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Abstract. Let E be a Banach space contained in a Hilbert space L. Assume that
the inclusion is continuous with dense range. Following the terminology of Gohberg and
Zambickĭı, we say that a bounded operator on E is a proper operator if it admits an
adjoint with respect to the inner product of L. A proper operator which is self-adjoint
with respect to the inner product of L is called symmetrizable. By a proper subspace S
we mean a closed subspace of E which is the range of a proper projection. Furthermore,
if there exists a symmetrizable projection onto S, then S belongs to a well-known class of
subspaces called compatible subspaces. We find equivalent conditions to describe proper
subspaces. Then we prove a necessary and sufficient condition for a proper subspace to
be compatible. The existence of non-compatible proper subspaces is related to spectral
properties of symmetrizable operators. Each proper subspace S has a supplement T which
is also a proper subspace. We give a characterization of the compatibility of both subspaces
S and T . Several examples are provided that illustrate different situations between proper
and compatible subspaces.

1. Introduction. Let E be a Banach space space which is continuously
and densely included in a Hilbert space L. A bounded operator on E is a
proper operator if it admits an adjoint with respect to the inner product
of L. This definition goes back to Gohberg and Zambickĭı [25], and it gives a
simple condition under which they obtained several results on operators in
spaces with two norms. In this context, we introduce the following class of
subspaces: a subspace S of E is called a proper subspace if it is the range of a
proper projection. If, in addition, the proper projection is self-adjoint with
respect to the inner product of L, then S is called a compatible subspace.
The aim of the present work is to study proper subspaces and their relation
to compatible subspaces.
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The notion of compatible subspace has been studied in recent years.
It was in the paper [16] by Corach, Maestripieri and Stojanoff that the
theory of compatibility was introduced; it was then studied systematically
in [18, 19]. The usual setting to study problems concerning compatibility
differs from our context. One has a Hilbert space (H, 〈 , 〉H) and a posi-
tive semidefinite operator A ∈ B(H), where B(H) denotes the algebra of
bounded linear operators on H. Then a bounded sesquilinear form can
be defined by 〈f, g〉A = 〈Af, g〉H, where f, g ∈ H. If S is a closed sub-
space of H, the set of A-self-adjoint projections with range S is given
by

P(A,S) = {Q ∈ B(H) : Q2 = Q, AQ = Q∗A, R(Q) = S}.

The subspace S is compatible if P(A,S) is not empty. When A is an in-
jective operator, this is a special case of the setting described in the first
paragraph, where E = H and L the completion of H with respect to the
norm induced by the inner product defined by A. In this case, if the set
P(A,S) is not empty, then it is a singleton. We remark that a definition
of compatible subspace without assuming that E is a Hilbert space was
already considered in [20, Remark 5.8], but it was not studied in further
works.

It is interesting to note that compatible subspaces can be found in much
earlier literature. Sard used an equivalent definition to give an operator-
theoretic approach to problems in approximation theory (see [32, 15]).
On the other hand, Hassi and Nordström [26] found conditions that guar-
antee the existence and uniqueness of self-adjoint projections with respect
to an Hermitian form. More recently, the notion of compatibility has been
related to different topics such as signal processing [23, 24], frame theory [6],
de Branges complementation theory [1, 13, 20], sampling theory [5, 33] and
abstract splines [17, 8, 12, 21].

Let us describe the contents of this paper. In Section 2 we establish no-
tation and give the necessary background on proper operators. In Section 3
we prove elementary properties of proper subspaces. The set of all proper
operators is an involutive Banach algebra, and thus proper subspaces are
ranges of projections in a Banach algebra. We find equivalent conditions to
describe proper subspaces in Theorem 3.7. One of these conditions asserts
that a closed subspace S of E is a proper subspace if and only if there is
another closed subspace T of E satisfying

S +̇ T = (S⊥ ∩ E) +̇ (T ⊥ ∩ E) = E ,

where the orthogonal complement is considered with respect to L. This kind
of supplements T , which are also proper subspaces, will be called proper
companions of S.
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We address the question of when a proper subspace is a compatible sub-
space in Section 4. Both notions coincide if the subspace has finite codimen-
sion, but they are different in general, as we shall see in concrete examples.
In Theorem 4.8 we obtain a criterion for a proper subspace to be compatible.
Let S be a proper subspace and T a proper companion of S. Then the pro-
jection PS//T with range S and nullspace T is well-defined and continuous
on E . Our criterion basically asserts that S is compatible if and only if the
operator

CS,T = PS//T + P+
S//T − I

has range equal to T +̇ (T ∩ E). Here the superscript + stands for the
restriction to E of the adjoint in L.

We prove in Theorem 4.9 different conditions equivalent to the compat-
ibility of both a proper subspace and a fixed proper companion. Among
other conditions, we find that a proper subspace S and a proper companion
T are compatible subspaces exactly when the operator CS,T is invertible
on E . Next we examine when the compatibility of a proper companion T
implies the compatibility of another proper companion T1. As we shall show
by examples in the next section, this does not hold in general. However, it
holds in some special cases, for instance if the proper projections associated
to a pair of companions are closed enough in a metric induced by the al-
gebra of proper operators (Corollary 4.10). As a curious fact, we point out
that the existence of non-compatible proper subspaces is closely related to
spectral properties of symmetrizable operators (Theorem 4.11 and Corol-
lary 4.14).

In Section 5 we give several examples. In particular, we provide examples
of non-compatible proper subspaces and we show that the compatibility of
one proper companion does not imply compatibility of all proper companions
(see Subsection 5.1). We give two examples of compatible subspaces if E is
the space of trace class operators and L is the space of Hilbert–Schmidt
operators. Finally, we exhibit examples of proper invertible operators.

2. Preliminaries and notation. Let (E , ‖ ‖E) be a Banach space con-
tained in a Hilbert space (L, ‖ ‖L). Denote by 〈 , 〉 the inner product of L.
We assume that the inclusion E ↪→ L is continuous with dense range. In
order to simplify some computations, we further suppose that ‖f‖L ≤ ‖f‖E
for all f ∈ E .

Remark 2.1. The Banach space E is continuously and densely contained
in some Hilbert space L if and only if there exists a bounded conjugate-
linear operator J : E → E∗ such that (Jf)(f) > 0 for all f ∈ E , f 6= 0.
If this condition is fulfilled, L is the Hilbert space obtained as the com-
pletion of E with respect to the norm ‖f‖L = ((Jf)(f))1/2 and the inner
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product is given by the continuous extension of 〈f, g〉 = (Jg)(f), where
f, g ∈ E .

2.1. Subspaces and projections. Let B(E) denote the algebra of
bounded linear operators on E . The range of an operator T ∈ B(E) is denoted
by R(T ), and its nullspace by N(T ). An operator T ∈ B(E) is a projection if
T 2 = T . We denote by S +̇T the direct sum of two subspaces S and T of E .
If these subspaces are closed and S +̇ T = E , the oblique projection PS//T
onto S along T is the bounded projection with range S and nullspace T .
Given a subset S of E , S⊥ is the usual orthogonal complement as a subspace
of L, that is,

S⊥ = {f ∈ L : 〈f, g〉 = 0, ∀ g ∈ S}.

It is easily seen that S⊥ ∩ E is a closed subspace of E . Moreover, we have
S⊥ ∩ E = J−1(S◦), where J is the map defined in Remark 2.1 and S◦ is the
annihilator of S.

Throughout, the closure S of a closed subspace S of E is understood with
respect to the topology of L. The operator PS is the orthogonal projection
onto S. The notation for the oblique projection PS//T , introduced before for
subspaces of E , will also be used with the same meaning when S and T are
closed subspaces of L. It will be useful to state here the following result on
projections.

Theorem 2.2 (Ando [2]). Let S and T be two closed subspaces of a
Hilbert space L. If S +̇ T = L, then the operator PS − PT is invertible
and

(PS − PT )−1 = PS//T + P ∗S//T − I, PS//T = PS(PS − PT )−1.

We remark that the first formula above was first proved by Buckholtz [14].

2.2. Proper operators. In this subsection, we describe the basic prop-
erties of proper operators proved in [25]. An operator T ∈ B(E) is proper if
for every f ∈ E , there is a vector g ∈ E such that 〈Th, f〉 = 〈h, g〉 for all
h ∈ E . This allows us to define T+f = g, and by the closed graph theorem,
it follows that T+ ∈ B(E).

Theorem 2.3 (Gohberg–Zambickĭı [25]). Let T be a proper operator.
Then:

(i) T has a bounded extension T̄ on L. The usual operator norms of
T̄ ∈ B(L) and T ∈ B(E) are related by

‖T̄‖B(L) ≤ min{‖T+T‖1/2B(E), ‖TT
+‖1/2B(E)}.
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(ii) If σE(T ) and σL(T̄ ) denote the spectrum of T on E and the spec-
trum of T̄ on L, respectively, then

σL(T̄ ) ⊆ σE(T ) ∪ σE(T+),

where the last bar indicates complex conjugation.
(iii) If T is a compact operator on E, then T is a compact operator

on L. Moreover, σL(T̄ ) = σE(T ) and the eigenspaces of T in E and
L corresponding to the non-zero eigenvalues coincide.

When T is a proper operator, it turns out that T+ = T̄ ∗|E , where the
last adjoint is the adjoint of T̄ with respect to the inner product of L.
A symmetrizable operator is a proper operator T such that T+ = T . This
class of operators was studied independently by Dieudonné [22], Krein [29]
and Lax [30].

We denote by P the set of all proper operators. It is not difficult to
see that P is not closed in B(E). However, P becomes an involutive unital
Banach algebra with the norm defined by

‖T‖P := ‖T‖B(E) + ‖T+‖B(E).

Remark 2.4. We shall need the notion of proper operators between
different spaces. Consider a bounded operator T : E1 → E2, where E1 and E2

are Banach spaces which are continuously and densely included in Hilbert
spaces L1 and L2 respectively. Then T is proper if for every f ∈ E2, there is
a vector g ∈ E1 such that 〈Th, f〉2 = 〈h, g〉1 for all h ∈ E1. Here 〈 , 〉i denotes
the inner product of Li, i = 1, 2. The set of all proper operators from E1 to
E2 is denoted by P(E1, E2). As before, the operator T+ : E2 → E1 defined by
T+f = g is bounded and T+ ∈ P(E2, E1).

Remark 2.5. There are three different notions of groups of invertible
operators: the group of invertible operators on E , the group of invertible
operators on L and the group of invertible operators of the algebra P. These
groups are denoted by Gl(E), Gl(L) and P×, respectively. If T is a proper
operator, we write σE(T ) for the spectrum in the Banach space E , σL(T̄ )
for the spectrum of the continuous extension T̄ in the Hilbert space L and
σP(T ) for the spectrum in the Banach algebra P. The relation between the
first two notions of spectrum is stated in Theorem 2.3. Since T is invertible
in the algebra P if and only if T and T+ are invertible on E , one can see
that

σP(T ) = σE(T ) ∪ σE(T+).

There are examples which show that the inclusion σE(T ) ⊆ σP(T ) may be
strict.
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3. Proper subspaces. A closed subspace S ⊆ E is called proper if there
exists a proper projection Q such that R(Q) = S. In this section we prove
basic facts on proper subspaces. We start with two examples.

Example 3.1. Let S be a finite-dimensional subspace of E . We can
construct a basis {f1, . . . , fn} of S satisfying 〈fi, fj〉 = δij . In fact, note that
we only have to apply the Gram–Schmidt process to any basis of S to get
a new basis with this property. On the other hand, it is well known that as
an operator on L, any projection Q onto S can be written as

(3.1) Q =
n∑
i=1

〈 · , hi〉fi,

where {h1, . . . , hn} is a basis of N(Q)⊥ satisfying 〈fi, hj〉 = δij . If we re-
strict this projection to E , we find a characterization of an arbitrary proper
projection Q with finite-dimensional range: Q is a proper projection if and
only if h1, . . . , hn ∈ E . Furthermore, by choosing hi = fi, i = 1, . . . , n, we
have proved that any finite-dimensional subspace is proper.

Example 3.2. Let T be a proper operator. Let λ be an isolated point
in σP(T ). For the different notions of spectrum of a proper operator see Re-
mark 2.5. Let Bε(λ) be the open ball of radius ε centered at λ. Assume that
B2ε(λ)∩σP(T ) = {λ}. In particular, this implies that B2ε(λ) ∩ σE(T ) = {λ}
and B2ε(λ̄) ∩ σE(T+) = {λ̄}. We claim that

Q =
1

2πi

�

∂Bε(λ)

(z − T )−1 dz

is a proper projection, and thus R(Q) is a proper subspace.
To prove our claim, let γ : [−π, π] → ∂Bε(λ) be a smooth curve with

the positive orientation. Pick a partition 0 = t0 < t1 < · · · < tn = π of
the interval [0, π], and then consider the partition t−k = −tk of [−π, 0].
For n large enough, the above defined integral can be approximated by the
Riemann sum

1

2πi

n∑
i=−n

(γ(ti)− T )−1γ̇(ti)∆ti.

On the other hand, if z ∈ ∂Bε(λ), then z−T and z̄−T+ are invertible in E .
We can define the following projection:

P =
1

2πi

�

∂Bε(λ̄)

(z̄ − T+)−1 dz.

Then the curve β(t) = γ(−t) is positively oriented, and β([−π, π]) = ∂Bε(λ̄).
The projection P can be approximated by

1

2πi

n∑
i=−n

(β(ti)− T+)−1β̇(ti)∆ti.
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Next note that〈
1

2πi

n∑
i=−n

(γ(ti)− T )−1γ̇(ti)∆ti h, f

〉
= −

〈
h,

1

2πi

n∑
i=−n

(γ(ti)− T+)−1γ̇(ti)∆ti f

〉
=

〈
h,

1

2πi

n∑
i=−n

(β(−ti)− T+)−1β̇(−ti)∆ti f
〉

=

〈
h,

1

2πi

n∑
i=−n

(β(ti)− T+)−1β̇(ti)∆ti f

〉
,

where in the last step we have used the fact that the partition is symmetric
with respect to the origin. Letting n→∞, we get 〈Qh, f〉 = 〈h, Pf〉. Thus,
Q is a proper projection and Q+ = P .

Now we prove some elementary properties of proper operators.

Lemma 3.3. Let T be a proper operator. Then:

(i) N(T+) = R(T )⊥ ∩ E.

(ii) R(T+) ∩ E = N(T )⊥ ∩ E.

Proof. (i) Let f ∈ N(T+). Then 〈f, Tg〉 = 〈T+f, g〉 = 0 for all g ∈ E ,
which means that f ∈ R(T )⊥ ∩ E . Conversely, suppose that f ∈ R(T )⊥ ∩ E .
This is equivalent to 0 = 〈f, Tg〉 = 〈T+f, g〉 for all g ∈ E , that is, f ∈ N(T+).

(ii) Since (T+)+ = T , we know from (i) that N(T ) = R(T+)⊥ ∩E . Then
take the orthogonal complement in L and the intersection with E .

Remark 3.4. Let Q be a proper projection. By Lemma 3.3(i), N(Q+) =
R(Q)⊥ ∩ E , and since R(Q+) = N((Q − I)+), we also have R(Q+) =
N(Q)⊥∩ E .

Remark 3.5. It will be useful to rephrase the definition of proper op-
erator in terms of range inclusions: T ∈ B(E) is proper if and only if
R(T ′J) ⊆ R(J), where J is defined in Remark 2.1 and T ′ is the transpose
of T .

In the case where E = H is a Hilbert space, there is an injective pos-
itive operator A ∈ B(H) such that (Jg)(f) = 〈Af, g〉H for all f, g ∈ H.
Then T ∈ B(H) is proper if and only if there exists W ∈ B(H) such that
AT = W ∗A, where the last adjoint is with respect to H. In the case of pro-
jections, there is another useful characterization in [19, Lemma 2.1]: a pro-
jection Q is proper if and only if

R(A) = (R(A) ∩R(Q∗)) +̇ (R(A) ∩N(Q∗)).

This can also be proved in our setting with the obvious modifications:
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Lemma 3.6. Let Q∈B(E) be a projection. Then Q is proper if and only if

R(J) = (R(J) ∩R(Q′)) +̇ (R(J) ∩N(Q′)).

Proof. By Remark 3.5, Q is proper if and only if R(Q′J) ⊆ R(J). Clearly,
this is equivalent to the equality R(J) = R(Q′J) +R((I −Q′)J).

On the other hand, we claim that Q is proper if and only if R(Q′J) =
R(J) ∩ R(Q′). In fact, note that if R(Q′J) = R(J) ∩ R(Q′), then R(Q′J)
⊆ R(J), which implies that Q is proper. Conversely, suppose that Q is
proper; then R(Q′J) ⊆ R(J) ∩ R(Q′). But since Q′ is a projection, any
functional φ = Jf = Q′φ, where f ∈ E and φ ∈ R(Q′), can be written as
φ = Q′φ = Q′Jf . Therefore R(Q′J) = R(J) ∩R(Q′).

Applying the same argument to I − Q, we also find that Q is a proper
projection if and only if R((I − Q′)J) = R(J) ∩ N(Q′). It follows that a
projection Q is proper if and only if R(J) = R(Q′J) + R((I − Q′)J) =
(R(J) ∩R(Q′)) +̇ (R(J) ∩N(Q′)).

We now give a characterization of proper subspaces:

Theorem 3.7. Let S be a closed subspace of E. The following conditions
are equivalent:

(i) S is a proper subspace.
(ii) There exists a projection Q ∈ B(E) such that R(Q) = S and

R(J) = (R(J) ∩R(Q′)) +̇ (R(J) ∩N(Q′)).

(iii) There exists a closed subspace T of E such that

S +̇ T = (S⊥ ∩ E) +̇ (T ⊥ ∩ E) = E .
Proof. (i)⇔(ii). This follows immediately from Lemma 3.6.
(i)⇔(iii). Suppose that S is a proper subspace. Then there is a proper

projection Q such that R(Q) = S. According to Remark 3.4, we can take
T = N(Q). In fact, we have N(Q+) = S⊥ ∩ E and R(Q+) = T ⊥ ∩ E . Since
Q+ is a projection in B(E), we get (S⊥ ∩ E) +̇ (T ⊥ ∩ E) = E .

Conversely, assume that there is a closed subspace T satisfying S +̇T =
(S⊥ ∩ E) +̇ (T ⊥ ∩ E) = E . Then we can define the continuous projections
Q = PS//T and P = PT ⊥∩E//S⊥∩E . Note that for any h, f ∈ E , we have

〈Qh, f〉 = 〈Qh,Pf + (I − P )f〉
= 〈Qh,Pf〉 = 〈(I −Q)h+Qh,Pf〉 = 〈h, Pf〉.

This shows that Q and P are proper operators and Q+ = P . Hence S is a
proper subspace.

If S is a proper subspace, we have seen that there exists a closed sub-
space T of E such that S +̇ T = (S⊥ ∩ E) +̇ (T ⊥ ∩ E) = E . We refer to any
such subspace T as a proper companion of S.
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Corollary 3.8. If S is a proper subspace of E with a proper compan-
ion T . Then S⊥ ∩ E, T and T ⊥ ∩ E are proper subspaces.

Proof. Let Q and P be the proper projections defined in the proof of
Proposition 3.7. The ranges of I − Q, P and I − P are the subspaces T ,
T ⊥ ∩ E and S⊥ ∩ E , respectively. Hence these three subspaces are proper.

Corollary 3.9. Let S be a proper subspace of E. Then:

(i) If T is a proper companion of S, then P̄S//T = PS//T . In particular,

S +̇ T = L.
(ii) S ∩ E = S.

(iii) Let Q be a proper projection with range S and nullspace T . Set
V = 2Q− I. Then V 2 = I on E and V̄ 2 = I on L.

Proof. (i) First note that the bounded projection Q := PS//T is well

defined because S +̇ T = E . In the proof of Theorem 3.7 we have seen that
Q is a proper operator. Thus, Q has a bounded extension Q̄ to the Hilbert
space L. Note that S ⊆ R(Q̄) ⊆ S, and Q̄ has closed range, which implies
R(Q̄) = S. Similarly, one can check that N(Q̄) = T .

(ii) The non-trivial inclusion is S ∩ E ⊆ S. Pick f ∈ S ∩ E . Since S
is a proper subspace, there is a proper projection Q with range S and
nullspace T . By the first item, we know that Q̄ = PS//T , so f = Q̄f =
Qf ∈ S.

(iii) From Q2 = Q, it follows that V 2 = (2Q− I)2 = I on E . Since Q is
a proper projection, by (i) we know that Q̄ is a bounded projection on L.
Then V̄ 2 = (2Q̄− I)2 = I on L.

Corollary 3.10. Let T be a proper companion of a proper subspace S,
and let G ∈ P×. Then G(S) and G(T ) are proper companions. Moreover, if
T1 is another proper companion of S, then there exists an operator G ∈ P×

such that G(T ) = T1 and G(S) = S.

Proof. For the first assertion, we only have to note that the projec-
tion given by P = GPS//TG

−1 is a proper operator with range G(S) and
nullspace G(T ). To show the second assertion, consider the bounded oper-
ator

G0 = (PT1//S)|T : T → T1.

It is easy to check that G0 is an isomorphism. Then the operator defined by

G(f1 + f2) = f1 +G0f2, f1 ∈ S, f2 ∈ T ,
is invertible on E , G(T ) = T1 and G(S) = S. To show that G is a proper
operator, we note that it can be written as

G = PS//T + PT1//S PT //S .
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Since each projection in this expression is a proper operator, so is G and

G+ = PT ⊥∩E//S⊥∩E + PS⊥∩E//T ⊥∩EPS⊥∩E//T ⊥1 ∩E
.

It remains to prove that G is invertible in the Banach algebra P. Since G is
invertible on E , we have to show that G+ is invertible on E . Clearly, G+ is
injective. To see that it is surjective, given g ∈ E , write g = g1 + g2, where
g1 ∈ S⊥∩E and g2 ∈ T ⊥∩E . Then one can also write g2 = g2,1 +g2,2, where
g2,1 ∈ S⊥ ∩ E and g2,2 ∈ T ⊥1 ∩ E . Therefore, the vector f = g − g2,1 satisfies
G+f = g.

4. Proper and compatible subspaces. A closed subspace S ⊆ E is
called compatible if there exists a proper projection Q such that Q = Q+

and R(Q) = S. The following elementary characterizations of compatible
subspaces will be useful later.

Lemma 4.1. Let S be a closed subspace of E. The following conditions
are equivalent:

(i) S is compatible.
(ii) S +̇ (S⊥ ∩ E) = E.

(iii) There exists a proper projection Q such that R(Q) = S and N(Q) ⊆
S⊥ ∩ E.

(iv) R(J) = J(S) +̇ (R(J) ∩ S◦).
(v) S ∩ E = S and PS(E) ⊆ E.

Proof. (i)⇔(ii). Suppose that S is a compatible subspace. Then there is
a proper projection Q such that Q = Q+ and R(Q) = S. Using Remark 3.4,
we get N(Q) = N(Q+) = S⊥ ∩ E , which yields E = R(Q) +̇ N(Q) =
S +̇ (S⊥ ∩ E).

To prove the converse, assume that S +̇(S⊥∩E) = E . Then the projection
Q = PS//S⊥∩E is continuous on E , and 〈Qh, f〉 = 〈Qh,Qf〉 = 〈h,Qf〉 for all

f, h ∈ E . Thus, Q is a proper projection, R(Q) = S and Q+ = Q.

(i)⇔(iii). This is a direct consequence of a result of Krein [27]. We refer
to [19, Lemma 2.5] for a proof when E is a Hilbert space. It is not difficult
to see that this proof can also be carried out in the Banach space setting.

(i)⇔(iv). Follow the proof in [19, Prop. 2.14(2)], taking into account the
map J that shows up in the Banach setting.

(i)⇔(v). This was proved in [3, Prop. 3.5] in the setting of Hilbert spaces.
The proof in our setting follows exactly the same lines.

Remark 4.2. If S is a compatible subspace, there exists a unique proper
projection Q such that Q+ = Q and R(Q) = S. This follows immediately
from the fact that Q is uniquely determined as (PS)|E . We denote this pro-
jection by QS .
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Note that in Example 3.1 we actually show that every finite-dimensional
subspace is compatible. Subspaces of finite codimension in E may not be
compatible or proper, but both notions coincide for this type of subspaces.

Proposition 4.3. Let S be a closed subspace of E with finite codimen-
sion. Then S is a proper subspace if and only if S is a compatible subspace.

Proof. The “if” part is trivial. To prove the “only if” part, suppose
that S is a proper subspace. Any supplement of S in E has to be finite-
dimensional. In particular, a proper companion T is finite-dimensional, and
then T = T . Let Q be a proper projection such that R(Q) = S. Then
P = I−Q is a proper projection with range T . In Example 3.1 we saw that P
can be described by formula (3.1). Note that R(P ) = T = span{f1, . . . , fn}
and R(P+) = N(P )⊥ ∩ E = S⊥ ∩ E = span{h1, . . . , hn}. From these facts,
we get dim T = dimS⊥ ∩ E .

On the other hand, recall that S +̇ T = L by Corollary 3.9. Since S⊥
is a supplement for S in L, it follows that dim T = dimS⊥. Therefore,
dimS⊥ = dimS⊥ ∩ E . Hence S⊥ = S⊥ ∩ E .

To prove that S is compatible, it suffices to show that S ∩ E = S and
PS(E) ⊆ E by Lemma 4.1. According to Corollary 3.9, we have S ∩ E = S.
To prove the second condition, we note that S⊥ = S⊥ ∩ E ⊆ E , and thus
PS(E) = (I − PS⊥)(E) = (I − PS⊥∩E)(E) ⊆ E .

Example 4.4. Given a vector g ∈ L \ E with ‖g‖L = 1, the subspace

S = {f ∈ E : 〈f, g〉 = 0} = {g}⊥ ∩ E

is neither compatible nor proper. Note that S has finite codimension, so by
Proposition 4.3 it is enough to prove that S is non-compatible. The first
condition in Lemma 4.1(v), that is, S ∩ E = S, clearly holds. On the other
hand, the orthogonal projection onto S is given by

PS(f) = f − 〈f, g〉g.

Apparently, PS(E) 6⊆ E by our choice of g. Hence S is non-compatible.

Example 4.5. In [18, Example 4.3] the authors gave the following exam-
ple of a non-compatible subspace. Let A be a positive injective non-invertible
operator acting on E = H. As usual, L is the Hilbert space obtained by com-
pleting H with respect to the inner product 〈f, h〉A = 〈Af, h〉H. Pick any
g ∈ H \ R(A). Then they proved that the subspace S = {g}⊥H is non-
compatible. Furthermore, S has finite codimension in H. Thus, by Proposi-
tion 4.3, S is not proper either.

We shall need the following algebraic result by Maestripieri. Its proof
can be found in [8, Prop. 2.8].
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Lemma 4.6. Let T1, T2 ∈ B(E) be such that R(T1)∩R(T2) = {0}. Then
E = N(T1) +N(T2) if and only if R(T1) +R(T2) = R(T1 + T2).

Remark 4.7. It will be useful to state the last condition of the above
lemma in a slightly different way. We notice that R(T1)+R(T2) = R(T1+T2)
if and only if R(T1) ⊆ R(T1 + T2) (see [9, Prop. 2.4]).

Let S be a proper subspace of E , and T a proper companion. As we
shall see, the compatibility of these subspaces is related to properties of the
following symmetrizable operator:

CS,T = PS//T + P+
S//T − I.

We observe that its extension C̄S,T is invertible on L if and only if V̄ + V̄ ∗ is
invertible on L, where V = 2PS//T −I. Since V 2 = I on the Banach space E ,

we see that V̄ 2 = I on the Hilbert space L. Therefore V̄ + V̄ ∗ is invertible
on L if and only if −1 /∈ σL(V̄ ∗V̄ ), which clearly holds since V̄ ∗V̄ is positive
on L. Thus, C̄S,T is invertible on L. In particular, CS,T is injective as an
operator on E .

Our main result enabling one to decide when a proper subspace is com-
patible now follows. Its proof is based on Lemma 4.6. This idea has been
used in [8, Prop. 2.9] to relate compatible subspaces in Hilbert spaces and
Bott–Duffin inverses.

Theorem 4.8. Let S be a proper subspace of E, and T a proper com-
panion of S. The following assertions are equivalent:

(i) S is a compatible subspace.
(ii) T +̇ (T ⊥ ∩ E) = R(CS,T ).

(iii) T ⊥ ∩ E ⊆ R(CS,T ).
(iv) T ⊆ R(CS,T ).

If any of these statements is satisfied, the unique proper projection QS such
that QS = Q+

S and R(QS) = S is given by

QS = C−1
S,T P

+
S//T .

Proof. (i)⇔(ii). Set Q = PS//T . We shall use Lemma 4.6 with T1 = Q+

and T2 = Q− I. Note that R(Q+) = T ⊥ ∩E and R(Q− I) = T have trivial
intersection, and thus the lemma applies. Then, as shown before,

N(Q+) = R(Q)⊥ ∩ E = S⊥ ∩ E , N(Q− I) = R(Q) = S.
According to Lemma 4.1, the fact that S is compatible is equivalent to
E = S + (S⊥ ∩ E).

Clearly, the equivalence of (ii), (iii) and (iv) follows from Remark 4.7.
Now assume that S is compatible. Before the statement of this theorem,

we have shown that the operator CS,T = Q + Q+ − I is injective. Since
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we know that R(Q+) = T ⊥ ∩ E , by (iii) the operator (Q + Q+ − I)−1Q+

is everywhere defined in E . Apparently, it has closed graph: let fn → f
in E with (Q + Q+ − I)−1Q+fn → g. Then Q+fn → (Q + Q+ − I)g. Also
Q+fn → Q+f . It follows that

(Q+Q+ − I)g = Q+f, i.e. g = (Q+Q+ − I)−1Q+f.

Thus, (Q+Q+−I)−1Q+ is bounded. We claim that (Q+Q+−I)−1Q+ = QS .
This is equivalent to proving that Q+ = (Q + Q+ − I)QS . Since R(Q) =
R(QS) = S, one has QQS = QS , and thus

(Q+Q+ − I)QS = Q+QS .

Note also that Q+(I − QS) = 0, because R(I − QS) = N(QS) = S⊥ ∩ E
= N(Q+). Then

Q+QS = Q+(QS + (I −QS)) = Q+.

Of course, the operator CS,T may not be invertible on E , and S can be
a compatible subspace (see Theorem 4.11). In fact, CS,T is invertible on E
exactly when S and T are both compatible subspaces.

Theorem 4.9. Let S be a proper subspace of E, and T a proper com-
panion of S. The following conditions are equivalent:

(i) S and T are compatible subspaces.
(ii) (PS + PT )(E) ⊆ E.

(iii) (PS − PT )(E) ⊆ E.
(iv) CS,T is invertible on E.

Proof. (i)⇒(ii). This implication follows from Lemma 4.1(v).
(ii)⇒(iii). Since S is a proper subspace, we know that S +̇ T = L by

Corollary 3.9(i). Then the following formula (see Theorem 2.2) for the pro-
jection on a Hilbert space with range S and nullspace T can be used:

PS//T = PS (PS − PT )−1.

Equivalently, PS//T (PS−PT ) = PS . Interchanging the roles of the subspaces,

we also get PT //S (PT − PS) = PT . Then we obtain

(4.1) PS + PT = (2PS//T − I) (PS − PT ).

Since S is a proper subspace, we have P̄S//T = PS//T by Corollary 3.9(i).
Then the symmetry 2PS//T − I acting on L is an extension of the symmetry

2PS//T − I, which is an invertible operator on E (see also Corollary 3.9(iii)).
From the equality (4.1), it is now clear that (PS −PT )(E) ⊆ E if and only if
(PS + PT )(E) ⊆ E .

(iii)⇒(i). We have shown that (PS − PT )(E) ⊆ E is equivalent to
(PS + PT )(E) ⊆ E . If we add or subtract PS − PT and PS + PT , we get

this implication by Lemma 4.1 and Corollary 3.9(ii).
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(iii)⇒(iv). Set Q := PS//T . By Corollary 3.9(i), we have S +̇ T = L.
Therefore PS − PT is invertible on L, and its inverse is given by

(PS − PT )−1 = Q̄+ Q̄∗ − I.
These facts can be found again in Theorem 2.2. If the operator Q+Q+−I is
invertible on E , then its extension Q̄+Q̄∗−I to L maps E onto E . Therefore
(PS − PT )(E) = (PS − PT )(Q+Q+ − I)(E) = E .

To prove the converse, assume that (PS − PT )(E) ⊆ E . Note that
(PS − PT )−1(E) = (Q̄ + Q̄∗ − I)(E) = (Q + Q+ − I)(E) ⊆ E , which im-
plies that E ⊆ (PS − PT )(E). Therefore (PS − PT )(E) = E . Now we have

(Q+Q+ − I)(E) = (Q̄+ Q̄∗ − I)(E) = (Q̄+ Q̄∗ − I)(PS − PT )(E) = E .
Let S be a compatible subspace of E . By Corollary 3.10 any proper

companion of S arises as the image of any other proper companion by an
invertible operator in the Banach algebra P given by the proper operators. In
general, this invertible operator does not extend to a unitary operator on L.
Thus, if T and T1 are two proper companions of S, and T is a compatible
subspace, the subspace T1 may be non-compatible. For a concrete example
of this situation see Examples 5.1 and 5.2. However, we shall give below
two sufficient conditions to ensure the compatibility of T1. We first have to
introduce the following metric in the set of all proper companions of S:

d(T1, T2) = ‖PT1//S − PT2//S‖P,
where Ti, i = 1, 2, are proper companions of S and ‖ ‖P is the norm of the
algebra P.

Corollary 4.10. Let S be a proper subspace of E, and T a proper
companion of S. Suppose that S and T are compatible subspaces. Then:

(i) There exists a constant r > 0, depending only on S and T , such
that T1 is a compatible subspace whenever d(T , T1) < r.

(ii) Let G ∈ P× be such that G− I and G+ − I are compact operators
on E. Then G(S) and G(T ) are compatible subspaces.

Proof. (i) It is enough to show that the map

(4.2) {T1 ⊆ E : T1 is a proper companion of S} → B(E), T1 7→ CS,T1 ,

is continuous at T , when the first space is endowed with the metric d defined
above and B(E) is considered with its usual operator norm ‖ ‖. In fact, if
this map is continuous, then there is a constant r > 0 depending on PT //S
such that

‖CS,T1 − CS,T ‖ ≤ 1/‖C−1
S,T ‖

whenever d(T , T1) < r. The displayed inequality implies that CS,T1 is in-
vertible on E , and by Theorem 4.9, this is equivalent to the compatibility of
S and T1.
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Let (Tn) be proper companions of the compatible subspace S such that
d(Tn, T )→ 0. This means that

(4.3) ‖PTn//S − PT //S‖ → 0 and ‖PS⊥∩E//T ⊥n ∩E − PS⊥∩E//T ⊥∩E‖ → 0.

On the other hand, we recall from Corollary 3.10 that there exist operators
Gn ∈ P× such that Gn(T ) = Tn and G(S) = S. In particular, it follows that
GnPS//TG

−1
n = PS//Tn . As we have shown in the proof of that corollary, Gn

and G+
n are given by

Gn = PS//T + PTn//S PT //S ,

G+
n = PT ⊥∩E//S⊥∩E + PS⊥∩E//T ⊥∩E PS⊥∩E//T ⊥n ∩E .

Using (4.3), we see that ‖Gn − I‖ → 0 and ‖G+
n − I‖ → 0. Therefore,

‖CS,Tn − CS,T ‖ = ‖GnPS//TG−1
n + (G+

n )−1P+
S//TG

+
n − PS//T − P+

S//T ‖ → 0.

This completes the proof of the continuity of the map (4.2).

(ii) We set T1 = G(T ), S1 = G(S) and Q = PS//T . Then

CS1,T1 = GQG−1 + (G+)−1Q+G+ − I
= (G− I)QG−1 +Q(G−1 − I) + ((G+)−1 − I)Q+G+

+ (G+)−1Q+(G+ − I) + CS,T = K + CS,T ,

for some compact operator K on E . This implies that the essential spectrum
σess,E(CS1,T1) of CS1,T1 coincides with that of CS,T . Thus, 0 /∈ σess,E(CS1,T1).

Now we recall that the essential spectrum of a symmetrizable operator
consists of those numbers in the spectrum over E which are not isolated
eigenvalues of finite multiplicity (see [31, Thm. 1]). Applying this result to
the operator CS1,T1 , we find that its spectrum can be written as the following
disjoint union:

σE(CS1,T1) = σess,E(CS1,T1) ∪ σp,E(CS1,T1),

where σp,E(CS1,T1) is the point spectrum of CS1,T1 on E consisting of the iso-
lated eigenvalues of finite multiplicity. Since C̄S1,T1 is always invertible on L,
we know that zero does not belong to its point spectrum on L. But the point
spectrum of a symmetrizable operator coincides with the point spectrum of
its extension (see [30, Thm. 2-3]). Therefore, 0 /∈ σp,E(CS1,T1). Hence CS1,T1
is invertible on E , and thus S1 and T1 are compatible subspaces.

The following result will be crucial to constructing proper subspaces
which are non-compatible. In the statement, we use the notion of proper
operators in two different spaces (see Remark 2.4).

Theorem 4.11. Let S be a compatible subspace of E. Consider an oper-
ator z ∈ P(S⊥ ∩ E ,S) and the proper projection with range S whose matrix
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with respect to the decomposition E = S +̇ (S⊥ ∩ E) is given by

Q =

(
1 z

0 0

)
.

Then the proper subspace T =N(Q) is compatible if and only if −1 /∈ σS(zz+).

Remark 4.12. Clearly, we have R(Q) = S. We also note that the op-
erator z is chosen to be proper in order that Q be a proper projection.
Moreover, it is straightforward to check that

Q+ =

(
1 0

z+ 0

)
.

In addition, we observe that T = N(Q) is a proper subspace since it is the
range of the proper projection I −Q.

Proof of Theorem 4.11. Recall that T is compatible exactly when E =
T +̇ (T ⊥∩E) by Lemma 4.1. According to Theorem 4.8 we have R(CS,T ) =
T +̇ (T ⊥ ∩ E), since we have assumed that the subspace S is compatible.
Therefore T is compatible if and only if CS,T is surjective. Note that

CS,T = Q+Q+ − I =

(
1 z

z+ −1

)
.

Thus, the operator CS,T is surjective if and only if(
1 z

z+ −1

)(
f1

f2

)
=

(
h1

h2

)
can be solved with f1 ∈ S and f2 ∈ S⊥ ∩ E for any choice of h1 ∈ S and
h2 ∈ S⊥ ∩ E . This can be rewritten as the following equations:

f1 + zf2 = h1, z+f1 − f2 = h2.

Since f2 = z+f1 − h2, we only need to solve

(1 + zz+)f1 = h1 + zh2.

Thus, we find that CS,T is surjective if and only if the symmetrizable oper-
ator 1 + zz+ : S → S is surjective. Now we note that the extension 1 + z̄z̄∗

to S is a positive operator, and hence it is invertible on S. In particular,
this implies that 1 + zz+ is always injective. Therefore 1 + zz+ : S → S is
surjective if and only if −1 /∈ σS(zz+).

We construct proper subspaces which are non-compatible in E ×E using
the existence of symmetrizable operators with non-real points in the spec-
trum in E . To our knowledge, the first such example was constructed in [22].
Other examples were given in [25, 11, 4], and they rely on a fundamental
result by Krein on the spectrum of Toeplitz matrices (see [28, Thm. 13.2]).
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We shall consider the Banach space E × E endowed with the norm
‖(f1, f2)‖E×E = (‖f1‖2E + ‖f2‖2E)1/2. Apparently, E ×E is densely included in
the Hilbert space L×L and ‖(f1, f2)‖L×L ≤ ‖(f1, f2)‖E×E for all f1, f2 ∈ E .

Corollary 4.13. Given a symmetrizable operator X ∈ B(E) with a
non-real point λ in the spectrum σE(X), consider the following projection in
terms of the decomposition E × E:

Q =

(
1 z

0 0

)
,

where z = 1
Im(λ)(X − Re(λ)I). Then N(Q) is a proper subspace of E × E

which is non-compatible.

Proof. Clearly, the subspace E ' E × {0} is compatible in E × E and
the proper projection Q has range equal to E . Note that the symmetrizable
operator z satisfies i ∈ σE(z). Hence −1 ∈ σE(z2), and by Theorem 4.11, the
proper subspace N(Q) ⊆ E × E is non-compatible.

Conversely, any non-compatible proper subspace gives rise to a sym-
metrizable operator with non-real points in the spectrum as an operator
in E .

Corollary 4.14. Let S be a proper subspace of E which is not a com-
patible subspace. Let Q be a proper projection with range S. Then X = V V +,
where V = 2Q − I, is a symmetrizable operator with non-real points in the
spectrum σE(X).

Proof. If the proper subspace S is non-compatible, and Q is a proper
projection with range S, then by Theorem 4.9 the operator Q+Q+−I is not
invertible in E . Equivalently, V + V + is not invertible, where V = 2Q − I.
Since V 2 = I, we deduce that −1 ∈ σE(V V +). Now consider the continuous
unital monomorphism given by

ϕ : P→ B(L), ϕ(X) = X̄.

Since ϕ is a unital morphism, it follows that σL(X̄) ⊆ σP(X) (see also
Theorem 2.3). Moreover, each connected component ∆ of σP(X) satisfies
∆ ∩ σL(X̄) 6= ∅ (see [10, Thm. 4.5]). If we apply this result to X = V V +,
and take into account that σL(X̄) ⊆ (0,∞) and 0 /∈ σP(X), then we find
that there is some z ∈ ∆ with non-trivial imaginary part, where ∆ is the
connected component that contains −1. Thus, σP(X) has non-real points.
Hence σE(X) also has non-real points.

5. Examples

5.1. Non-compatible proper subspaces. We give examples of proper
subspaces which are non-compatible.
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Example 5.1. Let E be the space of all sequences (xn) of complex num-
bers for which

∑
n 2n|xn| <∞ with the norm

‖(xn)‖ =

∞∑
n=1

2n|xn|.

Take L = `2, the Hilbert space of square-summable sequences with its
usual inner product. We consider the unilateral shift, i.e. V : E → E ,
V (x1, x2, . . .) = (0, x1, x2, . . .), and the backward shift V (−1)(x1, x2, . . .) =
(x2, x3, . . .). It is straightforward to see that both are proper operators and
V + = V (−1). It was proved in [25, Section 3.1] that the symmetrizable op-
erator

W1 = V (−1) + 2I + V = (V + + I)(V + I)

has spectrum in E given by all the points inside and on the ellipse

(Re(λ)− 2)2

(5/2)2
+

(Im(λ))2

(3/2)2
= 1.

On the other hand, we note that σL(W1) = [0, 4]. Now consider the proper
projection acting on E × E defined by

Q =

(
1 z

0 0

)
.

We apply Corollary 4.13 with λ = 9
10 i ∈ σE(W1) and z = 10

9 W1 to conclude
that N(Q) ⊆ E × E is a proper subspace which is non-compatible.

Example 5.2. In the previous example, we set S = E ' E × {0} and
T = N(Q). Note that S is a compatible subspace in E ×E and T is a proper
companion which is non-compatible. It is not difficult to exhibit other proper
companions of S which are compatible. For instance, we may take

Qz =

(
1 z

0 0

)
,

where z is any symmetrizable operator such that −1 /∈ σE(z
2). By Theo-

rem 4.11 we know N(Qz) is a proper companion of S which is a compatible
subspace of E × E .

Example 5.3. Let Ω be a bounded domain in Rn such that ∂Ω is
smooth. Let E = H1

0 (Ω) be the Sobolev space given by the completion
of C∞0 (Ω) with the inner product norm

‖f‖1 =
( �
Ω

(|f(x)|2 + |(∇f)(x)|2) dx
)1/2

.

Let L = L2(Ω) be the Lebesgue space of square-integrable functions en-
dowed with its usual inner product. We will write for short H1

0 = H1
0 (Ω)

and L2 = L2(Ω). This example is based on [4, Example 4.4], where the
reader can find the proofs of all the results used below.
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Since Ω is bounded with smooth boundary, there is an orthonormal ba-
sis (ek) of L2 consisting of eigenfunctions of the Laplacian. These eigenfunc-
tions belong to H1

0 , and sk = ek/(1 +µk)
1/2, where (µk) are the eigenvalues

of the Laplacian, form an orthonormal basis of H1
0 .

Set γk = (1 + µk)
1/2. Define the following bounded operator on H1

0 :

T (sk) =


γ2k

γk
s2k for k odd,

γ2k

γk
s2k +

γk/2

γk
sk/2 for k even.

Note that T is symmetrizable: T̄ = B + S, where the operators B and S
have the following expressions in the basis (ek):

S : L2 → L2, S(ek) = e2k,

B : L2 → L2, B(ek) =

{
0 for k odd,

ek/2 for k even.

In particular, B = S∗, and the operator T̄ = B + S is self-adjoint in L2.
This gives σL2(T ) ⊆ R. On the other hand, σH1

0
(T ) consists of all the points

inside and on the ellipse

(Re(λ))2

( n
√

2 + 1/ n
√

2)2
+

(Im(λ))2

( n
√

2− 1/ n
√

2)2
= 1.

If we use Corollary 4.13 with λ = i( n
√

2− 1/ n
√

2), z = ( n
√

2− 1/ n
√

2)−1T and

Q =

(
1 z

0 0

)
,

we find that N(Q) is a non-compatible proper subspace in H1
0 ×H1

0 .

Example 5.4. One can find a non-compatible proper subspace of H1
0 us-

ing the previous example. If we take the subspace S = span{s2k : k ≥ 1}‖ ‖1 ,
then S⊥ ∩H1

0 = span{s2k+1 : k ≥ 0}‖ ‖1 . It follows that S is a compatible
subspace of H1

0 .
We define the following proper operators: U : H1

0 → S, Uek = e2k and
V : S⊥ ∩H1

0 → H1
0 , V ek = e(k+1)/2. Note that U+U = V V + = I. Take z as

at the end of the previous example. Then

σH1
0
((UzV )(UzV )+) \ {0} = σH1

0
((Uzz+U+)) \ {0} = σH1

0
(zz+) \ {0}.

Hence we have −1 ∈ σH1
0
((UzV )(UzV )+). Using the decomposition H1

0 =

S +̇ (S⊥ ∩H1
0 ) we define the projection

Q =

(
1 UzV

0 0

)
.

By Theorem 4.11, the proper subspace N(Q) is non-compatible.
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5.2. Trace class and Hilbert–Schmidt operators. In the examples
of this subsection, we take E = (B1(H), ‖ · ‖1) and L = (B2(H), ‖ · ‖2)
the spaces of trace class operators and Hilbert–Schmidt operators on a
Hilbert space H, respectively. Recall that B2(H) is a Hilbert space with
inner product given by 〈x, y〉 = Tr(xy∗), where Tr denotes the usual trace
and x, y ∈ B2(H).

Example 5.5. A projection q acting on H gives rise to a projection on
B1(H) by left multiplication, i.e.

Lq : B1(H)→ B1(H), Lq(x) = qx.

We note that 〈Lq(x), y〉 = 〈x, Lq∗(y)〉 for all x, y ∈ B1(H). Thus, Lq is a
proper projection, and L+

q = Lq∗ . Then, the range of Lq, that is,

S = {qx : x ∈ B1(H)},
is a proper subspace. Now we prove that S is a compatible subspace. Let
σ(Lx) denote that spectrum of Lx in B(B1(H)) and σ(x) denote the spec-
trum of x in B(H). If λ /∈ σ(x), then there exists y ∈ B(H) such that
(x−λ)y = y(x−λ) = 1. This implies (Lx−λ)Ly = Ly(Lx−λ) = I, so that
σ(Lx) ⊆ σ(x). Using this fact with x = q − q∗, we see that σ(Lq − Lq∗) ⊆
σ(q − q∗) ⊆ iR. Also note that (Lq + L+

q − I)2 = I − (Lq − L+
q )2, so

σ((Lq+L
+
q −I)2) = σ(I−(Lq−Lq∗)2) ⊆ [1,∞]. We conclude that Lq+L

+
q −I

is invertible on B1(H), and by Theorem 4.9, it follows that S is a compatible
subspace.

Example 5.6. Let q be a projection in B(H). Assume that R(q) = K
is an infinite-dimensional subspace of H satisfying K ⊕ K = H (orthogonal
sum). Denote by Cq the operator

Cq : B1(H)→ B1(H), Cq(x) = qxq.

Clearly, Cq is a continuous projection. It is easily seen that C+
q = Cq∗ , so

Cq is a proper projection and its range

S = {qxq : x ∈ B1(H)}
is a proper subspace. We shall see below that this subspace is compatible.

We write q as a matrix with respect to the above decomposition of H as

q =

(
1 z

0 0

)
.

We consider the matrix representation of arbitrary operators x, y ∈ B(H)
with respect to the decomposition K ⊕K = H:

x =

(
x11 x12

x21 x22

)
, y =

(
y11 y12

y21 y22

)
.
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Then

(5.1) qxq =

(
x11 + zx21 (x11 + zx21)z

0 0

)
,

and

qxqy∗ =

(
(x11 + zx21)y∗11 + (x11 + zx21)zy∗12 ∗

0 0

)
.

Thus, y is orthogonal to S if and only if Tr((x11 + zx21)(y∗11 + zy∗12)) = 0 for
all x ∈ B1(H). Therefore,

S⊥ ∩ B1(H) = {y ∈ B1(H) : y11 + y12z
∗ = 0}.

The subspace S is compatible if and only if S +̇(S⊥∩B1(H)) = B1(H). This
means that any operator w ∈ B1(H) can be written as

w =

(
w11 w12

w21 w22

)
=

(
x11 + zx21 − y12z

∗ (x11 + zx21)z + y12

y21 y22

)
.

The only non-trivial equations to solve are

w11 = x11 + zx21 − y12z
∗, w12 = (x11 + zx21)z + y12.

Set a = x11 + zx21, b = y12, x = w11 and y = w12. Then S is a compatible
subspace if and only if the system

x = a− bz∗, y = az + b

has a solution a, b ∈ B1(K) for each pair x, y ∈ B1(K). By the second
equation, b = y − az, so we have to solve x+ yz∗ = a+ azz∗. As 1 + zz∗ is
positive, we find

a = (x+ yz∗)(1 + zz∗)−1, b = y − (x+ yz∗)(1 + zz∗)−1z.

Hence S is a compatible subspace.

5.3. Proper invertible operators. Proper operators have three differ-
ent notions of inverses (see Remark 2.5). In this subsection we study proper
invertible operators.

Example 5.7. We consider invertible operators in E which are isometric
for the L inner product. We shall call them unitarizable operators. In the
special case when E = H is a Hilbert space, these were studied in [4] and [3].
They can be obtained, for instance, as exponentials A = eiX with X a sym-
metrizable operator. But not every L-isometric operator is an exponential
(see [4, Example 4.9]).

Example 5.8. A special case of the above example occurs if we take
E = B1(H) and L = B2(H). Let u, v be unitary operators in H, and denote
by xt the transpose of x ∈ B(H) with respect to a given orthonormal basis
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of H. Then the operators

µu,v, θu,v ∈ B(B1(H)), µu,v(x) = uxv, θu,v(x) = uxtv,

are isometric for the norms ‖ ·‖p for any 1 ≤ p ≤ ∞ (for p 6= 2, any isometry
for the p norm is of this type [7]). Thus µu,v and θu,v are invertible in P
(in fact they are unitarizable). If one replaces the unitaries u, v by invertible
operators g, h in H, then µg,h and θg,h are proper and invertible operators in
B1(H) with inverses µg−1,h−1 and θg−1,h−1 which are also proper operators.

Example 5.9. Let E = H1
0 (Ω) be the Sobolev space of the domain

Ω ⊂ Rn. Let L = L2(Ω). Pick a function ϕ which is C1 in Ω, continu-
ous and bounded in Ω̄ and satisfies |ϕ(x)| ≥ r > 0 for x ∈ Ω. In addi-
tion, assume that ∇ϕ is also bounded in Ω. Then the multiplication opera-
tor

Mϕf = ϕf

preserves E . Its adjoint in L, which is Mϕ̄, also preserves E . Thus Mϕ is
a proper operator. Its inverse M1/ϕ also belongs to P. Thus, Mϕ ∈ P×.
Moreover, apparently

σL(Mϕ) = σE(Mϕ) = σP(Mϕ) = ϕ(Ω̄).

There is another situation in which the three spectra coincide.

Proposition 5.10. Let G ∈ P be such that G − I and G+ − I are
compact operators on E. Assume that Ḡ is invertible on L. Then G ∈ P×.

Proof. The set of invertible operators G in E such that G− I is compact
forms a closed subgroup of the invertible group of E (it is sometimes called
the Fredholm group of E). Let G = I + K for some K compact in E . The
operator K is proper, and therefore K̄ is compact in L, with the same
(non-zero) eigenvalues as K. Furthermore, the multiplicity of each non-zero
eigenvalue is the same over E and L (see Theorem 2.3). Thus 0 does not
belong to the spectrum of G. Since K+ = K̄∗|E is also compact on E , K̄∗ is
compact on L, and its eigenvalues are the conjugates of the eigenvalues of K.
It follows that G+ = I + K+ has trivial kernel, and thus, by the Fredholm
alternative, it is invertible in E .

Remark 5.11. Unitarizable operators preserve compatible subspaces:
if G is unitarizable and S is compatible, then G(S) is also compatible. This
allows one to produce more examples of proper subspaces which are non-
compatible. Namely, if S is a proper non-compatible subspace and G is
unitarizable, then G(S) is a proper non-compatible subspace.
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