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Maximality of dual coactions
on sectional C∗-algebras of Fell bundles and applications

by

Alcides Buss (Florianópolis) and Siegfried Echterhoff (Münster)

Abstract. We give a simple proof of the maximality of dual coactions on full cross-
sectional C∗-algebras of Fell bundles over locally compact groups. This result was only
known for discrete groups or for saturated (separable) Fell bundles over locally compact
groups. Our proof, which is derived as an application of the theory of universal generalised
fixed-point algebras for weakly proper actions, is different from these previously known
cases and works for general Fell bundles over locally compact groups. As applications, we
extend certain exotic crossed-product functors in the sense of Baum, Guentner and Willett
to the category of Fell bundles and the category of partial actions, and we obtain results
about the K-theory of (exotic) cross-sectional algebras of Fell bundles over K-amenable
groups. As a bonus, we give a characterisation of maximal coactions of discrete groups in
terms of maximal tensor products.

1. Introduction. The theory of Fell bundles B over a locally compact
group G (also called C∗-algebraic bundles in [15]) and their cross-sectional
algebras give far reaching generalisations of the theory of crossed products
by strongly continuous actions α : G → Aut(A) of G on C∗-algebras A.
Important examples of Fell bundles come from (twisted) partial actions (see
[21]) of G on C∗-algebras A and in this case the crossed products for such
actions are by definition given as the cross-sectional C∗-algebras of the as-
sociated Fell bundles.

Recall from [14, 15] that a Fell bundle B over G consists of a topological
space B together with a continuous open surjection p : B � G such that
the fibres Bs := p−1({s}) are Banach spaces for all s ∈ G and such that all
operations like multiplication with scalars, fibre-wise addition, and norm are
continuous on B. Moreover, B comes equipped with an associative continuous
multiplication function

· : B × B → B, (a, b) 7→ a · b,
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which is bilinear when restricted to Bs × Bt for all s, t ∈ G and such that
Bs · Bt ⊆ Bst. In addition, B is equipped with a continuous involution
∗ : B → B, b 7→ b∗, which sends Bt to Bt−1 for all t ∈ G and which is com-
patible with multiplication and addition on B in a sense extending the usual
properties for involutions on C∗-algebras. In particular, the C∗-condition
‖b∗b‖ = ‖b‖2 and the positivity condition b∗b ≥ 0 in Be are required to
hold for all b ∈ B. Note that the unit fibre Be in a Fell bundle B is always
a C∗-algebra. A Fell bundle is called saturated if span(B∗tBt) = Be for all
t ∈ G.

Given a Fell bundle B, let Cc(B) denote the space of continuous sections
with compact support. It carries multiplication and involution given by the
formulas

(1.1) f ∗ g(s) =
�

G

f(t)g(t−1s) dt and f∗(s) = ∆G(s−1)f(s−1)∗.

In general there might exist many possible C∗-completions of Cc(B). The
largest (L1-bounded) C∗-norm on Cc(B) is the universal (or maximal) cross-
sectional algebra C∗(B) whose representations are in one-to-one correspon-
dence with the continuous representations of the bundle B. At the other
extreme there is the reduced cross-sectional algebra C∗r (B), which is defined
as the image of C∗(B) under the regular representation Λ : B → L(L2(B)).

If B is a Fell bundle and if uG : G→ UM(C∗(G)) denotes the universal
representation of G, then the integrated form of the representation

δB = ιB ⊗ uG : B →M(C∗(B)⊗ C∗(G)), bt 7→ bt ⊗ uG(t),

where bt denotes an element in the fibre Bt of B, defines a dual coaction of G
(or rather of the Hopf-C∗-algebra C∗(G)) on C∗(B) (see [24]). It is the main
purpose of our paper to show that this coaction always satisfies Katayama
duality for the maximal bidual crossed product in the sense that a certain
canonical surjective homomorphism

ΦB : C∗(B) oδB Ĝo
δ̂B
G� C∗(B)⊗K(L2(G))

is actually an isomorphism. Coactions with this property have been called
maximal in [17], where it has first been shown that every coaction (B, δ)
admits a maximalisation (Bm, δm). If G is discrete and (B, δ) is any coaction
of G on some C∗-algebra B, then it follows from results of Ng and Quigg
[33, 36] (see also [19]) that B is isomorphic to a C∗-completion C∗µ(B) of
Cc(B) for some Fell bundle B with respect to some norm ‖·‖µ lying between
the universal norm ‖ · ‖u and the reduced norm ‖ · ‖r such that the coaction
δ is the natural dual coaction of this algebra. It has then been shown in
[19] (see also [17, §4]) that δ is maximal if and only if B = C∗(B), the
universal cross-sectional algebra. This gives the desired result in the discrete
case.
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For second countable locally compact groups the result that (C∗(B), δB)
is a maximal coaction has been obtained in the special case of separable sat-
urated Fell bundles by Kaliszewski, Muhly, Quigg and Williams [29]. Sepa-
rability is not a strong assumption, but note that Fell bundles arising from
(twisted) partial actions are saturated if and only if the action is actually a
global (twisted) action, so that there are many important examples of Fell
bundles which are not saturated. Moreover, the proof given in [29] relies on
some heavy machinery involving Fell bundles on groupoids while our proof
depends on the notion of generalised fixed-point algebras for weakly proper
actions as introduced recently in [9]. Both proofs depend on non-trivial re-
sults, but we believe that our proof is much shorter and technically easier
than the proof given for the special case of saturated bundles in [29]. We
should point out, however, that for the special case of Fell bundles asso-
ciated to partial actions, the maximality result can also be deduced from
the paper [2] by Abadie and Mart́ı Pérez. Indeed, as we will see in Sec-
tion 4.2, the maximality of the dual coaction on the C∗-algebra C∗(B) of a
Fell bundle associated to a partial action (A,α) is essentially equivalent to
the fact (proven in [2]) that the full crossed product of the Morita enveloping
action of (A,α) is Morita equivalent to the original full crossed product by
the partial action. Hence our main result will provide an alternative proof
of one of the main results in [2].

The paper is organised as follows. After a short preliminary section (§2)
on cross-sectional algebras, coactions, and generalised fixed-point algebras
for weakly proper actions we shall give the proof of our main result (The-
orem 3.1) in §3. We will then have a number of interesting applications,
starting from extensions of crossed-product functors from ordinary actions
to Fell bundle categories, K-amenability for cross-sectional C∗-algebras and
some applications to partial actions. Our results imply, in particular, that
one can extend Morita compatible exotic crossed-product functors from or-
dinary actions to partial actions. In other words, given a Morita compat-
ible crossed-product functor (A,α) 7→ A oα,µ G defined only for (global)
G-actions (A,α), we can extend this functor and define Aoα,µ G for every
given partial G-action (A,α). More generally, we can extend the functor to
the category of Fell bundles overG, and define exotic versions C∗µ(B) of cross-
sectional C∗-algebras of Fell bundles B over G. These include partial actions,
or more generally twisted partial actions. We give an alternative proof and
recover some of the main results of [2] on enveloping actions and amenability
for partial actions. More generally, we prove that all exotic cross-sectional
C∗-algebras C∗µ(B) associated to so called correspondence crossed-product
functors oµ have the same K-theory if the underlying group is K-amenable.

In the final section, we give a simple characterisation of maximal coac-
tions of discrete groups (which is not available for general locally compact
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groups), proving that a coaction δ : B → B ⊗ C∗(G) of a discrete group G
is maximal exactly when it admits a lift δmax : B → B ⊗max C

∗(G), where
⊗max denotes the maximal tensor product. (And, as usual, all the unlabelled
tensor products ⊗ between C∗-algebras mean the minimal tensor product.)

2. Preliminaries

2.1. Fell bundles and their cross-sectional algebras. Suppose that
p : B → G is a Fell bundle over the locally compact group G as defined in
the introduction. Main references on Fell bundles and their cross-sectional
algebras are the books by Doran and Fell [14, 15], to which we refer for more
details (see also the book by Exel [23]). Let Cc(B) be the set of all continuous
sections of B with compact supports. Then, equipped with convolution and
involution as in (1.1), Cc(B) becomes a ∗-algebra. Let L1(B) denote the
completion of Cc(B) with respect to ‖f‖1 =

	
G ‖f(t)‖ dt. Then the universal

cross-sectional algebra C∗(B) is defined as the enveloping C∗-algebra of the
Banach-∗ algebra L1(B), i.e., it is the completion of L1(B) with respect to

‖f‖u := sup
π
‖π(f)‖

where π runs through all representations of L1(B) on Hilbert space.
It has been shown by Fell [25, §§15–16] that C∗(B) is universal for (con-

tinuous) representations of B, and since we shall need it later, let us ex-
plain (a modern version of) this result in some detail: By a representation
π : B → M(D) of B in the multiplier algebra of some C∗-algebra D we
understand a strictly continuous map b 7→ π(b) which is linear on each fibre
Bt and preserves multiplication and involution on B. Such a representation
is called nondegenerate if its restriction πe : Be → M(D) to the unit fibre
Be of B is nondegenerate in the usual sense that span(πe(Be)D) is dense in
D (then Cohen’s factorisation theorem implies that πe(Be)D = D). There
is a canonical nondegenerate representation ιB : B → M(C∗(B)) which is
determined by the formulas

(ιB(bt)f)(s) = btf(t−1s) and (fιB(bt))(s) = ∆G(t−1)f(st−1)bt

for bt ∈ Bt, f ∈ Cc(B) and t, s ∈ G (see e.g. [25, p. 138]). We have the
following well-known result:

Proposition 2.1. There are one-to-one correspondences between

(1) nondegenerate representations π : B →M(D),
(2) nondegenerate representations π̃ : Cc(B)→M(D) which are contin-

uous with respect to the inductive limit topology on Cc(B) and the
norm topology on M(D),

(3) nondegenerate representations π̃ : L1(B)→M(D), and
(4) nondegenerate representations π̃ : C∗(B)→M(D).
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The correspondences in the proposition are as follows: If π : B →M(D)
is as in (1), then the corresponding representation π̃ : Cc(B) → M(D) is
given by integration:

π̃(f)c :=
�

G

π(f(t))c dt for all f ∈ Cc(B) and c ∈ D.

We call it the integrated form of π. It is straightforward to check that it is
continuous in the inductive limit topology (given by uniform convergence
with controlled compact supports) and with respect to ‖ · ‖1. This shows
how objects in (2), (3) correspond to objects in (1). By construction of
the enveloping C∗-algebra, every representation of L1(B) uniquely extends
to C∗(B), which shows how objects in (4) correspond to objects in (3).
Conversely, if π̃ : C∗(B) → M(D) is as in (4), then π = π̃ ◦ ιB is the
corresponding representation as in (1). The only missing link is how objects
in (1) correspond to objects in (2). But this link is given by [25, Theorem
16.1] by representing D faithfully on a Hilbert space.

In what follows, we shall make no notational difference between a rep-
resentation π of B and the corresponding representations of Cc(B), L1(B),
and C∗(B).

Let L2(B) denote the Hilbert module over Be given as the completion of
Cc(B) with respect to the Be-valued inner product

〈ξ, η〉Be := (ξ∗ ∗ η)(e) =
�

G

ξ(t)∗η(t) dt.

Then the action of Cc(B) on itself given by convolution extends to the regular
representation ΛB : C∗(B)→ L(L2(B)) by adjointable operators on the Be-
Hilbert module L2(B), and the image C∗r (B) := ΛB(C∗(B)) ⊆ L(L2(B)) is
called the reduced cross-sectional C∗-algebra of B.

2.2. The Fell bundle of an action. We now want to give a brief out-
line of the well-known fact that the construction of maximal cross-sectional
C∗-algebras of Fell bundles extends the construction of full and reduced
crossed products of a G-C∗-algebra (A,α) (see [14, 15]). Indeed, if α : G→
Aut(A) is a strongly continuous action of a locally compact group G on a
C∗-algebra A, then we can form an associated Fell bundle B = A oα G in
which A oα G consists of the trivial bundle A × G over G equipped with
multiplication and involution given for all (a, s), (b, t) ∈ Aoα G by

(a, s)(b, t) = (aαs(b), st) and (a, t)∗ = (αt(a)∗, t−1).

The ∗-algebra Cc(Aoα G) then identifies with Cc(G,A) equipped with the
usual convolution and involution given for f, g ∈ Cc(G,A) by

f ∗ g(s) =
�

G

f(t)αt−1(g(t−1s)) dt and f∗(s) = ∆(s−1)αs(f(s−1)∗).
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Moreover, there is a one-to-one correspondence between nondegenerate co-
variant representations (ρ, v) of (A,G, α) in M(D) and nondegene-
rate strictly continuous representations π : A oα G → M(D) for any
C∗-algebra D. To see how this works, recall that a nondegenerate covari-
ant representation (ρ, v) of (A,G, α) in M(D) consists of a nondegener-
ate ∗-homomorphism ρ : A → M(D) and a strictly continuous homomor-
phism v : G → UM(D) such that ρ(αs(a)) = vsρ(a)v∗s for all a ∈ A,
s ∈ G. Given such a covariant representation (ρ, v) the corresponding rep-
resentation π : A oα G → M(D) is given by π(a, s) = ρ(a)v(s) for all
(a, s) ∈ AoαG. It is then an easy exercise to check that modulo the identifi-
cation Cc(AoαG) = Cc(G,A) the integrated form π̃ : Cc(AoαG)→M(D)
coincides with the integrated form ρ o v : Cc(G,A) → M(D) given for
f ∈ Cc(G,A) by

ρo v(f) =
�

G

ρ(f(s))vs ds.

This implies that the full cross-sectional C∗-algebra C∗(A oα G) coincides
with the full crossed product A oα G which is defined as the completion
of Cc(G,A) under the norm ‖f‖u := sup(ρ,v) ‖ρ o v(f)‖, where (ρ, v) runs
through all possible (nondegenerate) covariant homomorphisms of (A,G, α).

Notice that under the correspondence between representations of AoαG
and covariant representations of (A,G, α), the universal representation
ιAoαG : A oα G → M(C∗(A oα G)) corresponds to the universal covari-
ant representation (iA, iG) of (A,G, α) in M(Aoα G) which is determined
by the equations

(iA(a)f)(t) = af(t) and (iG(s)f)(t) = αs(f(s−1t))

for all a ∈ A, s, t ∈ G and f ∈ Cc(G,A).
For the reduced crossed product one checks that identifying sections

of A oα G with A-valued functions on G identifies the Hilbert A-module
L2(A oα G) constructed from the Fell bundle A oα G with the Hilbert A-
module L2(G,A), and the left action ΛAoαG : Cc(AoαG)→ L(L2(AoαG))
then identifies with the regular representation of Cc(G,A) ⊆ AoαG. Hence,
the reduced cross-sectional algebra C∗r (Aoα G) identifies with the reduced
crossed product Aoα,r G as well.

2.3. Coactions and their crossed products. A coaction of a locally
compact group on a C∗-algebra B is an injective nondegenerate ∗-homomor-
phism δ : B →M(B ⊗ C∗(G)) which satisfies the identity

(2.1) (idB ⊗ δG) ◦ δ = (δ ⊗ idG) ◦ δ,
where δG : C∗(G) → M(C∗(G) ⊗ C∗(G)) is the comultiplication on
C∗(G) which is given by the integrated form of the representation s 7→
uG(s)⊗uG(s) ∈ UM(C∗(G)⊗C∗(G)), where in turn uG : G→ UM(C∗(G))



Maximality of dual coactions and applications 239

denotes the universal representation of G. Note that in (2.1) (and in many
other places) we make no notational difference between a nondegenerate
∗-homomorphism and its unique extension to the multiplier algebra. We
shall assume that our coactions δ always satisfy the following (strong) non-
degeneracy condition:

span(δ(B)(1⊗ C∗(G))) = B ⊗ C∗(G).

If δ : B → M(B ⊗ C∗(G)) is a coaction of G, we let δr := (1 ⊗ λ) ◦ δ :
B → M(B ⊗ C∗r (G)) denote the reduction of δ, where λ : G → U(L2(G))
is the regular representation of G, and we let M : C0(G) → B(L2(G)) be
the representation by multiplication operators. We may then represent the
crossed product B oδ Ĝ faithfully in M(B ⊗ K(L2(G))) via the regular

representation ΛĜB := δr o (1⊗M). Hence, via this representation, we may
define

B oδ Ĝ := span
{
δr(B)

(
1⊗M(C0(G))

)}
⊆M

(
B ⊗K(L2(G))

)
.

Since locally compact groups are always “co-amenable”, this “reduced
crossed product” coincides with the “universal crossed product”, which is
universal for covariant representations of the co-system (B, δ). Note that in

the notation of crossed products by coactions we use the symbol Ĝ to indi-
cate that this construction is dual to the construction of crossed products
by actions of G. We refer to [18, Appendix A] for an extensive survey on
crossed products by actions and coactions of groups on C∗-algebras.

The dual action δ̂ : G→ Aut(B oδ Ĝ) is determined by the equation

δ̂s
(
δr(b)(1⊗M(ϕ))

)
= δr(b)

(
1⊗M(σs(ϕ))

)
, ∀b ∈ B, ϕ ∈ C0(G),

where σ : G→ Aut(C0(G)) denotes the right translation action. One checks

that (ΛĜB, 1 ⊗ ρ) is a covariant representation of the dual system (B oδ Ĝ,

G, δ̂) on M(B ⊗K(L2(G))), and it follows from [32, Corollary 2.6] that the
integrated form of this representation gives a surjective ∗-homomorphism

ΦB :=
(
(id⊗ λ) ◦ δ o (1⊗M)

)
o (1⊗ ρ) : B oδ Ĝo

δ̂
G� B ⊗K(L2(G)).

The map ΦB might be called the Katayama-duality map. Now, following [17]
a coaction (B, δ) is called maximal if the homomorphism ΦB is an isomor-
phism.

At the other extreme, a coaction (B, δ) of G is called normal if the
surjection ΦB factors through an isomorphism

B oδ Ĝo
δ̂,r
G ∼= B ⊗K(L2(G)).

It has been shown by Quigg [36] that every coaction (B, δ) has a normalisa-
tion (Bn, δn), which can be constructed by passing from B to the quotient
Bn := B/ker δr. In particular, it follows that (B, δ) is normal if and only
if its reduction δr is injective. On the other hand, it has been shown in
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[17] that every coaction also has a maximalisation (Bm, δm) such that there

exist Ĝ-equivariant surjections Bm � B � Bn which induce isomorphisms
between the respective coaction-crossed products.

For later use we need the construction of the maximalisation and normal-
isation of (B, δ) as given in [9], using the notion of generalised fixed-point
algebras for weakly proper actions. In what follows let us write (jB, jC0(G))
for the covariant representation (δr, 1⊗M) when viewed as a representation

in M(B oδ Ĝ). It is then clear that jC0(G) : C0(G) → M(B oδ Ĝ) is a

nondegenerate σ-δ̂-equivariant ∗-homomorphism which gives (Boδ Ĝ, δ̂) the
structure of a weakly proper GoG-algebra in the sense of [9]. For simpler

notation let us write A := Boδ Ĝ and ϕ ·m := jB(ϕ)m and m ·ϕ := mjB(ϕ)
for all m ∈M(A), ϕ ∈ C0(G). Moreover, let Ac := Cc(G) ·A ·Cc(G), which
is a dense ∗-subalgebra of A, and let

(2.2) AGc := {m ∈M(A)G : m · ϕ,ϕ ·m ∈ Ac ∀ϕ ∈ Cc(G)},
whereM(A)G denotes the set of fixed points inM(A) for the extended ac-

tion δ̂. We call AGc the generalised fixed-point algebra with compact supports.
Following ideas of Rieffel [38, 39], it has then been shown in [9, Proposition
2.2] that Fc(A) := Cc(G)·A can be made into a pre-Hilbert Cc(G,A)-module
by defining a Cc(G,A)-valued inner product on Fc(A) and a right action of
Cc(G,A) on Fc(A) by

〈ξ, η〉Cc(G,A) = [s 7→ ∆G(s)−1/2ξ∗δ̂s(η)], ξ · ϕ =
�

G

∆(t)−1/2αt(ξϕ(t−1)) dt

for ξ, η ∈ Fc(A) and ϕ ∈ Cc(G,A).
Let Ao

δ̂,µ
G be any C∗-completion of Cc(G,A) with respect to a C∗-norm

‖·‖µ on Cc(G,A) such that ‖ · ‖u ≥ ‖·‖µ ≥ ‖·‖r, where ‖·‖u and ‖·‖r denote
the universal (i.e., maximal) and the reduced norm on Cc(G,A), respectively.
Then the above defined inner product takes values in A o

δ̂,µ
G, and the

completion Fµ(A) of Fc(A) with respect to this inner product becomes a
full Ao

δ̂,µ
G-Hilbert module (the module is full since the translation action

of G on itself is free and proper). Now, if we define a left action of AGc on
Fc(A) by taking products inside M(A) (where both spaces are located),
this action extends to a faithful ∗-homomorphism Ψµ : AGc → K(Fµ(A))
with dense image. Hence AGµ := K(Fµ(A)) can be viewed as the completion

of AGc with respect to the operator norm for the left action of AGc on Fµ(A).
In particular, Fµ(A) becomes a AGµ -Ao

δ̂,µ
G-equivalence bimodule.

Moreover, if the dual coaction on A o
δ̂
G factors through a coaction

on A o
δ̂,µ

G (a property which depends on the norm ‖ · ‖µ), it is shown

in [9, Theorem 4.6] that there are canonical coactions δAGµ and δFµ(A) of

G on AGµ and Fµ(A), respectively, such that (Fµ(A), δFµ(A)) becomes a
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Ĝ-equivariant Morita equivalence between (AGµ , δAGµ ) and (Ao
δ̂,µ
G,
̂̂
δ ). It is

also shown in [9, Lemma 4.8] that there exists a unique crossed-product norm
‖ · ‖µ on Cc(G,A) such that (AGµ , δAGµ ) is isomorphic to the original coaction

(B, δ). Moreover, if ‖ · ‖µ = ‖ · ‖u is the universal norm on Cc(G,A), then
the corresponding system (Bm, δm) := (AGu , δAGu ) is a maximalisation for

(B, δ), and if ‖ · ‖µ = ‖ · ‖r is the reduced norm, then (Bn, δn) := (AGr , δAGr )

is a normalisation of (B, δ). Identifying (B, δ) with (AGµ , δAGµ ) as above,

we see that the identity map on AGc induces the Ĝ-equivariant surjections
Bm � B � Bn which induce isomorphisms of crossed products

Bm oδm Ĝ
∼= B oδ Ĝ ∼= Bn oδn Ĝ.

3. The main result. Assume that p : B → G is a Fell bundle over a
locally compact group G. Then there is a canonical coaction

δB : C∗(B)→M(C∗(B)⊗ C∗(G)),

called the dual coaction of G on C∗(B), given as the integrated form of
the ∗-representation δB : B → M(C∗(B) ⊗ C∗(G)) which sends bt ∈ Bt to
ιB(bt) ⊗ uG(t), where ιB : B → M(C∗(B)) is the universal representation
of B and uG : G→ UM(C∗(G)) is the universal representation of G.

The name “dual coaction” for the coaction δB is motivated by the fact
that it extends the well-known construction of dual coactions α̂ : AoαG→
M(AoαG⊗C∗(G)) which is given as the integrated form of the covariant ho-
momorphism (iA⊗1, iG⊗uG), where (iA, iG) denotes the universal covariant
representation of (A,G, α) intoM(AoαG). Indeed, as explained in Section
2.2, if B = AoαG is the Fell bundle associated to the G-C∗-algebra (A,α),
this follows from the correspondence between the universal representation
ιAoαG of Aoα G and the universal representation (iA, iG) of (A,G, α).

Theorem 3.1. Let B be a Fell bundle over a locally compact group G.
Then the dual coaction δB : C∗(B)→M(C∗(B)⊗ C∗(G)) is maximal.

Let (B, δ) := (C∗(B), δB) and let (Bm, δm) be the maximalisation of
(B, δ) as constructed from (B, δ) in the previous section. We will show that
there exists a δ-δm-equivariant surjection Ψ : B � Bm which induces an
isomorphism of crossed products B oδ Ĝ ∼= Bm oδm Ĝ. The result will
then follow from the following easy lemma, which should be well known to
experts:

Lemma 3.2. Let (B, δ) and (Bm, δm) be coactions of G with (Bm, δm)
maximal. Suppose that Ψ : B � Bm is a δ-δm-equivariant surjection which
induces an isomorphism of crossed products. Then Ψ is an isomorphism and
(B, δ) is maximal as well.
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Proof. Since Ψ : B � Bm is δ-δm-equivariant, we obtain a commutative
diagram

B oδ Ĝo
δ̂
G

ΦB−−−−→ B ⊗K(L2(G))

ΨoĜoG

y yΨ⊗idK(L2(G))

Bm oδm Ĝo
δ̂m
G

ΦBm−−−−→ Bm ⊗K(L2(G))

By our assumptions, the left vertical and the lower horizontal arrows are
isomorphisms. It then follows that the upper horizontal arrow has to be
injective. Since it is always surjective, it is an isomorphism. Hence (B, δ)
is maximal. Moreover, it follows that the right vertical arrow is an isomor-
phism, which then implies that Ψ : B → Bm is an isomorphism as well.

Proof of Theorem 3.1. Let (B, δ) := (C∗(B), δB) and let

A := B oδ Ĝ = span
{
δr(B)

(
1⊗M(C0(G))

)}
.

As explained in the previous section, we view A as a weakly proper GoG-
algebra. Then, as explained above, the maximalisation of (B, δ) is given by
the coaction (Bm, δm) = (AGu , δAGu ) where AGu denotes the universal gener-
alised fixed-point algebra of A. We will show that the restriction of δr to
Cc(B) defines a ∗-homomorphism Ψ : Cc(B)→ AGc ⊆M(A) which extends to
the desired δ-δm-equivariant surjective ∗-homomorphism Ψ : C∗(B) � AGu .

First of all, it follows directly from the definition of the dual action δ̂ that
δr(B) lies in the fixed-point algebra M(A)G. To see that it sends Cc(B)
into the generalised fixed-point algebra AGc with compact supports it suf-
fices to show that all elements of the form δr(b)(1⊗M(f)), (1⊗M(f))δr(b)
lie in Ac = Cc(G) · A · Cc(G) for all b ∈ Cc(B) and f ∈ Cc(G). For this
we first note that δr = (1 ⊗ λ) ◦ δB is the integrated form of the represen-
tation δr : B → M(C∗(B) ⊗ K(L2(G))), bt 7→ ιB(bt) ⊗ λ(t). Suppose now
that b ∈ Cc(B) is a continuous section with compact support K = supp(b).
Then, if f ∈ Cc(G) is fixed, we may choose a function g ∈ Cc(G) such that
g ≡ 1 on K · supp(f) ∪ supp(f). Hence for a = δr(b)(1 ⊗M(f)) we clearly
have a · g = δr(b)(1 ⊗M(fg)) = δr(b)(1 ⊗M(f)) = a. On the other hand,
using λ(t)M(g)λ(t)−1 = M(τt(g)), where τ : G → Aut(C0(G)) denotes the
left translation action of G on itself, we compute

g · a = (1⊗M(g))δr(b)(1⊗M(f))(3.1)

=
�

K

(1⊗M(g))(ιB(bt)⊗ λ(t))(1⊗M(f)) dt

=
�

K

(ιB(bt)⊗ λ(t))(1⊗M(τt−1(g)f)) dt

=
�

K

(ιB(bt)⊗ λ(t))(1⊗M(f)) dt = a
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since for t ∈ K and s ∈ supp(f) we have τt−1(g)(s) = g(ts) = 1 because
ts ∈ K · supp(f). This proves that δr(Cc(B))(1 ⊗M(f)) lies in Ac, and a
similar argument gives (1⊗M(f))δr(b) ∈ Ac.

Now we need to show that δr : Cc(B) → AGc extends to an equivariant
surjective ∗-homomorphism Ψ : C∗(B)→ AGu = K(Fu(A)). For this we need
to recall from [9, Definition 2.6] the notion of convergence in the inductive
limit topology on the spaces Ac = Cc(G) · A · Cc(G), Fc(A) = Cc(G) · A
and AGc , respectively. First of all, a net (ξj)j∈J in Fc(A) (resp. Ac) converges
to ξ ∈ Fc(A) (resp. ξ ∈ Ac) in the inductive limit topology if ξj → ξ in the
norm topology of A and there exists a function g ∈ Cc(G) such that ξ = g ·ξ,
ξj = g · ξj (resp. ξ = g · ξ · g, ξj = g · ξj · g) for all j ∈ J . For AGc , a net
(mj)j∈J in AGc converges to m ∈ AGc in the inductive limit topology if for
all f ∈ Cc(G) we have f ·mj → f ·m and mj · f → m · f in the inductive
limit topology of Ac (the fact that G/G is a one-point set implies that this
definition coincides with the one given in [9, Definition 2.6]). Now it is shown
in [9, Lemma 2.7] that all pairings in the AGc -Cc(G,A)-pre-imprimitivity
bimodule Fc(A) are jointly continuous with respect to the inductive limit
topologies, where on Cc(G,A) we use the usual notion of inductive limit
convergence. Since inductive limit convergence in Cc(G,A) is stronger than
norm convergence with respect to any given L1-bounded C∗-norm ‖ · ‖µ on
Cc(G,A), it follows from this that the inductive limit topology on AGc is
stronger than any norm topology induced on AGc via the left action on the
A o

δ̂,µ
G-Hilbert module Fµ(A). In particular, inductive limit convergence

in AGc implies norm convergence in AGu .

Assume now that (bj)j∈J is a net in Cc(B) which converges to some
b ∈ Cc(B) in the inductive limit topology of Cc(B) in the sense that bj → b
uniformly on G and that all bj have supports in a fixed compact subset K
of G. Then the computation in (3.1) can easily be modified to show that
δr(bj) → δr(b) in the inductive limit topology of AGc . Thus δr(bj) → δr(b)
in the universal completion AGu . We therefore obtain a representation Ψ :
Cc(B)→ AGu which is continuous for the inductive limit topology on Cc(B).
But then Proposition 2.1 implies that Ψ extends to a ∗-homomorphism Ψ :
C∗(B)→ AGu .

To see that the image is dense, we first show that

Ec := span
(
δr(Cc(B))

(
1⊗M(Cc(G))

))
⊆ Ac

is inductive limit dense in Ac. Since Ec is norm dense in A, it is clear that

span
((

1⊗M(Cc(G))
)
δr(Cc(B))

(
1⊗M(Cc(G))

))
is inductive limit dense in Ac. Hence it suffices to show that every element
of the form (1⊗M(g))δr(b)(1⊗M(f)) with f, g ∈ Cc(G) and b ∈ Cc(B) can
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be inductive limit approximated by elements in Ec. By (3.1) we know that

(1⊗M(g))δr(b)(1⊗M(f)) =
�

K

(ιB(bt)⊗ λ(t))
(
1⊗M(τt−1(g)f)

)
dt,

where K = supp(b). Now, for each ε > 0 and t ∈ K we find a neighbourhood
Vt of t in G such that ‖τs−1(g)f−τt−1(g)f‖∞ < ε for all s ∈ Vt. Let t1, . . . , tn
be given such that K ⊆

⋃n
l=1 Vtl , let ϕ1, . . . , ϕn be a partition of unity for K

with suppϕl ⊆ Vtl for 1 ≤ l ≤ n, and let bl := ϕl · b (pointwise product).
Then a :=

∑n
l=1 δ

r(bl)(1⊗M(τt−1
l

(g)f)) ∈ Ec satisfies

∥∥∥(1⊗M(g))δr(b)(1⊗M(f))−
n∑
l=1

δr(bl)
(
1⊗M(τt−1

l
(g)f)

)∥∥∥
=
∥∥∥ �
K

(ιB(bs)⊗ λ(s))
(
1⊗M(τs−1(g)f)

)
−

n∑
l=1

(
ιB(ϕl(s)bs)⊗ λ(s)

)(
1⊗M(τt−1

l
(g)f)

)
dt
∥∥∥

≤
�

K

n∑
i=1

ϕl(s)‖ιB(bs)‖ ‖τs−1(g)f − τt−1
l

(g)f‖∞ dt ≤ εµ(K)‖b‖∞,

where µ(K) denotes the Haar measure of K. One checks as before that for
any function ϕ ∈ Cc(G) with ϕ ≡ 1 on supp(f) ∪ K · supp(f) we have
ϕ · a = a · ϕ = a, which this time shows that Ec is inductive limit dense
in Ac.

Recall now from [9, Lemma 2.3] that there is a surjective linear map

E : Ac → AGc given by the equation E(a)c =
	
G δ̂t(a)c dt for all a, c ∈ Ac,

such that for all m ∈ AGc and f ∈ Cc(G) we have E(m · f) = E(m)Eτ (f)
with Eτ (f) :=

	
G f(t) dt. For m = δr(b) with b ∈ Cc(B) we get m · f =

δr(b)(1⊗M(f)) and it follows that E(Ec) = δr(Cc(B)). A slight adaptation
of the last part of the proof of [9, Lemma 2.7] shows that E : Ac → AGc is
continuous for the inductive limit topologies. Therefore, since Ec is inductive
limit dense in Ac it now follows that δr(Cc(B)) = E(Ec) is inductive limit
dense in AGc , hence norm dense in AGu . Therefore δr : Cc(B)→ AGc extends
to a surjective ∗-homomorphism Ψ : C∗(B)→ AGu .

We now check that Ψ is equivariant with respect to the dual coaction on
C∗(B) and the coaction δAGu on AGu as defined in [9] on the dense subspace

AGc by the formula

δAGu (m) = (φ⊗ id)(wG)(m⊗ 1)(φ⊗ id)(wG)∗

where wG ∈ M(C0(G) ⊗ C∗(G)) is the unitary given by the function
t 7→ uG(t) and φ = 1 ⊗ M : C0(G) → M(A). Recall that the equivari-



Maximality of dual coactions and applications 245

ance of Ψ means that

(3.2) δAGu (Ψ(b)) = (Ψ ⊗ id)(δB(b)) ∀b ∈ Cc(B).

Using Ψ = δr on Cc(B), we see that the right-hand side is given by

(Ψ ⊗ id)(δB(b)) = (Ψ ⊗ id)
( �
G

ιB(bt)⊗ uG(t) dt
)

=
�

G

ιB(bt)⊗ λ(t)⊗ uG(t) dt.

To compare this with the left-hand side, observe that since φ = 1⊗M , we
have (φ⊗ id)(wG) = 1⊗ w̃G, where w̃G := (M ⊗ id)(wG) ∈M(K(L2(G))⊗
C∗(G)) = L(L2(G,C∗(G))) is the unitary given by the formula w̃Gζ(t) =
uG(t)ζ(t) for all ζ ∈ Cc(G,C∗(G)) ⊆ L2(G,C∗(G)) (we view L2(G,C∗(G))
= L2(G)⊗C∗(G) as a Hilbert module over C∗(G) and write L(L2(G,C∗(G)))
for the C∗-algebra of adjointable operators on it). It follows that

δAGu (Ψ(b)) = (φ⊗ id)(wG)(Ψ(b)⊗ 1)(φ⊗ id)(wG)∗

= (1⊗ w̃G)
( �
G

ιB(bt)⊗ λ(t)⊗ 1 dt
)

(1⊗ w̃G)∗

=
�

G

ιB(bt)⊗ w̃G(λ(t)⊗ 1)w̃∗G dt.

Now a simple computation shows that w̃G(λ(t)⊗1)w̃∗G = λ(t)⊗uG(t), which
implies (3.2).

To finish the proof we only need to check that Ψ induces an isomorphism
Ψ o Ĝ : C∗(B)oδB Ĝ

∼−→ AGu oδ
AGu

Ĝ. But for every coaction δ : B →M(B⊗
C∗(G)) it is known that the image of δr : B →M(B oδ Ĝ) is the reduced
generalised fixed-point algebra AGr for the weakly proper G o G-algebra

A = B oδ Ĝ (endowed with the dual action and the canonical embedding
C0(G) → M(A)). A first reference for this fact is Quigg’s original version
of Landstad duality for coactions (see [37]). We have shown in [9] that AGr
carries a coaction δAGr given on AGc by the same formula as δAGu and that

(AGr , δAGr ) is the normalisation of (B, δ) where δr : B → AGr serves as the
normalisation map. This in particular means that δr induces an isomorphism
δroĜ : Boδ Ĝ

∼−→ AGr oδ
AGr
Ĝ. Now it is clear that the map Ψ : C∗(B)→ AGu

constructed above composed with the normalisation map ν : AGu → AGr
(given by the identity map on AGc ) is the canonical map δr : C∗(B) → AGr .
Hence the composition

C∗(B) oδB Ĝ
ΨoĜ−−−→ AGu oδ

AGu
Ĝ

νoĜ−−−→ AGr oδ
AGr

Ĝ

is an isomorphism. Since (AGr , δAGr ) is also a normalisation for (AGu , δAGu ) and

hence νo Ĝ : AGu oδ
AGu

Ĝ→ AGr oδ
AGr

Ĝ is also an isomorphism, this implies

the desired isomorphism Ψ o Ĝ : C∗(B) oδB Ĝ
∼−→ AGu oδ

AGu
Ĝ.
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Remark 3.3. The normalisation of (C∗(B), δB) can be realised con-
cretely as the dual coaction δB,r : C∗r (B) → M(C∗r (B) ⊗ C∗(G)) of G on
C∗r (B), which is constructed as follows. Consider the regular representation
ΛB : C∗(B)→ C∗r (B) and view it as a representation ΛB : B →M(C∗r (B)) of
B. Now consider the tensor product representation ΛB⊗λ : B →M(C∗r (B)⊗
C∗r (G)). By Fell’s absorbtion theorem [24, Corollary 2.15], the integrated
form of this representation factors faithfully through C∗r (B) and hence yields
a faithful ∗-homomorphism ΛB ⊗ λ : C∗r (B) → M(C∗r (B) ⊗ C∗r (G)). It is
not difficult to check directly (see [24, Proposition 2.10] for details) that
this is a reduced coaction (that is, an injective coaction of the Hopf-C∗-
algebra C∗r (G)), and therefore lifts to a normal coaction δB,r : C∗r (B) →
M(C∗r (B) ⊗ C∗(G)). This is the desired normalisation of the dual coac-
tion δB : C∗(B) → M(C∗(B) ⊗ C∗(G)), with the regular representation
ΛB : C∗(B) → C∗r (B) serving as the normalisation map (see [8, Proposi-
tion 6.9.8]).

4. Some applications. In this section we want to give some simple
applications of our main Theorem 3.1.

4.1. Extension of exotic crossed-product functors. Recall from
[10, 5] that an exotic crossed-product functor is a functor (A,α) 7→ Aoα,µG
from the category of G-C∗-algebras with G-equivariant ∗-homomorphisms
to the category of C∗-algebras such that A oα,µ G is a C∗-completion of
the convolution ∗-algebra Cc(G,A) in such a way that the identity map
Cc(G,A)→ Cc(G,A) extends to surjective ∗-homomorphisms

Aoα G� Aoα,µ G� Aoα,r G.

Theorem 3.1 allows us to extend every Morita compatible G-crossed-product
functor oµ to the category of Fell bundles over G, that is, we can extend
the definition of oµ to the realm of Fell bundles over G in a natural and
functorial way. Recall from [10] that a crossed product functor is called
Morita compatible (1) if Morita equivalent actions are sent to (canonically)
Morita equivalent crossed products. We refer to [10] for a detailed discussion
of this property and for the stronger notion of a correspondence functor. As
shown there, many crossed-product functors do have this property, and it
follows from work of Okayasu [34] together with the papers [28, 10] that there
are uncountably many different correspondence functors for any discrete
group which contains the free group on two generators.

We shall show that if we start with a crossed-product functor (A,α) 7→
Aoα,µG for G, then for every Fell bundle B over G we can complete Cc(B)

(1) Also called “strongly Morita compatible” in [10] to differentiate it from the formally
weaker (but essentially equivalent) notion of Morita compatibility introduced in [5].
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to a C∗-algebra C∗µ(B) lying between C∗(B) and C∗r (B) in the sense that the
identity map on Cc(B) extends to surjections

C∗(B) � C∗µ(B) � C∗r (B)

and so that the assignment B → C∗µ(B) is a functor from the category of Fell
bundles over G (with appropriate morphisms) to the category of C∗-algebras
with ∗-homomorphisms as morphisms. We make this precise in what follows.

Definition 4.1. Given a crossed-product functor oµ for a locally com-
pact group G and a Fell bundle B over G, we define C∗µ(B) as the unique
quotient of C∗(B) such that Katayama’s duality map

ΦB : C∗(B) oδB Ĝo
δ̂B
G
∼−→ C∗(B)⊗K(L2(G))

factors through an isomorphism

C∗(B) oδB Ĝo
δ̂B,µ

G ∼= C∗µ(B)⊗K(L2(G)).

Although the above construction makes sense for every crossed-product
functor, as we will see, it will only give a completion C∗µ(B) with good prop-
erties if we assume that the given functor oµ has extra properties (for in-
stance, Morita compatibility). We are specially interested in correspondence
functors, where essentially all good properties are present (see [10]).

To make the construction B 7→ C∗µ(B) into a functor, we need to in-
troduce morphisms and turn Fell bundles over G into a category. As with
C∗-algebras, there are several types of morphisms we can consider between
Fell bundles, but the most basic one is defined as follows.

Definition 4.2. Let A and B be Fell bundles over G. By a morphism
A → B we mean a continuous map π : A → B that maps each fibre At
linearly into the fibre Bt and which is compatible with multiplication and
involution in the sense that

π(a · b) = π(a) · π(b) and π(a)∗ = π(a)∗

for all a, b ∈ A.

A morphism π : A → B induces a map π̃ : Cc(A)→ Cc(B), ξ 7→ π̃(ξ)(t)
:= π(ξ(t)), which is clearly continuous with respect to the inductive limit
topologies and hence extends to a ∗-homomorphism π̃u : C∗(A) → C∗(B).
This shows that the construction B 7→ C∗(B) is a functor. The following
result shows that this remains true for the assignment B 7→ C∗µ(B) as in
Definition 4.1:

Proposition 4.3. Let oµ be any crossed-product functor. Then
B 7→ C∗µ(B) is a functor from the category of Fell bundles over G with
morphisms as defined in Definition 4.2 in the sense that the canonical map
π̃ : Cc(A) → Cc(B) induced from any morphism π : A → B extends to a
∗-homomorphism π̃ : C∗µ(A)→ C∗µ(B).
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Proof. Consider the diagram

C∗(A) oδA Ĝo
δ̂A
G

ΦA−−−−→∼= C∗(A)⊗K(L2(G))

π̃uoĜoG
y yπ̃u⊗idK

C∗(B) oδB Ĝo
δ̂B
G

ΦB−−−−→∼= C∗(B)⊗K(L2(G))

It follows easily from the definition of the dual coactions on C∗(A) and
C∗(B), respectively, that the morphism π̃u : C∗(A) → C∗(B) is δA-δB-
equivariant, which implies that the left vertical arrow exists. Moreover, using
the fact that ΦA is given by the covariant homomorphism ((id ⊗ λ) ◦ δA o
(1⊗M))o (1⊗ ρ) (and similarly for ΦB), the δA-δB-equivariance of π̃u also
implies that the diagram commutes. Now, since oµ is a crossed-product
functor, the vertical arrow on the left factors through a ∗-homomorphism

π̃u o Ĝoµ G : C∗(A) oδA Ĝo
δ̂A,µ

G→ C∗(B) oδB Ĝo
δ̂B,µ

G

and hence the vertical arrow π̃u⊗ idK on the right-hand side of the diagram
must also factor through a well-defined homomorphism

(π̃u ⊗ idK)µ : C∗µ(A)⊗K(L2(G))→ C∗µ(B)⊗K(L2(G)).

But this is only possible if π̃u : C∗(A) → C∗(B) factors through a homo-
morphism π̃µ : C∗µ(A)→ C∗µ(B), whence the result.

The above proposition shows that given any crossed-product functor, the
procedure given in Definition 4.1 determines a functor on the category of
Fell bundles. But does it always extend the given functor if we apply the
new functor to the semidirect product Fell bundle A oα G associated to a
given action α : G→ Aut(A)? Recall that the underlying topological space
of A oα G is the trivial bundle A × G with multiplication and involution
defined by

(a, t)(b, s) = (aαt(b), ts) and (a, t)∗ = (αt−1(a)∗, t−1)

for (a, t), (b, s) ∈ A×G. The notation AoαG for this Fell bundle should not
be mistaken with the notation for the universal crossed product AoαG. The
following example shows that the answer to the above question is negative
in general:

Example 4.4. Let G be any non-amenable group. We define a crossed-
product functor (A,G, α) 7→ Aoα,µG by letting Aoα,µG be the completion
of the convolution algebra Cc(G,A) with respect to the C∗-norm

‖f‖µ = sup{‖π o U(f)‖ : U ≺ λ},
where (π, U) runs through all covariant representations such that U is weakly
contained in λ, which just means that the kernel of U in C∗(G) contains the
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kernel of λ in C∗(G). The functor we get in this way is just the Brown–
Guentner functor associated to the reduced group algebra C∗r (G) as dis-
cussed in [6, 5, 10].

We now consider the case of the trivial action of G on C. Then the µ-
crossed product CoµG will just be the reduced group algebra C∗r (G) of G.
On the other hand, the corresponding Fell bundle will just be the trivial
bundle C × G, and the full cross-sectional algebra will be the full group
algebra C∗(G). The crossed product C∗(G) oδG Ĝ by the dual coaction
is isomorphic to the algebra of compact operators K(L2(G)) with faithful

representation λ oM : C∗(G) oδG Ĝ → B(L2(G)) (see e.g. [18, Example
A.62]). A straightforward computation shows that in this picture the dual

action δ̂G : G → Aut(K(L2(G))) is given by δ̂G(s) = Ad ρ(s), where ρ :
G → U(L2(G)) is the right regular representation. Hence, this action is
implemented by a unitary representation and there is a ∗-isomorphism

Φ : K(L2(G)) oAd ρ G
∼=−→ K(L2(G)) oid G ∼= K(L2(G))⊗ C∗(G)

which sends an element f in the dense subalgebra Cc(G,K(L2(G))) to
the function [s 7→ f(s)ρ(s)] ∈ Cc(G,K(L2(G))). The representations of
K(L2(G)) ⊗ C∗(G) are all of the form idK ⊗ V , where V : G → U(H) is
a unitary representation of G viewed as a representation of C∗(G) via inte-
gration. The corresponding covariant representation of (K(L2(G)), G, id) is
given by the pair (idK⊗1H, 1L2(G)⊗V ) and it is easy to check that the rep-

resentation of K(L2(G))oAd ρG corresponding to (idK⊗1H, 1L2(G)⊗V ) via
the isomorphism Φ is given by the covariant pair (idK ⊗ 1, ρ⊗ V ). By Fell’s
trick we know that ρ ⊗ V is a multiple of ρ. Since ρ is unitarily equivalent
to λ, we see that the unitary part of any representation of K(L2(G))oAd ρG
is weakly equivalent to λ. But this implies that

C∗(G) oδG Ĝo
δ̂G,µ

G ∼= K(L2(G)) oAd ρ,µ G = K(L2(G)) oAd ρ G

∼= K(L2(G))⊗ C∗(G).

As a consequence we see that

C∗µ(C×G) ∼= C∗(G) 6∼= C∗r (G) = Coµ G.

Thus, in general, our procedure does not reproduce the given functor for
actions when applied to semidirect product bundles Aoα G.

The problem in the above example comes from the fact that the Brown–
Guentner crossed-product functor associated to the reduced group algebra
C∗r (G) is not Morita compatible in the sense discussed in [10]. Recall from
[10] that a crossed-product functor is called Morita compatible if it pre-
serves Morita equivalences in the following sense: If (X, γ) is a G-equivariant
equivalence bimodule between two systems (A,G, α) and (B,G, β), and if
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we make Cc(G,X) into a Cc(G,A)-Cc(G,B) pre-equivalence bimodule in
the usual way, then there is a completion X oγ,µ G of Cc(G,X) which be-
comes an A oα,µ G-B oβ,µ G equivalence bimodule. Note that the results
of [10] show that Morita compatibility—or the even stronger assumption
that oµ is a correspondence functor—are quite reasonable to assume for
a “well-behaved” crossed-product functor. Recall also from the discussions
in [10] that for many non-amenable groups there exist uncountably many
different correspondence (and hence Morita compatible) functors for G.

Theorem 4.5. Assume that (A,α) 7→ A oα,µ G is a Morita compat-
ible crossed-product functor for G. Then there is a canonical isomorphism
C∗µ(Aoα G) ∼= Aoα,µ G for any G-algebra (A,α) given on the dense subal-
gebra Cc(Aoα G) by the canonical identification Cc(Aoα G) = Cc(G,A) ⊆
Aoα,µ G. Thus, for Morita compatible crossed-product functors, the proce-
dure of Definition 4.1 defines an extension of the functor oµ to the category
of Fell bundles.

Proof. The result is a consequence of the Imai–Takai duality theorem for
actions: Assume that α : G→ Aut(A) is an action. Then the full crossed pro-
duct AoαG coincides with the full cross-sectional algebra C∗(AoαG) since
both are universal for covariant representations (see Section 2.2). Moreover,
the dual coactions of G on AoαG and C∗(AoαG) coincide (see beginning
of Section 3). Hence the Imai–Takai duality theorem shows that

C∗(Aoα G) oα̂ Ĝ = Aoα Goα̂ Ĝ ∼= A⊗K(L2(G)),

which is equivariant for the bi-dual action ̂̂α on the left and the action
α ⊗ Ad ρ on the right (see e.g. [26] or [18, Theorem A.67]). As already
observed in the previous example, the action α⊗Ad ρ is Morita equivalent
to α ⊗ id with respect to the equivariant bimodule (A ⊗ K(L2(G)), α ⊗ ρ).
By [10, Corollary 5.4], it follows that the integrated form of the covariant
homomorphism (iµA ⊗ idK, i

µ
G ⊗ ρ) factors through an isomorphism

Ψµ :
(
A⊗K(L2(G))

)
oα⊗Ad ρ,µ G

∼=−→ (Aoα,µ G)⊗K(L2(G)),

where (iµA, i
µ
G) denotes the canonical representation of (A,G, α) into the

multiplier algebra M(Aoα,µ G). Altogether, we obtain an isomorphism

C∗(Aoα G) oα̂ Ĝo ̂̂α ,µ G ∼= (Aoα,µ G)⊗K(L2(G))

which fits into a commutative diagram

C∗(Aoα G) oα̂ Ĝo ̂̂α G Ψu−−−−→ (Aoα G)⊗K(L2(G))y y
C∗(Aoα G) oα̂ Ĝo ̂̂α ,µ G Ψµ−−−−→ (Aoα,µ G)⊗K(L2(G))
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where both vertical arrows are induced by the natural inclusion

Cc(Aoα G) = Cc(G,A) ⊆ Aoα,µ G.

In particular the above result applies to correspondence crossed-product
functors as introduced in [10]. This is a class of crossed-product functors
which extend (in a suitable way) to the category of G-algebras with equiv-
ariant correspondences as their morphisms. The equivariant Morita equiva-
lences are the isomorphisms in this category, so it is no surprise that these
functors are Morita compatible. In [10, Theorem 4.9] a list of equivalent
conditions is given in order to check whether a crossed-product functor is
a correspondence functor. It is shown in [10] that correspondence functors
have very nice properties. For instance, they behave very well with respect
to K-theory, and we will explore this point in the next section. Here we want
to use the fact, proven in [10, Theorem 5.6], that correspondence functors
always admit dual coactions for ordinary crossed products, and deduce the
following consequence:

Corollary 4.6. Let oµ be a correspondence crossed-product functor for
G and let B be a Fell bundle over G. Then the dual coaction δB on C∗(B)
factors through a coaction δB,µ : C∗µ(B)→M(C∗µ(B)⊗C∗(G)), which we call
the dual µ-coaction. The quotient maps C∗(B) � C∗µ(B) � C∗r (B) induce
isomorphisms

(4.1) C∗(B) oδB Ĝ
∼−→ C∗µ(B) oδB,µ Ĝ

∼−→ C∗r (B) oδrB
Ĝ.

Hence the dual µ-coaction satisfies µ-duality in the sense that Katayama’s
map is an isomorphism

(4.2) C∗µ(B) oδB,µ Ĝo
δ̂B,µ

G
∼−→ C∗µ(B)⊗K(L2(G)).

This isomorphism sends the bidual coaction
̂̂
δB,µ to the coaction AdW ◦

(δB,µ ⊗∗ id), where W = 1 ⊗ w∗G, wG ∈ M(C0(G) ⊗ C∗(G)) is the funda-
mental unitary (which can be seen as the universal representation t 7→ uG(t)
of G), and δB,µ ⊗∗ id denotes the obvious coaction C∗µ(B) ⊗ K(L2(G)) →
M(C∗µ(B)⊗K(L2(G))⊗ C∗(G)).

Proof. By Theorem 3.1, Katayama’s homomorphism is an isomorphism

(4.3) C∗(B) oδB Ĝo
δ̂B
G
∼−→ C∗(B)⊗K(L2(G)).

It is well known (see e.g. [17]) that the bidual coaction
̂̂
δB on the left-hand

side corresponds to the coaction AdW ◦(δB⊗∗ id) as in the statement. By def-
inition, C∗µ(B) is the quotient of C∗(B) that turns (4.3) into an isomorphism

(4.4) C∗(B) oδB Ĝo
δ̂B,µ

G
∼−→ C∗µ(B)⊗K(L2(G)).

Since oµ is a correspondence functor, the left-hand side carries a (bi)dual



252 A. Buss and S. Echterhoff

coaction
̂̂
δB,µ (by [10, Theorem 5.6]). More precisely, the bidual coaction on

the full crossed product C∗(B)oδB Ĝo
δ̂B
G factors through the coaction

̂̂
δB,µ.

It follows that the coaction AdW ◦ (δB⊗∗ id) also factors through a coaction
on C∗µ(B)⊗K(L2(G)) of the form AdW ◦(δB,µ⊗∗ id), where δB,µ is a coaction
of C∗µ(B) which factors the dual coaction δB on C∗(B). This holds in partic-
ular for the reduced cross-sectional algebra C∗r (B) and, as already observed
in Remark 3.3, in this case the coaction δB,r is a normalisation of δB. In par-
ticular the quotient homomorphism C∗(B) � C∗r (B) (which is the regular

representation of B) induces an isomorphism C∗(B)oδB Ĝ
∼−→ C∗r (B)oδB,r Ĝ.

It follows that the same is true for every other exotic quotient C∗µ(B) be-
cause the quotient map C∗(B) � C∗r (B) (and hence also the induced map
on crossed products) factors as a composition C∗(B) � C∗µ(B) � C∗r (B).
This implies the isomorphism (4.1), and the isomorphism (4.2) is then just
a reinterpretation of the defining isomorphism (4.4).

4.2. Partial actions. The notion of partial actions of the group of
integers has been introduced by Exel [20] and subsequently generalised to
arbitrary discrete groups by McClanahan in [31]. In [21] Exel generalises
both notions and defines twisted partial actions of locally compact groups.
Every twisted partial action gives rise to a Fell bundle via a construction
similar to the semidirect Fell bundle associated to an ordinary (global, un-
twisted) action. Moreover, the main result, Theorem 7.3, of [21] shows that
for second countable G, after stabilisation, every separable Fell bundle is
isomorphic to one of this form, that is, a Fell bundle associated to a twisted
partial action (and for discrete groups or saturated Fell bundles the twist
can be removed; see [23, 40, 35, 16]). In this section, we will focus only
on partial actions, but essentially all results go through with essentially no
change (except that the notation becomes slightly more complicated) for
general twisted partial actions.

Let α be a partial action of a locally compact group G on a C∗-algebra A.
This consists of partial automorphisms αt : Dt−1 → Dt between certain
(closed, two-sided) ideals Dt ⊆ A with De = A, αe = idA and such that αst
extends αs ◦ αt for all s, t ∈ G. An appropriate continuity condition for the
family of maps αt is also required to hold. We refer the reader to [21] for
details. Given such a partial action, the associated Fell bundle is the bundle
Aoα G := {(a, t) ∈ A×G : a ∈ Dt} with algebraic operations defined by

(a, t) · (b, s) = (αt(αt−1(a)b), ts) and (a, t)∗ = (αt−1(a)∗, t−1).

The full (resp. reduced) crossed product of (A,α) can defined as the full
(resp. reduced) cross-sectional C∗-algebra of A oα G. More generally, we
can introduce:
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Definition 4.7. Given a partial action (A,α) of G and a Morita
compatible G-crossed-product functor oµ, we define the µ-crossed product
A oα,µ G as the µ-cross-sectional C∗-algebra C∗µ(A oα G) (as in Defini-
tion 4.1).

Notice that by Theorem 4.5 (and our assumption of Morita compatibil-
ity) the above definition recovers the original µ-crossed product for global ac-
tions. Also, Proposition 4.3 allows us to extend the original crossed-product
functor to a functor (A,α) 7→ Aoα,µG from the category of partial G-actions
to the category of C∗-algebras, where a morphism between two partial G-
actions (A,α) and (B, β) is defined as a G-equivariant ∗-homomorphism

π : A → B, meaning that π(Dα
t ) ⊆ Dβ

t and βt(π(a)) = π(αt(a)) for all
t ∈ G and a ∈ Dα

t−1 . These are exactly the morphisms between the associ-

ated semidirect Fell bundles Aoα G and B oβ G.

Given a partial action (A,α), we view the dual coaction on the full
cross-sectional algebra C∗(A oα G) as the dual coaction of A oα G and
denote it by α̂. Our main result (Theorem 3.1) says that we have a natural
isomorphism

(4.5) (Aoα G) oα̂ Ĝô̂α G ∼= (Aoα G)⊗K(L2(G)).

In particular this implies that, after tensoring with K(L2(G)), every partial
crossed product is isomorphic to a global crossed product. More precisely,
the tensor product (AoαG)⊗K(L2(G)) is naturally isomorphic to Ãoα̃G,

where Ã := (Aoα G)oα̂ Ĝ and α̃ := ̂̂α. The G-algebra (Ã, α̃) has a natural
interpretation in terms of the original partial action: it follows from [1,
Proposition 8.1] that (Ã, α̃) is a Morita enveloping action for the partial
action (A,α); we call (Ã, α̃) the canonical Morita enveloping action of (A,α).
It is shown in [1, Proposition 6.3] that all Morita enveloping actions are
Morita equivalent, so it is unique up to Morita equivalence. We refer to [1]
for the relevant notion of Morita equivalence for partial actions.

Let us recall that the assertion that (Ã, α̃) is a Morita enveloping action
of (A,α) means that Ã contains a (closed, two-sided) ideal I ⊆ Ã such that
the orbit {α̃t(I) : t ∈ G} of I generates a dense subspace of Ã and such
that the partial action on I given by restriction of α̃ (as described in [1])
is Morita equivalent to the original partial action (A,α). For the canonical
Morita enveloping action, the ideal I and also Ã (together with their actions)
can be described directly in terms of the Fell bundle A oα G associated to
(A,α) as certain algebras of “kernels”, but this description does not concern
us here. We refer to [1] for further details.

Thus the natural isomorphism (4.5) (that is, our main Theorem 3.1 ap-
plied for partial actions) can be seen as the statement that every partial
crossed product AoαG is naturally Morita equivalent to its canonical Morita
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enveloping crossed product. As already mentioned above, it is proven in [1]
that all Morita enveloping actions of a given partial action (A,α) are Morita
equivalent. It follows that the full crossed product Aoα G is Morita equiv-
alent to the full crossed product of any of the Morita enveloping actions of
(A,α). Note that the paper [1] by Abadie only contained a version of this re-
sult for the reduced crossed products (see [1, Proposition 4.6]). The version
for full crossed products was obtained in a second paper [2, Corollary 1.3] by
Abadie and Mart́ı Pérez. We now use our approach to generalise these results
to all exotic crossed products related to Morita compatible crossed-product
functors:

Corollary 4.8. For every partial action (A,α) of G and for every
Morita compatible crossed-product functor oµ, the partial crossed product
A oα,µ G is Morita equivalent to its canonical Morita enveloping crossed

product Ã oα̃,µ G. More precisely, the canonical isomorphism (4.5) factors
through an isomorphism

(4.6) Ãoα̃,µ G ∼= (Aoα,µ G)⊗K(L2(G)).

More generally, every other Morita enveloping action (B, β) of (A,α) has
crossed product B oβ,µ G ∼M Aoα,µ G.

Proof. The first statement is an immediate consequence of our defini-
tions. Indeed, by definition, the exotic partial crossed product A oα,µ G is
exactly the quotient of Aoα G that turns (4.5) into the isomorphism (4.6).
And the final assertion follows from the already mentioned fact that all
Morita enveloping actions are Morita equivalent and the assumption that
our functor oµ preserves Morita equivalence. Indeed, if (B, β) is a Morita

enveloping action for (A,α), then (B, β) is Morita equivalent to (Ã, α̃) by
[1, Proposition 6.3]. Since our crossed-product functor oµ preserves Morita

equivalences, we conclude that B oβ,µ G ∼M Ãoα̃,µ G ∼M Aoα,µ G.

We also obtain one of the main results on amenability of partial actions
shown in [2]. Following the terminology from [2], we say that a partial action
(A,α) is amenable if its associated Fell bundle is amenable (in the sense of
Exel [22]). Hence, by definition, a partial action (A,α) is amenable if and
only if its full and reduced crossed products coincide.

Corollary 4.9. A partial action (A,α) is amenable if and only if its
canonical Morita enveloping action (Ã, α̃) is amenable, if and only if all
Morita enveloping actions of (A,α) are amenable. In this case all exotic
(partial) crossed products involving these algebras coincide. More generally,
given Morita compatible G-crossed product functors oµ and oν , we have

A oα,µ G = A oα,ν G if and only if Ã oα̃,µ G = Ã oα̃,ν G, if and only if
B oβ,µ G = B oβ,ν G for every Morita enveloping action (B, β) of (A,α).
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Proof. The first assertion will follow from the last assertion by taking the
full and reduced crossed products for oµ and oν . To prove the last assertion
notice that (by definition) the equality Aoα,µG = Aoα,ν G means that the
ideals in the full crossed product AoαG corresponding to the quotient maps
A oα G → A oα,µ G,A oα,ν G coincide, and of course the same meaning
has to be given to the equality B oβ,µ G = B oβ,ν G. But then the last
assertion in the statement follows from the Rieffel correspondence between
ideals induced by the Morita equivalences A oα,µ G ∼M B oβ,µ G and
A oα,ν G ∼M B oβ,ν G and the fact that both are quotients of the Morita
equivalence for full crossed products: Aoα G ∼M B oβ G.

4.3. K-amenability. The concept of K-amenable groups was first in-
troduced for discrete groups by Cuntz [13] and then extended to locally
compact groups by Julg and Valette [27]. It follows from the results of Cuntz
that a countable discrete group G is K-amenable if and only if the regular
representation λ : C∗(G)→ C∗r (G) is a KK-equivalence, which then implies
that for all actions α : G→ Aut(A) on a separable C∗-algebra A the regular
representation ΛGA : A oα G → A oα,r G is a KK-equivalence as well. The
definition of K-amenability for general second countable locally compact
groups is slightly more technical, but as a consequence regular represen-
tations of crossed products induce KK-equivalences between the full and
reduced crossed products. More generally, it is shown in [10, Theorem 6.6]
that, if G is K-amenable, then for every separable G-C∗-algebra (A,α) and
for every correspondence functor oµ for G the canonical quotient maps

Aoα G� Aoα,µ G� Aoα,r G

are KK-equivalences. Cuntz [13] has shown that all free groups are K-
amenable and that K-amenability enjoys some nice permanence properties.
Moreover, a more recent result of Tu [41] shows that all a-T -menable groups
are K-amenable as well.

The results of the previous section now allow us to extend [10, Theo-
rem 6.6] to cross-sectional algebras of Fell bundles. For general Fell bundles,
the result seems to be new even for the quotient map ΛB : C∗(B) � C∗r (B),
but this special case is known for Fell bundles associated to partial actions of
discrete groups (see [31] and the discussion following Corollary 4.12 below).

Corollary 4.10. Let G be a second countable K-amenable locally com-
pact group and let oµ be a correspondence crossed-product functor for G.
Then, for every separable Fell bundle over G, both ∗-homomorphisms in the
sequence

C∗(B) � C∗µ(B) � C∗r (B)

given by the identity map on Cc(B) are KK-equivalences. In particular, they
induce isomorphisms K∗(C

∗(B)) ∼= K∗(C
∗
µ(B)) ∼= K∗(C

∗
r (B)).
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Proof. Consider the commutative diagram

C∗(B) oδB Ĝo
δ̂G
G

ΨB−−−−→∼= C∗(B)⊗K(L2(G))y y
C∗(B) oδB Ĝo

δ̂G,µ
G

Ψµ−−−−→∼= C∗µ(B)⊗K(L2(G))y y
C∗(B) oδB Ĝo

δ̂G,r
G

Ψr−−−−→∼= C∗r (B)⊗K(L2(G))

Since G is K-amenable, the vertical arrows on the left-hand side are all
KK-equivalences by [10, Theorem 6.6]. Hence the right vertical arrows are
KK-equivalences as well. Since being KK-equivalent is stable under stabil-
isation by compact operators, the result follows.

Remark 4.11. The above result can be generalised as follows. Let oµ

be any crossed-product functor. Following [9] we say that a given coaction
δ : B → M(B ⊗ C∗(G)) is a µ-coaction if Katayama’s duality surjection

BoδĜo
δ̂
G� B⊗K(L2(G)) factors through an isomorphismBoδĜo

δ̂,µ
G ∼=

B ⊗ K(L2(G)). In particular, if oµ is a correspondence functor and B is a
Fell bundle over G, then the dual coaction δB,µ on C∗µ(B) is a µ-coaction.

Suppose now that G is K-amenable and second countable, oµ is a cor-
respondence functor for G and (B, δ) is a µ-coaction on a separable C∗-al-
gebra B. Then, if (Bm, δm) and (Bn, δn) are the maximalisation and nor-
malisation of (B, δ), respectively, the corresponding quotient maps

Bm
qm
� B

qn
� Bn

are KK-equivalences. This follows directly from the commutative diagram

Bm oδm Ĝo
δ̂,µ

G
∼=−−−−→ Bm ⊗K(L2(G))

qmoĜoG
y yqm⊗idK

B oδ Ĝo
δ̂,µ

G
∼=−−−−→ B ⊗K(L2(G))

qnoĜoG
y yqn⊗idK

Bn oδn Ĝo
δ̂,µ

G
∼=−−−−→ Bn ⊗K(L2(G))

and the fact that both morphisms in the sequence

Bm oδm Ĝ
qmoĜ−−−−→ B oδ Ĝ

qnoĜ−−−→ Bn oδn Ĝ

are G-equivariant isomorphisms. In particular, if G is K-amenable, all C∗-
algebras Bm, B and Bn have the same K-theory and K-homology groups.
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As a direct consequence of Corollary 4.10, together with the discussion
on partial actions given in Section 4.2, we also obtain the following result:

Corollary 4.12. Let (A,α) be a partial action of a second countable
locally compact K-amenable group G on a separable C∗-algebra A. If oµ

is a correspondence G-crossed-product functor, then the quotient homomor-
phisms

Aoα G� Aoα,µ G� Aoα,r G

are KK-equivalences. In particular, A oα,µ G has the same K-theory and
K-homology as Aoα G and Aoα,r G.

For partial actions of discrete groups, the above result was proven by
McClanahan in [31] for the special case of the quotient map A oα G �
A oα,r G linking the full and reduced crossed products by partial actions.
Notice that the result of McClanahan does not imply the result for gen-
eral exotic crossed products for discrete groups. Indeed, as shown in [10],
there are examples of crossed-product functors that are not correspondence
functors for which the above result fails even for crossed products by or-
dinary actions. In the recent paper [3] by Ara and Exel (see in particular
Corollary 6.9) the authors have applied the result by McClanahan to some
interesting partial actions of free groups associated to separated graphs in
order to deduce that certain full and reduced crossed products have the same
K-theory (and the K-theory is effectively computed in [3]). By the above
result these computations extend to the respective exotic crossed product
related to any given correspondence crossed-product functor.

5. Maximal coactions of discrete groups. As a bonus, we derive
in this section a characterisation of maximal coactions of discrete groups.
Recall from [33, 36] that every coaction δ : B → B ⊗ C∗(G) of a discrete
group G determines a Fell bundle B over G with fibres

Bt = {b ∈ B : δ(b) = b⊗ uG(t)}
where u : G → U(C∗(G)) denotes the inclusion map. There is a canonical
embedding

Cc(B) = span
(⋃
t∈G

Bt

)
↪→ B,

which then extends to a surjective δB-δ-equivariant ∗-homomorphism κ :
C∗(B) � B. On the other hand, it has also been observed by Quigg that the
dual coaction δn of G on C∗r (B) is the normalisation of (B, δ), so that there is
also a δ-δn-equivariant ∗-homomorphism ΛB : B 7→ Br := C∗r (B). This shows
that, in a sense, we may view B as an exotic completion of Cc(B). We know
from [17] (and now also from our main Theorem 3.1) that (C∗(B), δB) is the

maximalisation of (B, δ), so that the quotient maps C∗(B)
κ−→ B

ΛB−→ C∗r (B)
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induce isomorphisms

C∗(B) oδB Ĝ
∼−→ B oδ Ĝ

∼−→ C∗r (B) oδn Ĝ.

Theorem 5.1. Let G be a discrete group and let δ : B → B ⊗C∗(G) be
a coaction. Let B be the Fell bundle over G corresponding to δ as explained
above. Then the following assertions are equivalent:

(1) (B, δ) is maximal;
(2) the canonical ∗-homomorphism C∗(B) � B is an isomorphism;
(3) δ can be lifted to a ∗-homomorphism δmax : B → B ⊗max C

∗(G);
(4) the reduction δr := (id ⊗ λ) ◦ δ : B → B ⊗ C∗r (G) can be lifted to a

∗-homomorphism δrmax : B → B ⊗max C
∗
r (G);

(5) the ∗-homomorphism (ΛB⊗ id)◦δr = (ΛB⊗λ)◦δ : B → Br⊗C∗r (G)
can be lifted to a homomorphism (ΛB ⊗max id) ◦ δrmax : B → Br⊗max

C∗r (G).

Moreover, if they exist, the lifted homomorphisms in (3)–(5) are all faithful.

Proof. The equivalence (1)⇔(2) follows from the fact that (C∗(B), δB)
is the maximisation of (B, δ) by [17, Proposition 4.2]. Notice that (3) holds
for (B, δ) = (C∗(B), δB) because of the universal property of C∗(B), so we
also get (2)⇒(3), and it is obvious that (3)⇒(4). We will finish with the
proof of the implications (4)⇒(5)⇒(2). For this assume that (4) holds. It
is shown in [4, Theorem 6.2] that, for every Fell bundle B over a discrete
group G, the representation of B in C∗r (B)⊗maxC

∗
r (G) given by bt 7→ bt⊗max

λ(t) extends to a faithful ∗-homomorphism (ΛB ⊗max λ) ◦ δB : C∗(B) →
C∗r (B)⊗maxC

∗
r (G) (and this is exactly the lift homomorphism in (5) for the

coaction δB : C∗(B)→ C∗(B)⊗C∗(G)). Now notice that the homomorphism
κ : C∗(B)→ B fits into the commutative diagram

(5.1)

B
δrmax−−−−−−−−−→ B ⊗max C

∗
r (G)

κ

x yΛB⊗maxid

C∗(B)
(ΛB⊗maxλ)◦δB−−−−−−−−−→ C∗r (B)⊗max C

∗
r (G)

Since (ΛB ⊗max λ) ◦ δB is injective, it follows that κ is also injective
and therefore an isomorphism (so we just proved (4)⇒(2)). But then
(ΛB⊗max id)◦δrmax = (ΛB⊗maxλ)◦δB, hence (ΛB⊗max id)◦δrmax is injective.
So (4)⇒(5). Conversely, if (5) holds, then diagram (5.1) implies that κ is
injective and therefore an isomorphism C∗(B)

∼−→ B. Hence (5)⇒(2). We
saw above that (ΛB ⊗max id) ◦ δrmax, if exists, is faithful. But then δrmax and
δr are faithful as well.

Remark 5.2. If δ : B → M(B ⊗ C∗(G)) is a maximal coaction of a
locally compact group G, then it is Morita equivalent to a dual coaction on
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a maximal crossed product. Using this it is not difficult to see that such a
coaction lifts to δmax : B →M(B⊗maxC

∗(G)). But the converse is not true
in general and the above theorem does not extend to general locally compact
groups G. The problem is that by the fundamental results of Choi–Effros and
Connes [11, 12], the full and reduced group algebras of (almost) connected
second countable groups are always nuclear—even if the groups are not
amenable (like G = SL2(R)). But then it is clear that the dual coaction
δG,r : C∗r (G) → M(C∗r (G) ⊗ C∗(G)), which is not maximal if G is not
amenable, extends to a faithful map δmax

G,r : C∗r (G)→M(C∗r (G)⊗maxC
∗(G)).

Notice that the main ingredient in the proof of Theorem 5.1 is [4, The-
orem 6.2], which, as indicated by the authors, is based on an idea of Kirch-
berg. Part (2) of the following corollary has already been observed in [4].
Recall from [22] that a Fell bundle B is said to be amenable if the regular
representation ΛB : C∗(B)→ C∗r (B) is faithful.

Corollary 5.3. Let G be a discrete group.

(1) A Fell bundle B over G is amenable if and only if the dual coaction
δB on C∗(B) is normal, if and only if the the dual coaction δB,r
on C∗r (B) is maximal.

(2) If the full or reduced cross-sectional C∗-algebra of a Fell bundle B
over G is nuclear, then B is amenable.

(3) If G is amenable (that is, if C∗r (G) or C∗(G) is nuclear), then every
Fell bundle over G is amenable.

We point out that (3) has already been shown by Exel [22, Theorem 4.7].

Proof of Corollary 5.3. The first statement follows directly from the fact
that the regular representation ΛB : C∗(B) → C∗r (B) can be thought of as
either the normalisation map for (C∗(B), δB), or the maximalisation map
for (C∗r (B), δB,r). The second item follows directly from the combination of
(1) and Theorem 5.1. And the third item also follows from (1) and the fact
that every G-coaction is maximal and normal for amenable G.

Observe that the converse of (2) above does not hold, that is, there are
amenable Fell bundles (over discrete groups) for which C∗(B) ∼= C∗r (B) is
not nuclear. To see an example, let A be any non-nuclear C∗-algebra and
let an amenable group G act trivially on A. Then A oid G = A oid,r G,
hence the corresponding Fell bundle A oid G is amenable. But A oid G ∼=
A ⊗ C∗(G) is not nuclear, since the tensor product of a non-nuclear C∗-
algebra with a nuclear C∗-algebra is never nuclear. A partial converse of
Corollary 5.3(2) holds under the assumption that the unit fiber Be is nuclear
(see [23, Proposition 25.10]).

If B is not amenable, we know from the above corollary that C∗(B)
and C∗r (B) are non-nuclear C∗-algebras, so there exist C∗-algebras D,E
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such that the algebraic tensor products C∗(B) �D and C∗r (B) � E do not
admit unique C∗-norms. Indeed, the methods above allow us to make explicit
choices for D and E:

Corollary 5.4. If a Fell bundle B over a discrete group G is not
amenable, then all the algebraic tensor products C∗(B) � C∗r (G), C∗r (B) �
C∗(G) and C∗r (B)� C∗r (G) do not admit unique C∗-norms, that is,

C∗(B)⊗max C
∗
r (G) 6= C∗(B)⊗min C

∗
r (G),

C∗r (B)⊗max C
∗
r (G) 6= C∗r (B)⊗min C

∗
r (G),

C∗r (B)⊗max C
∗(G) 6= C∗r (B)⊗min C

∗(G).

Proof. The dual coaction δB : C∗(B) → C∗(B) ⊗ C∗(G) is maximal
and hence its reduction δrB : C∗(B) → C∗(B) ⊗ C∗r (G) lifts to an injec-
tive homomorphism δrB,max : C∗(B) → C∗(B) ⊗max C

∗
r (G). But the reduc-

tion δrB is weakly equivalent to ΛB : C∗(B) → C∗r (B), hence if C∗(B) ⊗max

C∗r (G) = C∗(B)⊗minC
∗
r (G), then B is amenable. This gives the statement for

C∗(B)� C∗r (G), and the other cases are treated similarly.

Taking B to be the trivial Fell bundle B = C × G, we deduce from the
above result the non-uniqueness of C∗-norms on mixed tensor products of
the form C∗(G)�C∗r (G) and C∗r (G)�C∗r (G). This special case is well known
and follows, for instance, from [7, Proposition 6.4.1] (2). Observe that we
do not say anything about the tensor product C∗(B) � C∗(G). Indeed, as
shown in [30, Proposition 8.1], uniqueness of the C∗-norm on C∗(B)�C∗(G)
in the case of B = C ×G, G = F∞ is equivalent to the solution of Connes’
embedding conjecture!
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