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The Bohr—P4al theorem and the Sobolev space ng /2
by

VLADIMIR LEBEDEV (Moscow)

Abstract. The well-known Bohr—P4&l theorem asserts that for every continuous real-
valued function f on the circle T there exists a change of variable, i.e., a homeomorphism h
of T onto itself, such that the Fourier series of the superposition foh converges uniformly.
Subsequent improvements of this result imply that actually there exists a homeomorphism
that brings f into the Sobolev space W, /2(T). This refined version of the Bohr—P4l the-
orem does not extend to complex-valued functions. We show that if @ < 1/2, then there
exists a complex-valued f that satisfies the Lipschitz condition of order a and at the same
time has the property that foh ¢ W, / *(T) for every homeomorphism h of T.

For every integrable function f on the circle T = R/27Z (where R is the
real line and Z is the group of integers) consider its Fourier series

Ft) ~ Y Fk)e™,  teT.

kEZ

Recall that the Sobolev space I/VQ]L /2 (T) is the space of all (integrable) func-
tions f with

S IF )21k < oc.

kEZ

Let C(T) be the space of all continuous functions on T.

It is well-known that certain properties of continuous functions related to
Fourier series can be considerably improved by a change of variable, i.e., by
a homeomorphism of the circle onto itself. The first significant result in this
area is the Bohr—P4l theorem that states that for every real-valued f € C(T)
there exists a homeomorphism A of T onto itself such that the superposi-
tion f o h belongs to the space U(T) of functions with uniformly convergent
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Fourier series. (The theorem was obtained in a somewhat weaker form by
J. Pal [11], and in the final form by H. Bohr [2].) The original method of
proof of this result uses conformal mappings and in fact allows us (see [9]
Sec. 3]) to obtain the following representation:

(1) foh=g+v, geWs*nC(T), v eV nC(T),

where V(T) is the space of functions of bounded variation on T. It is well-

known that both W5/ N C(T) and V N C(T) are subsets of U(T), thus
implies foh € U(T

A substantial improvement of the Bohr—Pal theorem was obtained by
A. A. Sahakian [12, Corollary 1], who showed that if a(n), n =0,1,2,...,
is a positive sequence satisfying ) a(n) = oo and a certain condition of
regularity, then for every real-valued f € C(T) there is a homeomorphism
h such that f/o\h(k) = O(a(]k|)). An immediate consequence of Sahakian’s
result is that the term 1 in can be omitted, i.e., the following refined
version of the Bohr-P4l theorem holds: for every real-valued f € C(T) there

exists a homeomorphism h of T onto itself such that f o h € WQI/Q(T).
This refined version also follows from a result on conjugate functions, ob-
tained by W. Jurkat and D. Waterman [4] (see also [3, Theorem 9.5]). We
note that Sahakian’s result is obtained by purely real analysis techniques,
whereas Jurkat and Waterman use an approach similar to the one of Bohr
and Pal. A very short proof of the refined version of the Bohr-P4l theorem
was communicated to the author by A. Olevskii (see [7, Sec. 3]).

Another improvement of the Bohr—P4&l theorem was obtained by J.-P.
Kahane and Y. Katznelson [6] (see also [9], [5]). These authors showed that
if K is a compact family of functions in C(T), then there exists a homeo-
morphism h of T such that foh € U(T) for all f € K. This result nat-
urally leads to the question whether it is possible to attain the condition
fohe W21/2(’]I‘) for all f € K. This question was posed by A. Olevskii [10].
A negative answer was obtained by the present author [7, Theorem 4]: it
turns out that, given a real-valued u € C(T), the property that for every
real-valued v € C(T) there is a homeomorphism h such that both u o h and

voh are in W21 / 2(']1‘) is equivalent to the boundedness of the variation of w.
Thus, in general, there is no single change of variable which will bring two

real-valued functions in C(T) into VV21 / 2(’I[‘). Certainly this amounts to the

existence of a complex-valued f € C(T) such that foh ¢ VV21 /2 (T) for every
homeomorphism h of T.

(*) Assuming g € I/VQI/Q(T)7 it follows that 3=, - v [kg(k)| = o(IV), which for a function
g € C(T) implies g € U(T) (see, e.g., [1, Ch. I, Sec. 64]). The inclusion V N C(T) C U(T)
is due to Jordan (see [I, Ch. I, Sec. 39]).
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The purpose of this work is to show that there exists a complex-valued
function f that is very smooth but at the same time has the property that

foh¢ ng /2 (T) for every homeomorphism h of T.
Note that, as one can easily verify (see, e.g., [7, Sec. 3]), the two semi-

norms
-~ /
1772y = (S IFRIR)
keZ

@) S y
W lgncry = (3 g S 156+0) = 2 aran)
0 0

are equivalent on W21/2(T), ie., fisin W21/2( T) if and only if || f][, 172

< 00, and
2
g r2gey < I lyrory < eallFlarnggy  for all £ € W3/A(T)

where ¢1,co > 0 do not depend on f. Thus, every function that satisfies
the Lipschitz condition of order greater than 1/2 belongs to W21 / 2(’]I‘). We
shall show that, in general, there is no change of variable which will bring a
complex-valued function that satisfies the Lipschitz condition of order less
than 1/2 into W21 / 2(’]I‘). The author does not know if the same holds for
functions satisfying the Lipschitz condition of order 1/2 (see remarks at the
end of the paper).

Let w be a modulus of continuity, i.e., a nondecreasing continuous func-
tion on [0,00) such that w(0) = 0 and w(r + y) < w(x) + w(y). We de-
note by Lip,(T) the class of all complex-valued functions f on T with
w(f,0) = 0(w(9)), 6 — 40, where

w(f,0) = sup [f(tr) = f(t2)], 020,

|t1—t2‘§5

is the modulus of continuity of f. For 0 < a < 1 we just write Lip, instead
Of Lip&a .

THEOREM. Suppose that limsups_, ow(8)/V6 = oo. Then there erists

a complex-valued function f € Lip,,(T) such that foh ¢ W21/2(']I‘) for every
homeomorphism h of the circle T onto itself. In particular, if o < 1/2, then
there exists a function of class Lip, (T) with this property.

Ideologically the method of the proof of this theorem is close to the one
used by the author to prove Theorem 4 in [7].

We shall need certain preliminary constructions and lemmas. The simple
lemma below is purely technical.
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LEMMA 1. Under the assumption of the Theorem on w, there ezists a
sequence 0 > 0, k=1,2,..., such that

(3) iak < 21/6,
k=1

(4) D (w(dr))? = .
k=1

Proof. For each j = 1,2,... we can find ¢; such that 0 < ¢; < 2~-(U+1)
and )
@ED L g
€5
Choose positive integers n; satisfying
1 .
j<2j€g j=12,....
Let No = 1 and let N; = N;j_1 +n; for j = 1,2,.... We define the se-
quence 0, kK = 1,2,..., by setting 6 = ¢; if Nj_1 <k < N;,7=1,2,....
This yields

2tle;

(o] o0 1
de_z Z 5k:zlnj€j§,zl2j:1’
j= j=

J=1 Nj _1<k<N;
and at the same time

S @) = mywle)? > e > o

Nj_1§k<Nj

[\)

which proves the lemma.

For a closed interval I = [a,b] C (0,27) let A; denote the “triangle”
function supported on I, i.e., a continuous function on [0,27] such that
Ar(t) =0 for all t € [0,a] U [b,27], Ar(c) = 1, where ¢ = (a + b)/2 is the
center of I, and Ay is linear on [a, c] and on [c, b].

Let 0g, k= 1,2,..., be the sequence from Lemma [l Consider intervals
I, = [ag,bk] C (0,27) of length by — ap = 60, where ap < by < agi1,
E=1,2,... (see ) For each k let J, denote the left half of Iy, i.e.,
Jr = [ak,(ak—}-bk)/Q}, k=1,2,....

Everywhere below we use v and v to denote the real-valued functions on
T defined by

o0 o0
u(t) =Y wdp)An(t), v(t) =Y wlr)As ), tel0,2n].
k=1 k=1
We shall show that the function f = u + v satisfies the assertion of the
theorem.



Bohr—Padl theorem 77

LEMMA 2. The functions u and v are of class Lip,,(T).

Proof. 1t is clear that for every (closed) interval I C (0,2r), the func-
tion Ay satisfies

2
(5) |A](t1) — A](t2)| < m|t1 — tg‘ for all t1,t9 € [0, 27['],

where |I| is the length of I.

Note also that if 0 < z < y, then w(y)/y < 2w(x)/z. Indeed, let n =
[y/x] + 1, where [a] denotes the integer part of a; then y < nx < 2y, so

w(y) < w(nx) < nw(z) < Qw(x).
Yy Yy Yy T
Let us show that u € Lip,,(T); for v the proof is similar. It is easy to see
that it suffices to verify that for all ¢1,ts € |, I we have

u(tr) — u(t2)] < cw(|ts — taf),

where ¢ > 0 does not depend on 1 or ts.
First we consider the case when ¢; and to belong to the same interval I.

Then, since |t — t2| < |I;| = 6Jk, we have

w(66) _ ity — 1]
65k - |t1—t2| ’

50 (see (B))

u(t1) — u(tz)| = w(dk)|Ar, (t1) — Ar(t2)]
2 w(6(5k)

Consider now the case when t; € Iy, to € Ij,, k1 # ko. We can assume
that ¢; < t9, and hence 0 < t; < by, < ax, < t2 < 27. Using the previous
estimate, we obtain

lu(t1) —u(t2)] < |u(tr)]| + |u(te)| = utr) — ulby,)| + [u(t2) — u(ag,)|
< 8uw([t1 — ta]),

|t1 — t2| < 4w(|t1 — t2|).

proving the lemma. =

For n =1,2,... we define
un(t) = max{u(t),1/n}, teT.

As above, V(T) stands for the class of functions of bounded variation on T.
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LEMMA 3. The functions u,, n = 1,2, ..., have the following properties:
(6)  |un(ty) —un(te)| < |u(ty) —u(te)| for all t1,te € T and all n;
(7) up € V(T)  for all n;
(8) sup Sv(t) dun(t)‘ = 00.
"o

Proof. Properties @ and are obvious. Let us verify (8). To this
end consider the middle thirds of the intervals Ji, namely, the intervals
J];k = lag + O, ar + 20;], k = 1,2,.... Note that if

w(ék) 1

then u,, coincides with u on J;'. So, if @D holds, then u, is increasing on J},
and at the endpoints of J; we have

up(ar + 0) = w(0k)/3, un(ag + 20x) = 2w(d)/3.
It is easily seen that for each k,
minv = 2w(dy)/3.
Ji

Taking into account that u, and hence u,,, is nondecreasing on each Jj, we
see that for all n and k satisfying @,
ay 420y 9 ap~+265
S vdu, > S v du, > §w(6k) S du,
Jk ap+0k ag+0k

= Sl g () = o w(3)?

In addition (since u,, is nondecreasing on each Jji) we have
S vdu, >0
Ik

for all n and k. Thus, taking into account that v vanishes outside (3= Jk,

we obtain
o

Svdun = Z S vduy, > Z S vduy, > Z g(w(ék))2.

T k=1 Jj k:w(0r)>3/n J k:w(dr)>3/n
Applying we see that holds. =

We shall also need the following auxiliary lemma.

LEMMA 4. If 2,y € Wy'> N C(T) and y € V(T), then

1
3w 710 )| < el 3y
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Proof. Integration by parts yields

127r 127r

o | e dy(t) = —5 | y(t) de™ = —ikg(—k).
0 0

So, if z is a trigonometric polynomial, using the Cauchy inequality we obtain

g 200 =[S 70015, | ““dyu)\
T T

_ ‘Z )(—ik)y )‘ < H55||W21/2(1r)HyHWQ/z(T)'

To see that the assertion holds in the general case, consider the Fejér sums

(@ = Y (11 )amer.

|k|<N

Since |r§(\x)(k)|§|§5(k)| for all k€Z, we have [lon(z), 172 )< |||

Hence,

1/2(T)

Qlﬂ_jerN(-f)(t)dy(t)‘<”UN($)HW21/2 Hy|| 172,

< H$HW21/2(T)Hy||W21/2(T)-
At the same time, since y is of bounded variation and oy (x) converges
uniformly to x, it is clear that
- fonte) ) ) - EOLT
as N — oo, which yields the assertion. m

Proof of the Theorem. Let f = u+iv. Lemmayields f € Lip,,(T), so it
remains to show that foh ¢ VV21 /2 (T) for every homeomorphism h of T. It is
obvious that if a function is in VV21 /2 (T), then so are its real and imaginary
parts. Assume, contrary to the assertion, that foh € W21 /2 (T) for a certain
homeomorphism h. Then uwo h € W21/2(T) and voh € W21/2(']I').

Note that (6) implies |up, o h(t1) — un © h(t2)| < |uo h(t1) — u o h(ts)|

for all t1,ty € T. Using the equivalence of the seminorms || - H 172y and
- I w2 ) (see (2))), we infer that u, o h € W21/2(']I‘) for alln = 1,2,.

and

(10) ||UnOhH 1/2 <c”uoh” 1/2( ) n= 1727"'7

(T)

where ¢ > 0 does not depend on n.
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The property of a function to be of bounded variation is invariant under
homeomorphic changes of variable, hence implies that u, oh € V(T) for
all n. Certainly we also have u,, o h € C(T). Applying Lemma [4] and taking
into account, we obtain

1
2

fo(t) dun(t)’ - ';ﬁ [0 A(t) duy o h(t)
T T

< Jlw 0 Ally 2t © Bll 373,

< el o Bl 12 gy 160 Blly 175,
which contradicts . n

REMARKS. 1. For s > 0 consider the Sobolev space W3 (T) of all (inte-
grable) functions f with

> 1F )1k < 0.

keZ

As shown in [7, Corollary 3], for each compact family K in C(T) (or equiv-
alently for each class Lip,(T)) there exists a homeomorphism h of T such
that foh € (.1, W3(T) for all f € K (resp. for all f € Lip,,(T)).

2. There exists a real-valued f € C(T) such that foh ¢ (J ., W5(T) for
every homeomorphism A of T. This is a simple consequence of the inclusion
Uss1/2 W3 NC(T) € A(T), where A(T) is the Wiener algebra of absolutely
convergent Fourier series, and of a well-known result of Olevskii that pro-
vides a negative answer to Lusin’s rearrangement problem: there exists a
real-valued f € C(T) such that foh ¢ A(T) for every homeomorphism h
([8], see also [9]).

3. The function f(t) = > ;5 27k/2¢i2" g in Lipy /5(T) (see, e.g., [1}
Ch. XI, Sec. 6]), but it is obvious that f ¢ W21/2(']I‘); thus Lipy o(T) ¢
VV21 /2 (T). The author does not know if the assertion of the Theorem holds
for w(8) = §'/2. At the same time there is no change of variable which will

bring the whole class Lip; /o(T) into W21/2(']I'): a proof will be presented in
another paper.
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