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A rigidity phenomenon for the Hardy–Littlewood
maximal function

by

Stefan Steinerberger (New Haven, CT)

Abstract. The Hardy–Littlewood maximal function M and the trigonometric func-
tion sinx are two central objects in harmonic analysis. We prove that M characterizes
sinx in the following way: Let f ∈ Cα(R,R) be a periodic function and α > 1/2. If there
exists a real number 0 < γ <∞ such that the averaging operator

(Axf)(r) =
1

2r

x+r�

x−r

f(z) dz

has a critical point at r = γ for every x ∈ R, then

f(x) = a+ b sin(cx+ d) for some a, b, c, d ∈ R.
This statement can be used to derive a characterization of trigonometric functions as
those nonconstant functions for which the computation of the maximal function M is as
simple as possible. The proof uses the Lindemann–Weierstrass theorem from transcenden-
tal number theory.

1. Introduction and main results

1.1. Introduction. Maximal functions are a central object in harmonic
analysis; conversely, harmonic analysis is built up from trigonometric func-
tions. We were motivated by the simple question whether a maximal func-
tion is able to ‘recognize’ a trigonometric function in any particular way. We
focus on the centered Hardy–Littlewood maximal function on the real line

(Mf)(x) = sup
r>0

1

2r

x+r�

x−r
|f(z)| dz.

Classical results are the embedding M : L1 → L1,∞, where the sharp con-
stant is known [12], as well as the embedding M : Lp → Lp for 1 < p ≤ ∞.
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The wealth of theory developed around maximal functions can no longer be
succinctly summarized: we refer to the book of Stein [16] for the classical
theory and a survey of Wolff [19] on the Kakeya problem.

1.2. The interval length function rf . Usual questions around max-
imal functions are concerned with their size: since (Mf)(x) ≥ |f(x)| at
all Lebesgue points, it is of interest to understand mapping properties in
Lp spaces. Our question goes in an orthogonal direction: how complicated
is the dynamical behavior of the ‘maximal’ intervals? The question is not
well-posed because there might be more than one interval centered at x
over which the average value of the function coincides with the maximal
function; in these cases, we opt for taking the smallest such interval. For-
mally, we define the length function rf : R → R≥0 associated to a periodic
function f by

rf (x) = inf

{
r ≥ 0 :

1

2r

x+r�

x−r
f(z) dz = sup

s>0

1

2s

x+s�

x−s
f(z) dz

}
,

where the integral is to be understood as the point evaluation if r = 0. It is
easy to see that rf is well-defined and finite for periodic functions.

1.3. Main results. The purpose of this paper is to study the situa-
tion where for all x ∈ R both rf (x) and r−f (x) are either 0 or a fixed
positive real number, and to show that this characterizes the trigonometric
function. This theorem may be understood as a characterization of trigono-
metric functions by means of a dynamical aspect of the Hardy–Littlewood
maximal function. It seems to have surprisingly little to do with traditional
characterizations involving geometry, power series, differential equations or
spectral theory. Indeed, we failed to find a slick reduction to any of the
classical characterizations and ended up needing tools from transcendental
number theory.

Theorem 1. Let f ∈ Cα(R,R) be a periodic function and α > 1/2.
There exists a positive number γ > 0 such that the averaging operator

(Axf)(r) =
1

2r

x+r�

x−r
f(z) dz

has a critical point at r = γ for every x if and only if

f(x) = a+ b sin(cx+ d) for some a, b, c, d ∈ R.

Theorem 1 is the strongest statement in this paper; it is relatively easy
to deduce the following statement, which formulates everything in terms of
the complexity of the maximal intervals.
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Theorem 2. Let f ∈ Cα(R,R) be a periodic function and α > 1/2.
Then ∣∣∣⋃

x∈R
{rf (x), r−f (x)}

∣∣∣ ≤ 2

if and only if

f(x) = a+ b sin(cx+ d) for some a, b, c, d ∈ R.
We emphasize that we do not even know whether the statement remains

true if the constant 2 is replaced by a larger positive integer (but conjecture
that it does). Another way of stating Theorem 2 is as follows: Suppose the
periodic function f does not change sign and that bothMf andM(−f) can
be computed by checking the average over an interval of fixed length and
comparing it with point evaluation, i.e. suppose there exists a fixed number
0 < γ <∞ such that f satisfies the equation

(Mf)(x) = max

(
|f(x)|, 1

2γ

x+γ�

x−γ
|f(z)| dz

)
for all x ∈ R

and the same condition (with the same value γ) holds for M(−f). Then

f(x) = a+ b sin(cx+ d) for some a, b, c, d ∈ R.

1.4. A delay differential equation. Perhaps the most natural first
step after seeing Theorem 1 would be to try a combination of differentia-
tion and algebraic manipulations to obtain an ordinary differential equation
(with the hope of it being y′′+y = 0). As it turns out, this does not work and
produces much more interesting results instead. Differentiation in r implies
that

0 = ∂r

(
1

2r

x+r�

x−r
f(z) dz

)∣∣∣∣
r=γ

= − 1

2γ2

x+γ�

x−γ
f(z) dz +

1

2γ
(f(x+ γ) + f(x− γ)).

Assuming f ∈ C1, this equation can now be differentiated in x and yields

f ′(x+ γ)− 1

γ
f(x+ γ) = −f ′(x− γ)− 1

γ
f(x− γ).

The qualitative theory of delay differential equations is a lot more compli-
cated than the theory of ordinary differential equations because the space of
solutions is much larger (uncountable): any C1 function g : [0, 2γ]→ R with
correct boundary conditions can always be extended to a solution of the
delay differential equation. However, as an easy consequence of Theorem 2,
we can show that there are few periodic solutions.

Theorem 3. Let γ > 0 be fixed and let f ∈ C1(R,R) be a solution of
the delay differential equation

f ′(x+ γ)− 1

γ
f(x+ γ) = −f ′(x− γ)− 1

γ
f(x− γ).
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If f is periodic, then

f(x) = a+ b sin(cx+ d) for some a, b, c, d ∈ R.

Considering the large (uncountable) number of solutions, it is utterly
remarkable that there are so few periodic solutions. We have not been able
to locate any type of argument in the literature that would allow one to
prove a result of this type.

1.5. Open questions. We believe that many of the assumptions can be
weakened. Periodicity of the functions is necessary to allow the use of Fourier
series on which our argument is based, but it seems natural to assume that
the properties discussed could not hold for a nonperiodic function anyway.
The assumption f ∈ Cα(R,R) with α > 1/2 is required at one point in the
proof to enforce uniform convergence of the Fourier series; again, it seems to
be an artefact of the method. We note that the condition f ∈ Cα(R,R) with
α > 1/2 in our statements could always be replaced with the condition of f
having an absolutely convergent Fourier series. The strongest statement we
believe could be true is the following.

Conjecture. If f ∈ L∞(R) is real-valued and rf assumes only finitely
many different values, then

f(x) = a+ b sin(cx+ d) for some a, b, c, d ∈ R.

A more daring conjecture would be that it suffices to assume that⋃
x∈R
{rf (x)} ⊂ R is a Lebesgue-null set.

If rf (x) is contained in a set of ‘small’ non-zero Lebesgue measure, what
does that imply for the function? It seems to indicate, in some weak sense,
that Fourier frequencies interact weakly (perhaps in the sense of a Λ(p)-pro-
perty?). Furthermore, it seems that if f is given by a lacunary Fourier series,
then ⋃

x∈R
{rf (x)} ⊂ R can have ‘fractal’ structure,

again in a vague sense (small measure and a very large number of connected
components); it could be of interest to try to understand quantitative ver-
sions of this basic intuition. One could also ask to which extent this persists
in higher dimensions: in Rd, if we consider the maximal function associated
to axis-parallel rectangles and the natural analogue rf : Rd → Rd, then
setting

f(x1, . . . , xd) =

d∏
i=1

(ai + bi sinxi + ci cosxi)
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implies ∣∣∣⋃
x∈R
{rf (x), r−f (x)}

∣∣∣ ≤ 2d.

Already in two dimensions, there are many other natural maximal functions
and it is not clear to us whether similar statements hold for any of them.
We recall the Pompeiu conjecture [14]: if K ⊂ Rn is a simply connected Lip-
schitz domain and f : Rn → R is a nonzero continuous function such that
the integral of f vanishes over every congruent copy of K—does this imply
that K is a ball? Is there a connection between the Pompeiu conjecture and
the maximal problem for disks?

The discrete setting. In light of the recent results [4, 6, 7] concerning
the behavior of the maximal function on the lattice, this might be another
interesting direction to investigate. For a function f : Z→ R, we define the
maximal function as

(Mf)(n) = sup
r∈N≥0

1

2r + 1

n+r∑
k=n−r

f(k).

The length function rf : Z→ N is defined as above. Numerical experiments
show that the continuous case translates into the discrete setting: for generic
parameters, functions of the form

f(n) = a+ b sin(cn+ d), a, b, c, d ∈ R,

seem to give rise to two-valued rf . We do not have a formal proof of this
statement; it should be equivalent to a series of trigonometric inequalities
that might actually be in the literature. The property is stable under small
perturbations. However, there also exist completely different functions with
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Fig. 1. A periodic function f : Z → R with rf (n) ∈ {0, 2}
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a two-valued rf : the following example was found by Xiuyuan Cheng (per-
sonal communication). Taking

f(n) =
(−1)n+1

(|n|+ 1/2)α
for some 0 < α < 1/2,

introducing a cut-off and making it periodic can yield functions with rf :
Z→ {0, 2} (see Fig. 1 where α = 1/3). This example is structurally totally
different from the sine: having oscillations at scale 2 seems crucial. We do
not know whether there are any solutions of other types and consider it to
be a fascinating problem. A natural conjecture would be that if a periodic
function f : Z→ R satisfies

|f(n+ 1)− f(n)| ≤ ε‖f‖`∞
and has a two-valued rf , then

inf
a,b,c,d∈R

sup
n∈Z
|f(n)− (a+ b sin(cn+ d))| ≤ c(ε)‖f‖`∞

for some function c : R+ → R+ tending to 0 as ε tends to 0.

1.6. Related work. We are not aware of any related work in this
direction. Our interest in the Hardy–Littlewood maximal function itself,
however, stems from a series of recent interesting results on fine properties
of Mf : since Mf tries to maximize local averages, there is every reason
to believe that it should decrease total variation—this turns out to be a
surprisingly intricate problem. Motivated by a question of Kinnunen [10],
Tanaka [17] showed for the uncentered Hardy–Littlewood maximal function
M∗ that

‖(M∗f)′‖ ≤ 2‖f ′‖L1 ,

where the constant 2 was then improved to 1 by J. M. Aldaz & J. Pérez
Lázaro [1]. Kurka [11] has recently proven the same inequality for the cen-
tered Hardy–Littlewood maximal function for a large universal constant.
Carneiro & Svaiter [8] give corresponding results for the maximal heat flow
and the maximal Poisson operator. The discrete question on the lattice
Z has been investigated by Bober, Carneiro, Hughes & Pierce [4], and by
Carneiro & Hughes [6] in higher dimensions. The result of Kurka in the
discrete setting has been proven by Temur [18]. These results are well in
line of what one would expect from a maximal function; however, it is quite
interesting that all of them seem quite difficult to prove. Indeed, the sharp
constant 1 for the centered maximal function on the real line is still merely
conjectural.

Stokes wave. Equations of the type appearing in our proof seem to have
previously surfaced in a completely different context: in a 1987 paper on
the behavior of the Stokes wave of extreme form near its crest, Amick &
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Fraenkel [2] encounter the equation

√
3(1 + z) = tan

(
π

2
z

)
, z ∈ C,

and require statements about the linear independence of the solutions of
such an equation. All solutions z1, z2, . . . with Re(z) > −1 are simple and
the Amick–Fraenkel conjecture says that

{1, z1, z2, . . .} is linearly independent over the rationals.

Shargorodsky [15] showed that this is implied by the Schanuel conjecture.
Our proof encounters similar issues but can be unconditionally resolved
using the Lindemann–Weierstrass theorem.

2. Proofs

2.1. Outline. This section contains all the proofs. We first prove The-
orem 1 and then show how it implies Theorems 2 and 3. The proof of The-
orem 1 uses an expansion into Fourier series and the fact that averaging
over intervals acts diagonally on the Fourier basis. This implies that a par-
ticular Fourier series has to vanish identically, which entails that all Fourier
coefficients have to vanish identically—this can be reduced to a system of
‘diophantine’ equations (over N×N×R+). Using arguments from transcen-
dental number theory, we can show that this system only has the trivial
solution, which implies that the function has to be localized at one point in
the frequency spectrum. The latter part of the argument is exploiting the
arising structure in a very particular way and seems to only work in the
very special case we are considering.

2.2. Proof of Theorem 1. Suppose that f ∈ Cα(R,R) for some
α > 1/2 is periodic. Without loss of generality, we can use the symme-
tries of the statement to assume that the function has mean value 0 and
smallest period 2π, and that it can be written as

f(x) =

∞∑
k=1

(ak sin kx+ bk cos kx).

We assume now that

∂r

(
1

2r

x+r�

x−r
f(z) dz

)∣∣∣∣
r=γ

= 0 for all x ∈ R.

The trigonometric identities

sin(x+ r)− sin(x− r) = 2 sin r cosx,

cos(x+ r)− cos(x− r) = −2 sin r sinx



270 S. Steinerberger

yield

1

2r

x+r�

x−r
f(z) dz =

∞∑
k=1

sin rk

rk
(ak sin kx+ bk cos kx).

Here we invoke the classical theorem of Bernstein (see, e.g., [9]) stating
that periodic functions in Cα(R,R) for some α > 1/2 have an absolutely
convergent Fourier series. Furthermore, this allows us to interchange the
sum and derivative with respect to r:

0 = ∂r

(
1

2r

x+r�

x−r
f(z) dz

)∣∣∣∣
r=γ

=
∞∑
k=1

γk cos γk − sin γk

γ2k
(ak sin kx+ bk cos kx)

because ∣∣∣∣γk cos γk − sin γk

γ2k

∣∣∣∣ ≤ γk + 1

γ2k
≤ γ + 1

γ2

and therefore

∞∑
k=1

∣∣∣∣γk cos γk − sin γk

γ2k
(ak sin kx+ bk cos kx)

∣∣∣∣
≤ γ + 1

γ2

∞∑
k=1

|ak sin kx+ bk cos kx|.

The only way for a Fourier series to vanish everywhere is for all the coeffi-
cients to vanish. Note that γ > 0 and therefore

γk cos γk − sin γk

γ2k
= 0 ⇔ γk = tan γk.

For any fixed k, it is certainly possible to choose γ in such a way that the
equation is satisfied. It remains to show that no two such equations can be
satisfied at the same time. Toward a contradiction, assume that

a2k + b2k > 0 for at least two different values of k ∈ N.

This would imply the existence of a solution (γ,m, n) ∈ R× N× N of

tan γm = γm,

tan γn = γn,

with γ > 0 and m 6= n. If we could derive a contradiction from this assump-
tion, it would imply that, independently of the value γ,

a2k + b2k > 0 can hold for at most one value of k ∈ N,

from which the statement follows since then

f(x) = ak sin kx+ bk cos kx.
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It is not surprising that number theory enters here: one way of rephrasing
the problem is that any two elements in the set

{z ∈ R+ : tan z = z}
are linearly independent over Q. The rest of the argument can be summa-
rized as follows: the tangent has the powerful property of sending nonzero
algebraic numbers to transcendental numbers. Any nonzero solution γ ∈ R
of the equation tan(γm) = γm must therefore be transcendental, which
means that it is never a root of a polynomial with rational coefficients.
Using multiple angle formulas for the tangent, the assumption of any non-
trivial solution γ satisfying two of these equations at the same time allows us
to construct an explicit polynomial for which γ is a root—this contradiction
will conclude the proof. We start with the cornerstone of the argument.

Claim ([13]). If x 6= 0 is algebraic over Q, then tanx is transcendental
over Q.

Proof. Suppose tanx is algebraic over Q. Then for some n ∈ N and some
rk ∈ Q,

n∑
k=0

rk(tanx)k = 0.

We rewrite x using the exponential function

tanx =
1

i

eix − e−ix

eix + e−ix
.

Inserting this expression and multiplying by (eix + e−ix)n on both sides
allows us to deduce that

n∑
k=0

rk

(
eix − e−ix

i

)k
(eix + e−ix)n−k = 0.

Expanding all brackets, we may deduce that
n∑

k=−n
r∗ke

ikx = 0

for some r∗k ∈ Q[i] not all of which are 0. We invoke the Lindemann–
Weierstrass theorem in the formulation of Baker [3]: if b0, b1, . . . , bm are
nonzero algebraic numbers and β0, β1, . . . , βm are distinct algebraic num-
bers, then

b0e
β0 + b1e

β1 + · · ·+ bme
βm 6= 0,

and this contradiction completes our proof.

We now prove a little statement showing that integer multiples of fixed
points tanx = x have a well-defined tangent. Equivalently, we want to guar-
antee that if tan γ = γ, then nγ = (m+ 1/2)π has no solutions (n,m) ∈ N2.
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Claim. If γ > 0 satisfies tan γn = γn for some n ∈ N>0, then γ and π
are linearly independent over Q.

Proof. Suppose that the statement fails and

γn = (p/q)π.

Note that, by definition,

tan(tan(πp/q)) = tan(tan γn) = tan γn = tan(πp/q),

It is known that tan(πp/q) is an algebraic number (even the degree of the
minimal polynomial is known, see [5]). This would be an instance of the
tangent mapping the nonzero algebraic number tan(πp/q) to an algebraic
number, contradicting the statement proven above.

Suppose now that (γ,m, n) ∈ R× N× N is a nontrivial solution of

tan γm = γm,

tan γn = γn.

Then γ has to be transcendental: if γ were algebraic, then γm would be
algebraic, from which we could deduce that tan γm is transcendental, which
contradicts tan γm = γm.

Now in order to derive a final contradiction exploiting the fact that γ is
transcendental we use the addition theorem for the tangent:

tan((n+ 1)x) = tan(nx+ x) =
tannx+ tanx

1− tannx tanx
.

Iterating this multiple-angle formula, we have

tannx =
pn(tan(x))

qn(tan(x))

for two sequences of polynomials with integer coefficients satisfying the ini-
tial conditions p1(x) = x and q1(x) = 1 and the recursion formulas

pn+1(x) = pn(x) + xqn(x),

qn+1(x) = qn(x)− xpn(x).

We know that (γ,m, n) ∈ R>0 × N× N solves

0 = n tan γm−m tan γn = n
pm(tan γ)

qm(tan γ)
−mpn(tan γ)

qn(tan γ)
,

and therefore

0 = nqn(tan γ)pm(tan γ)−mqm(tan γ)pn(tan γ).

It is easy to see that the polynomial on the right-hand side does not vanish
identically by checking that

d3

dx3
(n tanxm−m tanxn)

∣∣∣∣
x=0

=
1

3
(nm3 −mn3) 6= 0.
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This implies that tan γ satisfies a polynomial equation with integer coeffi-
cients and thus tan γ is algebraic, which is a contradiction.

2.3. Theorem 1 implies Theorem 2. Let f : R → R be a periodic
function of regularity Cα with α > 1/2 such that∣∣∣⋃

x∈R
{rf (x), r−f (x)}

∣∣∣ ≤ 2.

Using the symmetries of the maximal function, we may assume without loss
of generality that f is periodic with period 2π and has vanishing mean value.

Let us first assume that∣∣∣⋃
x∈R
{rf (x), r−f (x)}

∣∣∣ = 1.

Since f is periodic, it assumes a global maximum, from which it follows
that if rf were to be constant, it would have to be 0, which implies that f
is constant and the statement holds. Thus we can focus on the remaining
case of rf and r−f being two-valued (by the same reasoning, 0 always has
to be one of the two values):⋃

x∈R
{rf (x), r−f (x)} = {0, γ} for some real number γ > 0.

We are now in the case where f is continuous, nonconstant and has vanishing
mean; this allows us to partition R into three nonempty sets

I1 = {x ∈ R : f(x) < 0},
I2 = {x ∈ R : f(x) = 0},
I3 = {x ∈ R : f(x) > 0}.

We will now prove that

∂r

(
1

2r

x+r�

x−r
f(z) dz

)∣∣∣∣
r=γ

= 0 for all x ∈ R.

This is easy to see on I1: If x ∈ I1 and rf (x) = 0, then the maximal
function would have the value f(x) < 0. However, by taking the maximal
interval of length 2π, we can at least get an average value of 0, which exceeds
f(x). This implies that rf (x) = γ, which implies the statement. A similar
argument works for x ∈ I3, where the same reasoning implies r−f (x) = γ,
which implies

∂r

(
1

2r

x+r�

x−r
−f(z) dz

)∣∣∣∣
r=γ

= 0

and gives the statement after multiplication with −1. For x ∈ I2 we have to
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argue a bit differently. Suppose rf (x) = 0. Then define h : [0, π]→ R by

h(r) =
1

2r

x+r�

x−r
f(z) dz.

By assumption, we have h(0) = h(π) = 0 and h(r) ≤ 0.

If h vanishes identically, the derivative vanishes everywhere and in par-
ticular also in γ.

Suppose now that h does not vanish identically. Then it assumes a global
minimum on that interval. By definition, this implies that r−f (x) > 0 and
thus by assumption r−f (x) = γ, and this implies the statement as before,
completing the reduction of Theorem 1 to Theorem 2.

2.4. Theorem 1 implies Theorem 3. Let γ > 0 be fixed and let
f ∈ C1(R,R) be a periodic solution of the delay differential equation

f ′(x+ γ)− 1

γ
f(x+ γ) = −f ′(x− γ)− 1

γ
f(x− γ).

This can be rephrased as

f ′(x+ γ) + f ′(x− γ) =
1

γ
(f(x+ γ)− f(x− γ)).

Integrating with respect to x yields

f(x+ γ) + f(x− γ) =
1

γ

x+γ�

x−γ
f(z) dz + c,

where c ∈ R is some undetermined constant. Since f is periodic with some
period P , we can deduce that the average value of the left-hand side is
precisely

lim
y→∞

1

y

y�

0

(f(x+ γ) + f(x− γ)) dx =
2

P

P�

0

f(x) dx.

On the other hand,

lim
y→∞

1

y

y�

0

(
1

γ

x+γ�

x−γ
f(z) dz + c

)
dx = c+

2

P

P�

0

f(x) dx,

and thus c = 0. Thus, multiplying the equation with (2γ)−1, we get

0 =
1

2γ
(f(x+ γ) + f(x− γ))− 1

2γ2

x+γ�

x−γ
f(z) dz = ∂r

(
1

2r

x+r�

x−r
f(z) dz

)∣∣∣∣
r=γ

.

This is precisely the condition in Theorem 1 (with slightly higher regularity
on f) and implies the result.
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3. Concluding remarks

3.1. A conjectured stronger statement. It seems reasonable to as-
sume that for a periodic C1 function f : R→ R already∣∣∣⋃

x∈R
{rf (x)}

∣∣∣ ≤ 2

implies that f has to be a trigonometric function, i.e. that it suffices to
demand that the computation of Mf is ‘simple’ (in the sense described
above) and not additionally that the computation of M(−f) be simple
as well. After adding a suitable constant we can assume without loss of
generality that f has vanishing mean and, by using the dilation symmetry,
that rf (x) ∈ {0, 1}. Then we know that rf (x) = 1 whenever f(x) < 0 and
that therefore

∂x

(
∂r

(
1

2r

x+r�

x−r
f(y) dy

)∣∣∣∣
r=1

)
= 0 whenever f(x) < 0.

The same explicit computation as before implies that one could derive the
following statement.

Conjecture. Suppose f : R→ R is C1 and satisfies

f ′(x+ 1)− f(x+ 1) = −f ′(x− 1)− f(x− 1) whenever f(x) < 0.

Then

f(x) = a+ b sin(cx+ d) for some a, b, c, d ∈ R.

This statement would be a quite curious strengthening of Theorem 3.

3.2. A Poincaré inequality. The purpose of this short section is to
note a basic observation for the uncentered maximal function (which fails for
the centered maximal function): if the uncentered maximal intervals are all
rather short, then this should imply the presence of strong oscillation in the
function. We give a very simple form of that statement. Let f ∈ C1([0, 1])
and consider the uncentered maximal function M∗ defined via

(M∗f)(x) = sup
J3x

1

|J |

�

J

f(x) dx,

where J ranges over all intervals J ⊂ [0, 1] containing x. We define analo-
gously r∗f (x) as the length of the shortest interval necessary to achieve the
maximal possible value.

It is clear from examples that, in a loose sense, strong oscillation implies
that r∗f (x) is small: it will be optimal to choose the interval to be either a
point evaluation or in such a way that one captures the one or two adjacent
large amplitudes. An inverse result can be quantified as follows.



276 S. Steinerberger

J

x

J

x

Fig. 2. Two examples where r∗f (x) is always small: both exhibit strong oscillation.

Proposition. Assume f ∈ C1([0, 1]) has mean value f . Then we have
the Poincaré inequality

1�

0

|f(x)− f | dx ≤ 4‖r∗f‖L∞(R)

1�

0

|f ′(x)| dx.

If we were to replace 4‖r∗f‖L∞ by the constant 1/2, this would be the

classical L1-Poincaré inequality on [0, 1]. Put differently, for a function f :
[0, 1] → R with vanishing mean, we have an uncertainty relation between
the total variation and ‖r∗f‖L∞ :

var(f)‖r∗f‖L∞ ≥
1

4

1�

0

|f(x)| dx.

It is easy to see that the statement has the sharp scaling: consider

f(x) = sinNπx where ‖r∗f‖L∞ ∼ N−1 and ‖f ′‖L1 ∼ N.
Another example is given by taking a positive bump function φ ∈ C∞c (0, 1)
and consider the rescaled function

f(x) = aφ′(bx)

where
1�

0

|f(x)− f | dx ∼ ab−1, ‖r∗‖L∞ ∼ b−1 and ‖f ′‖L1 ∼ a.

We note that the result is not true for the centered maximal function: the
function f(x) = 1 − (x − 0.5)2 (or, more generally, any strictly concave
function) satisfies rf ≡ 0.

Proof of Proposition. We may suppose without loss of generality that f
has vanishing mean, f = 0. Now we write

1�

0

|f(x)| dx = 2

1�

0

χf<0(x)|f(x)| dx
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and estimate the number on the right. It is easy to see that the set

{x ∈ [0, 1] : f(x) < 0}
cannot contain an interval of length larger than 2‖r∗f‖L∞ because f = 0
implies that the maximal function is always nonnegative (one can always
simply choose the entire interval). Clearly, for any g ∈ C1,

t�

s

|g(x)| dx ≤ (t− s)
t�

s

|g′(x)| dx if g(s) = 0.

We can now use that inequality on every connected component of {x ∈ [0, 1] :
f(x) < 0}; by the reasoning above, we will always have t − s ≤ 2‖r∗f‖L∞ ,
and therefore

1�

0

χf<0|f | dx ≤ 2‖r∗f‖L∞
1�

0

|f ′(x)| dx,

which implies the statement.

It could be quite interesting to understand under which conditions and
to which extent such improved Poincaré inequalities are true in higher di-
mensions and how they depend on the maximal function involved.
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