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Equilateral sets in Banach spaces of the form C(K)

by

Sophocles K. Mercourakis and Georgios Vassiliadis (Athens)

Abstract. We show that for “most” compact nonmetrizable spaces, the unit ball of
the Banach space C(K) contains an uncountable 2-equilateral set. We also give examples
of compact nonmetrizable spaces K such that the minimum cardinality of a maximal
equilateral set in C(K) is countable.

1. Introduction. A subset S of a metric space (M,d) is said to be
equilateral if there is a constant λ > 0 such that d(x, y) = λ for all distinct
x, y ∈ S; we also call such a set a λ-equilateral set. An equilateral set S ⊆M
is said to be maximal if there is no equilateral set B ⊆M with A ( B.

Equilateral sets have been studied mainly in finite-dimensional spaces
(see [18], [20], and [19] for a survey). More recently there are also results in
infinite dimensions [16], [8] and also results on maximal equilateral sets [21].

In this paper we study equilateral sets in Banach spaces of the form C(K),
where K is a compact space. In the first section we introduce the combina-
torial concept of a linked family of pairs in a set Γ ; using this concept we
characterize those compact spaces K such that the unit ball of C(K) con-
tains a (1+ε)-separated (equivalently, 2-equilateral) set of a given cardinality
(Theorem 2.6). Then we show that in “most” cases a compact nonmetrizable
space K admits an uncountable linked family of closed pairs and hence its
unit ball contains an uncountable 2-equilateral set (Theorem 2.9). We note
in this connection that the unit sphere of every infinite-dimensional Banach
space contains an infinite (1 + ε)-separated set [5].

In the second section we focus on maximal equilateral sets in the
space C(K). Following [21], given a normed space E, we denote by m(E)
the minimum cardinality of a maximal equilateral set in E. The main results
here are the following. For every infinite locally compact space K we have
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m(C0(K)) ≥ ω (Theorem 3.5) (thus in particular m(C(K)) = ω for any
infinite compact metric space K). For every infinite product K =

∏
γ∈Γ Kγ

of nontrivial compact metric spaces, m(C(K)) = |Γ | (Theorem 3.7). Then
we give a variety of examples of compact nonmetrizable spaces K (including
scattered compact spaces and the Stone–Čech compactification βΓ of any
infinite discrete set Γ ) such that m(C(K)) = ω (Theorems 3.8, 3.10 and
Corollaries 3.9, 3.11).

If E is any (real) Banach space then BE denotes its closed unit ball.
If K is any compact [locally compact] Hausdorff space, then C(K) [C0(K)]
is the Banach space of all continuous real functions on K [that vanish at
infinity], endowed with the supremum norm ‖ · ‖∞.

When K is a compact Hausdorff space and µ ∈ P (K) (= the space
of regular Borel probability measures on K), then µ is called countably
determined if there is a sequence (Kn) of compact subsets of K, such that
for every open U ⊆ K and every ε > 0 there is n ∈ N with Kn ⊆ U and
µ(U \Kn) ≤ ε. If the sequence (Kn) consists of closed Gδ sets then µ is called
strongly countably determined (or uniformly regular). For these concepts we
refer the reader to [15].

2. Linked families and equilateral sets in C(K) spaces. In this
section we introduce the concept of a linked family of pairs in a set Γ and
then use it to investigate the existence of equilateral sets in C(K), where K
is any compact (nonmetrizable) space.

Definition 2.1. Let F = {(Aα, Bα) : α ∈ A} be a family of pairs of
subsets of a nonempty set Γ . We say that F is linked (or intersecting) if

(i) Aα ∩Bα = ∅ for α ∈ A,
(ii) Aα ∪Bα 6= ∅ for α ∈ A, and
(iii) for distinct α, β ∈ A, either Aα ∩Bβ 6= ∅ or Aβ ∩Bα 6= ∅.
If we replace condition (ii) with the stronger one: Aα 6= ∅ 6= Bα for

α ∈ A, we shall say that F is a linked family of nonempty pairs.
We note the following easily verified facts:

(a) If α 6= β ∈ A then Aα 6= Aβ and Bα 6= Bβ, and hence
(b) there is at most one α ∈ A such that Aα = ∅ and at most one β ∈ A

such that Bβ = ∅.
(c) If F is a linked family of nonempty pairs in the set Γ , then the family
F ∪ {(Γ, ∅), (∅, Γ )} is a linked family of pairs in Γ .

Example 2.2. Let {Aα : α ∈ A} be a family of distinct subsets of a
set Γ . Then the family {(Aα, Γ \Aα) : α ∈ A} is linked. Assuming further-
more that ∅ 6= Aα 6= Γ for α ∈ A, we find that F is a linked family of
nonempty pairs. It follows in particular that {(A,Γ \ A) : A ⊆ Γ} (resp.
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{(A,Γ \ A) : ∅ 6= A ( Γ}) is linked (resp. a linked family of nonempty
pairs). For further examples of linked families see Remarks 3.12(3).

Now we are going to examine the interrelation between the concepts
of linked families and equilateral sets in Banach spaces of the form C(K),
where K is a compact Hausdorff space.

Lemma 2.3. Let K be a compact Hausdorff space and S ⊆ [0, 1]K∩C(K).
Set

Af = f−1({0}) and Bf = f−1({1})
for f ∈ S. Then the following are equivalent:

(i) The family F = {(Af , Bf ) : f ∈ S} of (closed) pairs in K is linked.
(ii) The set S is 1-equilateral in C(K).

Proof. (i)⇒(ii). Let f, g ∈ S with f 6= g; clearly 0 < ‖f − g‖∞ ≤ 1.
Since either Af ∩ Bg 6= ∅ or Ag ∩ Bf 6= ∅, there is a t0 ∈ K such that
|f(t0)− g(t0)| = 1, hence ‖f − g‖∞ = 1.

(ii)⇒(i). If f 6= g ∈ S, then ‖f − g‖∞ = 1; so by the compactness of K,
there is a t0 ∈ K such that |f(t0) − g(t0)| = ‖f − g‖∞ = 1. Since 0 ≤
f(t0), g(t0) ≤ 1 we get {f(t0), g(t0)} = {0, 1}. Therefore, either t0 ∈ Af ∩Bg
or t0 ∈ Ag ∩Bf , and F is as required.

Note. Since there is at most one f0 ∈ S with Af0 = ∅ (⇔ inf(f0) > 0)
and at most one g0 ∈ S with Bg0 = ∅ (⇔ ‖g0‖∞ < 1), we see that {(Af , Bf ) :
f ∈ S\{f0, g0}} is a linked family of nonempty closed pairs in K, and S\{g0}
is a subset of the positive part S+

C(K) of the unit sphere SC(K).

Lemma 2.4. Let F = {(Aα, Bα) : α ∈ A} be a linked family of closed
pairs in the compact space K. Then we can associate with F a 1-equilateral
subset S of C(K) with |S| = |A| and S ⊆ [0, 1]K ∩ C(K).

Proof. Let α ∈ A; we distinguish the following cases:

(I) Assume that Aα 6= ∅ 6= Bα. We consider an Urysohn function fα :
K → [0, 1] such that fα(x) = 0 for x ∈ Aα and fα(x) = 1 for x ∈ Bα; clearly
inf(fα) = 0 < ‖fα‖∞ = 1.

(II) Assume that Aα = ∅, thus Bα 6= ∅. If Bα 6= K, pick t0 ∈ K \ Bα
and consider an Urysohn function fα : K → [0, 1] such that fα|Bα = 1 and
fα(t0) = 0. In case Bα = K, we let fα = 1 on K.

(III) Assume that Bα = ∅, thus Aα 6= ∅. This case is similar to (II). So
we consider an Urysohn function fα : K → [0, 1] such that fα|Aα = 0 and
fα(t0) = 1 for some t0 ∈ K \Aα if Aα 6= K, and define fα to be the constant
zero function in case Aα = K.

Now set A′α=f−1α ({0}) and B′α=f−1α ({1}) for α∈A. Since A′α ∩B′α=∅,
Aα ⊆ A′α and Bα ⊆ B′α for α ∈ A, we see that {(A′α, B′α) : α ∈ A} is a
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linked family of closed pairs in K, hence by Lemma 2.3, S = {fα : α ∈ A}
is a 1-equilateral subset of [0, 1]K ∩ C(K).

Remarks 2.5. (1) If in the proof of Lemma 2.4 we consider (as we may)
continuous functions fα : K → [−1, 1] such that fα|Aα = 1 and fα|Bα = −1,
then {fα : α ∈ A} is a 2-equilateral subset of the unit ball of C(K).

(2) Let F = {(Aα, Bα) : α ∈ A} be a family of disjoint pairs in a set Γ .
Set F̄ = {(Āα, B̄α) : α ∈ A} where Āα = clβΓ Aα, B̄α = clβΓ Bα and βΓ is
the Stone–Čech compactification of the discrete set Γ . Then it is easy to see
that F is a linked family of (nonempty) pairs in Γ iff F̄ is a linked family
of (nonempty) pairs in βΓ .

(3) Let K be a compact space and S ⊆ [0, 1]K ∩C(K) be a 1-equilateral
set. We consider the linked family F = {(Af , Bf ) : f ∈ S} given by
Lemma 2.3. Then it is not difficult to verify that F is a maximal linked
family of closed pairs in K iff S is a maximal (with respect to inclusion)
1-equilateral subset of [0, 1]K ∩ C(K), endowed with the norm metric (S is
not necessarily a maximal equilateral set in C(K) (see Remark 3.12(4)).

Theorem 2.6. Let K be a compact Hausdorff space and α be an infinite
cardinal. The following are equivalent:

(i) The unit ball BC(K) contains a λ-equilateral set, with λ > 1, of
size α.

(ii) The unit sphere SC(K) (resp. its positive part S+
C(K)) admits a

2-equilateral (resp. 1-equilateral) set of size α.
(iii) BC(K) contains a (1 + ε)-separated set, for some ε > 0, of size α.
(iv) There exists a linked family of closed (nonempty) pairs in K of

size α.

Proof. (ii)⇒(i). Let S be a 1-equilateral subset of S+
C(K) with |S| = α.

Then by Lemma 2.3, F = {(Af , Bf ) : f ∈ S} is a linked family of closed
pairs in K with |F| = α. Therefore, by Lemma 2.4 and Remark 2.5(1),
F defines a 2-equilateral set contained in BC(K).

(i)⇒(iii) is obvious.

(iii)⇒(iv). Let D ⊆ BC(K) be a (1 + ε)-separated set (ε > 0) with
|D| = α. We may assume that ‖f‖∞ = 1 for f ∈ D (see [14, Lemma 6, p. 8],
and also [11, Lemma 2.2]). We define

Af = f−1([−1,−ε/2]) and Bf = f−1([ε/2, 1])

for f ∈ D; clearly Af ∪ Bf 6= ∅. Let f, g ∈ D with f 6= g, so there is a
t0 ∈ K such that ‖f − g‖∞ = |f(t0) − g(t0)| ≥ 1 + ε. Assume without
loss of generality that f(t0) < g(t0). We will show that f(t0) ≤ −ε/2 and
g(t0) ≥ ε/2, that is, Af ∩Bg 6= ∅.
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Indeed, suppose otherwise; then either f(t0) > −ε/2 or g(t0) < ε/2.
Assuming the former, we get −ε/2 < f(t0) < g(t0) ≤ 1, hence g(t0)−f(t0) <
1 + ε/2, a contradiction. In a similar way we get a contradiction assuming
that g(t0) < ε/2.

It follows that F = {(Af , Bf ) : f ∈ D} is a linked family of closed pairs
in K of size α.

(iv)⇒(ii) is a direct consequence of Lemma 2.4.

LetK be an infinite compact space; as is well known, the Banach space c0
can be isometrically embedded in C(K), hence the assertions of Theorem 2.6
hold true for α = ω. The following questions were open when this article
became public:

Questions 2.7. Let K be a compact Hausdorff nonmetrizable space.

(1) (a) Does there exist an uncountable (1 + ε)-separated D ⊆ BC(K)?
(b) Does there exist an uncountable D ⊆ BC(K) with the property

that f 6= g ∈ D ⇒ ‖f − g‖∞ > 1? (Note that, by transfinite
induction it can be shown that there is an uncountable D ⊆
SC(K) such that f 6= g ∈ D ⇒ ‖f − g‖∞ ≥ 1.)

(2) Does C(K) contain an uncountable equilateral set?

We can show that in “most” cases the answers to the above questions
are positive. For this purpose we recall the following definitions. Let X be
a Hausdorff and completely regular topological space.

X is said to be hereditarily Lindelöf (HL) if every subspace Y of X is
Lindelöf. It is well known that X is HL iff there is no uncountable right
separated family in X, that is, a family {tα : α < ω1} ⊆ X such that
tα /∈ clX{tβ : α < β < ω1} for α < ω1.

X is said to be hereditarily separable (HS) if every subspace Y of X is
separable. It is also well known that X is HS iff there is no uncountable
left separated family in X, that is, a family {tα : α < ω1} ⊆ X such that
tα /∈ clX{tβ : β < α} for 1 ≤ α < ω1 (see [9, p. 151]).

We are going to use the following standard

Fact 2.8. A compact space K is HL if and only if it is perfectly normal
(i.e. each closed subset of K is Gδ).

Theorem 2.9. Let K be a compact space. If K satisfies one of the fol-
lowing conditions, then K admits an uncountable linked family of closed
pairs (and hence by Theorem 2.6 the unit ball of C(K) contains an uncount-
able 2-equilateral set).

(i) There exists a closed subset Ω of K admitting uncountably many
relatively clopen sets (in particular Ω is nonmetrizable and totally
disconnected).
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(ii) K is not hereditarily Lindelöf.
(iii) K is not hereditarily separable.
(iv) |K| > 2ω.
(v) K admits a Radon probability measure which is not strongly count-

ably determined.

Proof. (i) Let B be any uncountable family of clopen sets in Ω ⊆ K.
Then clearly F = {(V,Ω \ V ) : V ∈ B} is an uncountable linked family of
closed pairs in K. (It is clear that condition (i) can be stated as follows: there
is a closed subset Ω ⊆ K such that the unit ball of C(Ω) has uncountably
many extreme points.)

(ii) Let {tα : α < ω1} ⊆ K be an uncountable right separated family. Set
Aα = {tα} and Bα = clK{tβ : α < β < ω1} for α < ω1. Then it is easy to
see that {(Aα, Bα) : α < ω1} is a linked family of closed (nonempty) pairs
in K.

(iii) Since K is non-HS, there exists an uncountable left separated family
in K and the proof is similar to that of the previous case.

(iv) This follows from (ii), since if |K| > 2ω then K is not HL. Indeed,
any compact HL space is first countable (each one-point subset of K is Gδ by
Fact 2.8). By a classical result of Arkhangel’skii each compact first countable
space has cardinality ≤ 2ω.

(v) We may assume by (ii) that K is HL. Therefore (by Fact 2.8) our
assumption is equivalent to the existence of a measure µ on K which is not
countably determined. We shall construct by transfinite induction a family
of closed pairs (Aα, Bα), α < ω1, as follows: Given α < ω1 and pairs for
β < α, there are an open set Vα ⊆ K and ε(α) > 0 (as µ is not countably
determined) such that

(1) β < α and Aβ ⊆ Vα ⇒ µ(Vα)− µ(Aβ) ≥ ε(α).

Then set Bα = K \ Vα and consider a closed set Aα ⊆ Vα with

(2) µ(Vα \Aα) = µ(Vα)− µ(Aα) < ε(α)/3.

It is clear that we can choose ε > 0 and an uncountable set I ⊆ ω1 such
that ε(α) ≥ ε for α ∈ I and furthermore

(3) |µ(Aβ)− µ(Aα)| < ε/3, ∀α, β ∈ I.
We claim that the family (Aα, Bα), α ∈ I, is linked. So let β < α ∈ I. Then
Aβ * Vα (otherwise by (1) and (2) we would get µ(Aα)− µ(Aβ) > 2ε(α)/3
≥ 2ε/3, which contradicts (3)). Hence (K \ Vα) ∩Aβ = Bα ∩Aβ 6= ∅.

Remarks 2.10. (1) Both of the above questions were included in a pre-
liminary version of this article and have recently been answered. Specifically,
P. Koszmider [12] with the aid of MA+¬ CH gave a positive answer to Ques-
tion 2.7(1)(a) and on the other hand constructed a consistent example with
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C(K) containing no uncountable equilateral set. T. Kania and T. Kocha-
nek [11] answered Question 2.7(1)(b) in the affirmative in ZFC.

It seems to remain open if there is a consistent example of a compact
space K such that C(K) contains an uncountable equilateral set but its unit
ball contains no uncountable 2-equilateral set.

(2) We initially proved assertion (v) of Theorem 2.9 with the stronger
assumption that K admits a measure of uncountable type (in that case the
resulting linked family has the stronger property that µ(Aβ ∩ Aα) > 0 for
α, β < ω1). The present form of (v) and its proof are due to the referee. It is
worth mentioning that, consistently, a compact space which is HL and HS
may carry a measure of uncountable type [4].

The above theorem has some interesting consequences. If K is any com-
pact space, then recall that both spaces P (K) and BC(K)∗ are compact with
the weak∗ topology.

Corollary 2.11. Let K be any compact nonmetrizable space. Denote
by Ω any of the compact spaces K ×K, P (K) and BC(K)∗. Then the unit
ball of C(Ω) contains an uncountable 2-equilateral set.

Proof. The compact space Ω is not HL. Indeed, if Ω = K × K, then
since K is not metrizable, its diagonal ∆ = {(x, x) : x ∈ K} is closed but
not Gδ (by a classical result, if the diagonal of a compact space K is a Gδ
subset of K ×K then K is metrizable). So by Fact 2.8 the space K ×K is
not HL.

Let Ω = P (K). We consider the continuous map Φ : K ×K → P (K),
Φ(x, y) = 1

2δx+ 1
2δy (δx is the Dirac measure at x ∈ K). Then ∆ = Φ−1({δx :

x ∈ K}). If P (K) were HL, then by Fact 2.8, K would be a closed Gδ subset
of P (K), therefore ∆ would be a Gδ subset of K ×K, a contradiction.

IfΩ = BC(K)∗ then since P (K) is a weak∗ closed subset ofΩ, we conclude
that Ω is not HL.

Corollary 2.12. Let X be a nonseparable Banach space. Denote by Ω
its closed dual unit ball BX∗ with the weak∗ topology. Then the unit ball of
C(Ω) contains an uncountable 2-equilateral set.

Proof. Using transfinite induction and the Hahn–Banach Theorem we
may construct for each ε > 0 two long sequences {xα : α < ω1} ⊆ BX
and {fα : α < ω1} ⊆ (1 + ε)BX∗ satisfying fβ(xα) = 0 for β > α and
fα(xα) = 1 for α < ω1 (see [9, Fact 4.27]). It is easy to see that the sequence
{fα : α < ω1} is right separated in the compact space (1 + ε)BX∗ . So
(1 + ε)BX∗ is not HL and neither is Ω = BX∗ .

A subspace Y of a topological space X is said to be weakly separated if
there are open sets Uy, y ∈ Y , in X such that y ∈ Uy for all y ∈ Y and
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whenever y1 6= y2 ∈ Y we have either y1 /∈ Uy2 or y2 /∈ Uy1 ([2], [13]). The
following can easily be verified:

(i) If Y = {tα : α < ω1} is any right (resp. left) separated family in
the topological space X, then Y is an uncountable weakly separated
subspace of X; we say in this case that Y is an uncountable right
(resp. left) separated subspace of X.

(ii) Let Y be any weakly separated subspace of X by the family of open
sets Uy, y ∈ Y . Then the family {({y}, X \ Uy) : y ∈ Y } is a linked
family of closed pairs in X.

As we shall see, linked families of closed pairs in a space X are a spe-
cial kind of weakly separated subspaces in expX, the hyperspace of closed
nonempty subsets of X endowed with the Vietoris topology. If G1, . . . , Gn
are subsets of X we denote

〈G1, . . . , Gn〉 =
{
F ∈ expX : F ⊆

n⋃
k=1

Gk and F ∩Gk 6= ∅ ∀k = 1, . . . , n
}
.

The Vietoris topology on expX has as base the sets of the form 〈G1, . . . , Gn〉,
where G1, . . . , Gn are open subsets of X.

We shall say that a weakly separated subspace Y of expX is separated
by open subsets of X if the sets Uy, y ∈ Y , of the definition above are of the
form Uy = 〈Vy〉, y ∈ Y , where Vy are open subsets of X. This is equivalent
to both: y ⊆ Vy for y ∈ Y and if y1 6= y2 ∈ Y , then either y1 * Vy2 or
y2 * Vy1 .

The (easy) proof of the following proposition is left to the reader.

Proposition 2.13. Let X be a topological space. Then X admits a linked
family of closed pairs of cardinality κ if and only if expX admits a weakly
separated subspace by open subsets of X of cardinality κ.

Remarks 2.14. (1) As was shown by Todorcevic assuming Martin’s
Axiom and the negation of the continuum hypothesis, if K is compact and
nonmetrizable then C(K) admits an uncountable (bounded) biorthogonal
system [22, Th. 11]. So by using [16, Theorem 3], the space C(K) can be
given an equivalent norm that admits an uncountable equilateral set.

(2) It is consistent with ZFC to assume that there exists a compact
nonmetrizable space K having no uncountable weakly separated subspace
(see [2]). The space K constructed there, among its many interesting proper-
ties, is totally disconnected and hence admits an uncountable linked family
of closed (and open) pairs.

(3) Let K be a compact nonmetrizable space. Then the hyperspace expK
of K is not HL. Actually its closed subspace [K]≤2 = {A ⊆ K : |A| ≤ 2}
is not HL. (The proof is similar to the proof that (P (K), w∗) is not HL; we
consider the continuous map Φ : K × K → expK, Φ(x, y) = {x, y}, and



Equilateral sets in Banach spaces of the form C(K) 249

note that Φ(K ×K) = [K]≤2.) It follows that there is an uncountable right
separated subspace Y = {Fα : α < ω1} of expK, which by the result of
P. Koszmider [12] is not necessarily separated by open subsets of K.

3. Maximal equilateral sets in C(K) spaces. Our goal here is the
study of maximal equilateral sets of minimum cardinality, mainly in Banach
spaces of the form C(K).

Definition 3.1. Let (M,d) be a metric space. We define, for x ∈M ,

m(M,x) = min{|A| : x ∈ A and A is a maximal equilateral set in M}.
We also define

m(M) = min{|A| : A is a maximal equilateral set in M}.
It is clear that m(M) = min{m(M,x) : x ∈M}.
Lemma 3.2. Let (X, ‖ · ‖) be a normed space. Then

m(X) = m(SX ∪ {0}, 0).

Proof. Let A ⊆ X be any maximal equilateral set in X. Assume that A
is λ-equilateral. Let x0 ∈ A; then the set B = {λ−1(x − x0) : x ∈ A} is a
1-equilateral subset of SX ∪ {0} containing the point 0. Note that |B| = |A|
and that B is a maximal equilateral set (in X and hence) in SX ∪ {0}.

In the converse direction, consider any maximal equilateral subset B of
the metric space SX ∪ {0} with 0 ∈ B. Then clearly B is 1-equilateral. We
claim that B is a maximal equilateral subset of X; indeed, if x ∈ X with
x /∈ B is such that B∪{x} is equilateral then 1 = ‖x−0‖ = ‖x‖, so x ∈ SX ,
which contradicts the maximality of B in SX ∪ {0}.

Lemma 3.3. Let (X, ‖ · ‖) be a normed space. Then m(BX) ≤ m(X)
(= m(SX ∪ {0}, 0)).

Proof. By the (method of proof of the) previous lemma any maximal
equilateral set in X gives rise to a maximal equilateral set in X of the same
cardinality, contained in SX ∪ {0} ⊆ BX , so we are done.

Remarks 3.4. (1) Swanepoel and Villa [21] have shown the following
result, generalizing an example of Petty [18]:

If X is any Banach space with dimX ≥ 2 having a norm which is
Gâteaux differentiable at some point, and Y = (X ⊕ R)1, then m(Y ) = 4.

(Their proof is based on the following simple result: Let X be any normed
space with dimX ≥ 2 and also let x, u ∈ SX be such that ‖u−x‖ = ‖u+x‖
= 2. Then the unit ball of the subspace Z = 〈u, x〉 of X is the parallelogram
with vertices ±u,±x.) One can easily check that the result of Swanepoel
and Villa can be generalized (by the method of its proof) as follows:

If dimX ≥ 2 and the norm of X is either strictly convex or Gâteaux
differentiable at some point, then m(Y ) = 4 and m(BX) = 2 (= m(SX)).
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(2) For the Hilbert space X = `2 we clearly have m(X) = ω, and since
the norm of X is strictly convex, the preceding remark yields m(BX) = 2.
So the inequality in Lemma 3.3 may be strict.

(3) Let Γ be any set with |Γ | ≥ 2 and let ‖ · ‖ be an equivalent strictly
convex norm on the Banach space `1(Γ ) (see [3]). Now set X = (`1(Γ ), ‖·‖).
Then (1) shows that m(X ⊕ R)1 = 4.

The following theorem can also be proved by using a result of Swanepoel
and Villa [21] (if d ∈ N then m(`d∞) = d + 1). But we are going to give a
direct proof.

Theorem 3.5. Let X be any infinite locally compact Hausdorff space.
Then m(C0(X)) ≥ ω.

Proof. We shall show that each finite equilateral subset of C0(X) can
be extended. So let S = {f1, . . . , fn}, n ≥ 2, be any 1-equilateral set in
C0(X). Then there is a finite set A ⊆ X such that S|A = {fk|A : k ≤ n} is
1-equilateral. Set g = mink≤n fk. Then there is an open set ∅ 6= V ⊆ X \ A
and k ≤ n such that g = fk on V . Indeed, set Y = X \A and Yk = {x ∈ Y :
g(x) = fk(x)} for k ≤ n. Then Y =

⋃
k≤n Yk, so there is k ≤ n such that

V = intY (Yk) 6= ∅; since Y is an open subset of X, we see that V is open in
X and clearly satisfies our requirements.

Let h ∈ C0(X) be a norm-one nonnegative function vanishing on X \ V .
Then it is easy to verify that the set S ∪ {fk + h} is 1-equilateral.

Let Γ be an infinite set endowed with discrete topology. Then c0(Γ ) is
the space of all functions f : Γ → R that vanish at infinity. We shall show
that m(c0(Γ )) is as large as possible.

Proposition 3.6. Let Γ be an infinite set. Then m(c0(Γ )) = |Γ |.

Proof. We claim that each equilateral subset S in c0(Γ ) with |S| < |Γ |
can be extended. If Γ is countable, then S is finite and can be extended
by the previous theorem. So assume Γ is uncountable. It is also clear by
Lemma 3.2 that we may assume S is contained in Bc0(Γ ) and is 1-equilateral.
Set ∆ =

⋃
{suppx : x ∈ S}; since |S| < |Γ | ≥ ω1 and each element of c0(Γ )

has at most countable support, we get |∆| < |Γ |. Let γ0 ∈ Γ \∆, then it is
easy to see that the set S ∪{eγ0} (eγ0 is the γ0-member of the usual basis of
c0(Γ )) is 1-equilateral. Now we can proceed by transfinite induction, using
the above claim to show that m(c0(Γ )) = |Γ |. We omit the details of this
(easy) proof.

Let K be any infinite compact metric space. Then the Banach space
C(K) is separable and by Theorem 3.5 we get m(C(K)) = ω. This can be
generalized as follows:
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Theorem 3.7. Let {Xγ : γ ∈ Γ} be an infinite family of compact metric
spaces with |Xγ |≥2 for all γ∈Γ . Set X=

∏
γ∈Γ Xγ. Then m(C(X))= |Γ |.

Proof. We remind the reader that each continuous function f : X → R
depends on countably many coordinates; that is, there is a countable set
A ⊆ Γ such that f(x) = f(y) for every pair x = (xγ), y = (yγ) of points of
X satisfying xγ = yγ for γ ∈ A (see [6, pp. 157–159 and 194–195]).

Assume that |Γ | ≥ ω1 (if |Γ | = ω, then X is compact metric and the
result holds true). So let S be any equilateral set in C(X) with |S| < |Γ |.
Since by Theorem 3.5, m(C(K)) ≥ ω for any infinite compact space K, we
may also assume that S is infinite. We are going to prove that S can be
extended (cf. the proof of Proposition 3.6). Since each continuous function
on X depends on countably many coordinates and |S| < |Γ |, it follows that
there is an A ⊆ Γ with |A| = |S| < |Γ | such that each member of S depends
on A. Pick γ ∈ Γ \A and take distinct t0, t1 ∈ Xγ and a continuous function
h : Xγ → [0, 1] such that h(t0) = 0 and h(t1) = 1. Pick a nonzero function
g0 ∈ S and let f = g0 · (h ◦ πγ), where πγ is the projection on coordinate γ.
Now it is easy to check that S ∪ {f} is equilateral.

Note. The same proof yields m(C(X)) ≥ |Γ | when X =
∏
γ∈Γ Xγ with

each Xγ compact Hausdorff with at least two points and Γ infinite.

Theorem 3.8. Let K be a compact space containing a countable infinite
set D of isolated points such that D is Gδ. Then m(C(K)) = ω.

Proof. Let D = {xn : n ≥ 1} be a sequence of distinct isolated points
of K. We consider the sequence (tn)n≥1 of reals, where

t2n−1 = 1− 1

n+ 1
and t2n =

1

n+ 1
.

Since D is Gδ, there is a continuous function f0 : K → [0, 1/2] such that
D = f−10 ({0}). For n ≥ 1 take a continuous function fn such that fn(xn) = 1,
fn(xk) = 0 for k < n and fn(x) = tn elsewhere (cf. also Remark 3.12(3)).
Then {f0, f1, . . . } is a 1-equilateral set in C(K). We shall prove that it is
maximal. Indeed, if g ∈ C(K) and ‖g − fn‖ = 1 for every n ≥ 1 then:

(i) g(x) ∈ [0, 1] for x ∈ K.
(ii) g = 0 on D. Otherwise there would be a minimal N ∈ N such that

g(xN ) > 0; then we would have ‖g − fN‖ < 1.

It then follows from (i), (ii) and the properties of f0 that ‖g−f0‖ < 1, which
proves our claim.

Corollary 3.9.

(i) Let K be any compactification of the discrete set N. Then m(C(K))
= ω.
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(ii) Let K = βΓ (= the Stone–Čech compactification of the infinite dis-
crete set Γ ). Then m(C(K)) = ω.

Proof. (i) is an immediate consequence of Theorem 3.8, since N = K.

(ii) Let D be an infinite subset of K = βΓ . Then D is a clopen subset
of K. (Recall that C(βΓ ) is isometric to `∞(Γ ).)

Using similar ideas we obtain the following result (cf. also Remark 3.12(3)).

Theorem 3.10. Let K be a compact space containing a countable infinite
set D of isolated points such that D is not homeomorphic to βN. Then
m(C(K)) = ω.

Proof. By our assumption we can write D = {xn : n ≥ 1}, so that for
D0 = {x2n : n ≥ 1} and D1 = {x2n−1 : n ≥ 1} we have D0 ∩ D1 6= ∅. Let
σ = (σ1, σ2, . . . ) ∈ 2ω (= the Cantor set {0, 1}N) be defined by σ2n = 0 and
σ2n−1 = 1. We shall also use the sequence (tn) from the proof of Theorem 3.8.

We define a sequence (fn)n≥1 of continuous functions on K as follows:

fn(xn) = σn + 1 mod 2, fn(xk) = σk for k < n and fn(x) = tn elsewhere.

It is clear that the set {f1, f2, . . . } is 1-equilateral in C(K). We claim that
it is maximal. Consider any function g : K → R such that ‖g − fn‖ = 1 for
n ≥ 1. It follows that:

(i) g(x) ∈ [0, 1] for x ∈ K, and (hence)
(ii) |g(x)− fn(x)| < 1 for x ∈ K \D.

So we get ‖g − fn‖∞ = supx∈D |g(x)− fn(x)| = 1 for n ≥ 1. Now we check
by induction that g(xn) = σn for n ≥ 1, and this implies that g is not
continuous.

Corollary 3.11. Let K be an infinite compact scattered space. Then
m(C(K)) = ω.

Proof. Since K is scattered, the set D of isolated points of K is dense
in K. Clearly D = K is not homeomorphic to βN, so Theorem 3.10 implies
the conclusion.

Remarks 3.12. (1) Let X, Y be compact spaces, π : X → Y a contin-
uous surjective map which is nonirreducible (i.e., there is Ω ( X compact
such that π(Ω) = Y ) and T : C(Y ) → C(X) the linear isometry given by
T (f) = f ◦ π for f ∈ C(Y ). Let S be a 1-equilateral subset of S+

C(Y ). Then

it is fairly easy to prove that there is g ∈ S+
C(X) such that T (S) ∪ {g} is

equilateral.

Given this result, it can be shown by transfinite induction that if a
compact nonmetrizable space K is roughly the “limit” of a long system of
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“smaller” compact spaces connected by nonirreducible maps, then

m(S+
C(K) ∪ {0}, 0) ≥ ω1.

This is the case for instance when:

(a) K is an Eberlein, or more generally a Corson compact space, because
then K admits a long sequence of compatible retractions (see [17],
[3]), and when

(b) K is a compact group, since then K is a projective limit of compact
metrizable groups (see [10]).

(2) Note that, given any infinite set Γ , the Banach spaces c0(Γ ) and c(Γ̃ )

are isomorphic, where Γ̃ is the one-point compactification of the discrete
set Γ . But if Γ is uncountable, then by Proposition 3.6, Corollary 3.11 and
the above remark we have

m(C(Γ̃ )) = ω < m(S+

C(Γ̃ )
∪ {0}, 0) = m(c0(Γ )) = |Γ |.

(3) Let T =
⋃∞
n=0{0, 1}n be the dyadic tree. Consider any antichain

A = {sn : n ≥ 1} of T . For n ∈ N let

An = {k ≤ |sn| : sn(k) = 1} and Bn = {k ≤ |sn| : sn(k) = 0},

where |s| is the length of s ∈ T . Then it is easy to see that F(A) =
{(An, Bn) : n ∈ N} is a linked family of (finite) pairs in N. Note that
each σ = (σ1, σ2, . . . ) ∈ 2ω gives rise to an antichain of T by letting

A(σ) = {(ϕ(σ1)), (σ1, ϕ(σ2)), . . . , (σ1, . . . , σn−1, ϕ(σn)), . . .},

where ϕ(0) = 1 and ϕ(1) = 0, and hence to a linked family F(A(σ)).
Moreover, F(A(σ)) ∪ {(Aω, Bω)}, where Aω = {n ∈ N : σn = 1} and
Bω = {n ∈ N : σn = 0}, is a maximal linked family of pairs in N.

Indeed, let (tn) be an arbitrary sequence in (0, 1); for n ≥ 1 define a
function fn : N→ R so that

fn(n) = ϕ(σn), fn(k) = σk, k < n, fn(k) = tn, k > n,

and also let fω(k) = σk for k ∈ N.

Then it can be shown that the set {fn : n ≥ 1} ∪ {fω} is a maximal
1-equilateral subset of `∞ (cf. the proofs of Theorems 3.8 and 3.10) and that
the linked family of pairs in N corresponding to it according to Lemma 2.3
(cf. also Remarks 2.5(2) and (3)) is the family F(A(σ)) ∪ {(Aω, Bω)}.

(4) The following example is related to Remark 2.5(3). Let K be a com-
pact nonempty space. We denote by Ω the disjoint union of the compact
spaces K and Ñ, where Ñ = N ∪ {∞} is the one-point compactification of
the dicrete space N. We define a 1-equilateral set S = {fn : n ≤ ω} ⊆
[0, 1]Ω ∩ C(Ω) as follows:
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fn(k) = 0, k < n, fn(n) = 1, fn(x) = 1/2, x ∈ Ω \ {1, . . . , n},

for n ∈ N, and fω(x) = 0, x ∈ Ñ, while fω(x) = 1/2, x ∈ K.
It is easy to verify that the linked family F corresponding to this equilat-

eral set according to Lemma 2.3 is maximal and also that S can be extended
to an equilateral set in C(Ω). On the other hand, by Theorem 3.10 we know
that m(C(Ω)) = ω.
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[7] M. Fabian, P. Habala, P. Hájek, V. Montesinos and V. Zizler, Banach Space Theory,

The Basis for Linear and Nonlinear Analysis, CMS Books Math., Springer, 2011.
[8] D. Freeman, E. Odell, B. Sari and Th. Schlumprecht, Equilateral sets in uniformly

smooth Banach spaces, Mathematika 60 (2014), 219–231.
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