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On uniqueness of distribution of a random variable
whose independent copies span a subspace in Lp

by

S. Astashkin (Samara), F. Sukochev (Sydney)
and D. Zanin (Sydney)

Abstract. Let 1 ≤ p < 2 and let Lp = Lp[0, 1] be the classical Lp-space of all (classes
of) p-integrable functions on [0, 1]. It is known that a sequence of independent copies of
a mean zero random variable f ∈ Lp spans in Lp a subspace isomorphic to some Orlicz
sequence space lM . We give precise connections between M and f and establish conditions
under which the distribution of a random variable f ∈ Lp whose independent copies span
lM in Lp is essentially unique.

1. Introduction. Let us recall the following well-known dichotomy
principle for subspaces of the space Lp(0, 1), 2 < p < ∞: every infinite-
dimensional closed subspace of Lp(0, 1) with 2 < p < ∞, either is isomor-
phic to a Hilbert space and complemented in Lp(0, 1), or contains a subspace
isomorphic to lp complemented in Lp(0, 1) [10, Corollary 2]. This implies eas-
ily that if lq embeds isomorphically into Lp(0, 1), 0 < q <∞ and 2 < p <∞,
then either q = p or q = 2.

At the same time, the subspace structure of Lp(0, 1), 1 ≤ p < 2, is much
more complicated. In particular, the class of all subspaces of L1 = L1(0, 1)
is very rich and does not have any reasonable description yet. If we consider
only symmetric subspaces of L1, that is, subspaces with a symmetric basis
or isomorphs of some symmetric function spaces, then these subspaces are
known to be isomorphic to averages of Orlicz spaces [7, 14].

More information is available on subspaces of L1 isomorphic to Orlicz
spaces. First of all, an isomorph of an Orlicz sequence space lM 6= l1 in L1

can always be given by the span of a sequence of independent identically
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distributed (i.i.d.) random variables. This was discovered by M. I. Kadec [9]
in 1958, who proved that for arbitrary 1 ≤ p < q < 2 there exists a sym-
metrically distributed function f ∈ Lp (a q-stable random variable) such
that the sequence {fk}∞k=1 of independent copies of f spans in Lp a subspace
isomorphic to lq.

This direction of study was taken further by J. Bretagnolle and D. Dacun-
ha-Castelle (see [5, 6, 7]). In particular, D. Dacunha-Castelle showed that
for every given mean zero f ∈ Lp = Lp(0, 1), the sequence {fk}∞k=1 of its
independent copies is equivalent in Lp to the unit vector basis of some Or-
licz sequence space lM [7, Theorem 1, p. X.8]. Moreover, J. Bretagnolle and
D. Dacunha-Castelle proved that an Orlicz function space LM = LM [0, 1]
can be isomorphically embedded into the space Lp, 1 ≤ p < 2, if and only
if M is equivalent to a p-convex and 2-concave Orlicz function on [0,∞)
[6, Theorem IV.3]. Later on some of these results were independently redis-
covered by M. Braverman [2, 4].

Note that the methods used in [5, 6, 7, 2, 4] depend heavily on the tech-
niques related to the theory of random processes. In a recent paper [1], the
first two of the present authors suggested a different approach to this prob-
lem, based on methods and ideas from the interpolation theory of operators.
In addition, it should be pointed out that papers [5, 6, 7, 2, 4] only give the
existence of a function f such that the sequence of its independent copies
is equivalent in Lp to the unit vector basis in some Orlicz sequence space
and do not address the determination of f , whereas [1] focuses on reveal-
ing precise connections between the Orlicz function and the distribution of
the corresponding random variable f . Among other results, the following
is shown in [1]. Let 1 ≤ p < 2 and let M be a p-convex and 2-concave
Orlicz function on [0,∞) such that M(t) � tp for small t > 0 and the
function

S(u) := −2pM(u) + (p+ 1)uM ′(u)− u2M ′′(u)

is positive on (0,∞), increasing and bounded on (0, 1). Then, under some
technical conditions onM (see [1, Proposition 12 and Theorem 15]) the unit
vector basis in lM is equivalent in Lp to the sequence {fk}∞k=1 of indepen-
dent copies of an arbitrary mean zero function f ∈ Lp whose distribution
function

nf (τ) := λ{u : |f(u)| > τ}, τ > 0

(λ is the Lebesgue measure) is equivalent to the function S(1/τ) for
τ ≥ 1.

The present paper continues this direction of research. Our main result
(Theorem 1.1) states that when an Orlicz function M is ‘far’ from the ex-
treme functions tp and t2, 1 ≤ p < 2, the distribution of a random variable
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f ∈ Lp whose independent copies span lM is essentially equivalent to that
of the function

m(t) =
1

M−1(t)
, t > 0.

Theorem 1.1. Let 1 ≤ p < 2 and let M be an Orlicz function. The
following conditions are equivalent:

(i) M is (p+ ε)-convex and (2− ε)-concave for some ε > 0.
(ii) If a sequence {fk}∞k=1 of independent copies of a mean zero random

variable f ∈ Lp satisfies

(1.1) C−1
∥∥∥ n∑

k=1

ek

∥∥∥
lM
≤
∥∥∥ n∑

k=1

fk

∥∥∥
p
≤ C

∥∥∥ n∑
k=1

ek

∥∥∥
lM

for some constant C > 0 independent of n ∈ N, then the distribution
function nf (τ) is equivalent to that of m for large τ . Here, {ek}∞k=1

is the unit vector basis in lM .
(iii) If a sequence {fk}∞k=1 of independent copies of a mean zero random

variable f ∈ Lp is equivalent in Lp to the unit vector basis {ek}∞k=1

in lM , then the distribution function nf (τ) is equivalent to that of
m for large τ .

(iv) The function m is in Lp and any sequence of independent copies of
a mean zero random variable equimeasurable with m is equivalent in
Lp to the unit vector basis in lM .

Observe that in the special case M(t) = tq, where 1 ≤ p < q < 2,
assertion (ii) of Theorem 1.1 was proved in [4, Ch. 3, Theorem 2] (see also
[3, Theorem 2]) by using a completely different (and more complicated)
approach.

It is worth noting that the assertion of Theorem 1.1 is in a sense sharp.
Namely, in Proposition 5.3 we show that there exist two random variables x
and y with non-equivalent distribution for large τ whose independent copies
span in L1 the same Orlicz space lM , where M is equivalent to the function
t/log(e/t) for small t > 0.

Note that in the special case p = 1, another attempt to describe the
connection between the distribution of a random variable f ∈ Lp and the
corresponding Orlicz functionM can be found in [16]. However, the methods
used in [16] have a strong combinatorial flavor and formulas obtained there
seem to be less accessible. Moreover, in [16] the question of uniqueness of
distribution of f is not raised at all.

The proof of Theorem 1.1 is given in Section 4. Two important compo-
nents of the proof are Proposition 2.4 and Theorem 3.3.
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2. Preliminaries and auxiliary results

2.1. Orlicz functions and spaces. For the theory of Orlicz spaces we
refer to [11, 13].

Let M be an Orlicz function, that is, an increasing convex function on
[0,∞) such thatM(0) = 0. To any Orlicz functionM we associate the Orlicz
sequence space lM of all sequences of scalars a = (an)∞n=1 such that

∞∑
n=1

M

(
|an|
ρ

)
<∞

for some ρ > 0. When equipped with the norm

‖a‖lM := inf

{
ρ > 0 :

∞∑
n=1

M

(
|an|
ρ

)
≤ 1

}
,

lM is a Banach space. Clearly, if M(t) = tp, p ≥ 1, then the Orlicz space lM
is the familiar space lp. Moreover, the sequence {en}∞n=1 given by

en = (0, . . . , 0,︸ ︷︷ ︸
n−1 times

1, 0, . . .)

is a Schauder basis in every Orlicz space lM provided thatM satisfies the ∆2-
condition at zero, i.e., there are u0 > 0 and C > 0 such thatM(2u) ≤ CM(u)
for all 0 < u < u0.

Similarly, if M is an Orlicz function, then the Orlicz function space
LM = LM [0, 1] consists of all measurable functions x on [0, 1] such that
the norm

‖x‖LM
= inf

{
u > 0 :

1�

0

M(|x(t)|/u) dt ≤ 1
}

is finite.
Let 1 ≤ p < q < ∞. Given an Orlicz function M , we say that M is

p-convex if the map t 7→ M(t1/p) is convex, and q-concave if t 7→ M(t1/q)
is concave. Throughout this paper, we assume that M(1) = 1 and M :
[0,∞)→ [0,∞) is a bijection.

Careful inspection of the proof of [1, Lemma 5] yields the following two
lemmas.

Lemma 2.1. Let 1 ≤ p < ∞. An Orlicz function M : [0,∞) → [0,∞)
satisfying the ∆2-condition at 0 is equivalent to a p-convex Orlicz function on
[0, 1] if and only if there exists a constant C > 0 such that for all 0 < s < 1
and all 0 < t ≤ 1 we have

M(st) ≤ CspM(t).

Lemma 2.2. Let 1 < q <∞. An Orlicz function M : [0,∞)→ [0,∞) is
equivalent to a q-concave Orlicz function on [0, 1] if and only if there exists
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a constant C > 0 such that for all 0 < s < 1 and all 0 < t ≤ 1 we have

sqM(t) ≤ CM(st).

In what follows, we will denote by f∗ the non-increasing right-continuous
rearrangement of a random variable f , that is,

f∗(s) := inf{t : nf (t) ≤ s},

where nf is the distribution function of the random variable f . One says
that random variables f and g are equimeasurable if f∗(t) = g∗(t), 0 < t ≤ 1
(equivalently, nf (τ) = ng(τ), τ > 0). Finally, given two positive functions
(quasinorms) f and g are said to be equivalent (we write f ∼ g) if there
exists a positive finite constant C such that C−1f ≤ g ≤ Cf . Sometimes,
we say that these functions are equivalent for large (or small) values of the
argument, meaning that the preceding inequalities hold only for the specified
values.

2.2. A condition for independent copies of a mean zero f to
be equivalent in Lp to the unit vector basis of lM . For f ∈ L1(0, 1),
k ∈ N, and t > 0 we set

f k(t) :=

{
f(t− k + 1), t ∈ [k − 1, k),
0, otherwise.

The following assertion is an immediate consequence of the famous Ro-
senthal inequality [15] (or its more general version due to Johnson and
Schechtman [8]). It establishes a connection between the behavior in Lp

of an arbitrary sequence {fk}∞k=1 of independent copies of a mean zero ran-
dom variable f ∈ Lp and that of the corresponding sequence {f k}∞k=1 in the
Banach sum (Lp +L2)(0,∞) of the Lebesgue spaces Lp(0,∞) and L2(0,∞).

Lemma 2.3. Let 1 ≤ p ≤ 2. For every finitely supported a = (ak)∞k=1
and for a mean zero random variable f ∈ Lp(0, 1) we have∥∥∥ ∞∑

k=1

akfk

∥∥∥
p
∼
∥∥∥ ∞∑

k=1

akf k

∥∥∥
Lp+L2

.

Lemma 2.3 allows us to investigate sequences of independent identically
distributed mean zero random variables in Lp = Lp(0, 1).

Proposition 2.4. Let 1 ≤ p ≤ 2 and let f ∈ Lp be a mean zero random
variable. The following conditions are equivalent:

(a) A sequence {fk}∞k=1 of independent copies of f is equivalent (in Lp)
to the unit vector basis in lM .

(b) A sequence {fk}∞k=1 of independent copies of f satisfies (1.1) with
some constant C > 0 independent of n ∈ N.
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(c) The following equivalence holds:

(2.1)
1

M−1(t)
∼
(

1

t

t�

0

f∗(s)p ds

)1/p

+

(
1

t

1�

t

f∗(s)2 ds

)1/2

, 0 < t ≤ 1.

Proof. The implication (a)⇒(b) is obvious.
(b)⇒(c). We have∥∥∥ n∑

k=1

ek

∥∥∥
lM
∼
∥∥∥ n∑

k=1

fk

∥∥∥
p

Lemma 2.3∼
∥∥∥ n∑

k=1

f k

∥∥∥
Lp+L2

.

Since 1 ≤ p ≤ 2, it follows that

‖x‖Lp+L2 ∼
(1�
0

x∗(s)p ds
)1/p

+
(∞�

1

x∗(s)2 ds
)1/2

.

Therefore, from the equalities( n∑
k=1

f k

)∗
(s) = f∗

(
s

n

)
, s > 0,

and ∥∥∥ n∑
k=1

ek

∥∥∥
lM

= inf

{
ρ > 0 : nM

(
1

ρ

)
≤ 1

}
=

1

M−1(1/n)
, n ≥ 1,

it follows that

1

M−1(1/n)
∼
(1�

0

f∗
(
s

n

)p

ds

)1/p

+

(n�

1

f∗
(
s

n

)2

ds

)1/2

=
(
n

1/n�

0

f∗(s)p ds
)1/p

+
(
n

1�

1/n

f∗(s)2 ds
)1/2

, n ≥ 1.

Let t ∈ (1/(n+1), 1/n) for some n ≥ 1.We clearly haveM−1(1/n) ∼M−1(t)
and(

n

1/n�

0

f∗(s)p ds
)1/p

+
(
n

1�

1/n

f∗(s)2 ds
)1/2

∼
(

1

t

t�

0

f∗(s)p ds

)1/p

+

(
1

t

1�

t

f∗(s)2 ds

)1/2

.

The assertion (2.1) follows immediately from the equivalences above.
(c)⇒(a). By [7, Theorem 1, p. X.8] (see also [1, Theorem 9]), for every

mean zero f ∈ Lp(0, 1) the sequence {fk}∞k=1 of independent copies of f is
equivalent in Lp to the unit vector basis in some Orlicz sequence space lN .
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Arguing as in the proof of (b)⇒(c). we conclude that

1

N−1(t)
∼
(

1

t

t�

0

f∗(s)p ds

)1/p

+

(
1

t

1�

t

f∗(s)2 ds

)1/2

, t ∈ (0, 1).

Together with (2.1) the equivalence above show that the Orlicz functions M
and N are equivalent on [0, 1], and thus lN = lM . This completes the
proof.

3. When does (2.1) hold for f = m? The following proposition pro-
vides necessary and sufficient conditions for mp to be equivalent to its Cesàro
transform.

Proposition 3.1. Let 1 ≤ p <∞ and let M be a p-convex Orlicz func-
tion satisfying the ∆2-condition at 0. The following conditions are equivalent:

(i) M is equivalent on [0, 1] to a (p+ε)-convex Orlicz function for some
ε > 0.

(ii)
1

t

t�

0

m(s)p ds ≤ const ·m(t)p, t ∈ (0, 1).

Proof. Define
ϕ(t) = tm(t)p, t ∈ (0, 1).

(i)⇒(ii). It suffices to show that

(3.1)
t�

0

ϕ(s) ds

s
≤ const · ϕ(t), t ∈ (0, 1).

It follows directly from the definitions that, for all s ∈ (0, 1),

sup
0<t≤1

ϕ(st)

ϕ(t)
= s sup

0<t≤1

(
(M−1(t))p+ε

(M−1(st))p+ε

) p
p+ε

.

Since M is (p+ ε)-convex, the mapping

t 7→ (M−1(t))p+ε, t ∈ (0, 1],

is concave. In particular, we have
(M−1(t))p+ε

(M−1(st))p+ε
≤ s−1, 0 < s, t ≤ 1.

Therefore,

sup
t∈(0,1)

ϕ(st)

ϕ(t)
≤ s

ε
p+ε , 0 < s ≤ 1.

Applying now Lemma II.1.4 from [12], we infer (3.1).
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(ii)⇒(i). Since M is p-convex, it follows that
M(s)

sp
≤ M(t)

tp
, 0 < s ≤ t ≤ 1.

Replacing s with M−1(s) and t with M−1(t), we infer that ϕ is increasing.
By the assumption, we have

t�

0

ϕ(s)

s
ds ≤ Cϕ(t), t ∈ (0, 1),

for some C > 0. Take s0 < e−2C . We claim that

(3.2) sup
t∈(0,1)

ϕ(s0t)

ϕ(t)
< 1.

Indeed, suppose that the supremum in (3.2) equals 1. In particular, there
exists t ∈ (0, 1) such that ϕ(s0t) > ϕ(t)/2. Since ϕ is increasing and since
log(s−10 ) > 2C, it follows that

t�

0

ϕ(s)

s
ds ≥

t�

s0t

ϕ(s)

s
ds ≥ ϕ(s0t) log

(
t

s0t

)
> Cϕ(t).

This contradiction proves the claim.
According to (3.2), we can fix a ∈ (0, 1) such that

(3.3) ϕ(s0t) ≤ aϕ(t), t ∈ (0, 1).

Without loss of generality, we can assume a > s
1/(1+p)
0 . Hence, there exists

ε ∈ (0, 1) such that a = s
ε/(p+ε)
0 .

For every s ∈ (0, 1] there exists n ∈ N such that s ∈ (sn+1
0 , sn0 ). Since ϕ

is increasing, it follows that

ϕ(st) ≤ ϕ(sn0 t)
(3.3)
≤ s

nε
p+ε

0 ϕ(t) ≤ s
− ε

p+ε

0 s
ε

p+εϕ(t), t ∈ (0, 1).

Hence,
ϕ(st) ≤ const · s

ε
p+εϕ(t), s, t ∈ (0, 1),

or equivalently

(st)
− ε

p+εϕ(st) ≤ const · t−
ε

p+εϕ(t), s, t ∈ (0, 1).

Therefore, it follows from the definition of ϕ that

M(st) ≤ const · sp+ε ·M(t), s, t ∈ (0, 1).

The argument is completed by referring to Lemma 2.1.

Now, we prove a dual result.

Proposition 3.2. Let M be a q-concave Orlicz function for some
1 < q <∞. The following conditions are equivalent:
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(i) M is equivalent on [0, 1] to a (q−ε)-concave Orlicz function for some
ε > 0.

(ii)

(3.4)
1

t

1�

t

m(s)q ds ≤ const ·m(t)q, t ∈ (0, 1).

Proof. Define
ψ(t) := tm(t)q, t ∈ (0, 1).

(i)⇒(ii). It suffices to verify that
1�

t

ψ(s)

s
ds ≤ const · ψ(t), t ∈ (0, 1).

We have

sup
ψ(st)

ψ(t)
= s · sup

(
(M−1(t))q−ε

(M−1(st))q−ε

) q
q−ε

,

where the supremums are taken over all t ∈ (0, 1) and s > 1 such that
0 < st ≤ 1. Since M is (q − ε)-concave, it follows that the mapping

t 7→ (M−1(t))q−ε, t ∈ (0, 1),

is convex. In particular,

(M−1(t))q−ε

(M−1(st))q−ε
≤ s−1, s > 1, 0 < st ≤ 1.

Therefore,

sup
ψ(st)

ψ(t)
≤ s−

ε
q−ε < 1,

where again the supremum is taken over all t ∈ (0, 1) and s > 1 such that
0 < st ≤ 1. Applying now Lemma II.1.5 from [12], we infer (3.4).

(ii)⇒(i). Since M is q-concave, it follows that
M(s)

sq
≥ M(t)

tq
, 0 < s ≤ t ≤ 1.

Replacing s with M−1(s) and t with M−1(t), we infer that ψ is decreasing.
By the assumption, we have

1�

t

ψ(s)

s
ds ≤ Cψ(t), t ∈ (0, 1),

for some C > 0. Take s0 > e2C . We claim that

(3.5) sup
t∈(0,s−1

0 )

ψ(s0t)

ψ(t)
< 1.
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Indeed, suppose that the supremum in (3.5) equals 1. In particular, there
exists t ∈ (0, s−10 ) such that ψ(s0t) ≥ ψ(t)/2. Since ψ is decreasing, it follows
that

1�

t

ψ(s)

s
ds ≥

s0t�

t

ψ(s)

s
ds ≥ ψ(s0t) log

(
s0t

t

)
> Cψ(t).

This contradiction proves the claim.
According to (3.5), we can fix b ∈ (0, 1) such that

(3.6) ψ(s0t) ≤ bψ(t), t ∈ (0, s−10 ).

Without loss of generality, b > s−10 . Hence, there exists ε > 0 such that
b = s

−ε/(q−ε)
0 .

Let s > 1 and 0 < t < s−1. We can find n ∈ N such that s ∈ (sn0 , s
n+1
0 ).

Again appealing to the fact that ψ is decreasing, we have

ψ(st) ≤ ψ(sn0 t)
(3.6)
≤ s

− nε
q−ε

0 ψ(t) ≤ s
ε

q−ε

0 s
− ε

q−εψ(t).

It follows that

ψ(st) ≤ const · s−
ε

q−εψ(t), s > 1, t ∈ (0, s−1),

or equivalently

s
ε

q−εψ(s) ≤ const · t
ε

q−εψ(t), 0 < t ≤ s ≤ 1.

Therefore, from the definition of ψ, we have
s

(M−1(s))q−ε
≤ const · t

(M−1(t))q−ε
, 0 < t ≤ s ≤ 1,

or
const · sq−ε ·M(t) ≤M(st), ∀t, s ∈ (0, 1].

Applying Lemma 2.2, we complete the proof.

The following theorem answers the question stated in the title of the
present section.

Theorem 3.3. Let 1 ≤ p < 2 and let M be a p-convex and 2-concave
Orlicz function. The following conditions are equivalent:

(i) The equivalence (2.1) holds for f = m.
(ii) M is (p+ ε)-convex and (2− ε)-concave for some ε > 0.

Proof. (ii)⇒(i). If M is (p + ε)-convex for some ε > 0, then it follows
from Proposition 3.1 that

(3.7)
(

1

t

t�

0

m(s)p ds

)1/p

≤ const ·m(t), t ∈ (0, 1).
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If M is (2− ε)-concave for some ε > 0, then Proposition 3.2 implies

(3.8)
(

1

t

1�

t

m(s)2 ds

)1/2

≤ const ·m(t), t ∈ (0, 1).

Observe now that the inequality

(3.9) m(t) ≤
(

1

t

t�

0

m(s)p ds

)1/p

, t ∈ (0, 1)

holds trivially, due to the fact that m is decreasing.
The equivalence (2.1) for f = m follows immediately from (3.7)–(3.9).
(i)⇒(ii). Suppose that (2.1) holds for f =m.Then,we have (3.7) and (3.8).

Applying Propositions 3.1 and 3.2, we find that M is (p + ε)-convex and
(2− ε)-concave for some ε > 0, and the proof is complete.

4. When does (2.1) hold for a unique f (up to equivalence
near 0)? This section contains the proof of Theorem 1.1.

Proof of Theorem 1.1. The implications (ii)⇒(iii) and (iii)⇒(iv) are obvi-
ous. In view of [6, Theorem IV.3] or [1, Theorem 9], the implication (iv)⇒(i)
follows by combining Proposition 2.4 and Theorem 3.3.

(i)⇒(ii). We begin with the following technical lemma.

Lemma 4.1. Let 1 ≤ p < ∞, 1 < q < ∞ and let M be an Orlicz
function.

(i) If M is (q − ε)-concave for some ε > 0, then

N sup
t>0

m(Nt)q

m(t)q
→ 0, N →∞.

(ii) If M is (p+ ε)-convex for some ε > 0, then
1

N
sup
t>0

m(t/N)p

m(t)p
→ 0, N →∞.

Proof. The proofs of (i) and (ii) are very similar. So, we prove (i) only.
Since M is (q − ε)-concave, it follows that the mapping

t 7→ M(t)

tq−ε
, t > 0,

is decreasing. Hence, the mapping

t→ tm(t)q−ε =
t

(M−1(t))q−ε
, t > 0,

is also decreasing. Therefore,

N
q

q−ε sup
t>0

m(Nt)q

m(t)q
=

(
sup
t>0

Ntm(Nt)q−ε

tm(t)q−ε

) q
q−ε

≤ 1,
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whence

N sup
t>0

m(Nt)q

m(t)q
≤ N−ε/(q−ε) → 0 as N →∞.

Now, letM be a (p+ε)-convex and (2−ε)-concave Orlicz function and let
f be a mean zero Lp function. Suppose the sequence {fk}∞k=1 of independent
copies of f satisfies inequality (1.1) with some constant C > 0 independent
of n ∈ N. It suffices to show that the functions f∗ and m are equivalent for
small values of the argument. For simplicity we abuse the notation assuming
that f = f∗. By Proposition 2.4 we know that the equivalence (2.1) holds
for f , that is,

(4.1) m(t) ∼
(

1

t

t�

0

f(s)p ds

)1/p

+

(
1

t

1�

t

f(s)2 ds

)1/2

, t ∈ (0, 1).

By Theorem 3.3, we also have

(4.2) m(t) ∼
(

1

t

t�

0

m(s)p ds

)1/p

+

(
1

t

1�

t

m(s)2 ds

)1/2

, t ∈ (0, 1).

Observe now that the estimate

(4.3) f(t) ≤ C1m(t), t ∈ (0, 1),

for some C1 > 0 follows immediately from (4.1) and the (already used)
inequality

f(t) ≤
(

1

t

t�

0

f(s)p ds

)1/p

, t ∈ (0, 1).

Thus, we need to show that the estimate

(4.4) m(t) ≤ const · f(t)

holds for all sufficiently small t ∈ (0, 1).

By Propositions 3.1 and 3.2, there exists a constant C0 > 0 such that

1

t

t�

0

m(s)p ds ≤ Cp
0m(t)p, t ∈ (0, 1),(4.5)

1

t

1�

t

m(s)2 ds ≤ C2
0m(t)2, t ∈ (0, 1).(4.6)

Moreover, there is a constant C > 0 such that for a given t ∈ (0, 1), from
(4.1) it follows that either

(4.7)
(

1

t

1�

t

f(s)2 ds

)1/2

≥ 1

2C
m(t),
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or

(4.8)
(

1

t

t�

0

f(s)p ds

)1/p

≥ 1

2C
m(t).

By Lemma 4.1, we can fix N so large that

(4.9) sup
t>0

m(Nt)2

m(t)2
≤ 1

8NC2C2
1

, sup
t>0

m(t/N)p

m(t)p
≤ N

2p+1Cp
1C

p
.

Let t ∈ (0, 1/N). Firstly, we consider the situation when (4.7) holds. Squaring
this inequality and then applying (4.3), we obtain

1

4C2
m(t)2 ≤ 1

t

1�

t

f(s)2 ds =
1

t

Nt�

t

f(s)2 ds+
1

t

1�

Nt

f(s)2 ds

≤ (N − 1)f(t)2 +
NC2

1

Nt

1�

Nt

m(s)2 ds.

Hence, by (4.6), we have
1

4C2
m(t)2 ≤ (N − 1)f(t)2 +NC2

1C
2
0m(Nt)2.

Combining the latter estimate with the first inequality in (4.9), we obtain

(N − 1)f(t/N)2 ≥ (N − 1)f(t)2

≥ 1

4C2
m(t)2 −NC2

1C
2
0m(Nt)2

(4.9)
≥ 1

8C2
m(t)2.

If (4.8) holds, then

1

2pCp
m(t)p ≤ 1

t

t�

0

f(s)p ds =
1

t

t/N�

0

f(s)p ds+
1

t

t�

t/N

f(s)p ds.

Taking (4.3) and (4.5) into account, we obtain

1

2pCp
m(t)p ≤ Cp

1/N

t/N

t/N�

0

m(s)p ds+

(
1− 1

N

)
f

(
t

N

)p

≤ 1

N
Cp
1C

p
0m

(
t

N

)p

+

(
1− 1

N

)
f

(
t

N

)p

.

We infer from this estimate and the second inequality in (4.9) that(
1− 1

N

)
f

(
t

N

)p

≥ 1

2pCp
m(t)p − 1

N
CpCp

0m

(
t

N

)p (4.9)
≥ 1

2p+1Cp
m(t)p.

In either case, we have

f(t/N) ≥ const ·m(t), t ∈ (0, 1/N),
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for a universal constant. Since m(t) ∼ m(t/N), it follows that

f(t) ≥ const ·m(t), t ∈ (0, 1/N2).

The latter inequality together with (4.3) suffices to conclude the proof of the
implication (i)⇒(ii).

5. Sharpness of Theorem 1.1. Let {hk}∞k=1 (respectively, {gk}∞k=1)
be a sequence of pairwise disjoint measurable subsets of (0, 1) such that
λ(hk) = 2−k−2

k (respectively, λ(gk) = 4−k−4
k), k ≥ 1. We define functions

x, y ∈ L1(0, 1) by setting

(5.1) x =
∞∑
k=1

22
k
χhk

, y =
∞∑
k=1

44
k
χgk

(χc is the indicator function of a set c).

Lemma 5.1. We have
1�

0

min{x(s), tx(s)2} ds ∼
1�

0

min{y(s), ty(s)2} ds ∼ 1

log(e/t)
, 0 < t ≤ 1.

Proof. It is clear that
1�

0

min{x(s), tx(s)2} ds =
∑

22
k≥1/t

22
k · 2−k−2k + t ·

∑
22

k<1/t

22
k+1 · 2−k−2k .

Let t < 1/4. If m is the maximal positive integer such that 22
m
< 1/t, then

1�

0

min{x(s), tx(s)2} ds =
∞∑

k=m+1

2−k + t ·
m∑
k=1

22
k−k = 2−m + t ·

m∑
k=1

22
k−k.

Also,
m∑
k=1

22
k−k ≤ 22

m−m + (m− 1) · 22m−1−m+1 ≤ 22
m−m + 22

m−1 ≤ 2 · 22m−m.

Therefore,

2−m ≤
1�

0

min{x(s), tx(s)2} ds ≤ 2−m + 2t · 22m−m ≤ 3 · 2−m.

It now follows from the definition of m that

1

log2(1/t)
≤

1�

0

min{x(s), tx(s)2} ds ≤ 6

log2(1/t)
.

The similar equivalence for y follows mutatis mutandis.
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Lemma 5.2. The distributions of the functions x and y are not equiva-
lent.

Proof. Suppose that nx(Ct) ≤ Cny(t), t > 0. Fix k such that

22k+1 > log2C + 1

and select t such that both t and Ct belong to the interval (22
2k+1

, 22
2k+2

).
Then

nx(Ct) = nx(22
2k+1

) ≥ 2−(2k+2)−22k+2

and
ny(t) = ny(44

k
) ≤ 2 · 4−(k+1)−4k+1

= 2−2k−1−2
2k+3

.

It follows that

22k+2+22k+2 ≥ 1

C
· 22k+1+22k+3

,

or equivalently

2k + 2 + 22k+2 ≥ − log2(C) + 2k + 1 + 22k+3.

Clearly, this contradicts the choice of k.

Let {xk}∞k=1 (respectively, {yk}∞k=1) be a sequence of independent copies
of a mean zero random variable equimeasurable with x (respectively, y),
where x and y are defined in (5.1). Let us show that the sequences {xk}∞k=1
and {yk}∞k=1 span in L1 the same Orlicz space lM , where M is equivalent
to the function t/log(e/t) for small t > 0. Note that M does not satisfy
condition (i) of Theorem 1.1; more precisely, M is not (1 + ε)-convex for
any ε > 0. Taking into account Lemma 2.3, it suffices to prove the following
proposition.

Proposition 5.3. For every finitely supported a = (ak)∞k=1, we have∥∥∥ n∑
k=1

akxk

∥∥∥
L1+L2

∼
∥∥∥ n∑

k=1

akyk

∥∥∥
L1+L2

∼ ‖(ak)∞k=1‖lM .

Proof. Define an Orlicz function N by setting

N(t) =

{
t2, t ∈ (0, 1)

2t− 1, t ≥ 1.

It is easy to check that ‖z‖L1+L2 ∼ ‖z‖LN
for every z ∈ L1 + L2, where LN

is the Orlicz function space on [0, 1].

Setting

M(t) =

1�

0

N(tx(s)) ds, t > 0,
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we obtain ∥∥∥ ∞∑
k=1

akxk

∥∥∥
LN

≤ 1 ⇔
∞�

0

N
( ∞∑
k=1

|ak| |xk(s)|
)
ds ≤ 1

⇔
∞∑
k=1

1�

0

N(|ak| |xk(s)|) ds ≤ 1

⇔
∞∑
k=1

M(ak) ≤ 1 ⇔ ‖a‖lM ≤ 1.

Therefore, ∥∥∥ ∞∑
k=1

akxk

∥∥∥
L1+L2

∼ ‖a‖lM .

Since N(t) ∼ min{t, t2} (t > 0), it follows that

M(t) ∼
1�

0

min{tx(s), (tx(s))2} ds,

and Lemma 5.1 yields

M(t) ∼ t

log(e/t)
, 0 < t ≤ 1.

This proves the assertion for the sequence {xk}. The proof of the similar
assertion for {yk} is the same.

Remark 5.4. It is natural to ask what happens when M(t) is close
to t2. Our example (Lemma 5.2 and Proposition 5.3 above) is in sharp con-
trast with Theorem 4.2 in [2]. The latter theorem states that if a sequence
of independent copies of a mean zero random variable f spans lM where
M(t) = t2 log(1/t) near 0, then the distribution function nf is unique (up to
equivalence for large arguments).
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[12] S. Krĕın, Ju. Petunin and E. Semenov, Interpolation of Linear Operators, Nauka,
Moscow, 1978 (in Russian); English transl.: Transl. Math. Monogr. 54, Amer. Math.
Soc., Providence, RI, 1982.

[13] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Sprin-
ger, Berlin, 1979.

[14] Y. Raynaud and C. Schütt, Some results on symmetric subspaces of L1, Studia
Math. 89 (1988), 27–35.

[15] H. P. Rosenthal, On the subspaces of Lp (p > 2) spanned by sequences of independent
random variables, Israel J. Math. 8 (1970), 273–303.

[16] C. Schütt, On the embedding of 2-concave Orlicz spaces into L1, Studia Math. 113
(1995), 73–80.

S. Astashkin
Samara State University
Pavlova 1
443011, Samara, Russia
and
Samara State Aerospace University (SSAU)
Moskovskoye shosse 34
443086, Samara, Russia
E-mail: astash@samsu.ru

F. Sukochev, D. Zanin
School of Mathematics and Statistics

University of New South Wales
Sydney, 2052, Australia

E-mail: f.sukochev@unsw.edu.au
d.zanin@unsw.edu.au

http://dx.doi.org/10.1112/blms/28.1.79
http://dx.doi.org/10.1214/aop/1176991427
http://dx.doi.org/10.1007/BF02771562



	1 Introduction
	2 Preliminaries and auxiliary results
	2.1 Orlicz functions and spaces
	2.2 A condition for independent copies of a mean zero f to be equivalent in Lp to the unit vector basis of lM

	3 When does (2.1) hold for f=m?
	4 When does (2.1) hold for a unique f (up to equivalence near 0)?
	5 Sharpness of Theorem 1.1
	References

