De Lellis–Topping type inequalities for *f*-Laplacians

by

GUANGYUE HUANG (Xinxiang) and FANQI ZENG (Shanghai)

Abstract. We establish an integral geometric inequality on a closed Riemannian manifold with ∞ -Bakry–Émery Ricci curvature bounded from below. We also obtain similar inequalities for Riemannian manifolds with totally geodesic boundary. In particular, our results generalize those of Wu (2014) for the ∞ -Bakry–Émery Ricci curvature.

1. Introduction. Let (M, g) be an *n*-dimensional smooth Riemannian manifold with $n \geq 3$ and f be a C^2 function on M. We denote by ∇ , Δ and ∇^2 the gradient, Laplacian and Hessian operator on M with respect to g, respectively. Ric and R denote the Ricci curvature and the scalar curvature, respectively. We let

(1.1)
$$\operatorname{Ric}_{f} = \operatorname{Ric} + \nabla^{2} f$$

stand for the Bakry–Émery Ricci curvature which is also called the ∞ -Bakry–Émery Ricci curvature, i.e., the $m = \infty$ case of the *m*-Bakry–Émery Ricci curvature defined by

(1.2)
$$\operatorname{Ric}_{f}^{m} = \operatorname{Ric}_{f} - \frac{1}{m-n} \nabla f \otimes \nabla f$$

with $m \ge n$ a constant, and m = n if and only if f is a constant. We define the *f*-Laplacian

$$\Delta_f := e^f \operatorname{div}(e^{-f} \nabla) = \Delta - \nabla f \nabla,$$

which is a self-adjoint operator with respect to the $L^2(M)$ inner product:

$$\int_{M} u \Delta_{f} v e^{-f} dv_{g} = -\int_{M} \nabla u \nabla v e^{-f} dv_{g} = \int_{M} v \Delta_{f} u e^{-f} dv_{g}, \quad \forall u, v \in C_{0}^{\infty}(M),$$

where dv_g is the volume form on M.

Received 1 June 2015; revised 28 March 2016. Published online 25 April 2016.

²⁰¹⁰ Mathematics Subject Classification: Primary 53C21; Secondary 53C24.

Key words and phrases: De Lellis–Topping inequality, ∞ -Bakry–Émery Ricci curvature, totally geodesic boundary.

An *n*-dimensional Riemannian manifold (M, g) is said to be *Einstein* if its traceless Ricci tensor Ric -(R/n)g is identically zero. The classical Schur lemma states that the scalar curvature of an Einstein manifold of dimension $n \geq 3$ must be constant. Recently, De Lellis and Topping [DT] (and independently Andrews, cf. [CLN, Corollary B. 20]) proved the following *almost-Schur lemma*:

THEOREM 1.1 ([DT]). If (M,g) is a closed Riemannian manifold of dimension $n \geq 3$ with non-negative Ricci curvature, then

(1.3)
$$\int_{M} (R - \overline{R})^2 dv_g \leq \frac{4n(n-1)}{(n-2)^2} \int_{M} \left| \operatorname{Ric} - \frac{R}{n} g \right|^2 dv_g,$$

or equivalently,

(1.4)
$$\int_{M} \left| \operatorname{Ric} - \frac{\overline{R}}{n} g \right|^{2} dv_{g} \leq \frac{n^{2}}{(n-2)^{2}} \int_{M} \left| \operatorname{Ric} - \frac{R}{n} g \right|^{2} dv_{g},$$

where \overline{R} denotes the average of R over M. Moreover, equality holds in (1.3) or (1.4) if and only if M is Einstein.

Generalizing De Lellis and Topping's results, Cheng [C] proved an almost-Schur lemma for closed manifolds without assuming the non-negativity of the Ricci curvature. That is, he obtained a similar inequality with the coefficient depending not only on the lower bound of the Ricci curvature but also on the value of the first non-zero eigenvalue of the Laplace operator. In the case of dimension n = 3, 4, Ge and Wang [GW1, GW2] proved that Theorem 1.1 holds under the weaker condition of non-negative scalar curvature. However, as pointed out by De Lellis and Topping [DT], the coefficient in (1.3) is optimal and the non-negativity of the Ricci curvature cannot be removed when $n \ge 5$. For the recent research in this direction, see [GW1, B, H, CZ, K, GWX, P] and the references therein.

Recently, Wu [W] established an integral geometric inequality under the assumption that the m-Bakry–Émery Ricci curvature is bounded from below. More precisely, he proved

THEOREM 1.2 ([W]). If (M,g) is a closed Riemannian manifold of dimension $n \geq 3$ and f is a $C^2(M)$ function with $\operatorname{Ric}_f^m \geq \frac{1}{m-n} |\nabla f|^2$, then

(1.5)
$$\int_{M} (N_{f}^{m} - \overline{N}_{f}^{m})^{2} e^{-f} dv_{g}$$

$$\leq \frac{4(m-n+1)(m-n-2)^{2}}{(m-n)^{3}} \int_{M} \left| \operatorname{Ric}_{f}^{m} + \frac{\operatorname{tr}\operatorname{Ric}_{f}^{m}}{m-n-2} g \right|^{2} e^{-\frac{m-n+4}{m-n}f} dv_{g}.$$

where

$$T_{f}^{m} := R + 2\frac{m - n - 1}{m - n}\Delta f - \frac{m - n - 1}{m - n}|\nabla f|^{2},$$
$$N_{f}^{m} := e^{-\frac{2}{m - n}f}T_{f}^{m}, \quad \overline{N}_{f}^{m} := \int_{M} N_{f}^{m}e^{-f} \, dv_{g} \Big/ \int_{M} e^{-f} \, dv_{g}.$$

Moreover, equality holds in (1.5) if and only if

(1.6)
$$\operatorname{Ric}_{f}^{m} + \frac{\operatorname{tr}\operatorname{Ric}_{f}^{m}}{m - n - 2}g = 0.$$

In particular, letting $m \to \infty$ in (1.5) yields the following inequality for the ∞ -Bakry-Émery Ricci curvature:

THEOREM 1.3 ([W]). If (M, g) is a closed Riemannian manifold of dimension $n \ge 3$ and f is a $C^2(M)$ function with $\operatorname{Ric}_f \ge 0$, then

(1.7)
$$\int_{M} (T_f - \overline{T}_f)^2 e^{-f} dv_g \leq 4 \int_{M} |\operatorname{Ric}_f|^2 e^{-f} dv_g,$$

where

$$T_f := R + 2\Delta f - |\nabla f|^2, \quad \overline{T}_f := \int_M T_f e^{-f} dv_g \Big/ \int_M e^{-f} dv_g.$$

Moreover, equality holds in (1.7) if and only if $\operatorname{Ric}_f = 0$.

In this paper, we are interested in manifolds without the assumption of non-negative ∞ -Bakry–Émery Ricci curvature. More precisely, we prove

THEOREM 1.4. If (M, g) is a closed Riemannian manifold of dimension $n \geq 3$ and f is a $C^2(M)$ function, then

(1.8)
$$\int_{M} (N_f - \overline{N_f})^2 e^{-f} \, dv_g \le 4 \left(1 + \frac{K}{\eta_1}\right) \int_{M} |\operatorname{Ric}_f - \lambda g|^2 e^{-f} \, dv_g,$$

where η_1 denotes the first non-zero eigenvalue of the f-Laplacian Δ_f on M, K is a non-negative constant such that the ∞ -Bakry-Émery Ricci curvature Ric_f satisfies $\operatorname{Ric}_f \geq -K$, and $\lambda \geq -K$ is a real constant. Here

$$N_f = R + 2\Delta f - |\nabla f|^2 + 2\lambda f, \quad \overline{N_f} = \int_M N_f e^{-f} \, dv_g \Big/ \int_M e^{-f} \, dv_g.$$

Moreover, equality holds in (1.8) if and only if $\operatorname{Ric}_f = \lambda g$.

Our second result is that the conclusion of Theorem 1.4 holds for manifolds with totally geodesic boundary:

THEOREM 1.5. Suppose (M,g) is a compact Riemannian manifold of dimension $n \geq 3$ with totally geodesic boundary ∂M , and f is a $C^2(M)$ function. If f satisfies the Dirichlet boundary condition or the Neumann boundary condition, then

(1.9)
$$\int_{M} (N_f - \overline{N_f})^2 e^{-f} dv_g \leq 4 \left(1 + \frac{K}{\xi_1}\right) \int_{M} |\operatorname{Ric}_f - \lambda g|^2 e^{-f} dv_g,$$

where ξ_1 denotes the first non-zero Neumann eigenvalue of Δ_f on M, K is a non-negative constant such that $\operatorname{Ric}_f \geq -K$, and $\lambda \geq -K$ is a real constant.

Moreover, equality holds in (1.9) if and only if $\operatorname{Ric}_f = \lambda g$.

REMARK 1.1. In particular, Theorem 1.4 reduces to Theorem 1.3 by letting $K = \lambda = 0$. Therefore, our results generalize those of Wu [W] for the ∞ -Bakry-Émery Ricci curvature.

2. Proof of Theorem 1.4

LEMMA 2.1. Suppose (M, g) is a closed Riemannian manifold of dimension $n \geq 3$ and f is a $C^2(M)$ function. For any vector field X on M,

(2.1)
$$- \int_{M} \langle X, \nabla N_f \rangle e^{-f} \, dv_g = \int_{M} \langle \operatorname{Ric}_f - \lambda g, L_X g \rangle e^{-f} \, dv_g,$$

where $N_f = R + 2\Delta f - |\nabla f|^2 + 2\lambda f$.

Proof. Take a local orthonormal frame $\{e_i\}_{1 \le i \le n}$ on M. Then $X = X^i e_i$. Noticing that the tensor $\operatorname{Ric}_f - \lambda g$ is symmetric, we have

(2.2)
$$\int_{M} \langle \operatorname{Ric}_{f} - \lambda g, L_{X}g \rangle e^{-f} dv_{g} = 2 \int_{M} (\operatorname{Ric}_{fij} - \lambda g_{ij}) \nabla^{j} X^{i} e^{-f} dv_{g}$$
$$= -2 \int_{M} X^{i} \nabla^{j} [(\operatorname{Ric}_{fij} - \lambda g_{ij}) e^{-f}] dv_{g}$$
$$= - \int_{M} \langle X, \nabla (R + 2\Delta f - |\nabla f|^{2} + 2\lambda f) \rangle e^{-f} dv_{g},$$

where we have used the contracted second Bianchi identity $2\nabla^j R_{ij} = \nabla^i R$ and the Ricci identity $\nabla^j f_{ij} = \nabla_i (\Delta f) + R_{ij} f^j$.

Proof of Theorem 1.4. We let $u: M \to \mathbb{R}$ be the unique solution to

(2.3)
$$\begin{cases} \Delta_f u = N_f - \overline{N_f}, \\ \int_M u e^{-f} dv_g = 0. \end{cases}$$

Choosing $X = \nabla u$ and using (2.3), we obtain

 $De \ Lellis-Topping \ type \ inequalities \ for \ f$ -Laplacians

$$(2.4) \qquad -\int_{M} \langle X, \nabla N_f \rangle e^{-f} \, dv_g = -\int_{M} \langle \nabla u, \nabla (N_f - \overline{N_f}) \rangle e^{-f} \, dv_g$$
$$= \int_{M} (N_f - \overline{N_f}) \Delta_f u e^{-f} \, dv_g$$
$$= \int_{M} (N_f - \overline{N_f})^2 e^{-f} \, dv_g.$$

On the other hand, by letting $X=\nabla u$ and using the Cauchy inequality, we get

(2.5)
$$\int_{M} \langle \operatorname{Ric}_{f} - \lambda g, L_{X}g \rangle e^{-f} dv_{g} = 2 \int_{M} \langle \operatorname{Ric}_{f} - \lambda g, \nabla^{2}u \rangle e^{-f} dv_{g}$$
$$\leq 2 \left(\int_{M} |\operatorname{Ric}_{f} - \lambda g|^{2} e^{-f} dv_{g} \right)^{1/2} \left(\int_{M} |\nabla^{2}u|^{2} e^{-f} dv_{g} \right)^{1/2}.$$

Integrating the Bochner formula for u (for the elementary proof, see [L, LI]),

(2.6)
$$\frac{1}{2}\Delta_f |\nabla u|^2 = |\nabla^2 u|^2 + \langle \nabla u, \nabla \Delta_f u \rangle + \operatorname{Ric}_f (\nabla u, \nabla u),$$

and applying the Stokes formula, we obtain

(2.7)
$$\int_{M} |\nabla^{2}u|^{2} e^{-f} dv_{g} = \int_{M} (\Delta_{f}u)^{2} e^{-f} dv_{g} - \int_{M} \operatorname{Ric}_{f} (\nabla u, \nabla u) e^{-f} dv_{g}$$
$$\leq \int_{M} [(\Delta_{f}u)^{2} + K |\nabla u|^{2}] e^{-f} dv_{g}.$$

Here we have used $\operatorname{Ric}_f \geq -K$.

Let η_1 denote the first non-zero eigenvalue of Δ_f on M, i.e.,

$$\eta_1 = \inf \left\{ \frac{\int_M |\nabla \varphi|^2 e^{-f} \, dv_g}{\int_M \varphi^2 e^{-f} \, dv_g} : \varphi \neq 0 \text{ and } \int_M \varphi e^{-f} \, dv_g = 0 \right\}.$$

We have

$$(2.8) \quad \int_{M} |\nabla u|^{2} e^{-f} \, dv_{g} = - \int_{M} u \Delta_{f} u e^{-f} \, dv_{g}$$

$$= - \int_{M} u (N_{f} - \overline{N_{f}}) e^{-f} \, dv_{g}$$

$$\leq \left(\int_{M} u^{2} e^{-f} \, dv_{g} \right)^{1/2} \left(\int_{M} (N_{f} - \overline{N_{f}})^{2} e^{-f} \, dv_{g} \right)^{1/2}$$

$$\leq \left(\frac{\int_{M} |\nabla u|^{2} e^{-f} \, dv_{g}}{\eta_{1}} \right)^{1/2} \left(\int_{M} (N_{f} - \overline{N_{f}})^{2} e^{-f} \, dv_{g} \right)^{1/2}.$$

193

Thus

(2.9)
$$\int_{M} |\nabla u|^2 e^{-f} \, dv_g \le \frac{1}{\eta_1} \int_{M} (N_f - \overline{N_f})^2 e^{-f} \, dv_g.$$

Substituting (2.9) into (2.7) and noting that $K \ge 0$ gives

(2.10)
$$\int_{M} |\nabla^2 u|^2 e^{-f} \, dv_g \le \left(1 + \frac{K}{\eta_1}\right) \int_{M} (N_f - \overline{N_f})^2 e^{-f} \, dv_g.$$

Combining (2.4) with (2.5) and (2.10) yields (1.8).

Next, we consider the case of equality in (1.8). Obviously, if $\operatorname{Ric}_f = \lambda g$, then equality holds. Conversely, if equality holds, we claim that $u \equiv 0$. Thus $N_f - \overline{N_f} = \Delta_f u = 0$ on M and so $\operatorname{Ric}_f = \lambda g$ on M.

To the contrary, suppose u is not identically zero. By the proof of (1.8), the following assertions must hold:

- (1) $(\operatorname{Ric}_f + Kg)(\nabla u, \nabla u) = 0;$
- (2) $\operatorname{Ric}_f \lambda g$ and $\nabla^2 u$ are linearly dependent;
- (3) u and $N_f \overline{N_f}$ are linearly dependent; (4) $\int_M (|\nabla u|^2 \eta_1 u^2) e^{-f} dv_g = 0.$

By (1) and the assumption that $\operatorname{Ric}_f + Kg \geq 0$, we have

(2.11)
$$(\operatorname{Ric}_f + Kg)(\nabla u, \cdot) = 0.$$

By (3), there exists a constant b such that $N_f - \overline{N_f} = bu$. Then by (4),

$$\int_{M} |\nabla u|^2 e^{-f} dv_g = -\int_{M} u \Delta_f u e^{-f} dv_g = -\int_{M} u (N_f - \overline{N_f}) e^{-f} dv_g$$
$$= -\int_{M} b u^2 e^{-f} dv_g = \int_{M} \eta_1 u^2 e^{-f} dv_g,$$

and

(2.12)
$$b = -\eta_1, \quad N_f - \overline{N_f} = -\eta_1 u.$$

By non-triviality of u, $\operatorname{Ric}_f - \lambda g$ and $\nabla^2 u$ must be non-trivial. [If $\operatorname{Ric}_f = \lambda g$, then $u = -\frac{1}{\eta_1}(N_f - \overline{N_f}) = 0$. If $\nabla^2 u = 0$, by (2.4) and (2.5) we deduce that $N_f - \overline{N_f} = 0$ on M, which contradicts the non-triviality of u.] So we can suppose there exists a non-zero constant μ such that

(2.13)
$$\mu(\operatorname{Ric}_f - \lambda g) = \nabla^2 u.$$

By the Ricci identity and (2.13), we have

(2.14)
$$0 = \nabla(\Delta_f u) - \operatorname{div}_f(\nabla^2 u) + \operatorname{Ric}_f(\nabla u, \cdot) = \nabla(\Delta_f u) - \mu \operatorname{div}_f(\operatorname{Ric}_f - \lambda g) + \operatorname{Ric}_f(\nabla u, \cdot).$$

A direct calculation yields

(2.15)
$$\operatorname{div}_f(\operatorname{Ric}_f - \lambda g) = \frac{1}{2} \nabla N_f.$$

194

Hence, inserting (2.15) into (2.14), we get

$$\nabla N_f - \frac{1}{2}\mu \nabla N_f + \frac{K}{\eta_1}g(\nabla N_f, \cdot) = 0.$$

Then

(2.16)
$$\left(1 + \frac{K}{\eta_1} - \frac{1}{2}\mu\right) |\nabla N_f|^2 = 0.$$

If $\mu \neq 2(1 + K/\eta_1)$, then $\nabla N_f = 0$ and hence $N_f = \overline{N}_f$, u = 0. So we must have $\mu = 2(1 + K/\eta_1)$. Then (2.13) turns into

(2.17)
$$2\left(1+\frac{K}{\eta_1}\right)(\operatorname{Ric}_f - \lambda g) = \nabla^2 u.$$

Combining (2.11) with (2.17) we infer

$$\nabla^2 u(\nabla u, \cdot) = -2\left(1 + \frac{K}{\eta_1}\right)(K + \lambda)g(\nabla u, \cdot)$$

which we can rewrite as

(2.18)
$$\nabla \frac{|\nabla u|^2}{2} = -2\left(1 + \frac{K}{\eta_1}\right)(K+\lambda)\nabla u.$$

Fix $x_0 \in M$ and let $\gamma : [0, \infty) \to M$ be the solution of $\dot{\gamma}(t) = -\nabla u(\gamma(t))$ with $\gamma(0) = x_0$. Consider $\alpha(t) = u(\gamma(t))$. Then $\alpha'(t) = -|\nabla u(\gamma(t))|^2$ and, by (2.18),

$$\alpha''(t) = -4\left(1 + \frac{K}{\eta_1}\right)(K + \lambda)|\nabla u|^2.$$

Since $\lambda + K \geq 0$, we have $\alpha''(t) \leq 0$, hence α is a bounded nonincreasing concave function on $[0, \infty)$ and therefore it must be constant. We conclude that $-|\nabla u(x_0)|^2 = \alpha'(0) = 0$. The arbitrariness of x_0 implies that u is constant, which completes the proof.

From Theorem 1.4, we have the following corollary.

COROLLARY 2.2. Suppose (M, g) is a closed Riemannian manifold of dimension $n \geq 3$ and f is a $C^2(M)$ function. Then

(2.19)
$$\int_{M} (N_f - \overline{N_f})^2 e^{-f} \, dv_g \leq C_{n,K,d} \int_{M} |\operatorname{Ric}_f - \lambda g|^2 e^{-f} \, dv_g,$$

where K is a non-negative constant such that $\operatorname{Ric}_f \geq -K$, $\lambda \geq -K$ is a real constant, d denotes the diameter of M, and $C_{n,K,d}$ is a constant only depending on n, K, d.

Proof. When $\operatorname{Ric}_f \geq -K$, Futaki, Li and Li [FLL] proved a lower bound for the first non-zero eigenvalue η_1 :

G. Y. Huang and F. Q. Zeng

(2.20)
$$\eta_1 \ge \sup_{s \in (0,1)} \left\{ 4s(1-s) \frac{\pi^2}{d^2 - sK} \right\},$$

where d denotes the diameter of M. Obviously, we can make the right hand side of (2.20) positive by choosing s small enough. Therefore, inserting (2.20) into (1.8) completes the proof of Corollary 2.2.

3. Proof of Theorem 1.5. Let $u: M \to \mathbb{R}$ be the unique solution to

(3.1)
$$\begin{cases} \Delta_f u = N_f - \overline{N_f} & \text{in } M, \\ \partial u / \partial \nu = 0 & \text{on } \partial M, \end{cases}$$

where $\partial u/\partial \nu$ is the normal derivative of u with respect to the metric g.

Using the Stokes formula and the Cauchy inequality, we obtain

$$(3.2) \qquad \int_{M} (N_{f} - \overline{N_{f}})^{2} e^{-f} dv_{g} = \int_{M} (\Delta_{f} u) (N_{f} - \overline{N_{f}}) e^{-f} dv_{g}$$
$$= -\int_{M} \langle \nabla u, \nabla N_{f} \rangle e^{-f} dv_{g} + \int_{\partial M} (N_{f} - \overline{N_{f}}) \frac{\partial u}{\partial \nu} e^{-f} dA_{g}$$
$$= -\int_{M} \langle \nabla u, \nabla N_{f} \rangle e^{-f} dv_{g} + 2 \int_{\partial M} [\operatorname{Ric}_{f} (\nabla u, \nu) - \lambda g (\nabla u, \nu)] e^{-f} dA_{g}$$
$$= 2 \int_{M} \langle \operatorname{Ric}_{f} - \lambda g, \nabla^{2} u \rangle e^{-f} dv_{g}$$
$$\leq 2 \Big(\int_{M} |\operatorname{Ric}_{f} - \lambda g|^{2} e^{-f} dv_{g} \Big)^{1/2} \Big(\int_{M} |\nabla^{2} u|^{2} e^{-f} dv_{g} \Big)^{1/2},$$

where in the last equality we have used [CN, Lemma 2.10] and the fact that f satisfies the Dirichlet boundary condition or Neumann boundary condition.

Recall the Bochner formula:

(3.3)
$$\frac{1}{2}\Delta_f |\nabla u|^2 = |\nabla^2 u|^2 + \langle \nabla u, \nabla \Delta_f u \rangle + \operatorname{Ric}_f (\nabla u, \nabla u).$$

Note that

(3.4)
$$\frac{1}{2} \int_{M} \Delta_{f} |\nabla u|^{2} e^{-f} dv_{g} = \frac{1}{2} \int_{\partial M} \frac{\partial |\nabla u|^{2}}{\partial \nu} e^{-f} dv_{g} = 0,$$

where the last equality follows from [CN, Lemma 2.10] which says that $\partial |\nabla u|^2 / \partial \nu = 0$ if $\partial u / \partial \nu = 0$ and (M, g) has totally geodesic boundary. Combining (3.3) and (3.4) gives

196

$$(3.5) \qquad \int_{M} |\nabla^{2}u|^{2} e^{-f} dv_{g}$$

$$= -\int_{M} \langle \nabla u, \nabla \Delta_{f}u \rangle e^{-f} dv_{g} - \int_{M} \operatorname{Ric}_{f} (\nabla u, \nabla u) e^{-f} dv_{g}$$

$$= -\int_{\partial M} (\Delta_{f}u) \frac{\partial u}{\partial \nu} e^{-f} dv_{g} + \int_{M} (\Delta_{f}u)^{2} e^{-f} dv_{g} - \int_{M} \operatorname{Ric}_{f} (\nabla u, \nabla u) e^{-f} dv_{g}$$

$$\leq \int_{M} [(\Delta_{f}u)^{2} + K |\nabla u|^{2}] e^{-f} dv_{g}.$$

Here we have used $\operatorname{Ric}_f \geq -K$.

Let ξ_1 denote the first non-zero Neumann eigenvalue of Δ_f on M, i.e.,

$$\xi_1 = \inf \left\{ \frac{\int_M |\nabla \psi|^2 e^{-f} \, dv_g}{\int_M \psi^2 e^{-f} \, dv_g} : \psi \neq 0 \text{ and } \frac{\partial \psi}{\partial \nu} = 0 \text{ on } \partial M \right\}.$$

We have

$$(3.6) \quad \int_{M} |\nabla u|^{2} e^{-f} dv_{g} = \int_{\partial M} u \frac{\partial u}{\partial \nu} e^{-f} dA_{g} - \int_{M} u \Delta_{f} u e^{-f} dv_{g}$$
$$= -\int_{M} u (N_{f} - \overline{N_{f}}) e^{-f} dv_{g}$$
$$\leq \left(\int_{M} u^{2} e^{-f} dv_{g} \right)^{1/2} \left(\int_{M} (N_{f} - \overline{N_{f}})^{2} e^{-f} dv_{g} \right)^{1/2}$$
$$\leq \left(\frac{\int_{M} |\nabla u|^{2} e^{-f} dv_{g}}{\xi_{1}} \right)^{1/2} \left(\int_{M} (N_{f} - \overline{N_{f}})^{2} e^{-f} dv_{g} \right)^{1/2}.$$

Thus

(3.7)
$$\int_{M} |\nabla u|^2 e^{-f} \, dv_g \le \frac{1}{\xi_1} \int_{M} (N_f - \overline{N_f})^2 e^{-f} \, dv_g$$

Substituting (3.7) into (3.5) and noting that $K \ge 0$ gives

(3.8)
$$\int_{M} |\nabla^2 u|^2 e^{-f} \, dv_g \le \left(1 + \frac{K}{\xi_1}\right) \int_{M} (N_f - \overline{N_f})^2 e^{-f} \, dv_g.$$

Combining (3.2) and (3.8) yields (1.9)

Next, we consider the case of equality in (1.9). Obviously, if $\operatorname{Ric}_f = \lambda g$, then equality holds. Conversely, if equality holds, we claim that $u \equiv 0$. Thus $N_f - \overline{N_f} = \Delta_f u = 0$ on M and so $\operatorname{Ric}_f = \lambda g$ on M.

To the contrary, suppose u is not identically zero. By the proof of (1.9), the following assertions must hold:

- (1) $(\operatorname{Ric}_f + Kg)(\nabla u, \nabla u) = 0;$
- (2) $\operatorname{Ric}_f \lambda g$ and $\nabla^2 u$ are linearly dependent;
- (3) u and $N_f \overline{N_f}$ are linearly dependent;
- (4) $\int_{M} (|\nabla u|^2 \xi_1 u^2) e^{-f} dv_q = 0.$

Using similar arguments to those for Theorem 1.4 (see also [H]), we complete the proof of Theorem 1.5. \blacksquare

Acknowledgements. The authors' research is supported by NSFC (No. 11371018, 11401179), Henan Provincial Backbone Teacher Fund (No. 2013GGJS-057), IRTSTHN (14IRTSTHN023) and Henan Provincial Education Department (No. 14B110017).

References

- [B] E. R. Barbosa, A note on the almost-Schur lemma on 4-dimensional Riemannian closed manifolds, Proc. Amer. Math. Soc. 140 (2012), 4319–4322.
- [CN] G. Catino and C. B. Ndiaye, Integral pinching results for manifolds with boundary, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 9 (2010), 785–813.
- [C] X. Cheng, A generalization of almost-Schur lemma for closed Riemannian manifolds, Ann. Global Anal. Geom. 43 (2013), 153–160.
- [CZ] X. Cheng and D. T. Zhou, Rigidity for closed totally umbilical hypersurfaces in space forms, J. Geom. Anal. 24 (2012), 1337–1345.
- [CLN] B. Chow, P. Lu and L. Ni, *Hamilton's Ricci Flow*, Grad. Stud. Math. 77, Science Press, New York, 2006.
- [DT] C. De Lellis and P. Topping, Almost-Schur lemma, Calc. Var. Partial Differential Equations 43 (2012), 347–354.
- [FLL] A. Futaki, H. Z. Li and X.-D. Li, On the first eigenvalue of the Witten-Laplacian and the diameter of compact shrinking solitons, Ann. Global Anal. Geom. 44 (2013), 105–114.
- [GW1] Y. Ge and G. Wang, A new conformal invariant on 3-dimensional manifolds, Adv. Math. 249 (2013), 131–160.
- [GW2] Y. Ge and G. Wang, An almost-Schur theorem on 4-dimensional manifolds, Proc. Amer. Math. Soc. 140 (2012), 1041–1044.
- [GWX] Y. Ge, G. Wang and C. Xia, On problems related to an inequality of Andrews, De Lellis, and Topping, Int. Math. Res. Notices 2013, no. 20, 4798–4818.
- [H] P. T. Ho, Almost Schur lemma for manifolds with boundary, Differential Geom. Appl. 32 (2014), 97–112.
- [K] K.-K. Kwong, On an inequality of Andrews, De Lellis, and Topping, J. Geom. Anal. 25 (2015), 108–121.
- M. Ledoux, The geometry of Markov diffusion generators, Ann. Fac. Sci. Toulouse Math. 9 (2000), 305–366.
- [LI] X.-D. Li, Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl. 84 (2005), 1295–1361.
- [P] D. Perez, On nearly umbilical hypersurfaces, thesis, 2011.

 [W] J. Wu, De Lellis-Topping inequalities for smooth metric measure spaces, Geom. Dedicata 169 (2014), 273–281.

Guangyue Huang	Fanqi Zeng
College of Mathematics and Information Science	Department of Mathematics
Henan Normal University	Tongji University
453007 Xinxiang, P.R. China	200092 Shanghai, P.R. China
and	E-mail: fanzeng10@126.com
Henan Engineering Laboratory for Big Data Statistical	
Analysis and Optimal Control	
E-mail: hgy@henannu.edu.cn	