang [5, Theorem 2.7]). Let A, B be unital

C*-algebras and H a finite-dimensional C*-Hopf algebra with its dual C*-
Hopf algebra H°. Then:

(1) If X is an A-B-equivalence bimodule and (A, B, X, p,u, o,v, \, H®) is
a twisted covariant system, then there is a linear isomorphism Yx from X ®
My(C) onto X x5 H x5 H® which satisfies conditions (1)—(4) in Lemma
where X x\ H X5 HY isan A XpuH N,;HO -BxgyH x5 HY -equivalence bi-
module and X @ My (C) is an exterior tensor product of an A-B-equivalence
bimodule X and an My (C)-My(C)-equivalence bimodule My(C). Further-
more, there are unitary elements U € (A x,, H x5 H*) @ H* and V €
(B X0 H x5 H) ® HY such that

UN2)V* = (x ®id) o (A ®idary (o)) o Ui)) ()

forany x € X x\ H NXHO.

(2) If X is a Hilbert A-B-bimodule of finite type and (A, B, X, p, o, \, HY)
18 a covariant system, then there is a linear isomorphism ¥x from X ®
My (C) onto X x5 H x5 H® which satisfies conditions (1)-(4) in Lemma
where X x\ H Y HY is a Hilbert A X, H N;HO -B x4 H x5 H°-bimodule
of finite type and X @ Mn(C) is an exterior tensor product of a Hilbert
A-B-bimodule X of finite type and the My (C)-My(C)-equivalence bimodule
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Mn(C). Furthermore, there are unitary elements U € (Ax, H x;H®)® H°
and V € (B x, H x5 H°) @ H® such that

UNz)V* = (#x @id) o (A @ idpry(e)) © Uxb) ()
foranyx € X x\ H NXHO.

Proof. (1) Let ¥x be as in Lemma By Lemmas and we see
that ¥y is a linear isomorphism from X @ My (C) onto X x\ H ><1XHO. By [11,

Theorem 3.3], there are unitary elements U and V' in (A x,, H x5 H M@ H°
and (B Xy, H x5 HY) @ H°, respectively such that

Ad(U) 0 p = (T4 ®id) o (p @ idpy () 0 ¥y L
Ad(V) o5 = (¥ ®id) o (0 @idyry(c)) 0 U5
Let V# and V7 be as above. For any > ; ;215 ® fr; € X ® My(C),

UX(!px(Z(lZ]J@f[J))V*
=N V@1V M(1 %1 x57)(@rs 35 1 x5 10)(1 Mgy 1 x5 7))
1,J
x Vo (VI @19
by [1I, Lemma 3.1], since

U= (v o1OVepvy), V=3 (V7 e1O)voevy).
I 1

Since

?(1 Xpu L X57) = VP((1 ¥ 1 x57) @19V,

(1 X 1 X5 7) = V(1 Xgp 1 x5 7) @10V

by [10, proof of Proposition 3.19], we have

Ui(%{(;wu ® fIJ))V*

=> (V@ 1OVP((z1s a1 x5 1% @ 19V (VY ®1°)

P
o

= 3V @ 10Ny 0 105 10)(VF ©19)

by Lemma where we identify X with X xx1 and X x) 1 x5 1°. On the
other hand,
(Tx ®id) o (A®1id))(z1s ® fr7) = (Wx ®id)(A(z17) ® fr.7).

We write A(z17) = >, y17i ® ¢5, where ¢; € HY and y7; € X for any I, J, i.
Then
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(Tx @id) o (A@id))(xrs @ fr1) = YV (yrsi xx 1 x5 1V @ ¢
1,Jyi
= (VI @10z xx x510)(V7 @ 1°).
1,J

This yields the conclusion.
(2) can be proved in the same way. m

6. The strong Morita equivalence for coactions and the Rokhlin
property. For a unital C*-algebra A, we set

co(A) = {(an) € I°(N, A)
A% = [%®(N, A)/co(A).

We denote by [ay] the element in A% corresponding to (a,) € [*°(N, A).
We identify A with the C*-subalgebra of A* consisting of the equivalence
classes of constant sequences and set

Ao = AN A

Let X be a Hilbert A-B-bimodule of finite type, where B is a unital C*-
algebra. We define X*° in the same way as above. We set

co(X) = {(za) € P(N.X) | lim [l ]| = 0},
X = %(N, X)/co(X).

We denote by [z,] the element in X*° determined by (x,) € {*°(N, X). We
regard X as an A*°-B>-bimodule as follows: for any [a,] € A, [b,] € B>
and [z,] € X,

lau]l = 0},

lim
n—oo

[an][Tn] = [anzn],  [zn][bn] = [Tnbn].

Also, we define the left A°-valued and right B°°-valued inner product as
follows: for any [z,], [yn] € X,

a([znl, [ynl) = [alzn, yn)], ([2al; [val) B~ = [(@n, yn) B

By [15, Lemma 2.5] and easy computations, the above definitions are in-
dependent of any choices made. We identify X with the Hilbert A%-B>-
subbimodule of X°° consisting of the equivalence classes of constant se-
quences. Also, we can see that X is a complex vector space satisfying
conditions (1)—(8) in [9, Lemma 1.3]. Since X is of finite type, there are
finite subsets {u;}i’,{v;}]L; C X such that for any z € X,

n m

Zui<ui,x>3 =z = ZA<3:,vj>vj.

i=1 j

Jj=1
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Then we can regard u;,v; € X as elements in X* for 7 = 1,...,n and
j=1,...,m. Thus X is a Hilbert A*°-B*-bimodule of finite type by [9}
Lemma 1.3]. Furthermore, if X is an A-B-equivalence bimodule, then X*°
is an A®°-B*°-equivalence bimodule.

LEMMA 6.1. With the above notation, suppose that X is an A-B-equiv-
alence bimodule. Let b € B®. If xb = 0 for any x € X, then b = 0, where
we regard X as a Hilbert A% -B*°-subbimodule of X°°.

Proof. Since b € B*®, we write b = [b,,], where b,, € B for any m € N.
Since xb = 0, we have ||zby,| — 0 (m — o). For any y € X,

1€y, 2) B binll = [[(y; 2bm) Il < [ly[l [[bm[| =0 (m = o0)

by [15, Lemma 2.5]. On the other hand, there are x1,...,Zn, y1,...,yn € X
such that Y7 (y;,x;)p = 1 since X is full with the right B-valued inner
product. Hence

ol = |3 )| < 3 2l = 0.
1=1 =1

Therefore b=0. m

We are in a position to present the main result in this paper. Before
doing so, we give the definitions of approximate representability and the
Rokhlin property for a coaction of a finite-dimensional C*-Hopf algebra on
a unital C*-algebra, and make a remark on the definitions.

DEFINITION 6.2 (cf. [T, Definitions 4.3 and 5.1]). Let (p, u) be a twisted
coaction of a finite-dimensional C*-Hopf algebra H® on a unital C*-algebra A.
We say that (p, u) is approximately representable if there is a unitary element
w € A® ® HY satisfying the following conditions:

(1) pla) = (Ad(w) o pio)(a) for any a € A,
(2) u= (w®1%)(p1hs ®id)(w)(id ® A°)(w*),
(3) u = (p™ ® id)(w)(w ® 19)(id © A%)(w").

Also, we say that (p,u) has the Rokhlin property if the dual coaction p of H
on A x, H is approximately representable.

By [11, Corollary 6.4], a coaction p of H on A has the Rokhlin property
if and only if there is a projection p € A such that e -jc p = 1/N, where
N = dim(H).

THEOREM 6.3. Let H be a finite-dimensional C*-Hopf algebra with dual
C*-Hopf algebra H°. Let p and o be coactions of H® on unital C*-algebras
A and B, respectively. Suppose that p is strongly Morita equivalent to o.
Then p has the Rokhlin property if and only if o has the Rokhlin property.
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Proof. Since p and o are strongly Morita equivalent, there are an A-B-
equivalence bimodule X and a coaction A of H on X with respect to
(A, B, p,0). From Rieffel [16, proof of Proposition 2.1], we obtain the fol-
lowing: Since X is full with the right B-valued inner product, there are
T1y.., TnyYls--.,Yn € X such that Y (z;,y;)p = 1. Let E = A® M,(C)
and consider X" as an FE-B-equivalence bimodule in the usual way. Let
= (r),y = (yi); € X" Let z = g(y,y)"/?z and let ¢ = g(z,2) € E.
Then ¢ is a projection in E. Let m be the map from B to E defined by
7(b) = g(zb, z) for any b € B. Then 7 is an isomorphism of B onto gqEq.

Suppose that p has the Rokhlin property. Then by [I1, Corollary 6.4]
there is a projection p € A, such that e -, p = 1/N. We regard (X°)"
as an F°°-B*-equivalence bimodule in the usual way. Since p ® I,, € E*°,
there are

ULy ooy Uy U1,y e v ey U € (X0)"

such that p ® I,, = Y )" geo (ug, vg). We write

up = (Uk1s -5 Ukn), Uk = (Vk1y .- Vkn),
where ug;, v € X® for k=1,...,mandi=1,...,n. Thus
m
p®I :Z[Aoo<uki,vkj>]zj:1.
k=1
Hence
% p, i=7],
ok ok oo (Ui, Vi) = -
(s34 > el = {01

We note that since p € A, we have q(p®1I,)g = q(p® 1I,) € (¢M,(A)g)>®N
(qM,,(A)q)". Let 7 be the isomorphism of B> onto (¢M,(A)q)> induced
by 7. Let p1 = (7°°)"!(q(p ® I,,)q). Then p; is a projection in B, since
m(B) = qM,(A)q. We show that e -y p; = 1/N. Since ¢ = g(z, 2),

q(p@T)g = me(u(z 2)ur, £(z, 2)vi)

k=1
m
= peo(2(z,up) g (Vk, 2) g, 2)
k=1
m
=7 (Z(z,uk>3<>o (v, Z)Boo).
k=1
Thus m m
pr=") (2 ur) B0k, 2) B = Y (2, moe (Uk, U)2) poo-
k=1 k=1
Since z € X", we write z = (2;);, where z; € X for i = 1,...,n. Hence

by (%),
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2|, 21
p1= < DD L (kv | >
k=1

Zn - Zn Boo

n

Ao (Ui Ukj>zj>Boo = (2, pzi) B

=1

Il
]
S
&
iNgE

For any w € X,

wle g p1] = En: w([S(efy)) a2l [e(@) a p2il) Bee
= Zn: alw, [S(efyy) -x zi)e) a2l
= Zn: Alle@)S(eqy) x wl, [S(egs)) -x zi) ey x pzi]
= i: [e@) p al[S(ew) x w], z0)] le(3) a p2i]

- Z [6(2) e pS(eqy) x wl(z, i) B)

= le@) o= Plle)Sle)) x wl.
k
_ dic ;1
w[e ‘o pl] = Z N[w]'jl P p] [w]uS( ) A w]
ivjvkvjl
dy, 1
= Z N[wﬁj poe plw = [e - poe plw = N
g,k
Thus e 40 p1 = 1/N by Lemma This gives the conclusion by [I1
Corollary 6.4]. =

Since e =), dﬁ’“w we get

COROLLARY 6.4. Let (p,u) and (o,v) be twisted coactions of H® on A
and B, respectively. Suppose that they are strongly Morita equivalent. Then:

(1) (p,u) has the Rokhlin property if and only if so does (o,v).
(2) (p,u) is approzimately representable if and only if so is (o,v).
Proof. (1) Suppose that (p,u) has the Rokhlin property. Then so does

by [11] Proposition 5. 5] Also, since (p,ﬁand (0,v) are strongly Morita

equivalent, so are p and & by Corollary 4.8 Thus (o, v) has the Rokhlin
property by Theorem |6 E and [I1, Proposition 5.5].
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(2) Suppose that (p,u) is approximately representable. Then p has the
Rokhlin property by the definition and [II, Proposition 4.6]. Since (p,u)
and (o,v) are strongly Morita equivalent, so are p and & by Corollary
Thus by Theorem o has the Rokhlin property. Hence by the definition
and [I1, Proposition 4.6], (o, v) is approximately representable. m

7. Application. Let A and B be unital C*-algebras and H a finite-
dimensional C*-Hopf algebra with dual C*-Hopf algebra H. Suppose that
A is strongly Morita equivalent to B. Let p be a coaction of H? on A. By
[16, Proposition 2.1], there are n € N and a full projection ¢ € M,,(A) such
that B is isomorphic to ¢M,(A)q. We identify B with ¢M,,(A)q. Suppose
that (p ®id)(q) ~ ¢® 1% in M,,(A) ® HY. Then there is a partial isometry
w € M, (A) ® H° such that w*w = (p ®id)(q), ww* = ¢ ® 1°.

LEMMA 7.1. With the above motation, there is a partial isometry z €
M, (A) ® H° such that z*z = (p ®id)(q), 22* = ¢®1° and 2(1) = q.
Proof. We note that w*(1) = @(1)*. Since w*w = (p®id)(q) and ww* =
q® 19, we obtain
wi(D)a(1) = (id@ ) ((p@id)(g) = ¢, D(1w (1) =q.
Let z = (w*(1) ® 1°)w. Then 2(1) = w* (1)@ (1) = q. Also,
2z = w(@(1) ® 1°)(w (1) © 1%)w = (p @ id)(q),
22" = (w*(1) ® 1w (H(1) ®1°) = ¢® 1°. =
Let
o =Ad(z) o (p®@idy,(c)),
= (2®1%)(p @ idyy, () @ idpo)(2) (idag, (a) @ A)(2%).

We note that u € BR H ® H°. We shall show that (o, u) is a twisted coaction
of HY on B, which is strongly Morita equivalent to p. We sometimes identify
A® H°® M,(C) with A® M, (C) ® H".

LEMMA 7.2. With the above notation, o is a weak coaction of H on B.
Proof. For any = € M,(A),
o(qrq) = z(p®id)(grq)z* = (¢© 1°)2(p @ id)(z)z* (¢ ® 1°).
Hence ¢ is a map from B to B ® H°. Also, by routine computations, we

can see that ¢ is a homomorphism of B to B ® H° with o(q) = q ® 1°.
Furthermore, since z(1) = ¢, for any = € M, (A) we have

(id® ) (o(grq)) = (id ® ) ((q® 1°)2(p ® id)(2)2"(¢ ® 1°))
= ¢2(1)(id ® ) ((p ® id)(z))2*(1)q = qzq.

Thus o is a weak coaction of H? on B. =
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LEMMA 7.3. With the above notation, (o,u) is a twisted coaction of H°
on B.

Proof. By routine computations, we can see that uu* = u*u = ¢1°®19.
Thus u is a unitary element in B ® H° ® H°. For any x € M, (A), we have

((c ®idpo) 0 0)(qzq)
= (201 (p®id®idgo)(2)((p®id ® idg0) o (p ® id)) (gzq)
x (p®id @ idgo)(2*)(2* ® 19).
On the other hand,
(Ad(u) o (id ® AY) o 0) (qq)
= (2019 (p®id®idyo)(2)((id ® A°) o (p ®id))(qzq)
x (p @ id ® id o) (2*) (2* ® 19).
Since (p ® id ® idgo) o (p ® id) = (id ® A®) o (p ® id), we obtain
(0 @idgo) oo = Ad(u) o (id® A%) o o.
Also,
(u®1%)(id ® A® ® id o) (u)
=01°21%)(p®id®idgo ® idyo)(z @ 1°)
x (id® A” ®idgo) ((p ®id ® idgo)(2)(id ® A?)(2*)).
On the other hand, since (p ® id ® idgo) o (p ® id) = (id ® A) o (p ® id),
(0 ®idgo @ idgo)(u)(id @ idgo ®@ A®)(u)
=221°21%)(p®id ®idgyo ®idyo)(z @ 1°)
x (id ® A’ ®idgo)((p @ id @ idgo)(2))
X (p®id ® idgo @ id o) ((id ® A®)(2*))
x (id @ id o @ A% ((p @ id @ id o) (2))(id @ A® @ id o) ((id @ A®)(2*)).
We can see that
(p@id ®idgo @idpgo) o (id ® A%) = (id ® idgo ® A%) o (p @ id @ id o)
by easy computations. Furthermore, we note that
(id ® id o ® A% o (id ® A% o (p @ id)
= (i[d® A’ ®@idgo) o (id ® A% o (p ® id)
= (i[d® A’ ®@idgo) o (p®id ® idgo) o (p @ id).
Thus since
(id®idgmo ® A% ((p®id ® idgo)((p ®1d)(q)))
= (i[d@idgo ® A%)((id © A°)((p @ id)(9))),
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it follows that

(0 ®idgo @ idgo)(u)(id ® idgo @ A®)(u)
= (291°®1%)(p®id ® idgo ® idgo)(z © 1°)
x (id® A’ ®@idgo)((p @ id @ id go)(2))
x (id ®@idgo ® A) ((p ®id ® idgo)((p @ id)(q)))
x (id @ A @ idgo)((id ® A)(2%))
=211 (p®id ®idgo @ idgyo)(z ® 1%)
x (id ® A ® idgo) ((p ® id @ id o) (2) (id @ A%)(2*)).
Hence we obtain
(u®1°)(id ® A @ idyo)(u) = (0 @ idgo @ idgo)(u)(id ® idgo @ A%)(u).
Furthermore, since z(1) = ¢, for any h € H we have
(id®h® ) (u) = 2(h@)lhe) psid 7% (b)) = ({d @ h)(o(q)) = e(h)q,
(id ® e @ h)(u) = Z()[1 -pmia 2(h))]2* (hiz)) = Z(1)e(h) = e(h)q.
Therefore, (o, u) is a twisted coaction of H? on B. =

Let f be a minimal projection in M, (C) and let p be a full projection
in M,(A) defined by p =14 ® f. Let X = pM,(A)q. We regard X as an
A-B-equivalence bimodule in the usual way, where we identify A and B
with pM,,(A)p and ¢M,(A)q, respectively. Then we can regard X as a set
{la1,...,an]qla; € A,i = 1,...,n}. Let A be the linear map from X to
X ® HY defined by

Aat,- > anlg) = [p(@r), - . plan)](p @ id) (g) 2"
= [p(ar), ..., pan)]z"(g @ 1°)
for any [a1,...,a,]q € X.

LEMMA 7.4. With the above notation, X is a twisted coaction of H® on
X with respect to (A, B, p,0,u).

Proof. By routine computations, we can see that A is a weak coaction of
H° on X with respect to (A, B, p,o,u). For any [a1,...,a,]q € X,

(A®idgo) o N)([a1, ..., an]q)
= [((p@idpo) o p)(a1), ..., ((p®idgo) © p)(an)]
x (p®id ®@idgo)(2*)(z* @ 1°).
On the other hand, since (p ® idyo) o p = (id ® A®) o p, we obtain
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((id @ A% o N([ar, . .., an]q)u*
= [((id® A%) o p)(a1), ..., ((id® A®) 0 p)(ay)]
X (p®id @ idgo)(2*)(z* ® 1°).
Hence for any [ai,...,a,)q € X,
(A ®@idgo) o N([a1,. .., an)q) = ((id @ A%) o N)([ay, . . ., an]q)u*.

Thus A is a twisted coaction of H® on X with respect to (4, B, p,0,u). =

THEOREM 7.5. Let A be a unital C*-algebra and H a finite-dimensional
C*-Hopf algebra with dual C*-Hopf algebra H°. Let p be a coaction of H°

on A with the Rokhlin property. Let q be a full projection in a C*-algebra
M, (A) such that

(p @ idas,c))(q) ~ q® 1°
in Mp(A) @ H°. Let B = qM,(A)q. Then there is a coaction of H® on B
with the Rokhlin property.

Proof. By Lemmas and there is a twisted coaction (o, u) such
that (o,u) is strongly Morita equivalent to p. By Corollary (0,u) has
the Rokhlin property. Furthermore, by [L1, Theorem 9.6], there is a unitary
element y € B ® H such that

(y ®1°) (0 @ idgo)u(id @ A% (y*) =1 ® 1° ® 1°.
Let 0y = Ad(y) o 0. Then o is a coaction of H? on B with the Rokhlin
property by easy computations since oy is exterior equivalent to (o, u). m

Let A be a UHF-algebra of type N, where N is the dimension of a
finite-dimensional C*-Hopf algebra H. In [I1], we showed that there is a
coaction p of H® on A with the Rokhlin property.

COROLLARY 7.6. With the above notation, for any unital C*-algebra B
that is strongly Morita equivalent to A, there is a coaction o of H° on B
with the Rokhlin property.

Proof. By [16, Proposition 2.1] there are n € N and a full projection
q € M,(A) such that B is isomorphic to ¢M,(A)q. We identify B with
qM,,(A)q. Let p be a coaction of H on A with the Rokhlin property. Then
by [1I, Lemma 10.10], (p®idy, (c))(q) ~ ¢®1° in M, (A) ® H® since A has
cancellation. Therefore, by Theorem we obtain the conclusion. =
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