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The minimal operator and the John–Nirenberg
theorem for weighted grand Lebesgue spaces

by

Lihua Peng and Yong Jiao (Changsha)

Abstract. We introduce the minimal operator on weighted grand Lebesgue spaces,
discuss some weighted norm inequalities and characterize the conditions under which the
inequalities hold. We also prove that the John–Nirenberg inequalities in the framework of
weighted grand Lebesgue spaces are valid provided that the weight function belongs to
the Muckenhoupt Ap class.

1. Introduction. The purpose of this paper is to investigate the
minimal inequality and the John–Nirenberg theorem in the framework of
weighted grand Lebesgue spaces. For a locally integrable function f : Rn→C,
define the minimal function of f by

mf(x) := inf
x∈Q

1

|Q|

�

Q

|f(y)| dy,

where the infimum is taken over all cubes Q which contain x with sides
parallel to the coordinate axes. The minimal operator was introduced by
Cruz-Uribe and Neugebauer [CN], who used it to study the fine structure
of functions which satisfy the reverse Hölder inequality. Furthermore, they
proved the following weighted minimal inequality. Let w be a weight, that
is, a positive and integrable function on Rn. Then w belongs to the Muck-
enhoupt Ap class if and only if the weighted norm inequality

(1.1) ‖logmf‖Lp,w ≤ Cp‖log f‖Lp,w
is true for p > 1 and all f such that 0 ≤ f ≤ 1 and log f is in Lp,w.
The constant Cp depends only on the Ap constant of w and p. We refer to
[C, CNO, ZL] for more information on the minimal operator.
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To state our main results, we need to describe the grand Lebesgue
spaces Lp). Let Ω ⊆ Rn be a measurable set with Lebesgue measure |Ω|<∞.
For 1 < p <∞, the grand Lebesgue space Lp)(Ω) is defined as the set of all
measurable functions f on Ω such that

‖f‖p) := sup
0<ε<p−1

(
ε

1

|Ω|

�

Ω

|f |p−ε dx
)1/(p−ε)

<∞.

Then (Lp), ‖ · ‖p)) is a Banach function space. Such Lebesgue spaces were
introduced in 1992 by Iwaniec and Sbordone [IS] in the study of the inte-
grability of the Jacobian under minimal hypotheses. Since then the struc-
tural properties of grand Lebesgue spaces have been studied in [CF, DF,
F, KMR]. Grand Lebesgue spaces play an important role in PDE the-
ory (see [DSS, FMR, FS, G2, GIS]) and in function space theory (see
[CFG, FG, FGJ, K, KM]).

In 2008, Fiorenza, Gupta and Jain [FGJ, Theorem 4.1] investigated the
maximal theorem for weighted grand Lebesgue spaces. Then it is natural
to ask whether the minimal theorem is also true for them. The first goal of
this paper is to extend (1.1) to this case. We consider more general grand
Lebesgue spaces Lp),ϕ,w(Ω). The space Lp),ϕ,w(Ω), or simply Lp),ϕ,w, is called
a weighted grand Lebesgue space and defined as the set of all measurable
functions on Ω such that

‖f‖Lp),ϕ,w := sup
0<ε<p−1

ϕ(ε)

(
1

|Ω|

�

Ω

|f |p−εw dx
)1/(p−ε)

<∞,

where w is a weight on Ω and ϕ : (0, p− 1)→ R+ is a finite non-decreasing
function with limt→0 ϕ(t) = 0. If w = 1, then Lp),ϕ,1(Ω) = Lp),ϕ(Ω); when

in addition ϕ(ε) = ε1/(p−ε), the space Lp),ε1/(p−ε)(Ω) reduces to the grand

Lebesgue space Lp)(Ω). In Section 2, we study the weighted norm inequality
for the minimal operator defined on Lp),ϕ,w(Ω). Let p > 1 and let w be a
weight on Ω. We prove that w belongs to the Muckenhoupt class Ap if and
only if there exists a positive constant Cp,ϕ,w depending only on p, ϕ and w
such that ‖logmf‖Lp),ϕ,w ≤ Cp,ϕ,w‖log f‖Lp),ϕ,w
for every measurable function f satisfying 0 ≤ f ≤ 1 and log f ∈ Lp),ϕ,w
(see Theorem 2.5).

We now turn to the second objective of this paper, of discussing the
John–Nirenberg inequalities in weighted grand Lebesgue spaces. Recall that
a locally integrable function f belongs to BMOp if

‖f‖BMOp := sup
Q

‖(f − fQ)χQ‖Lp
‖χQ‖Lp

is finite, where fQ = |Q|−1
	
Q f(x) dx and the supremum is taken over all

cubes Q contained in Ω. For convenience, we denote BMO1 by BMO. The
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classical John–Nirenberg inequality (see e.g. [G1, Theorem 7.1.6]) says that
for any 1 < p <∞ we have

BMOp = BMO, with equivalent norms.

We now define new BMO spaces corresponding to grand Lebesgue spaces
and weighted grand Lebesgue spaces, respectively, by setting

‖f‖BMOp),ϕ := sup
Q

‖(f − fQ)χQ‖Lp),ϕ
‖χQ‖Lp),ϕ

and

‖f‖BMOp),ϕ,w := sup
Q

‖(f − fQ)χQ‖Lp),ϕ,w
‖χQ‖Lp),ϕ,w

,

where the supremum is taken over all cubes Q contained in Ω. In Section 3,
we prove that

BMOp),ϕ = BMO for every 1 < p <∞,
with equivalent norms. Furthermore, if w belongs to the Muckenhoupt
class Ap, we have

BMOp),ϕ,w = BMO for every 1 < p <∞,
with equivalent norms.

2. Weighted minimal inequalities. In this section, we study the min-
imal inequality on weighted grand Lebesgue spaces. Intuitively, the maximal
operator controls the behavior of a function where it is large and the min-
imal operator controls the behavior of a function f where it is small, and
therefore any norm inequality needs to reflect this fact. Similarly to [CN,
Theorem 3.4], we obtain the minimal inequality in Theorem 2.5 by replacing
f by log f, which is large where f is small.

We first state the formal definition of grand Lebesgue spaces [KMR,
Definition 3.1].

Definition 2.1. Let (Ω,A, µ) be a finite measure space, 1 < p <∞ and
ϕ : (0, p−1)→ R+ be a finite non-decreasing function with limt→0 ϕ(t) = 0.
The (generalized) grand Lebesgue space, denoted by Lp),ϕ :=Lp),ϕ(Ω,A, µ),
is the set of all measurable functions for which

‖f‖Lp),ϕ := sup
0<ε<p−1

ϕ(ε)

(
1

|Ω|

�

Ω

|f |p−ε dx
)1/(p−ε)

is finite.

It is well known that Lp),ϕ is complete [KMR, Theorem 3.6]. From now
on, all of the above conditions will be tacitly assumed whenever we speak
of grand Lebesgue spaces.
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Let w be a weight on Ω, that is, a positive and integrable function on Ω.
Recall that the weighted Lebesgue space, denoted by Lp,w(Ω,A, µ) or simply
Lp,w, is the set of all measurable functions f on Ω for which

‖f‖Lp,w :=
( �

Ω

|f |pw dx
)1/p

<∞.

We now define weighted grand Lebesgue spaces.

Definition 2.2. Let 1 < p <∞. The space Lp),ϕ,w := Lp),ϕ,w(Ω) is the
collection of all measurable functions f defined on (Ω,A, µ) such that

ρ(f) := sup
0<ε<p−1

ϕ(ε)
1

|Ω|

�

Ω

|f |p−εw dx <∞.

We equip this space with the (quasi-)norm

‖f‖Lp),ϕ,w := sup
0<ε<p−1

ϕ(ε)

(
1

|Ω|

�

Ω

|f |p−εw dx
)1/(p−ε)

.

It is obvious that the (quasi-)norm has the following equivalent expres-
sion:

‖f‖Lp),ϕ,w ≈ sup
0<ε<p−1

ϕ(ε)‖f‖Lp−ε,w ,

where the equivalence constant depends only on p. Thus, for convenience,
we sometimes write ‖f‖Lp),ϕ,w = sup0<ε<p−1 ϕ(ε)‖f‖Lp−ε,w .

The following definition is taken from [CN, Definition 1.1].

Definition 2.3. If f is an integrable function, define the minimal func-
tion of f , mf , by

mf(x) = inf
x∈Q

1

|Q|

�

Q

|f(y)| dy,

where the infimum is taken over all cubes Q which contain x with sides
parallel to the coordinate axes.

It is immediate that mf is a locally bounded function, and by the
Lebesgue differentiation theorem, mf(x) ≤ |f(x)| ≤ Mf(x) almost every-
where. Here, M is the classical Hardy–Littlewood maximal operator defined
by the formula

Mf(x) = sup
x∈Q

1

|Q|

�

Q

|f(y)| dy,

where Q runs over all non-degenerate cubes with sides parallel to the coor-
dinate axes and |Q| is the Lebesgue measure of Q.

The Hardy–Littlewood maximal inequality is well known in harmonic
analysis. We state it as follows.
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Lemma 2.4. Let f ∈ Lp and 1 < p ≤ ∞. Then

‖Mf‖Lp ≤ C(p′)1/p‖f‖Lp ,

where p′ = (p− 1)/p is the conjugate index of p.

Let 1 < p <∞. In the framework of standard weighted Lebesgue spaces,
it is well known that�

Ω

(Mf(x))pw(x) dx ≤ C
�

Ω

f(x)pw(x) dx, f ∈ Lp,

if and only if w satisfies the Ap condition of Muckenhoupt [M]:

sup

(
1

|Q|

�

Q

w dx

)(
1

|Q|

�

Q

w−1/(p−1) dx

)p−1
=: Ap(w) <∞.

We write by w ∈ Ap if the weight w satisfies the inequality above.

We now state our main result in this section.

Theorem 2.5. Let w be a weight and let 1 < p <∞. Then w is in Ap
if and only if the weighted-norm inequality

(2.1) ‖logmf‖Lp),ϕ,w ≤ Cp,ϕ,w‖log f‖Lp),ϕ,w
holds for all f such that 0 ≤ f ≤ 1 and log f is in Lp),ϕ,w. The constant
Cp,ϕ,w depends only on the Ap constant of w, ϕ and p.

In order to prove the theorem above, we first state a lemma, which was
proved in [M, Lemma 5].

Lemma 2.6. If 1 < p < ∞ and w ∈ Ap on Ω with Ap(w) = K, then
there exist constants θ > 0 and L > 0 such that w ∈ Ap−ε on Ω with
Ap−ε(w) ≤ L for all 0 < ε < θ.

The lemma below plays a crucial role in the proof of Theorem 2.5, and
also extends [FGJ, Theorem 4.1].

Lemma 2.7. Let 1 < p < ∞. Then w ∈ Ap if and only if there is a
constant Cp,ϕ,w > 0 such that for all bounded functions f ,

‖Mf‖Lp),ϕ,w ≤ Cp,ϕ,w‖f‖Lp),ϕ,w .

Proof. Let us first assume that w ∈ Ap. By Lemma 2.6, there exists
θ ∈ (0, p− 1) such that

(2.2) ‖Mf‖Lp−ε,w ≤ C‖f‖Lp−ε,w , ∀ε ∈ (0, θ],

for some constant C independent of f and ε.
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We now consider ε > θ. In this case, we let ε ∈ (θ, p − 1) be given.
Applying Hölder’s inequality, we have

‖Mf‖p−εLp−ε,w
=

�

Ω

|Mf |p−εw dx =
�

Ω

|Mf |p−εw
p−ε
p−θw

ε−θ
p−θ dx

≤
( �

Ω

(
|Mf |p−εw

p−ε
p−θ
) p−θ
p−ε dx

) p−ε
p−θ
( �

Ω

(
w
ε−θ
p−θ
) p−θ
ε−θ dx

) ε−θ
p−θ

=
( �

Ω

|Mf |p−θw dx
) p−ε
p−θ
( �

Ω

w dx
) ε−θ
p−θ

.

This means

‖Mf‖Lp−ε,w ≤
( �

Ω

|Mf |p−θw dx
) 1
p−θ
( �

Ω

w dx
) ε−θ

(p−θ)(p−ε)

= ‖Mf‖Lp−θ,w
( �

Ω

w dx
) ε−θ

(p−θ)(p−ε)
.

Hence,

‖Mf‖Lp),ϕ,w = sup
0<ε<p−1

ϕ(ε)‖Mf‖Lp−ε,w

= max
{

sup
0<ε<θ

ϕ(ε)‖Mf‖Lp−ε,w , sup
θ≤ε<p−1

ϕ(ε)‖Mf‖Lp−ε,w
}

≤ max
{

sup
0<ε<θ

ϕ(ε)‖Mf‖Lp−ε,w , sup
θ≤ε<p−1

ϕ(ε)‖Mf‖Lp−θ,w
( �
Ω

w dx
) ε−θ

(p−θ)(p−ε)
}

= max
{

sup
0<ε<θ

ϕ(ε)‖Mf‖Lp−ε,w ,

sup
θ≤ε<p−1

ϕ(ε)ϕ(θ)−1ϕ(θ)‖Mf‖Lp−θ,w
( �

Ω

w dx
) ε−θ

(p−θ)(p−ε)
}

≤ max
{

1, sup
θ<ε<p−1

ϕ(ε)ϕ(θ)−1
( �

Ω

w dx
) ε−θ

(p−θ)(p−ε)
}

sup
0<ε≤θ

ϕ(ε)‖Mf‖Lp−ε,w .

It follows from (3.1) that

sup
0<ε≤θ

ϕ(ε)‖Mf‖Lp−ε,w ≤ sup
0<ε<θ

ϕ(ε)‖f‖Lp−ε,w ≤ sup
0<ε<p−1

ϕ(ε)‖f‖Lp−ε,w .

Thus, we get

‖Mf‖Lp),ϕ,w ≤ max
{

1, sup
θ<ε<p−1

ϕ(ε)ϕ(θ)−1
( �

Ω

w dx
) ε−θ

(p−θ)(p−ε)
}
‖f‖Lp),ϕ,w .

It is not hard to see that h(t) := t−θ
(p−θ)(p−t) is an increasing function on
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(θ, p− 1). So it is easy to see that

max
{

1, sup
θ<ε<p−1

ϕ(ε)ϕ(θ)−1
( �

Ω

w dx
) ε−θ

(p−θ)(p−ε)
}

≤ max
{

1, sup
θ<ε<p−1

ϕ(ε)ϕ(θ)−1 sup
θ≤ε<p−1

( �

Ω

w dx
) ε−θ

(p−θ)(p−ε)
}

≤ sup
θ<ε<p−1

ϕ(ε)ϕ(θ)−1
(

1 +
�

Ω

w dx
) p−1−θ

p−θ
.

Thus we obtain
‖Mf‖Lp),ϕ,w ≤ Cp,ϕ,w‖f‖Lp),ϕ,w ,

where

Cp,ϕ,w := sup
θ<ε<p−1

(
1 +

�

Ω

w dx
) p−1−θ

p−θ
ϕ(ε)ϕ(θ)−1 <∞.

To prove the converse, we assume that for all bounded functions f ,

(2.3) ‖Mf‖Lp),ϕ,w ≤ Cp,ϕ,w‖f‖Lp),ϕ,w .
Let Q ⊆ Ω be a non-degenerate cube with sides parallel to the coordinate
axes. By the definition of maximal operator, we have(

1

|Q|

�

Q

|f |
)
χQ ≤M(fχQ).

Using (2.3), we obtain

‖M(fχQ)‖Lp),ϕ,w ≤ Cp,ϕ,w‖fχQ‖Lp),ϕ,w .
By Hölder’s inequality, we have(

1

|Q|

�

Q

|f | dx
)
‖χQ‖Lp),ϕ,w =

∥∥∥∥( 1

|Q|

�

Q

|f | dx
)
χQ

∥∥∥∥
Lp),ϕ,w

≤ ‖M(fχQ)‖Lp),ϕ,w ≤ Cp,ϕ,w‖fχQ‖Lp),ϕ,w

= Cp,ϕ,w sup
0<ε<p−1

ϕ(ε)
( �

Q

|f |p−εw dx
) 1
p−ε

= Cp,ϕ,w sup
0<ε<p−1

ϕ(ε)
( �

Q

|f |p−εw
p−ε
p w

ε
p dx

) 1
p−ε

≤ Cp,ϕ,w sup
0<ε<p−1

ϕ(ε)
( �

Q

(
|f |p−εw

p−ε
p
) p
p−ε dx

)1/p( �

Q

(
w
ε
p
) p
ε dx

) ε
p(p−ε)

= Cp,ϕ,w

( �

Q

|f |pw dx
)1/p

sup
0<ε<p−1

ϕ(ε)w(Q)
ε

p(p−ε)
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= Cp,ϕ,w

( �

Q

|f |pw dx
)1/p

sup
0<ε<p−1

ϕ(ε)w(Q)
1
p−εw(Q)−1/p

= Cp,ϕ,w w(Q)−1/p
( �

Q

|f |pw dx
)1/p
‖χQ‖Lp),ϕ,w ,

where w(Q) =
	
Qw dx. This means that for all bounded functions f ,

(2.4)
1

|Q|

�

Q

|f | dx ≤ Cp,ϕ,w w(Q)−1/p
( �

Q

|f |pw dx
)1/p

.

Let g be an arbitrary integrable function and let gn = gχ{|g|≤n}. Then (2.4)
implies that

1

|Q|

�

Q

|gn| dx ≤ Cp,ϕ,w w(Q)−1/p
( �

Q

|gn|pw dx
)1/p

.

Letting n→∞, we get for every integrable function g,
1

|Q|

�

Q

|g| dx ≤ Cp,ϕ,w w(Q)−1/p
( �

Q

|g|pw dx
)1/p

.

Let now g = w−1/(p−1). Then we have gpw = w−1/(p−1) and also
1

|Q|

�

Q

w−1/(p−1) dx ≤ Cp,ϕ,w w(Q)−1/p
( �

Q

w−1/(p−1) dx
)1/p

.

Thus we get

sup

(
1

|Q|

�

Q

w dx

)(
1

|Q|

�

Q

w−1/(p−1) dx

)p−1
<∞.

The proof is complete.

We are now in a position to prove Theorem 2.5.

Proof of Theorem 2.5. Suppose first that w is in Ap. Let f be as in the
hypotheses. Then by Jensen’s inequality, at each point x,

log

(
1

|Q|

�

Q

f(y) dy

)
≥ 1

|Q|

�

Q

log f(y) dy

for all cubes Q which contain x. Since 0 ≤ f ≤ 1, 0 ≤ mf(x) ≤ 1, we have

|logmf(x)| ≤
∣∣∣∣ 1

|Q|

�

Q

log f(y) dy

∣∣∣∣ ≤ sup
1

|Q|

�

Q

|log f(y)| dy = M(log f)(x).

Since w is in Ap, by Lemma 2.7, the maximal operator is bounded on Lp),ϕ,w,
that is,

‖M(log f)‖Lp),ϕ,w ≤ Cp,ϕ,w‖log f‖Lp),ϕ,w .
Then we get

‖logmf‖Lp),ϕ,w ≤ ‖M(log f)‖Lp),ϕ,w ≤ Cp,ϕ,w‖log f‖Lp),ϕ,w .
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To prove the converse, suppose w is such that (2.1) holds for all f . Fix
0 < a < 1. Define Φa(t) = (log(1/t))a for t ∈ (0, 1). A simple calculation
shows that Φa is decreasing and concave on (ea−1, 1). Now let f be any func-
tion on Ω such that α < f(x) < 1 for some α > 0. Then there exists k > 0
such that f(x)k > ea−1. Therefore, by Jensen’s inequality, for any cube Q,
we have |Q|−1

	
Q Φa(f(x)k) dx ≤ Φa(|Q|−1

	
Q f(x)k dx), or equivalently,(

1

|Q|

�

Q

|log(f(x)k)|a dx
)1/a

≤
∣∣∣∣log

(
1

|Q|

�

Q

f(x)k dx

)∣∣∣∣.
Fix x and take the supremum over all Q containing x; this yiels

M(|log(fk)|a)1/a ≤ |logm(fk)|.
Since the maximal operator and the minimal operator are positive homoge-
neous, by (2.1) we see that

(2.5) ‖M(|log f |a)1/a‖Lp),ϕ,w ≤ Cp,ϕ,w‖log f‖Lp),ϕ,w .
However, the constant in (2.4) is independent of a, so we get

(2.6) ‖M(log f)‖Lp),ϕ,w ≤ Cp,ϕ,w‖log f‖Lp),ϕ,w .
Indeed, since |log f | is a bounded function, it follows that |log(f)|a →
|log(f)| in L∞ when a→ 1, and therefore it is easy to see that

lim
a→1
‖M(|log f |a)1/a −M(log f)‖∞ = 0.

Noting that L∞ ↪→ Lp),ϕ,w, we get (2.6). Thus, for all bounded functions g
we have

‖M(g)‖Lp),ϕ,w ≤ Cp,ϕ,w‖g‖Lp),ϕ,w .
By Lemma 2.7, w is in Ap. The proof of the theorem is complete.

3. The new John–Nirenberg theorem. For f an integrable function
on Ω, set

‖f‖BMO = sup
Q

1

|Q|

�

Q

|f(x)− fQ| dx,

where fQ = |Q|−1
	
Q f(x) dx and the supremum is taken over all cubes Q

in Ω. The function f is called of bounded mean oscillation if ‖f‖BMO <∞,
and BMO(Ω) is the set of all integrable functions f on Ω with ‖f‖BMO <∞.
It is well known that BMO is a linear space; moreover, BMO/C is a Banach
space. Obviously,

‖f‖BMO = sup
Q

‖(f − fQ)χQ‖L1

‖χQ‖L1

.

The classical John–Nirenberg theorem (see e.g. [G1, Theorem 7.1.6]) says
that there exist constants C1, C2 > 0 such that for any α > 0 and all
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cubes Q ⊆ Ω,∣∣{x ∈ Q : |f(x)− fQ| > α}
∣∣ ≤ C1 exp

[
− C2α

‖f‖BMO

]
|Q|.

This statement is equivalent to the following: There exists an absolute con-
stant C such that for all 1 ≤ p <∞,

(3.1) ‖f‖BMO ≤ sup
Q⊆Ω

‖(f − fQ)χQ‖Lp
‖χQ‖Lp

≤ Cp‖f‖BMO.

We define BMOp(Ω) to be the set of all integrable functions f on Ω such
that

‖f‖BMOp = sup
Q⊆Ω

‖(f − fQ)χQ‖Lp
‖χQ‖Lp

is finite. By (3.1), we get BMO = BMOp with equivalent norms.
We now define new bounded mean oscillation norms on grand Lebesgue

spaces and weighted grand Lebesgue spaces.

Definition 3.1. For f an integrable function on Ω, set

‖f‖BMOp),ϕ = sup
Q

‖(f − fQ)χQ‖Lp),ϕ
‖χQ‖Lp),ϕ

,

where the supremum is taken over all cubes Q in Ω. BMOp),ϕ(Ω) is the set
of all integrable functions f on Ω with ‖f‖BMOp),ϕ <∞.

Definition 3.2. Let w be a weight and let f be an integrable function
on Ω. Set

‖f‖BMOp),ϕ,w = sup
Q

‖(f − fQ)χQ‖Lp),ϕ,w
‖χQ‖Lp),ϕ,w

,

where the supremum is taken over all cubes Q in Ω. BMOp),ϕ,w(Ω) is the
set of all integrable functions f on Ω with ‖f‖BMOp),ϕ,w <∞.

When w ≡ 1 the space BMOp),ϕ,1(Ω) reduces to BMOp),ϕ(Ω), and when
ϕ ≡ 1 the space BMOp),1,w(Ω) reduces to the classical weighted bounded
mean oscillation space BMOp,w(Ω), i.e.,

BMOp,w = {f ∈ L1(Ω) : ‖f‖BMOp,w <∞},
where

‖f‖BMOp,w = sup
Q⊆Ω

‖(f − fQ)χQ‖Lp,w
‖χQ‖Lp,w

.

When p = 1 the space BMO1,w(Ω) reduces to BMOw.
Theorems 3.3 and 3.4 below are the main results in this section.

Theorem 3.3. Let 1 < p <∞. Then

(3.2) BMOp),ϕ = BMO,

with equivalent norms.
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Proof. By Hölder’s inequality, we have

‖(f − fQ)χQ‖L1

‖χQ‖L1

≤
‖(f − fQ)χQ‖Lp
‖χQ‖Lp

for any 1 < p <∞.

Given 1 < p <∞, we obtain

‖(f − fQ)χQ‖L1

‖χQ‖L1

≤
‖(f − fQ)χQ‖Lp−ε
‖χQ‖Lp−ε

for any 0 < ε < p− 1. Thus

‖(f − fQ)χQ‖L1

‖χQ‖L1

· ‖χQ‖Lp−ε ≤ ‖(f − fQ)χQ‖Lp−ε .

Hence

‖(f −fQ)χQ‖L1

‖χQ‖L1

=
sup0<ε<p−1 ϕ(ε)

‖(f−fQ)χQ‖L1
‖χQ‖L1

· ‖χQ‖Lp−ε
sup0<ε<p−1 ϕ(ε)‖χQ‖Lp−ε

≤
sup0<ε<p−1 ϕ(ε)‖(f −fQ)χQ‖Lp−ε

sup0<ε<p−1 ϕ(ε)‖χQ‖Lp−ε
=
‖(f −fQ)χQ‖Lp),ϕ
‖χQ‖Lp),ϕ

.

Taking the supremum over all cubes Q ⊆ Ω, we obtain

‖f‖BMO1 ≤ ‖f‖BMOp),ϕ .

Conversely, from (3.1), we get

‖(f − fQ)χQ‖Lp),ϕ
‖χQ‖Lp),ϕ

=
sup0<ε<p−1 ϕ(ε)‖(f − fQ)χQ‖Lp−ε

sup0<ε<p−1 ϕ(ε)‖χQ‖Lp−ε

≤ sup
0<ε<p−1

{
ϕ(ε)‖(f − fQ)χQ‖Lp−ε

ϕ(ε)‖χQ‖Lp−ε

}
= sup

0<ε<p−1

{‖(f − fQ)χQ‖Lp−ε
‖χQ‖Lp−ε

}
≤ C sup

0<ε<p−1
(p− ε)‖f‖BMO ≤ Cp‖f‖BMO.

Taking the supremum over all cubes Q ⊆ Ω, we obtain

‖f‖BMOp),ϕ ≤ Cp‖f‖BMO.

To sum up, we have

‖f‖BMO ≤ ‖f‖BMOp),ϕ ≤ Cp‖f‖BMO.

The proof of the theorem is complete.

Theorem 3.4. Let 1 < p <∞ and w ∈ Ap. Then
BMOp),ϕ,w = BMO,

with equivalent norms.
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Lemma 3.5 ([G1]). If an integrable function w : Ω → [0,∞) belongs
to Ap, then there exist a σ > 0 and a constant C > 0 such that for any cube
Q ⊆ Ω and all measurable subsets E of Q, we have

(3.3)
w(E)

w(Q)
≤ C

(
|E|
|Q|

)σ
.

Proof of Theorem 3.4. Let us first prove BMO ↪→ BMOp),ϕ,w. By the
John–Nirenberg inequality, we have∣∣{x ∈ Q : |f(x)− fQ| > α}

∣∣ ≤ C1 exp

[
− C2α

‖f‖BMO

]
|Q|.

According to (3.3), we get

w({x ∈ Q : |f(x)− fQ| > α}) ≤ CCσ1 exp

[
− C2σα

‖f‖BMO

]
w(Q)

for some C > 0. Thus there exists a constant C3> 0 such that for any Q⊆Ω,

‖(f − fQ)χQ‖Lp),ϕ,w
‖χQ‖Lp),ϕ,w

sup0<ε<p−1 ϕ(ε)‖(f − fQ)χQ‖Lp−ε,w
sup0<ε<p−1 ϕ(ε)‖χQ‖Lp−ε,w

≤ sup
0<ε<p−1

{‖(f − fQ)χQ‖p−εLp−ε,w

w(Q)

} 1
p−ε

= sup
0<ε<p−1

{
(p− ε)

	∞
0 αp−ε−1w

(
{x ∈ Q : |f(x)− fQ| > α}

)
dα

w(Q)

} 1
p−ε

≤ sup
0<ε<p−1

{
CCσ1 (p− ε)

∞�

0

αp−ε−1 exp

[
− C2σα

‖f‖BMO

]} 1
p−ε

≤ C3‖f‖BMO,

where w(Q) =
	
Qw(x) dx.

We now prove BMOp),ϕ,w ↪→ BMO. By Lemma 2.6, there exists θ in
(0, p− 1) such that w ∈ Ap−ε for all ε ∈ (0, θ]. Applying Hölder’s inequality,
we have�

Q

|f(x)− fQ| dx =
�

Q

|f(x)− fQ|w(x)
1
p−εw(x)

− 1
p−ε dx

≤
( �

Q

|f(x)− fQ|p−εw(x) dx
) 1
p−ε
( �

Q

w(x)
− 1
p−ε−1 dx

) p−ε−1
p−ε

≤
( �

Q

|f(x)− fQ|p−εw(x) dx
) 1
p−ε |Q|

w(Q)1/(p−ε)
.

That is,

‖(f − fQ)χQ‖L1

‖χQ‖L1

· ‖χQ‖Lp−ε,w ≤ ‖(f − fQ)χQ‖Lp−ε,w .
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Thus we obtain

‖(f − fQ)χQ‖L1

‖χQ‖L1

=
sup0<ε≤θ ϕ(ε)

‖(f−fQ)χQ‖L1
‖χQ‖L1

· ‖χQ‖Lp−ε,w
sup0<ε≤θ ϕ(ε)‖χQ‖Lp−ε,w

≤
sup0<ε≤θ ϕ(ε)‖(f − fQ)χQ‖Lp−ε,w

sup0<ε≤θ ϕ(ε)‖χQ‖Lp−ε,w

≤ Cp,θ
sup0<ε<p−1 ϕ(ε)‖(f − fQ)χQ‖Lp−ε,w

supθ≤ε<p−1
ϕ(θ)
ϕ(ε) · sup0<ε<p−1 ϕ(ε)‖χQ‖Lp−ε,w

= Cp,θ sup
θ≤ε<p−1

ϕ(ε)

ϕ(θ)

‖(f − fQ)χQ‖Lp),ϕ,w
‖χQ‖Lp),ϕ,w

.

≤ Cp,θ
ϕ(p− 1)

ϕ(θ)

‖(f − fQ)χQ‖Lp),ϕ,w
‖χQ‖Lp),ϕ,w

.

Taking the supremum over all cubes Q ⊆ Ω, we get

‖f‖BMO ≤ Cp,θ,φ‖f‖BMOp),ϕ,w ,

where θ ∈ (0, p − 1) is a fixed constant depending only on w. The proof of
the theorem is complete.
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