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Unconditionality for m-homogeneous polynomials on `n∞

by

Andreas Defant (Oldenburg) and Pablo Sevilla-Peris (Valencia)

Dedicated to our good friends Pepe Bonet and Manolo Maestre,
on the happy occasion of their 60th birthdays

Abstract. Let χ(m,n) be the unconditional basis constant of the monomial basis zα,
α ∈ Nn0 with |α| = m, of the Banach space of all m-homogeneous polynomials in n complex
variables, endowed with the supremum norm on the n-dimensional unit polydisc Dn. We
prove that the quotient of supm

m
√

supm χ(m,n) and
√
n/logn tends to 1 as n → ∞.

This reflects a quite precise dependence of χ(m,n) on the degree m of the polynomials
and their number n of variables. Moreover, we give an analogous formula for m-linear
forms, a reformulation of our results in terms of tensor products, and as an application a
solution for a problem on Bohr radii.

1. Introduction. Unconditional bases form one of the basic concepts in
Banach space theory. A Schauder basis (ei)i∈I of a (complex) Banach space
X is said to be unconditional if all series representations x =

∑∞
i=1 αiei con-

verge unconditionally. Equivalently, there is a constant c > 0 such that for
every finite choice of complex numbers x1, . . . , xn and of signs ε1, . . . , εn =
±1 we have ∥∥∥ n∑

i=1

εixiei

∥∥∥ ≤ c∥∥∥ n∑
i=1

xiei

∥∥∥.
The best constant c in this inequality is called the unconditional basis
constant of (ei)i∈I and denoted by χ((ei)i∈I ;X). A continuous function
P : X → C is an m-homogeneous polynomial if there exists an m-linear
form L : X × · · · ×X → C such that P (x) = L(x, . . . , x) for every x ∈ X.
We denote by P(mX) and L(mX) the spaces of m-homogeneous polynomials
and m-linear forms on X, respectively, with the norms
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‖P‖ = sup
‖x‖≤1

|P (x)| and ‖L‖ = sup
‖xi‖≤1
i=1,...,m

|L(x1, . . . , xm)|.

We focus on polynomials and multilinear forms on `n∞ (that is, Cn with the
‖ · ‖∞-norm).

Both Banach spaces P(m`n∞) and L(m`n∞) are finite-dimensional and have
natural monomial bases. We write {e1, . . . , en} for the canonical basis of `n∞
and {e∗1, . . . , e∗n} for its dual basis. For each index i = (i1, . . . , im) with
1 ≤ i1, . . . , im ≤ n (we denote the set of all such indices by M(m,n)) we
consider e∗i ∈ L(m`n∞) given by

e∗i : x = (x1, . . . , xm) e∗i1(x1) · · · e∗im(xm).

Then (e∗i )i∈M(m,n) is obviously a basis of L(m`n∞). On the other hand, the
monomials are the natural basis of P(m`n∞). These are defined as follows:
Each multi-index α ∈ Nn0 with |α| = α1 + · · · + αn = m (we denote by
Λ(m,n) the corresponding set) defines the monomial zα ∈ P(m`n∞),

zα : u = (u1, . . . , un) uα1
1 · · ·u

αn
n .

Schütt started the study of the unconditional basis constants of these
two bases in [12], proving that

1

8

√
n ≤ χ

(
(e∗i )i;L(2`n∞)

)
≤ (1 +

√
2)
√
n.

This study was continued in [5], where as a particular case of a more general
result it is shown that for every m there is a constant C(m) > 0 such that
for each n,

1

C(m)

√
n
m−1 ≤ χ

(
(e∗i )i;L(m`n∞)

)
≤ C(m)

√
n
m−1

and
1

C(m)

√
n
m−1 ≤ χ

(
(zα)α;P(m`n∞)

)
≤ C(m)

√
n
m−1

.

These estimates are consequences of more general results that relate the
unconditional basis constants of (full or symmetric) tensor products with
classical concepts from Banach space theory, such as the Banach–Mazur dis-
tance to `n1 or the Gordon–Lewis property. The fact that we are specifically
working with `n∞ played no rôle there. This was taken into account in [6],
where the Bohnenblust–Hille inequality, a very particular property of `n∞,
was substantially improved and used to show that there exists a universal
constant C such that

1

Cm

(
n

m

)(m−1)/2
≤ χ

(
(zα)α;P(m`n∞)

)
≤ Cm

(
n

m

)(m−1)/2
if n ≥ m,

1 ≤ χ
(
(zα)α;P(m`n∞)

)
≤ Cm if n < m.
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Our aim is to prove a refinement of these inequalities which in a very precise
sense links the degree m of the polynomials with their number n of variables.

Theorem 1.1. We have

(1.1) lim
n→∞

supm
m

√
χ
(
(e∗i )i;L(m`n∞)

)
√
n

= 1

and

(1.2) lim
n→∞

supm
m

√
χ
(
(zα)α;P(m`n∞)

)√
n/log n

= 1.

Note that in the polynomial case there is a log term in n which distin-
guishes it from the multilinear case. Before we proceed to the proof, let us
note that a simple calculation characterizes χ

(
(e∗i )i;L(m`n∞)

)
to be the best

constant c > 0 such that for every L ∈ L(m`n∞),

(1.3)
∑

i∈M(m,n)

|L(ei1 , . . . , eim)| ≤ c‖L‖.

Analogously, χ
(
(zα)α;P(m`n∞)

)
is the best constant c > 0 such that for

every m-homogeneous polynomial P =
∑

α∈Λ(m,n) cαz
α in n variables,∑

α∈Λ(m,n)

|cα| ≤ c‖P‖.

Formulated in this way, it is plain that χ
(
(zα)α;P(m`n∞)

)
is the Sidon con-

stant of the characters (zα)α∈Λ(m,n) acting on the compact abelian group Tn.

2. Proof of the main result

Proof of (1.1). We prove that

1 ≤ lim inf
n→∞

supm χ
(
(e∗i )i;L(m`n∞)

)1/m
√
n

(2.1)

≤ lim sup
n→∞

supm χ
(
(e∗i )i;L(m`n∞)

)1/m
√
n

≤ 1.

To do this, we need a classical result due to Bohnenblust and Hille [3, Sec-
tion 2]: For each m there is a (best) constant BHmult

m ≥ 1 such that for every
L ∈ L(m`n∞) we have

(2.2)
( n∑
i1,...,im=1

|L(ei1 , . . . , eim)|
2m
m+1

)m+1
2m ≤ BHmult

m ‖L‖.
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A recent result from [2] shows that there exists a constant κ > 1 such that
for all m,

BHmult
m ≤ κm(1−γ)/2,

where γ is the Euler–Mascheroni constant. With this at hand, we start the
proof of the upper bound from (2.1). Take L ∈ L(m`n∞); then by Hölder’s
inequality

n∑
i1,...,im=1

|L(ei1 , . . . , eim)|

≤
( n∑
i1,...,im=1

|L(ei1 , . . . , eim)|
m+1
2m

) 2m
m+1 |M(m,n)|(m−1)/(2m)

≤ κm(1−γ)/2n(m−1)/2‖L‖.

This, in view of (1.3), implies that for every n and m we have

χ
(
(e∗i )i;L(m`n∞)

)
≤ κm(1−γ)/2n(m−1)/2,

and hence

χ
(
(e∗i )i;L(m`n∞)

)1/m ≤ κ1/mm(1−γ)/(2m)

n1/(2m)
n1/2.

Fix now some ε > 0 and choose m0 such that

sup
m≥m0

κ1/mm(1−γ)/(2m)

n1/(2m)
≤ sup

m≥m0

κ1/mm(1−γ)/(2m) ≤ 1 + ε.

But for each fixed m the sequence (κ1/mm(1−γ)/(2m)n−1/(2m))n tends to 0,
hence we can find n0 such that for all n ≥ n0,

sup
m<m0

κ1/mm(1−γ)/(2m)

n1/(2m)
≤ 1.

Then for all n ≥ n0 we have

supm χ
(
(e∗i )i;L(m`n∞)

)1/m
√
n

≤ max

{
supm<m0

χ
(
(e∗i )i;L(m`n∞)

)1/m
√
n

,
supm≥m0

χ
(
(e∗i )i;L(m`n∞)

)1/m
√
n

}
≤ 1 + ε.

This shows the right estimate in (2.1).

To prove the left estimate, by the Chevet type inequality from [1, The-
orem 4.4] there is an absolute constant C > 0 such that for each choice of
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m,n there are signs εi = ±1 with i ∈M(m,n) for which

nm =
(

sup
z∈B`n∞

n∑
i=1

|zi|
)m

=
∥∥∥ ∑
i∈M(m,n)

e∗i

∥∥∥
L(m`n∞)

(2.3)

=
∥∥∥ ∑
i∈M(m,n)

εiεie
∗
i

∥∥∥
L(m`n∞)

≤ χ
(
(e∗i )i;L(m`n∞)

)∥∥∥ ∑
i∈M(m,n)

εie
∗
i

∥∥∥
L(m`n∞)

≤ χ
(
(e∗i )i;L(m`n∞)

)
Cm(log n)3/2n(m+1)/2.

As a consequence we have

sup
m

1

C1/mm1/mn1/(2m)(log n)3/(2m)
≤

supm χ
(
(e∗i )i;L(m`n∞)

)1/m
√
n

,

and hence for m = n,(
1

Cn1/2(log n)3/2

)1/n

≤
supm χ

(
(e∗i )i;L(m`n∞)

)1/m
√
n

.

But if n tends to ∞, then we obtain the remaining left estimate in (2.1).

Proof of (1.2). The basic idea to estimate χ
(
(zα)α;P(m`n∞)

)
is essen-

tially the same, but technically more demanding. Again we split the proof
in two steps, and check the following upper and lower bounds.

(2.4) 1 ≤ lim inf
n→∞

supm χ
(
(zα)α;P(m`n∞)

)1/m√
n/log n

≤ lim sup
n→∞

supm χ
(
(zα)α;P(m`n∞)

)1/m√
n/log n

≤ 1.

To begin, we fix some ε > 0, and want to show that

(2.5) lim sup
n→∞

supm χ
(
(zα)α;P(m`n∞)

)1/m√
n/log n

≤ 1 + ε.

One of the key tools is going to be again the Bohnenblust–Hille inequality,
this time in its polynomial form. From (2.2) it is easy to prove, using the
polarization formula (this is done in [3, Section 3]), that for each m there
exists a (best) constant BHpol

m ≥ 1 such that for every m-homogeneous
polynomial P =

∑
α∈Λ(m,n) cαz

α we have( ∑
α∈Λ(m,n)

|cα|
2m
m+1

)m+1
2m ≤ BHpol

m ‖P‖.
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Again, a good control of the growth of BHpol
m is going to be crucial. In

[6] it was shown that for each δ > 0 there is a constant c(δ) ≥ 1 such
that BHpol

m ≤ c(δ)(
√

2 + δ)m for every m, and in [2] that
√

2 can even be
replaced by 1. Using Hölder’s inequality we find that for every n,m and
every polynomial P =

∑
α∈Λ(m,n) cαz

α,∑
α∈Λ(m,n)

|cα| ≤ BHpol
m |Λ(m,n)|(m−1)/(2m) sup

z∈Dn

∣∣∣ ∑
α∈Λ(m,n)

cα(f)zα
∣∣∣.

It is well known that

|Λ(m,n)| =
(
n+m− 1

m

)
≤ em

(
1 +

n

m

)m
,

hence for every n,

sup
m
χ
(
(zα)α;P(m`n∞)

)
≤ sup

m

[
BHpol

m e(m−1)/2
(

1 +
n

m

)(m−1)/2]
.

With this, in order to prove (2.5) it is enough to show that there is some n0
such that for all n ≥ n0 and every m,

(2.6)

[
BHpol

m e(m−1)/2
(

1 +
n

m

)(m−1)/2( log n

n

)m/2]
≤ (1 + ε)m.

Our strategy is going to be the following. First we find a proper n0 and
then consider three cases for m, showing that in each case, (2.6) holds. Let
us note first that, since limm((1 + ε)m/m)1/(m−1) = 1 + ε, we can choose
m1 = m1(ε) so that for every m ≥ m1,

(2.7) 1 +
ε

2
≤
(

(1 + ε)m

m

)1/(m−1)
.

As we already mentioned, for each δ > 0 there exists a constant c(δ) ≥ 1
such that for every m

BHpol
m ≤ c(δ)(1 + δ)m.

Choose δ > 0 so that 1+δ < (1+ε)1/4 and m2 = m2(ε) such that c(δ)1/m <
(1 + ε)1/4 for all m ≥ m2. Then

(2.8) sup
m2≤m

BHpol
m ≤ (1 + ε)m/2.

We fix m0 = max{m1,m2}. Let us now take n1 = n1(ε) such that for all
n ≥ n1,

(2.9) 1 +
1√
n
< 1 +

ε

2
,

and n2 = n2(ε) such that for all n ≥ n2,

(2.10)

√
2e log n

n1/4
≤
√

1 + ε.
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Since for each fixed m the sequence
((

1 + n
m

)(m−1)/2( logn
n

)m/2)
n

obviously
tends to zero, there clearly is some n3 = n3(ε) such that for all n ≥ n3,

(2.11) sup
m≤m0

[
BHpol

m e(m−1)/2
(

1 +
n

m

)(m−1)/2( log n

n

)m/2]
≤ 1.

We now set n0 = max{n1, n2, n3, (m0 + 1)2}. Observe that, although one
may think that n0 depends on ε and m0, in fact m0 only depends on ε;
hence actually n0 = n0(ε).

Now in order to prove (2.6) we fix n ≥ n0 and choose m ≥ 2. We consider
three different cases for m: m ≤ m0, and m0 ≤ m <

√
n, or

√
n ≤ m.

Observe that (2.11) already shows that (2.6) holds for m ≤ m0. For the
remaining two cases let us note first that by (2.7) and (2.9) we have, for
every m0 ≤ m,

1 +
1√
n
≤
(

(1 + ε)m

m

)1/(m−1)
.

Then, if m0 ≤ m <
√
n, a straightforward calculation gives(

1 +
n

m

)(m−1)/2
≤
(√

n+ n

m

)(m−1)/2
(2.12)

≤ (1 + ε)m/2n(m−1)/2√
m

1

m(m−1)/2

= (1 + ε)m/2
nm/2

n1/2mm/2
,

and with (2.8) this implies that

BHpol
m e(m−1)/2

(
1 +

n

m

)(m−1)/2( log n

n

)m/2
≤ (1 + ε)me(m−1)/2

nm/2

n1/2mm/2

(
log n

n

)m/2
≤ (1 + ε)m

(
e log n

n1/mm

)m/2
.

Now a simple calculation shows that the function x ∈ (0,∞) 7→ xn1/x has
a global minimum e log n at x = log n. This proves (2.6) in the second case:
m0 ≤ m <

√
n (remember that n ≥ n0 was fixed). Finally, for the third case√

n ≤ m, we trivially have(
1 +

n

m

)(m−1)/2
≤ (2
√
n)m/2,

and hence in this last case we get (2.6) using (2.8) and (2.10). This completes
the proof of (2.5).

Finally, it remains to show the left inequality in (2.4). The main tool is
again of probabilistic nature, and we are going to use the Kahane–Salem–
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Zygmund inequality [11, Chapter 6, Theorem 4]: There is a universal con-
stant CKSZ > 0 such that for every scalar family cα, α ∈ Λ(m,n), there
exists a choice of signs εα ∈ {1,−1} for α ∈ Λ(m,n) such that we have

sup
z∈Dn

∣∣∣ ∑
α∈Λ(m,n)

εαcαz
α
∣∣∣ ≤ CKSZ

√
n logm

∑
α∈Λ(m,n)

|cα|2.

We consider cα = m!/α!, α ∈ Λ(m,n). Then there are εα ∈ {1,−1} such
that ∑

α∈Λ(m,n)

m!

α!
≤ χ

(
(zα)α;P(m`n∞)

)
sup
z∈Dn

∣∣∣∣ ∑
α∈Λ(m,n)

εα
m!

α!
zα
∣∣∣∣

≤ χ
(
(zα)α;P(m`n∞)

)
CKSZ

√√√√n logm
∑

α∈Λ(m,n)

(
m!

α!

)2

.

By the multi-binomial formula we have∑
α∈Λ(m,n)

m!

α!
= nm

and ∑
α∈Λ(m,n)

(
m!

α!

)2

≤ m!
∑

α∈Λ(m,n)

m!

α!
= m!nm.

This gives, for all m,n,

n(m−1)/(2m)

C
1/m
KSZ(m! logm)1/(2m)

≤ χ
(
(zα)α;P(m`n∞)

)1/m
.

Recall Stirling’s formula m! ≤ 2
√

2πm(m/e)m; hence for all m,n,

n(m−1)/(2m)

C
1/m
KSZ(logm)1/(2m)21/(2m)(2πm)1/(4m)(m/e)1/2

≤ χ
(
(zα)α;P(m`n∞)

)1/m
.

Now we set m = dlog ne and divide by
√
n/log n to obtain, for all n,√

(log n)/nn
logn−1
2 logn

C
1

logn

KSZ (log(1 + log n))
1

2 logn 2
1

2 logn (2π log n)
1

4 logn
(1+logn

e

)1/2
≤

supm χ
(
(zα)α;P(m`n∞)

)1/m√
n/log n

.

But the left side of this inequality tends to 1 as n → ∞. This clearly gives
the left inequality in (2.4), and completes the proof of Theorem 1.1.
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3. Two consequences

3.1. A tensor product formulation. It is well known that the Banach
space L(m`n∞) of m-linear forms can be represented as an m-fold tensor
product, and the Banach space P(m`n∞) of m-homogeneous polynomials as
an m-fold symmetric tensor product. More precisely, we have

(3.1) L(m`n∞) =
⊗m

ε
`n1 and P(m`n∞) =

⊗s,m

εs
`n1

isometrically as Banach spaces (see e.g. [9, Chapter 1] or [10]); here ε stands
for the injective tensor norm on the tensor product

⊗m `n1 , and εs for the
symmetric injective tensor norm on the symmetric tensor product

⊗s,m `n1 .
Under the identification from (3.1) the basis (e∗i )i∈M(m,n) of L(m`n∞) trans-
fers into the basis of

⊗m
ε `

n
1 given by ei = (ei1 ⊗ · · · ⊗ eim) for i ∈M(m,n).

Analogously, the image of the monomial basis (zα)α∈Λ(m,n) in P(m`n∞) is the
basis

S(ej) =
1

m!

∑
σ∈Πm

(ejσ(1) ⊗ · · · ⊗ ejσ(m)
), j = (j1, . . . , jm) ∈ J (m,n),

of
⊗s,m

εs
`n1 , where Πm stands for all permutations of {1, . . . ,m} and

J (m,n) = {j ∈M(m,n) : 1 ≤ j1 ≤ · · · ≤ jm ≤ n}.
With this notation, Theorem 1.1 has the following immediate translation in
terms of tensor products.

Corollary 3.1. We have

lim
n→∞

supm χ
(
(ei)i∈M(m,n);

⊗m
ε `

n
1

)1/m
√
n

= 1

and

lim
n→∞

supm χ
(
(Sej)j∈J (m,n);

⊗s,m
εs

`n1
)1/m√

n/log n
= 1.

3.2. Bohr radius. The nth Bohr radius Kn is defined to be the supre-
mum of 0 ≤ r ≤ 1 such that for all holomorphic functions f : Dn → C we
have

sup
z∈rDn

∑
α∈Nn0

∣∣∣∣∂αf(0)

α!
zα
∣∣∣∣ ≤ sup

z∈Dn

∣∣∣∣ ∑
α∈Nn0

∂αf(0)

α!
zα
∣∣∣∣,

and Km
n , the mth homogeneous Bohr radius, is defined analogously, taking

only m-homogeneous polynomials
∑

α∈Nn0 , |α|=m
cαz

α. These objects have

been extensively studied over the last years. By [7, Corollary 2.3] we have

(3.2)
1

3
inf
m
Km
n ≤ Kn ≤ min

{
1

3
, inf
m
Km
n

}
.
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In the special case n = 1 obviously Km
1 = 1, hence

K1 =
1

3
.

This is Bohr’s famous power series theorem from [4], and it shows that the
factor 1/3 in (3.2) is indispensable at least for small n. But how important
is this factor for large n ? Or, to put it in technical terms: Does the equality

lim
n→∞

Kn

infmKm
n

=
1

3

hold? This question appears explicitly in [8, Problem 4.4]. Let us see with
Theorem 1.1 that this is not the case: First of all, from [2] we know that

lim
n→∞

Kn√
(log n)/n

= 1

(improving the inequality 1 ≤ lim infnKn

√
n/log n ≤ lim supnKn

√
n/log n

≤
√

2 from [6]). On the other hand, straightforward arguments show (see
[7, Lemma 2.1]) that for all n,m,

Km
n =

1

m

√
χ
(
(zα)α;P(m`n∞)

) .
These two facts, together with Theorem 1.1, readily give our last result
which shows that, when n grows, the factor 1/3 looses influence in (3.2).

Corollary 3.2. We have

lim
n→∞

Kn

infmKm
n

= 1.

Acknowledgements. This research was supported by MCINN project
MTM2014-57838-C2-2-P.

References

[1] F. Bayart, Maximum modulus of random polynomials, Quart. J. Math. 63 (2012),
21–39.

[2] F. Bayart, D. Pellegrino, and J. B. Seoane-Sepúlveda, The Bohr radius of the n-
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