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Operator Lipschitz functions on Banach spaces

by
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Abstract. Let X, Y be Banach spaces and let L(X,Y ) be the space of bounded
linear operators from X to Y . We develop the theory of double operator integrals on
L(X,Y ) and apply this theory to obtain commutator estimates of the form

‖f(B)S − Sf(A)‖L(X,Y ) ≤ const ‖BS − SA‖L(X,Y )

for a large class of functions f , where A ∈ L(X), B ∈ L(Y ) are scalar type operators and
S ∈ L(X,Y ). In particular, we establish this estimate for f(t) := |t| and for diagonalizable
operators on X = `p and Y = `q for p < q.

We also study the estimate above in the setting of Banach ideals in L(X,Y ). The com-
mutator estimates we derive hold for diagonalizable matrices with a constant independent
of the size of the matrix.

1. Introduction. LetX be a Banach space and let L(X) be the space of
all bounded linear operators on X. Let A,B ∈ L(X) be scalar type operators
(see Definition 3.1 below) on X. Let f : sp(A) ∪ sp(B) → C be a bounded
Borel function, where sp(A) (resp. sp(B)) is the spectrum of the operator A
(resp. B). We are interested in Lipschitz type estimates

‖f(B)− f(A)‖L(X) ≤ const ‖B −A‖L(X),(1.1)

where ‖ · ‖L(X) is the uniform operator norm on the space L(X), and more
generally in commutator estimates

‖f(B)S − Sf(A)‖L(X,Y ) ≤ const ‖BS − SA‖L(X,Y )(1.2)

for Banach spaces X and Y , scalar type operators A ∈ L(X) and B ∈ L(Y ),
and S ∈ L(X,Y ). This problem is well-known in the special case where
X = Y is a separable Hilbert space, such as `2, and A and B are normal
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operators on X. In this paper we study such estimates in the Banach space
setting, and specifically for X = `p and Y = `q with p, q ∈ [1,∞].

In the special case where A,B are self-adjoint bounded operators on a
Hilbert space H, the estimate

‖f(B)− f(A)‖L(H) ≤ const ‖B −A‖L(H)(1.3)

was established by Peller [28, 26] (see also [12]) for f : R → R in the
Besov class Ḃ1

∞,1(R) (for the definition of Ḃ1
∞,1(R) see Section 3.3). This

result extended a long line of results from [7–9], in which the theory of dou-
ble operator integration was developed to study the difference f(B)− f(A)
(see also [10]). This theory was revised and extended in various directions,
including the Banach space setting, in [13]. However, until now the results
in the general setting were much weaker than in the Hilbert space setting.
In this paper we show that for scalar type operators on Banach spaces one
can obtain results matching those on Hilbert spaces.

In Corollary 4.9 below we prove that (1.1) holds when A,B ∈ L(X) are
scalar type operators with real spectrum and f ∈ Ḃ1

∞,1(R). It is immediate
from the definition of a scalar type operator that every normal operator onH
is of scalar type. Therefore, Corollary 4.9 extends (1.3) to the Banach space
setting. More generally, (1.2) holds for f ∈ Ḃ1

∞,1(R) and for all S ∈ L(X,Y )
(see Corollary 4.8).

If f is the absolute value function then f /∈ Ḃ1
∞,1(R) and the results

mentioned above do not apply. Moreover, the techniques which we used
to obtain (1.1) for f ∈ Ḃ1

∞,1(R) cannot be applied to the absolute value
function (see Remark 8.3). However, the absolute value function is important
in matrix analysis and perturbation theory (see [6, Sections VII.5 and X.2]).
In the case whereH is an infinite-dimensional Hilbert space, it was proved by
Kato [19] that the function t 7→ |t|, t ∈ R, does not satisfy (1.3). An earlier
example of McIntosh [24] showed the failure of the commutator estimate (1.2)
for this function in the case X = Y = H. Later, it was proved by Davies [11]
that for 1 ≤ p ≤ ∞ and the Schatten–von Neumann ideal Sp with the norm
‖ · ‖Sp , the estimate ∥∥|B| − |A|∥∥Sp ≤ const ‖B −A‖Sp
holds for all A,B ∈ Sp if and only if 1 < p <∞. Commutator estimates for
the absolute value function and different Banach ideals in L(H) have also
been studied in [16]. The proofs in [11, 13, 16] are based on Matsaev’s cele-
brated theorem (see [18]) or on the UMD-property of the reflexive Schatten–
von Neumann ideals. However, the spaces L(X,Y ) are not UMD-spaces, and
therefore the techniques used in [11, 13, 16] do not apply to them. To study
(1.2) for X = `p and Y = `q, we use completely different methods from those
of [11, 13, 16], namely the theory of Schur multipliers on the space L(`p, `q)
developed by Bennett [4, 5].
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Let p, q ∈ [1,∞] with p < q. In Section 6 we show (see Theorem 6.8) that,
for diagonalizable operators (for the definition see Section 5) A ∈ L(`p) and
B ∈ L(`q) with real spectrum, and for the absolute value function f ,

‖f(B)S − Sf(A)‖L(`p,`q) ≤ const ‖BS − SA‖L(`p,`q)(1.4)
holds for all S ∈ L(`p, `q) (where `∞ should be replaced by c0). Moreover, if
p, q ∈ [1,∞] with p = 1 or q =∞ then (1.4) holds for any Lipschitz function
f : C→ C. In particular,

‖f(B)− f(A)‖L(`1) ≤ const ‖B −A‖L(`1)(1.5)
and

‖f(B)− f(A)‖L(c0) ≤ const ‖B −A‖L(c0)(1.6)
for diagonalizable operators on `1 respectively c0. Therefore we show that,
even though (1.4) fails for p = q = 2 and f the absolute value function,
and in particular (1.1) fails for X = `2, (1.4) does hold for p < q and f
the absolute value function, and (1.1) holds for X = `1 or X = c0 and each
Lipschitz function f .

We also obtain results for p ≥ q. In particular, for p = q = 2 we prove (see
Corollary 6.15) that for each ε ∈ (0, 1] there exists a constant C ≥ 0 such
that the following holds. Let A,B ∈ L(`2) be compact self-adjoint operators,
and let U, V ∈ L(`2) be unitaries such that

UAU−1 =
∞∑
j=1

λjPj and V BV −1 =
∞∑
j=1

µjPj ,

where {λj}∞j=1 and {µj}∞j=1 are sequences of real numbers and Pj ∈ L(`2),
for j ∈ N, is the jth standard basis projection. Then

(1.7)
∥∥|B| − |A|∥∥L(`2)
≤ Cmin(‖V (B −A)U−1‖L(`2,`2−ε), ‖V (B −A)U−1‖L(`2+ε,`2))

where the right-hand side equals infinity if V (B − A)U−1 /∈ L(`2, `2−ε) ∪
L(`2+ε, `2).

The results stated here for the absolute value function in fact extend to
a larger class of functions. This is briefly mentioned in Remark 6.16.

We note that the constants which appear in our results depend on the
spectral constants of A and B from Section 3.1, and those in (1.4)–(1.6) on
the diagonalizability constants of A and B from (5.5). These quantities are
independent of the norms of A and B, and to obtain constants which do
not depend on A and B in any way one merely has to restrict to operators
with a sufficiently bounded spectral or diagonalizability constant. This is
already done implicitly on Hilbert spaces by considering normal operators,
for which these quantities are equal to 1. For example, in (1.7) the constant
C does not depend on A or B in any way. Our results therefore truly extend
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the known estimates on Hilbert spaces, the main difference between Hilbert
spaces and general Banach spaces being that on Hilbert spaces one has a
large and easily identifiable class of operators that have spectral constant 1
and that are diagonalizable by an isometry.

We study the commutator estimate in (1.2) in the more general form

‖f(B)S − Sf(A)‖I ≤ const ‖BS − SA‖I ,(1.8)

where I is an operator ideal in L(X,Y ). For example, we prove in Corol-
lary 4.8 that (1.3) holds for a general Banach ideal I in L(X) with the strong
convex compactness property (for definitions see Section 3.2), with respect
to the norm ‖ · ‖I .

We also present (see Theorem 7.3) an example of a Banach ideal (I, ‖ · ‖I)
in L(`p∗ , `p), for p ∈ [1,∞) and 1/p + 1/p∗ = 1 (with `∞ replaced by c0),
namely the ideal of p-summing operators, such that any Lipschitz function f
(in particular, the absolute value function) satisfies (1.8).

In the final section we apply our results to finite-dimensional spaces, and
obtain commutator estimates for diagonalizable matrices. Any diagonaliz-
able matrix is a scalar type operator, hence estimates (1.4)–(1.8) hold for
diagonalizable matrices A and B with a constant independent of the size of
the matrix.

2. Notation and terminology. The natural numbers are N =
{1, 2, . . .}. All vector spaces are over the complex number field. Through-
out, X and Y denote Banach spaces, the space of bounded linear operators
from X to Y is L(X,Y ), and L(X) := L(X,X). We identify the algebraic
tensor product X∗⊗ Y with the space of finite rank operators in L(X,Y )
via (x∗⊗ y)(x) := 〈x∗, x〉y for x ∈ X, x∗ ∈ X∗ and y ∈ Y . The spectrum
of A ∈ L(X) is sp(A), and by IX ∈ L(X) we denote the identity operator
on X. Throughout the text we use the abbreviations SOT and WOT for the
strong and weak operator topology, respectively.

For p ∈ [1,∞], Lp(R) is the usual Lebesgue space of p-integrable func-
tions on R. We let `p, for p ∈ [1,∞], be the space of p-summable sequences
(xk)k∈N ⊆ C, and c0 consists of all sequences (xk)k∈N ⊆ C which converge
to zero.

The Borel σ-algebra on a Borel measurable subset σ ⊆ C will be denoted
by Bσ, and B := BC. For measurable spaces (Ω1, Σ1) and (Ω2, Σ2) we
denote by Σ1 ⊗ Σ2 the σ-algebra on Ω1 × Ω2 generated by all measurable
rectangles σ1 × σ2 with σ1 ∈ Σ1 and σ2 ∈ Σ2. If (Ω,Σ) is a measurable
space then B(Ω,Σ) is the space of all boundedΣ-measurable complex-valued
functions on Ω, a Banach algebra with the supremum norm

‖f‖B(Ω,Σ) := sup
ω∈Ω
|f(ω)| (f ∈ B(Ω,Σ)).
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We simply write B(Ω) := B(Ω,Σ) and ‖f‖∞ := ‖f‖B(Ω,Σ) when no confu-
sion can arise.

If µ is a complex Borel measure on a measurable space (Ω,Σ) and X is
a Banach space, then a function f : Ω → X is µ-measurable if there exists a
sequence of X-valued simple functions converging to f µ-almost everywhere.
For Banach spaces X and Y and a function f : Ω → L(X,Y ), we say that
f is strongly measurable if ω 7→ f(ω)x is a µ-measurable mapping Ω → Y
for each x ∈ X.

If µ is a positive measure on a measurable space (Ω,Σ) and f : Ω →
[0,∞] is a function, we let

�

Ω

f(ω) dµ(ω) := inf
�

Ω

g(ω) dµ(ω) ∈ [0,∞],

where the infimum is taken over all measurable g : Ω → [0,∞] such that
g(ω) ≥ f(ω) for ω ∈ Ω.

The Hölder conjugate of p ∈ [1,∞] is denoted by p∗ and is defined by
1/p + 1/p∗ = 1. The indicator function of a subset σ of a set Ω is denoted
by 1σ. We will often identify functions defined on σ with their extensions to
Ω by setting them equal to zero off σ.

3. Preliminaries

3.1. Scalar type operators. In this section we summarize some of the
basics of scalar type operators, as taken from [17].

Let X be a Banach space. A spectral measure on X is a map E :
B→ L(X) such that:

• E(∅) = 0 and E(C) = IX ;
• E(σ1 ∩ σ2) = E(σ1)E(σ2) for all σ1, σ2 ∈ B;
• E(σ1 ∪ σ2) = E(σ1) + E(σ2)− E(σ1)E(σ2) for all σ1, σ2 ∈ B;
• E is σ-additive in the strong operator topology.

Note that these conditions imply that E is projection-valued. Moreover, by
[17, Corollary XV.2.4] there exists a constant K such that

‖E(σ)‖L(X) ≤ K (σ ∈ B).(3.1)

An operator A ∈ L(X) is a spectral operator if there exists a spectral
measure E on X such that AE(σ) = E(σ)A and sp(A,E(σ)X) ⊆ σ for
all σ ∈ B, where sp(A,E(σ)X) denotes the spectrum of A in the space
E(σ)X. For a spectral operator A, we let ν(A) denote the minimal con-
stant K occurring in (3.1) and call ν(A) the spectral constant of A. This
is well-defined since the spectral measure E associated with A is unique
(cf. [17, Corollary XV.3.8]). Moreover, E is supported on sp(A) in the sense
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that E(sp(A)) = IX [17, Corollary XV.3.5]. Hence we can define an inte-
gral with respect to E of bounded Borel measurable functions on sp(A),
as follows. For f =

∑n
j=1 αj1σj a finite simple function with αj ∈ C and

σj ⊆ sp(A) mutually disjoint Borel sets for 1 ≤ j ≤ n, we let
�

sp(A)

f dE :=
n∑
j=1

αjE(σj).(3.2)

This definition is independent of the representation of f , and∥∥∥ �

sp(A)

f dE
∥∥∥
L(X)

= sup
‖x‖X=‖x∗‖X∗=1

∣∣∣ n∑
j=1

αjx
∗E(σj)x

∣∣∣
≤ sup

j
|αj | sup

‖x‖X=‖x∗‖X∗=1
‖x∗E(·)x‖var

≤ 4‖f‖B(sp(A)) sup
‖x‖X=‖x∗‖X∗=1

sup
σ⊆sp(A)

|x∗E(σ)x|

≤ 4ν(A)‖f‖B(sp(A)),
where ‖x∗E(·)x‖var is the variation norm of the measure x∗E(·)x. Since the
simple functions lie dense in B(sp(A)), for general f ∈ B(sp(A)) we can
define �

sp(A)

f dE := lim
n→∞

�

sp(A)

fn dE ∈ L(X)

for {fn}∞n=1 ⊆ B(sp(A)) a sequence of simple functions with ‖fn−f‖∞→ 0
as n→∞. This definition is independent of the choice of the approximating
sequence and ∥∥∥ �

sp(A)

f dE
∥∥∥
L(X)

≤ 4ν(A)‖f‖B(sp(A)).(3.3)

It is straightforward to check that�

sp(A)

(αf + g) dE = α
�

sp(A)

f dE +
�

sp(A)

g dE,

�

sp(A)

fg dE =
( �

sp(A)

f dE
)( �

sp(A)

g dE
)

for all α ∈ C and simple f, g ∈ B(sp(A)), and approximation then ex-
tends these identities to general f, g ∈ B(sp(A)). Moreover,

	
sp(A) 1dE =

E(sp(A)) = IX . Hence the map f 7→
	
sp(A) f dE is a continuous mor-

phism B(sp(A)) → L(X) of unital Banach algebras. Since the spectrum
of A is compact, the identity function λ 7→ λ is bounded on sp(A) and	
sp(A) λ dE(λ) ∈ L(X) is well-defined.
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Definition 3.1. A spectral operator A ∈ L(X) with spectral measure E
is a scalar type operator if

A =
�

sp(A)

λ dE(λ).

The class of scalar type operators on X is denoted by Ls(X).

For A ∈ Ls(X) with spectral measure E and f ∈ B(sp(A)) we define

f(A) :=
�

sp(A)

f dE.(3.4)

As remarked above, f 7→ f(A) is a continuous morphism B(sp(A))→ L(X)
of unital Banach algebras with norm bounded by 4ν(A). Note also that

〈x∗, f(A)x〉 =
�

sp(A)

f(λ) d〈x∗, E(λ)x〉(3.5)

for all f ∈ B(sp(A)), x ∈ X and x∗ ∈ X∗. Indeed, for simple functions
this follows from (3.2), and by taking limits one obtains (3.5) for general
f ∈ B(sp(A)).

Finally, we note that a normal operator A on a Hilbert space H is a
scalar type operator with ν(A) = 1, and in this case (3.3) improves to∥∥∥ �

sp(A)

f dE
∥∥∥
L(H)

≤ ‖f‖B(sp(A)),(3.6)

as is known from the Borel functional calculus for normal operators.

3.2. Spaces of operators. In this section we discuss some properties
of spaces of operators that we will need later on.

First we provide a lemma about approximation by finite rank operators.
Recall that a Banach space X has the bounded approximation property if
there exists M ≥ 1 such that, for each K ⊆ X compact and ε > 0, there
exists S ∈ X∗⊗X with ‖S‖L(X) ≤M and supx∈K ‖Sx− x‖X < ε.

Lemma 3.2. Let X and Y be Banach spaces such that X is separable
and either X or Y has the bounded approximation property. Then each
T ∈ L(X,Y ) is the SOT-limit of a norm bounded sequence of finite rank
operators.

Proof. Fix T ∈ L(X,Y ). By [23, Proposition 1.e.14] there exists a norm
bounded net {Tj}j∈J ⊆ X∗⊗ Y having T as its SOT-limit. It is straight-
forward to see that the strong operator topology is metrizable on bounded
subsets of L(X,Y ) by

d(S1, S2) :=
∞∑
k=1

2−k‖S1xk − S2xk‖Y (S1, S2 ∈ L(X,Y )),
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where {xk}k∈N ⊆ X is a countable subset that is dense in the unit ball of X.
Hence there exists a subsequence of {Tj}j∈J with SOT-limit T .

Let X and Y be Banach spaces and let Z be a Banach space which is
continuously embedded in L(X,Y ). Following [38] (in the case where Z is
a subspace of L(X,Y )), we say that Z has the strong convex compactness
property if the following holds. For any finite measure space (Ω,Σ, µ) and
any strongly measurable bounded f : Ω → Z, the operator T ∈ L(X,Y )
defined by

Tx :=
�

Ω

f(ω)x dµ(ω) (x ∈ X),(3.7)

belongs to Z with ‖T‖Z ≤
	
Ω‖f(ω)‖Z dµ(ω). By the Pettis Measurability

Theorem, any separable Z has this property. Indeed, if Z is separable then
combining Propositions 1.9 and 1.10 in [37] shows that any strongly mea-
surable f : Ω → Z is µ-measurable as a map to Z. If f is bounded as well,
then (3.7) defines an element of Z with

‖T‖Z ≤
�

Ω

‖f(ω)‖Z dµ(ω).

It is shown in [38] and [33] that the subspaces of compact and weakly com-
pact operators in L(X,Y ) have the strong convex compactness property,
but not all subspaces of L(X,Y ) do. Moreover, if N is a semifinite von Neu-
mann algebra on a separable Hilbert space H, with faithful normal semifinite
trace τ , and F is a rearrangement invariant Banach function space with the
Fatou property, then E = N ∩ F(N , τ) has the strong convex compactness
property (see [3, Lemma 3.5]).

Lemma 3.3. Let X and Y be separable Banach spaces and Z a Banach
space continuously embedded in L(X,Y ). If BZ := {z ∈ Z | ‖z‖Z ≤ 1} is
SOT-closed in L(X,Y ), then Z has the strong convex compactness property.

Proof. The proof follows that of [3, Lemma 3.5]. First we show that BZ is
a Polish space in the strong operator topology. As in the proof of Lemma 3.2,
bounded subsets of L(X,Y ) are SOT-metrizable. The finite rank operators
are SOT-dense in L(X,Y ), hence L(X,Y ) is SOT-separable. Therefore BZ
is SOT-separable and metrizable. By assumption, BZ is complete.

Now let (Ω,µ) be a finite measure space and let f : Ω → Z be bounded
and strongly measurable. Without loss of generality, we may assume that
f(Ω) ⊆ BZ and that µ is a probability measure. For each y∗ ∈ Y ∗ and
x ∈ X, the mapping BZ → [0,∞), T 7→ |〈y∗, Tx〉|, is continuous. The
collection of all these mappings, for y∗ ∈ Y ∗ and x ∈ X, separates the points
of BZ . Moreover, ω 7→ |〈y∗, f(ω)x〉| is a measurable mapping Ω → [0,∞)
for each y∗ ∈ Y ∗ and x ∈ X. By [37, Propositions 1.9 and 1.10], f is the
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µ-almost everywhere SOT-limit of a sequence of BZ-valued simple functions
{fk}∞k=1. Let Tk :=

	
Ω fk dµ ∈ BZ for k ∈ N. By the dominated convergence

theorem, Tk(x) → T (x) :=
	
Ω f(ω)x dµ(ω) as k → ∞, for all x ∈ X. Since

BZ is SOT-closed by the assumption, we conclude that T ∈ BZ .
Now let g : Ω → [0,∞) be measurable such that 1 ≥ g(ω) ≥ ‖f(ω)‖Z for

ω ∈ Ω, and define

h(ω) :=
f(ω)

g(ω)
and dν(ω) :=

g(ω)	
Ω g(η) dµ(η)

dµ(ω)

for ω ∈ Ω. By what we have shown above, x 7→
	
Ω h(ω)x dν(ω) defines an

element of BZ . Since

Tx =
�

Ω

f(ω)x dµ(ω) =
�

Ω

g(ω) dµ(ω)
�

Ω

h(ω)x dν(ω),

we obtain ‖T‖Z ≤
	
Ω g(ω) dµ(ω), as remained to be shown.

Remark 3.4. Note that the converse implication does not hold. Indeed,
if X is a Hilbert space (or more generally, a Banach space with the metric
approximation property) then the finite rank operators of norm less than or
equal to 1 are SOT-dense in the unit ball of L(X). Therefore the compact
operators of norm less than or equal to 1 are not SOT-closed in L(X) if X
is infinite-dimensional. However, by [38, Theorem 1.3], the space of compact
operators on X has the strong convex compactness property.

Let X and Y be Banach spaces and I a Banach space which is contin-
uously embedded in L(X,Y ). We say that (I, ‖ · ‖I) is a Banach ideal in
L(X,Y ) if

• for all R ∈ L(Y ), S ∈ I and T ∈ L(X), RST ∈ I with ‖RST‖I ≤
‖R‖L(Y )‖S‖I‖T‖L(X);
• X∗⊗ Y ⊆ I with ‖x∗⊗ y‖I = ‖x∗‖X∗‖y‖Y for all x∗ ∈ X∗ and y ∈ Y .

By Lemma 3.3 and [14, Proposition 17.21] (using the fact that the SOT and
WOT closures of a convex set coincide), for separable X and Y , any maximal
Banach ideal (for the definition see e.g. [29]) in L(X,Y ) has the strong convex
compactness property. This includes a large class of operator ideals, such as
the ideal of absolutely p-summing operators, the ideal of integral operators,
etc. (see [14, p. 203]).

3.3. Algebras of functions. In this section we discuss some algebras
of functions that will be essential in later sections.

Let σ1, σ2 ⊆ C be Borel measurable subsets and let A(σ1 × σ2) be the
class of Borel functions ϕ : σ1 × σ2 → C such that

ϕ(λ1, λ2) =
�

Ω

a1(λ1, ω)a2(λ2, ω) dµ(ω)(3.8)
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for all (λ1, λ2) ∈ σ1 × σ2, where (Ω,Σ, µ) is a finite measure space (with
µ positive) and a1 ∈ B(σ1 × Ω,Bσ1 ⊗ Σ), a2 ∈ B(σ2 × Ω,Bσ2 ⊗ Σ). For
ϕ ∈ A(σ1 × σ2) let

‖ϕ‖A(σ1×σ2) := inf
�

Ω

‖a1(·, ω)‖B(σ1)‖a2(·, ω)‖B(σ2) dµ(ω),

where the infimum is taken over all possible representations (1) in (3.8) (it
is straightforward to show that the map ω 7→ ‖a1(·, ω)‖B(σ1)‖a2(·, ω)‖B(σ2)
is measurable).

Remark 3.5. The class A(σ1×σ2) is equal (see e.g. [30, 12]) to the class
of functions ϕ : σ1 × σ2 → C admitting a representation

ϕ(λ1, λ2) =
�

Ω

b1(λ1, ω)b2(λ2, ω) dν(ω)(3.9)

for all (λ1, λ2) ∈ σ1 × σ2, where (Ω,Σ, ν) is a measure space and bj :
σj × Ω → C, for j = 1, 2, are measurable functions such that ω 7→
‖b1(·, ω)‖B(σ1)‖b2(·, ω)‖B(σ2) is measurable and

�

Ω

‖b1(·, ω)‖B(σ1)‖b2(·, ω)‖B(σ2) dν(ω) <∞.

Indeed, any ϕ ∈ A(σ1 × σ2) has a representation as in (3.9), and conversely
any ϕ : σ1 × σ2 → C satisfying (3.9) also satisfies (3.8) with aj ∈ B(σj ×Ω)
defined by

aj(λj , ω) :=
b(λj , ω)

‖b(·, ω)‖B(σj)
for j = 1, 2, λj ∈ σj and ω ∈ Ω, and with the finite measure µ given by
dµ(ω) = ‖b1(·, ω)‖B(σ1)‖b2(·, ω)‖B(σ2)dν(ω).

Lemma 3.6. For all σ1, σ2 ⊆ C measurable, A(σ1×σ2) is a unital Banach
algebra which is contractively included in B(σ1 × σ2).

Proof. Showing that A(σ1×σ2) is a vector space is straightforward, and
that it is normed algebra is proved in [30, Lemma 3] for σ1 = σ2 = R (the
proof in our setting is identical). The completeness of A(σ1 × σ2) follows
by showing that an absolutely convergent series of elements in A(σ1 × σ2)
converges in A(σ1 × σ2). This is done by considering a direct sum of the
measure spaces involved.

We now state sufficient conditions for a function to belong to A. The
first will be used in the proof of Proposition 5.6. Let W1,2(R) be the space

(1) This might seem problematic from a set-theoretic viewpoint. The problem can be
fixed by choosing an equivalence class of such a representation for each real number which
can occur in the infimum.
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of all g ∈ L2(R) with weak derivative g′ ∈ L2(R), endowed with the norm
‖g‖W1,2(R) := ‖g‖L2(R) + ‖g′‖L2(R) for g ∈W1,2(R).

Lemma 3.7 ([30, Theorem 9]). Let g ∈W1,2(R) and let

ψg(λ1, λ2) :=

{
g(log(λ1/λ2)) if λ1, λ2 > 0,
0 otherwise.

(3.10)

Then ψg ∈ A(R2) with ‖ψg‖A(R2) ≤
√
2 ‖g‖W1,2(R).

The second condition involves the Besov space Ḃ1
∞,1(R). Following [27],

let {ψk}k∈Z be a sequence of Schwartz functions on R such that, for each
k ∈ Z, the Fourier transform Fψk of ψk is supported on [2k−1, 2k+1] and
Fψk+1(x) = Fψk(2x) for all x > 0, and such that

∑∞
k=−∞Fψk(x) = 1 for

all x > 0. Let ψ∗k be defined by Fψ∗k(x) = Fψk(−x) for k ∈ Z and x ∈ R.
If f is a distribution on R such that {2k‖f ∗ ψk‖L∞(R)}k∈Z ∈ `1(Z) and
{2k‖f ∗ ψ∗k‖L∞(R)}k∈Z ∈ `1(Z), then f admits a representation

(3.11) f =
∑
k∈Z

f ∗ ψk +
∑
k∈Z

f ∗ ψ∗k + P,

where P is a polynomial.
We let the homogeneous Besov space Ḃ1

∞,1(R) consist of all distributions
as above for which P = 0. Then Ḃ1

∞,1(R) is a Banach space when equipped
with the norm

‖f‖Ḃ1
∞,1(R)

:=

∞∑
k=−∞

2k‖f ∗ ψk‖L∞(R)+

∞∑
k=−∞

2k‖f ∗ψ∗k‖L∞(R) (f ∈ Ḃ1
∞,1(R)).

For f ∈ Ḃ1
∞,1(R) define ψf : R2 → C by

ψf (λ1, λ2) :=


f(λ2)− f(λ1)

λ2 − λ1
if (λ1, λ2) ∈ R2 and λ1 6= λ2,

f ′(λ1) if λ1 = λ2 ∈ R.
Lemma 3.8. There exists a constant C ≥ 0 such that ψf ∈ A(R2) for

each f ∈ Ḃ1
∞,1(R), with ‖ψf‖A(R2) ≤ C‖f‖Ḃ1

∞,1(R)
.

Proof. Let f ∈ Ḃ1
∞,1(R). In [27, Theorem 2] (see also [28, p. 535]) it is

shown that ψf has a representation

ψf (λ1, λ2) =
�

Ω

a1(λ1, ω)a2(λ2, ω) dµ(ω)

for (λ1, λ2) ∈ R2, where (Ω,µ) is a measure space and a1 and a2 are mea-
surable functions on R×Ω such that�

Ω

‖a1(·, ω)‖∞‖a2(·, ω)‖∞ d|µ|(ω) ≤ C‖f‖Ḃ1
∞,1(R)

for some constant C ≥ 0 independent of f . Now apply Remark 3.5.
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In [27, Theorem 3] Peller also states a condition on a function f on R
which is necessary for ϕf ∈ A(R2) to hold, and this condition is only slightly
weaker than f ∈ Ḃ1

∞,1(R).

4. Double operator integrals and Lipschitz estimates

4.1. Double operator integrals. Fix Banach spaces X and Y , scalar
type operators A ∈ Ls(X) and B ∈ Ls(Y ) with spectral measures E re-
spectively F , and ϕ ∈ A(sp(A) × sp(B)). Let a representation as in (3.8)
for ϕ be given, with corresponding (Ω,µ) and a1 ∈ B(sp(A) × Ω), a2 ∈
B(sp(B)×Ω). For ω ∈ Ω, let a1(A,ω) := a1(·, ω)(A) ∈ L(X) and a2(B,ω) :=
a2(·, ω)(B) ∈ L(Y ) be defined by the functional calculus for A respectively
B from Section 3.1.

Lemma 4.1. Let S ∈ L(X,Y ) have separable range. Then, for each
x ∈ X, ω 7→ a2(B,ω)Sa1(A,ω)x is a weakly measurable map Ω → Y .

Proof. Fix x ∈ X. If a1 = 1σ for some measurable σ ⊆ sp(A) × Ω
then it is straightforward to show that 〈x∗, a1(A, ·)x〉 is measurable for each
x∗ ∈ X∗. As S has separable range, Sa1(A, ·)x is µ-measurable by the Pet-
tis Measurability Theorem. If a2 is an indicator function as well, the same
argument shows that a2(B, ·)y is weakly measurable for each y ∈ Y . Gen-
eral arguments, approximating Sa1(A, ·)x by simple functions, show that
a2(B, ·)Sa1(A, ·)x is weakly measurable. By linearity this extends to simple
a1 and a2, and for general a1 and a2 let {fk}k∈N, {gk}k∈N be sequences of
simple functions such that a1 = limk→∞ fk and a2 = limk→∞ gk uniformly.
Then a1(A,ω) = limk→∞ fk(A) and a2(B,ω) = limk→∞ gk(B) in the opera-
tor norm, for each ω ∈ Ω. The desired measurability now follows.

Now suppose that Y is separable and I is a Banach ideal in L(X,Y ),
and let S ∈ L(X,Y ). By (3.3),

(4.1) ‖a2(B,ω)Sa1(A,ω)‖I
≤ 16ν(A)ν(B)‖S‖I‖a1(·, ω)‖B(sp(A))‖a2(·, ω)‖B(sp(B))

for w ∈ Ω. Since I is continuously embedded in L(X,Y ), by the Pettis Mea-
surability Theorem, Lemma 4.1 and (4.1) we can define the double operator
integral

(4.2) TA,Bϕ (S)x :=
�

Ω

a2(B,ω)Sa1(A,ω)x dµ(ω) ∈ Y (x ∈ X).

Throughout, we will use Tϕ for TA,Bϕ when the operators A and B are clear
from the context.

Proposition 4.2. Let X and Y be separable Banach spaces such
that X or Y has the bounded approximation property, and let A ∈ Ls(X),
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B ∈ Ls(Y ), and ϕ ∈ A(sp(A)× sp(B)). Let I be a Banach ideal in L(X,Y )
with the strong convex compactness property. Then (4.2) defines an operator
TA,Bϕ ∈ L(I) which is independent of the choice of the representation of ϕ
in (3.8), with

(4.3) ‖TA,Bϕ ‖L(I) ≤ 16 ν(A)ν(B)‖ϕ‖A(sp(A)×sp(B)).

Proof. By (4.1) and the strong convex compactness property, we have
Tϕ(S) ∈ L(I) for all S ∈ I, and

‖Tϕ(S)‖I ≤ 16ν(A)ν(B)‖S‖I
�

Ω

‖a1(·, ω)‖B(sp(A))‖a2(·, ω)‖B(sp(B)) dµ(ω).

Clearly Tϕ is linear, hence the result follows if we establish that Tϕ is inde-
pendent of the representation of ϕ. For this it suffices to let ϕ ≡ 0. Now,
first consider S = x∗ ⊗ y for x∗ ∈ X∗ and y ∈ Y , and let x ∈ X, y∗ ∈ Y ∗
and w ∈ Ω. Recall that E and F are the spectral measures of A and B,
respectively. Then

〈y∗, a2(B,ω)Sa1(A,ω)x〉

=
�

sp(B)

a2(η, ω) d〈y∗, F (η)Sa1(A,ω)x〉

=
�

sp(B)

a2(η, ω)〈x∗, a1(A,ω)x〉d〈y∗, F (η)y〉

=
�

sp(B)

�

sp(A)

a1(λ, ω)a2(η, ω) d〈x∗, E(λ)x〉 d〈y∗, F (η)y〉

by (3.5). Now Fubini’s Theorem and the assumption on ϕ yield

〈y∗, Tϕ(S)x〉

=
�

Ω

〈y∗, a2(B,ω)Sa1(A,ω)x〉 dµ(ω)

=
�

Ω

�

sp(B)

�

sp(A)

a1(λ, ω)a2(η, ω) d〈x∗, E(λ)x〉 d〈y∗, F (η)y〉dµ(ω)

=
�

sp(B)

�

sp(A)

�

Ω

a1(λ, ω)a2(η, ω) dµ(ω) d〈x∗, E(λ)x〉 d〈y∗, F (η)y〉

=
�

sp(B)

�

sp(A)

ϕ(λ, η) d〈x∗, E(λ)x〉 d〈y∗, F (η)y〉 = 0.

By linearity, Tϕ(S) = 0 for all S ∈ X∗ ⊗ Y . By Lemma 3.2, a general
element S ∈ I is the SOT-limit of a bounded (in the operator norm on
L(X,Y )) sequence {Sn}n∈N ⊆ X∗ ⊗ Y . Hence for each x ∈ X there exists a
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constant C ≥ 0 such that, for all n ∈ N,
�

Ω

‖a2(B,ω)Sna1(A,ω)x‖Y dµ(ω)

≤ 16ν(A)ν(B)‖Sn‖L(X,Y )‖x‖
�

Ω

‖a1(·, ω)‖B(sp(A))‖a2(·, ω)‖B(sp(B)) dµ(ω)

≤ C
�

Ω

‖a1(·, ω)‖B(sp(A))‖a2(·, ω)‖B(sp(B)) dµ(ω) <∞,

where we have used (3.3). Now the dominated convergence theorem shows
that Tϕ(S)x = limn→∞ Tϕ(Sn)x = 0 for all x ∈ X, which implies that Tϕ is
independent of the representation of ϕ and concludes the proof.

If A and B are normal operators on separable Hilbert spaces X and Y ,
then (4.3) improves to

(4.4) ‖TA,Bϕ ‖L(I) ≤ ‖ϕ‖A(sp(A)×sp(B))

by appealing to (3.6) instead of (3.3) in (4.1).

Remark 4.3. Let H be an infinite-dimensional separable Hilbert space
and S2 the ideal of Hilbert–Schmidt operators on H. There is a natural
definition (see [10]) of a double operator integral T A,Bϕ ∈ L(S2) for all
ϕ ∈ B(C2) and normal operators A,B ∈ L(H), such that T A,Bϕ = TA,Bϕ

if ϕ ∈ A(sp(A) × sp(B)). One could wonder whether Proposition 4.2 can
be extended to a larger class of functions than A(sp(A) × sp(B)) using an
extension of the definition of TA,Bϕ in (4.2) which coincides with T A,Bϕ on S2.
But it follows from [26, Theorem 1] (see also Remark 3.5) that T A,Bϕ extends
to a bounded operator on I = L(H) if and only if ϕ ∈ A(sp(A) × sp(B)).
Hence Proposition 4.2 cannot be extended to a larger function class than
A(sp(A) × sp(B)) in general. However, for specific Banach ideals, e.g. ide-
als with the UMD-property, results have been obtained for larger classes of
functions [13, 31].

Remark 4.4. The assumption in Proposition 4.2 that either X or Y has
the bounded approximation property is only used, via Lemma 3.2, to ensure
that each S ∈ I is the SOT-limit of a bounded (in L(X,Y )) net of finite
rank operators. Clearly this is true for general Banach spaces X and Y if I is
the closure in L(X,Y ) of X∗⊗Y . In [22] the authors consider an assumption
on X and I, called the local bounded approximation property for I, which
guarantees that each S ∈ I is the SOT-limit of a bounded net of finite
rank operators. It is shown in [22] that for certain non-trivial ideals this
condition is strictly weaker than the bounded approximation property. In
the results throughout the paper where we assume that X has the bounded
approximation property, one may assume instead that X satisfies the local
bounded approximation property for I.
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4.2. Commutator and Lipschitz estimates. Let p1, p2 : C2 → C
be the coordinate projections given by p1(λ1, λ2) := λ1, p2(λ1, λ2) := λ2
for (λ1, λ2) ∈ C2. Note that f ◦ p1, f ◦ p2 ∈ A(σ1 × σ2) for all σ1, σ2 ⊆ C
Borel and f ∈ B(σ1 ∪ σ2). For self-adjoint operators A and B on a Hilbert
space and for a Schatten–von Neumann ideal I, the following lemma is [30,
Lemma 3].

Lemma 4.5. Under the assumptions of Proposition 4.2, the following
hold:

(1) The map ϕ 7→ TA,Bϕ is a morphism A(sp(A) × sp(B)) → L(I) of
unital Banach algebras.

(2) Let f ∈ B(sp(A) ∪ sp(B)) and S ∈ L(X,Y ). Then Tf◦p1(S) =
Sf(A) and Tf◦p2(S) = f(B)S. In particular, Tp1(S) = SA and
Tp2(S) = BS.

Proof. The structure of the proof is the same as that of [30, Lemma 3].
Linearity in (1) is straightforward. Fix ϕ1, ϕ2 ∈ A(sp(A) × sp(B)) with
representations as in (3.8), with corresponding measure spaces (Ωj , µj) and
bounded Borel functions a1,j ∈ B(sp(A)×Ωj) and a2,j ∈ B(sp(B)×Ωj) for
j ∈ {1, 2}. Then ϕ := ϕ1ϕ2 also has a representation as in (3.8), with Ω =
Ω1 ×Ω2, µ = µ1 × µ2 the product measure and a1 = a1,1a1,2, a2 = a2,1a2,2.
By multiplicativity of the functional calculus for A,

a1(A, (ω1, ω2)) = (a1,1(·, ω1)a1,2(·, ω2))(A) = a1,1(A,ω1)a1,2(A,ω2)

for all (ω1, ω2) ∈ Ω, and similarly for a2(B, (ω1, ω2)). Applying this to (4.2)
yields

Tϕ(S)x =
�

Ω

a2(B,ω)Sa1(A,ω)x dµ(ω)

=
�

Ω1

a2,1(B,ω1)Tϕ2(S)a1,1(A,ω1)x dµ1(ω1)

= Tϕ1(Tϕ2(S))x

for all S ∈ I and x ∈ X, which proves (1). Part (2) follows from (4.2) and
the fact that Tϕ is independent of the representation of ϕ.

For f : sp(A) ∪ sp(B)→ C define

(4.5) ϕf (λ1, λ2) :=
f(λ2)− f(λ1)

λ2 − λ1
for (λ1, λ2) ∈ sp(A)× sp(B) with λ1 6= λ2.

Theorem 4.6. Let X and Y be separable Banach spaces such that X
or Y has the bounded approximation property, and let I be a Banach ideal in
L(X,Y ) with the strong convex compactness property. Let A ∈ Ls(X) and
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B ∈ Ls(Y ), and let f ∈ B(sp(A) ∪ sp(B)) be such that ϕf extends to an
element of A(sp(A)× sp(B)). Then

(4.6) ‖f(B)S − Sf(A)‖I ≤ 16 ν(A)ν(B)‖ϕf‖A(sp(A)×sp(B))‖BS − SA‖I
for all S ∈ L(X,Y ) such that BS − SA ∈ I.

In particular, if X = Y and B −A ∈ I,

‖f(B)− f(A)‖I ≤ 16 ν(A)ν(B)‖ϕf‖A(sp(A)×sp(B))‖B −A‖I .

Proof. Note that (p2 − p1)ϕf = f ◦ p2 − f ◦ p1. By Lemma 4.5,

f(B)S − Sf(A) = Tf◦p2(S)− Tf◦p1(S) = T(p2−p1)ϕf (S)

= Tp2ϕf (S)− Tp1ϕf (S) = Tϕf (Tp2(S)− Tp1(S))
= Tϕf (BS − SA)

for each S ∈ I. Proposition 4.2 now concludes the proof.

Letting X and Y be Hilbert spaces and A and B normal operators, we
generalize results from [10, 30] to all Banach ideals with the strong convex
compactness property. As mentioned in Section 3.2, this includes all sepa-
rable ideals and the so-called maximal operator ideals, which in turn is a
large class of ideals containing the absolutely (p, q)-summing operators, the
integral operators, and more [14, p. 203]. Note that, for normal operators,
we can improve the estimate in (4.6) by appealing to (4.4) instead of (4.3).

Corollary 4.7. Let A ∈ L(X) and B ∈ L(Y ) be normal operators on
separable Hilbert spaces X and Y . Let I be a Banach ideal in L(X,Y ) with
the strong convex compactness property, and let f ∈ B(sp(A) ∪ sp(B)) be
such that ϕf extends to an element of A(sp(A)× sp(B)). Then

‖f(B)S − Sf(A)‖I ≤ ‖ϕf‖A(sp(A)×sp(B))‖BS − SA‖I
for all S ∈ L(X,Y ) such that BS − SA ∈ I. In particular, if X = Y and
B −A ∈ I,

‖f(B)− f(A)‖I ≤ ‖ϕf‖A(sp(A)×sp(B))‖B −A‖I .

Combining Theorem 4.6 with Lemma 3.8 yields the following generaliza-
tion of [27, Theorem 4].

Corollary 4.8. There exists a universal constant C ≥ 0 such that the
following holds. Let X and Y be separable Banach spaces such that X or Y
has the bounded approximation property, and let I be a Banach ideal in
L(X,Y ) with the strong convex compactness property. Let f ∈ Ḃ1

∞,1(R), and
let A ∈ Ls(X) and B ∈ Ls(Y ) be such that sp(A) ∪ sp(B) ⊆ R. Then

(4.7) ‖f(B)S − Sf(A)‖I ≤ Cν(A)ν(B)‖f‖Ḃ1
∞,1(R)

‖BS − SA‖I
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for all S ∈ L(X,Y ) such that BS − SA ∈ I. In particular, if X = Y and
B −A ∈ I,

‖f(B)− f(A)‖I ≤ Cν(A)ν(B)‖f‖Ḃ1
∞,1(R)

‖B −A‖I .

In the case where the Banach ideal I is the space L(X,Y ) of bounded
operators from X to Y , we obtain the following corollary.

Corollary 4.9. There exists a universal constant C ≥ 0 such that the
following holds. Let X and Y be separable Banach spaces such that either
X or Y has the bounded approximation property. Let f ∈ Ḃ1

∞,1(R), and let
A,B ∈ Ls(X) be such that sp(A) ∪ sp(B) ⊆ R. Then
(4.8) ‖f(B)S − Sf(A)‖L(X,Y )≤Cν(A)ν(B)‖f‖Ḃ1

∞,1(R)
‖BS−SA‖L(X,Y )

for all S ∈ L(X,Y ). In particular, if X = Y then

‖f(B)− f(A)‖L(X) ≤ Cν(A)ν(B)‖f‖Ḃ1
∞,1(R)

‖B −A‖L(X).

Remark 4.10. In [1] the requirement in [27, Theorem 4] that the oper-
ators in question are self-adjoint is removed by considering functions in the
Besov class Ḃ1

∞,1(R2) of two variables. More precisely, in [1, Theorem 7.2] it
is shown that there exists a constant C ≥ 0 such that if f ∈ Ḃ1

∞,1(R2) then

(4.9) ‖f(B)− f(A)‖L(H) ≤ C‖f‖Ḃ1
∞,1(R2)‖B −A‖L(H)

for all normal operators A and B on a separable Hilbert space H such that
A−B ∈ L(H). It is quite conceivable that the assumption in Corollaries 4.8
and 4.9 that the operators A and B have real spectrum can be removed in
a similar manner.

However, the results in the present section are mainly used in later sec-
tions to prove the operator Lipschitz estimate in (1.4). To this end, in Propo-
sition 5.6 we relate operator Lipschitz estimates for the absolute value func-
tion to boundedness of triangular truncation operators. There the assump-
tion that the operators in question have real spectrum is essential. There-
fore, removing the spectral assumption in Corollaries 4.8 and 4.9 would not
improve the main results of this article. On the other hand, considering
operators with general spectrum would increase the length of this section
considerably and change its scope (for comparison see [1, Sections 5 and 6]),
since the double operator integral technique which was used in [27] does not
suffice to yield (4.9). For this reason we choose not to pursue an analogue of
(4.9) in the present article.

Remark 4.11. Corollaries 4.8 and 4.9 yield global estimates, in the sense
that (4.7) and (4.8) hold for all scalar type operators A and B with real
spectrum, and the constant in the estimate depends on A and B only through
their spectral constants ν(A) and ν(B). Local estimates follow if f ∈ B(R)
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is contained in the Besov class locally. More precisely, given scalar type
operators A ∈ Ls(X) and B ∈ Ls(Y ) with real spectrum, suppose there
exists g ∈ Ḃ1

∞,1(R) with g(s) = f(s) for all s ∈ sp(A) ∪ sp(B). Then (with
notation as in Corollary 4.8), Theorem 4.6 yields

(4.10) ‖f(B)S − Sf(A)‖I ≤ Cν(A)ν(B)‖g‖Ḃ1
∞,1(R)

‖BS − SA‖I

for all S ∈ L(X,Y ) such that BS − SA ∈ I.

5. Spaces with an unconditional basis. In this section we prove
some results for specific scalar type operators, namely operators which are
diagonalizable with respect to an unconditional Schauder basis. These results
will be used in later sections. In this section we assume that all spaces are
infinite-dimensional, but the results and proofs carry over directly to finite-
dimensional spaces. This will be used in Section 8.

5.1. Diagonalizable operators. Let X be a Banach space with an
unconditional Schauder basis {ej}∞j=1 ⊆ X. For j ∈ N, let Pj ∈ L(X) be the
projection given by Pj(x) := xjej for all x =

∑∞
k=1 xkek ∈ X.

Assumption 5.1. For simplicity, assume in this section that∥∥∥∑
j∈N
Pj
∥∥∥
L(X)

= 1 for all non-emptyN ⊆ N.

This condition is satisfied in the examples we consider in later sections,
and simplifies the presentation. For general bases one merely gets additional
constants in the results.

An operator A ∈ L(X) is diagonalizable (with respect to {ej}∞j=1) if there
exists U ∈ L(X) invertible and a sequence {λj}∞j=1 ∈ `∞ of complex numbers
such that

(5.1) UAU−1x =

∞∑
j=1

λjPjx (x ∈ X),

where the series converges since {ek}∞k=1 is unconditional (see [34, Lem-
ma 16.1]). In this case A is a scalar type operator, with point spectrum
equal to {λj}∞j=1, sp(A) = {λj}∞j=1 and spectral measure E given by

(5.2) E(σ) =
∑
λj∈σ

U−1PjU

for σ ⊆ C Borel. The set of all diagonalizable operators on X is denoted
by Ld(X). We do not explicitly mention the basis {ej}∞j=1 with respect to
which an operator is diagonalizable, since this basis will be fixed throughout.
Often we write A ∈ Ld(X,λ, U) to identify the operator U and the sequence
λ = {λj}∞j=1 above. For A ∈ Ld(X,λ, U) and f ∈ B(C), it follows from (3.4)
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that

(5.3) f(A) = U−1
( ∞∑
j=1

f(λj)Pj
)
U.

Since any Banach space with a Schauder basis is separable and has the
bounded approximation property, we can apply the results from the previous
section to diagonalizable operators, and we obtain for instance the following.

Corollary 5.2. There exists a universal constant C ≥ 0 such that the
following holds. Let X and Y be Banach spaces with unconditional Schauder
bases, and let I be a Banach ideal in L(X,Y ) with the strong convex com-
pactness property. Let f ∈ Ḃ1

∞,1(R), and let A ∈ Ld(X) and B ∈ Ld(Y )
with sp(A) ∪ sp(B) ⊆ R. Then

‖f(B)S − Sf(A)‖I ≤ Cν(A)ν(B)‖f‖Ḃ1
∞,1(R)

‖BS − SA‖I

for all S ∈ L(X,Y ) such that BS − SA ∈ I. In particular, if X = Y and
B −A ∈ I,

‖f(B)− f(A)‖I ≤ Cν(A)ν(B)‖f‖Ḃ1
∞,1(R)

‖B −A‖I .

Since this result does not apply to the absolute value function (and nei-
ther does the more general Theorem 4.6), and because of the importance of
the absolute value function, we will now study Lipschitz estimates for more
general functions.

Let Y be a Banach space with an unconditional Schauder basis {fk}∞k=1,
and let the projections Qk ∈ L(Y ) be given by Qk(y) := ykfk for all
y =

∑∞
l=1 ylfl ∈ Y and k ∈ N. Let λ = {λj}∞j=1 and µ = {µk}∞k=1 be

sequences of complex numbers, and let ϕ : C2 → C. For n ∈ N, define
T λ,µϕ,n ∈ L(L(X,Y )) by

(5.4) T λ,µϕ,n (S) :=

n∑
j,k=1

ϕ(λj , µk)QkSPj (S ∈ L(X,Y )).

Note that T λ,µϕ,n ∈ L(I) for each Banach ideal I in L(X,Y ).
For f ∈ B(C) extend the divided difference from (4.5), ϕf (λ1, λ2) :=

f(λ2)−f(λ1)
λ2−λ1 for (λ1, λ2) ∈ C2 with λ1 6= λ2, to a function ϕf : C2 → C.

Lemma 5.3. Let X and Y be Banach spaces with unconditional Schauder
bases, and let I be a Banach ideal in L(X,Y ). Let λ = {λj}∞j=1 and µ =
{µk}∞k=1 be sequences of complex numbers, and let A ∈ Ld(X,λ, U), B ∈
Ld(Y, µ, V ), f ∈ B(C) and n ∈ N. Then

‖f(B)Sn − Snf(A)‖I ≤ ‖U‖L(X)‖V −1‖L(Y )‖T λ,µϕf ,n
(V (BS − SA)U−1)‖I
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for all S ∈ L(X,Y ) with BS − SA ∈ I, where

Sn :=
n∑

j,k=1

V −1QkV SU−1PjU.

Proof. Let S ∈ I be such that BS − SA ∈ I. For the duration of the
proof write Pj := U−1PjU ∈ L(X) and Qk := V −1QkV ∈ L(Y ) for j, k ∈ N.
By (5.3), and using PjPk = 0 and QjQk = 0 for j 6= k,

f(B)Sn − Snf(A) =
∞∑
k=1

f(µk)Qk

( n∑
i,l=1

QlSPi

)
−
∞∑
j=1

f(λj)
( n∑
i,l=1

QlSPi

)
Pj

=

n∑
j,k=1

(f(µk)− f(λj))QkSPj

=
n∑

j,k=1

∑
µk 6=λj

f(µk)− f(λj)
µk − λj

(µkQkSPj − λjQkSPj)

=
n∑

j,k=1

ϕf (λj , µk)Qk

(( ∞∑
l=1

µlQl

)
S − S

( ∞∑
i=1

λiPi

))
Pj

=
n∑

j,k=1

ϕf (λj , µk)Qk(BS − SA)Pj

= V −1T λ,µϕf ,n
(V (BS − SA)U−1)U.

Now use the ideal property of I to conclude the proof.

For a sequence λ of complex numbers and A ∈ Ld(X,λ, U), define

(5.5) KA := inf{‖U‖L(X)‖U−1‖L(X) | A ∈ Ld(X,λ, U)}.

We will call KA the diagonalizability constant of A. Using the uncondition-
ality of the Schauder basis of X and Assumption 5.1, one can show that
KA does not depend on the specific ordering of the sequence λ. Since the
sequence λ is, up to ordering, uniquely determined by A (it is the point spec-
trum of A), KA only depends on A. Moreover, by Assumption 5.1 and (5.2),
‖E(σ)‖L(X) ≤ ‖U−1‖L(X)‖U‖L(X) for all σ ⊆ C Borel and U ∈ L(X) such
that A ∈ Ld(X,λ, U), where E is the spectral measure of A. Hence

(5.6) ν(A) ≤ KA,

where ν(A) is the spectral constant of A from Section 3.1.
We now derive commutator estimates for A and B in the operator norm,

under a boundedness assumption which will be verified for specific X and Y
in later sections.
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Proposition 5.4. Let X and Y be Banach spaces with unconditional
Schauder bases, A ∈ Ld(X,λ, U), B ∈ Ld(Y, µ, V ) and f ∈ B(C). Suppose
that

(5.7) C := sup
n∈N
‖T λ,µϕf ,n

‖L(L(X,Y )) <∞.

Then
‖f(B)S − Sf(A)‖L(X,Y ) ≤ CKAKB‖BS − SA‖L(X,Y )

for all S ∈ L(X,Y ).

Proof. Let S ∈ L(X,Y ) and for n ∈ N let Sn ∈ L(X,Y ) be as in
Lemma 5.3. It is straightforward to show that, for each x ∈ X, Snx → Sx
as n→∞. Hence f(B)Snx− Snf(A)x→ f(B)Sx− Sf(A)x as n→∞, for
each x ∈ X. Lemma 5.3 and (5.7) now yield

‖f(B)S − Sf(A)‖L(X,Y ) ≤ lim sup
n→∞

‖f(B)Sn − Snf(A)‖L(X,Y )

≤ C‖U‖ ‖V −1‖ ‖V (BS − SA)U−1‖L(X,Y )

≤ C‖U‖ ‖U−1‖ ‖V ‖ ‖V −1‖ ‖BS − SA‖L(X,Y ).

Taking the infimum over U and V concludes the proof.

Remark 5.5. Proposition 5.4 also holds for more general Banach ideals
in L(X,Y ). Indeed, let I be a Banach ideal in L(X,Y ) with the property
that, if {Sm}∞m=1 ⊆ I is an I-bounded sequence which SOT-converges to
some S ∈ L(X,Y ) as m→∞, then S ∈ I with ‖S‖I ≤ lim supm→∞ ‖Sm‖I .
If

C := sup
n∈N
‖T λ,µϕf ,n

‖L(I) <∞

then the proof of Proposition 5.4 shows that

‖f(B)S − Sf(A)‖I ≤ CKAKB‖BS − SA‖I
for all S ∈ L(X,Y ) such that BS − SA ∈ I.

5.2. Estimates for the absolute value function. It is known that
Lipschitz estimates for the absolute value function are related to estimates
for so-called triangular truncation operators. For example, in [20] and [16]
it was shown that the boundedness of the standard triangular truncation on
many operator spaces is equivalent to Lipschitz estimates for the absolute
value function. We prove that triangular truncation operators are related to
Lipschitz estimates for the absolute value function in our setting as well. We
do so by relating the assumption in (5.7) to triangular truncation operators
associated to sequences. We will then bound the norms of these operators in
later sections for specific X and Y .

Let λ = {λj}∞j=1 and µ = {µk}∞k=1 be sequences of real numbers,
and let X, Y , {Pj}∞j=1 and {Qk}∞k=1 be as before. For n ∈ N define
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T λ,µ4,n ∈ L(L(X,Y )) by

(5.8) T λ,µ4,n(S) :=
n∑

j,k=1

∑
µk≤λj

QkSPj (S ∈ L(X,Y )).

We call T λ,µ4,n the triangular truncation associated to λ and µ.
For f(t) := |t| for t ∈ R, define ϕf : C2 → C by

ϕf (λ1, λ2) :=

 |λ1| − |λ2|λ1 − λ2
if λ1 6= λ2,

1 otherwise.

The following result relates the norm of T λ,µϕf ,n to that of T λ,µ4,n.

Proposition 5.6. There exists a universal constant C ≥ 0 such that the
following holds. Let X and Y be Banach spaces with unconditional Schauder
bases and let I be a Banach ideal in L(X,Y ) with the strong convex com-
pactness property. Let λ and µ be bounded sequences of real numbers. Let
f(t) := |t| for t ∈ R. Then

‖T λ,µϕf ,n
(S)‖I ≤ C(‖S‖I + ‖T λ,µ4,n(S)‖I)

for all n ∈ N and S ∈ I. In particular, if supn∈N ‖T
λ,µ
4,n‖L(L(X,Y )) <∞ then

(5.7) holds.

Proof. Let n ∈ N and S ∈ I, and write λ = {λj}∞j=1 and µ = {µk}∞k=1.
Throughout the proof we will only consider λj and µk for 1 ≤ j, k ≤ n,
but to simplify the presentation we will not mention this explicitly. We can
decompose T λ,µϕf ,n(S) as

T λ,µϕf ,n
(S) =

∑
λk,µk≥0

QkSPj −
∑

µk<0<λj

µk + λj
µk − λj

QkSPj

+
∑

λj<0<µk

µk + λj
µk − λj

QkSPj −
∑

λk,µk≤0
QkSPj +

∑
λk,µk=0

QkSPj .

Note that some of these terms may be zero. By the ideal property of I and
Assumption 5.1,

(5.9)
∥∥∥ ∑
λj ,µk≥0

QkSPj
∥∥∥
I
≤
∥∥∥ ∑
µk≥0

Qk
∥∥∥
L(Y )
‖S‖I

∥∥∥ ∑
λj≥0
Pj
∥∥∥
L(X)

≤ ‖S‖I .

Similarly, ‖
∑

λk,µk≤0QkSPj‖I and ‖
∑

λk,µk=0QkSPj‖I are each bounded
by ‖S‖I . To bound the other terms it is sufficient to show that∥∥∥∥ ∑

λj ,µk>0

µk − λj
µk + λj

QkSPj
∥∥∥∥
I
≤ C ′(‖S‖I + ‖T λ,µ4,n(S)‖I)



Operator Lipschitz functions on Banach spaces 79

for some universal constant C ′ ≥ 0. Indeed, replacing λ by −λ and µ by −µ
then yields the desired conclusion. Let

Φ(S) :=
∑

λj ,µk>0

µk − λj
µk + λj

QkSPj ,

and define g ∈W1,2(R) by g(t) := 2
e|t|+1

for t ∈ R. Note that Φ(S) is equal
to ∑

0<µk≤λj

(
g

(
log

λj
µk

)
− 1

)
QkSPj +

∑
0<λj<µk

(
1− g

(
log

λj
µk

))
QkSPj .

Now let ψg : R2 → C be as in (3.10), and let A :=
∑∞

j=1 λjPj ∈ L(X) and
B :=

∑∞
k=1 µkQk ∈ L(Y ). Let TA,Bψg

be as in (4.2). One can check that

Φ(S) = TA,Bψg
(T λ,µ4,n(S))−

∑
λj ,µk>0

QkT λ,µ4,n(S)Pj

+
∑

λj ,µk>0

Qk(S − T λ,µ4,n(S))Pj − T
A,B
ψg

(S − T λ,µ4,n(S)).

Since each Banach space with a Schauder basis is separable and has the
bounded approximation property, Lemma 3.7 and Proposition 4.2 yield

‖TA,Bψg
(T λ,µ4,n(S))‖I ≤ 16

√
2 ν(A)ν(B)‖g‖W1,2(R)‖T

λ,µ
4,n(S)‖I .

By (5.6), ν(A) = ν(B) = 1. Similarly,

‖TA,Bψg
(S − T λ,µ4,n(S))‖I ≤ 16

√
2 ‖g‖W1,2(R)(‖S‖I + ‖T

λ,µ
4,n(S)‖I).

By the same arguments as in (5.9),∥∥∥ ∑
λj ,µk>0

QkT λ,µ4,n(S)Pj
∥∥∥
I
+
∥∥∥ ∑
λj ,µk>0

Qk(S − T λ,µ4,n(S))Pj
∥∥∥

≤ 2‖S‖I + ‖T λ,µ4,n(S)‖I .
Combining all these estimates yields

‖Φ(S)‖I ≤ (2 + 32
√
2 ‖g‖W1,2(R))(‖S‖I + ‖T

λ,µ
4,n(S)‖I),

as desired.

6. The absolute value function on L(`p, `q). In this section we study
the absolute value function on L(`p, `q). We obtain the commutator estimate
(1.2) for the absolute value function and X = `p and Y = `q with p < q, and
we obtain (1.1) for each Lipschitz function and X = L(`1) or X = L(c0).
We also obtain results for p ≥ q.

The key idea of the proof is entirely different from the techniques used
in [11, 13, 16, 20], which are based on a special geometric property of the re-
flexive Schatten–von Neumann ideals (the UMD-property), a property which
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L(`p, `q) does not have. Instead, we prove our results by relating estimates
for the operators from (5.8) to the standard triangular truncation opera-
tor, defined in (6.1) below. For this we use the theory of Schur multipliers
on L(`p, `q) developed in [5]. We then appeal to results from [4] about the
boundedness of the standard triangular truncation on L(`p, `q).

6.1. Schur multipliers. For p ∈ [1,∞) let {ej}∞j=1 ⊆ `p be the standard
Schauder basis of `p, with the corresponding projections Pj(x) := xjej for
x =

∑∞
k=1 xkek and j ∈ N. We consider this basis and the corresponding

projections on all `p-spaces simultaneously, for simplicity of notation. Note
that Assumption 5.1 is satisfied for this basis. For q ∈ [1,∞], any operator
S ∈ L(`p, `q) can be represented by an infinite matrix S̃ = {sjk}∞j,k=1, where
sjk := (S(ek), ej) for j, k ∈ N. For an infinite matrix M = {mjk}∞j,k=1 the
product M ∗ S̃ := {mjksjk} is the Schur product of the matrices M and S̃.
The matrix M is a Schur multiplier if the mapping S̃ 7→M ∗ S̃ is a bounded
operator on L(`p, `q). Throughout, we identify Schur multipliers with their
corresponding operators.

The notion of a Schur multiplier is a discrete version of a double operator
integral (for details see e.g. [32, 35]). Schur multipliers on the space L(`p, `q)
are also called (p, q)-multipliers. We denote byM(p, q) the Banach space of
(p, q)-multipliers with the norm

‖M‖(p,q) := sup{‖M ∗ S̃‖L(`p,`q) | ‖S‖L(`p,`q) ≤ 1}.
Remark 6.1. We also consider (p, q)-multipliers M for p = ∞ and q ∈

[1,∞]. Any operator S ∈ L(c0, `q) corresponds to an infinite matrix S̃ =

{sjk}∞j,k=1, andM is said to be an (∞, q)-multiplier if the mapping S 7→M∗S̃
is a bounded operator on L(c0, `q). We define the Banach spaceM(∞, q) in
the obvious way. Often we do not explicitly distinguish the case p =∞ from
1 ≤ p <∞, but the reader should keep in mind that for p =∞ the space `p
should be replaced by c0.

Remark 6.2. It is straightforward to see that ‖M‖(p,q) ≥ supj,k∈N |mj,k|
for all p, q ∈ [1,∞] and M ∈M(p, q).

For p, q ∈ [1,∞] and S ∈ L(`p, `q), define

(6.1) T4(S) :=
∑
k≤j
PkSPj ,

which is a well-defined element of L(`r, `s) for suitable r, s ∈ [1,∞] by Propo-
sition 6.3 below. The operator T4 is the (standard) triangular truncation
(see [21]). This operator can be identified with the following Schur multi-
plier. Let T ′4 = {t′jk}∞j,k=1 be a matrix given by t′jk = 1 for k ≤ j and
t′jk = 0 otherwise. It is clear that T4 extends to a bounded linear operator
on L(`p, `q) if and only if T ′4 is a (p, q)-multiplier. For n ∈ N and r, s ∈ [1,∞]
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we will consider the operators T4,n ∈ L(L(`p, `q),L(`r, `s)) given by

T4,n(S) :=
∑

1≤k≤j≤n
PkSPj (S ∈ L(`p, `q)).

The dependence of the (p, q)-norm of T4 on the indices p and q was
determined in [4] and [21] (see also [36]), and is as follows.

Proposition 6.3. Let p, q ∈ [1,∞]. Then the following statements hold.

(i) [4, Theorem 5.1] If either p < q, 1 = p = q or p = q = ∞, then
T4 ∈M(p, q).

(ii) [21, Proposition 1.2] If 1 6= p ≥ q 6= ∞, then there is a constant
C > 0 such that

‖T4,n‖L(L(`p,`q)) ≥ C lnn
for all n ∈ N.

(iii) [4, Theorem 5.2] If 1 6= p ≥ q 6=∞, then for each s > q and r < p,

T4 : L(`p, `q)→ L(`p, `s) and T4 : L(`p, `q)→ L(`r, `q)
are bounded.

Remark 6.4. If p = 1 or q = ∞, then, for a matrix M = {mjk}∞j,k=1,
M ∈ M(p, q) if and only if supj,k∈N |mjk| < ∞, in which case ‖M‖(p,q) =
supj,k∈N |mjk|. This follows immediately from the well-known identities (see
[5, p. 605, (2) and (3)])

‖S‖L(`1,`q) = sup
k∈N

( ∞∑
j=1

|sjk|q
)1/q

for q ∈ [1,∞) and S = {sjk}∞j,k=1 ∈ L(`1, `q), and

‖S‖L(`p,`∞) = sup
j∈N

( ∞∑
k=1

|sjk|p
∗
)1/p∗

for p ∈ [1,∞] and S = {sjk}∞j,k=1 ∈ L(`p, `∞) (with the obvious modification
for p = 1).

We will also need the following result, a generalization of [5, Theorem 4.1].
For a matrix M = {mjk}∞j,k=1, let M̃ = {m̃jk}∞j,k=1 be obtained from M by
repeating the first column, i.e. m̃j1 = mj1 and m̃jk = mj(k−1) for j ∈ N and
k ≥ 2.

Proposition 6.5. Let p, q, r, s ∈ [1,∞] with r ≤ p. Let M = {mjk}∞j,k=1

be such that S 7→ M ∗ S is a bounded mapping L(`p, `q) → L(`r, `s). Then
S 7→ M̃ ∗ S is also a bounded mapping L(`p, `q)→ L(`r, `s), with

‖M‖L(L(`p,`q),L(`r,`s)) = ‖M̃‖L(L(`p,`q),L(`r,`s)).

In particular, if M ∈M(p, q) then M̃ ∈M(p, q) with ‖M‖(p,q) = ‖M̃‖(p,q).
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Proof. The proof is almost identical to that of [5, Theorem 4.1], and the
condition r ≤ p is used to ensure that |x1|p+ |x2|p ≤ (|x1|r+ |x2|r)p/r for all
x1, x2 ∈ C (with the obvious modification for p =∞ or r =∞).

Remark 6.6. By considering the transposeM ′ of a matrixM , and using
the fact that M ′ : L(`q∗ , `p∗)→ L(`s∗ , `r∗) with

‖M ′‖L(L(`q∗ ,`p∗ ),L(`s∗ ,`r∗ )) = ‖M‖L(L(`p,`q),L(`r,`s)),

Proposition 6.5 implies that the L(L(`p, `q), L(`r, `s))-norm of a matrix is
invariant under row repetitions if s ≤ q. Moreover, since ‖S‖L(`p,`q) is in-
variant under permutations of the columns and rows of S ∈ L(`p, `q), re-
arrangements of the rows and columns of M ∈ L(L(`p, `q), L(`r, `s)) leave
‖M‖L(L(`p,`q),L(`r,`s)) invariant.

The following lemma is crucial to our main results.

Lemma 6.7. Let p, q, r, s ∈ [1,∞] with r ≤ p and s ≤ q. Let λ = {λj}∞j=1

and µ = {µk}∞k=1 be sequences of real numbers. Then

‖T λ,µ4,n‖L(L(`p,`q),L(`r,`s)) ≤ ‖T4,n‖L(L(`p,`q),L(`r,`s))
for all n ∈ N.

Proof. Note that T λ,µ4,n(S) = M ∗ S for all S ∈ L(`p, `q), where M =

{mjk}∞j,k=1 is such that mjk = 1 if 1 ≤ j, k ≤ n and µk ≤ λj , and mjk = 0
otherwise. We show that

‖M‖L(L(`p,`q),L(`r,`s)) ≤ ‖T4,n‖L(L(`p,`q),L(`r,`s)).
Assume that M is non-zero, otherwise the statement is trivial. By Re-
mark 6.6, rearrangement of the rows and columns of M does not change
its norm. Hence we may assume that {λj}nj=1 and {µk}nk=1 are decreasing.
Now M has the property that if mjk = 1 then mil = 1 for all i ≤ j and
k ≤ l ≤ m2. By Proposition 6.5 and Remark 6.6, we may omit repeated rows
and columns of M , and doing this repeatedly reduces M to T4,N for some
1 ≤ N ≤ n. Noting that ‖T4,N‖L(L(`p,`q),L(`r,`s)) ≤ ‖T4,n‖L(L(`p,`q),L(`r,`s))
concludes the proof.

6.2. The case p < q. We now combine the theory from the previous
sections to deduce our main results.

Theorem 6.8. Let p, q ∈ [1,∞] with p < q, and let f(t) := |t| for t ∈ R.
Then there exists a constant C ≥ 0 such that the following holds (where `∞
should be replaced by c0). Let A ∈ Ld(`p) and B ∈ Ld(`q) have real spectrum.
Then

(6.2) ‖f(B)S − Sf(A)‖L(`p,`q) ≤ CKAKB‖BS − SA‖L(`p,`q)
for all S ∈ L(`p, `q).
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Proof. Simply combine Propositions 5.4 and 5.6, Lemma 6.7 and Propo-
sition 6.3(i), using ‖T4,n‖(p,q) ≤ ‖T4‖(p,q) for all n ∈ N.

We can deduce a stronger statement if p = 1 or q = ∞ in Theorem 6.8.
For f : C→ C a Lipschitz function, write

‖f‖Lip := sup
z1,z2∈C
z1 6=z2

|f(z1)− f(z2)|
|z1 − z2|

.

Moreover, let ϕf : C2 → C be given by

ϕf (λ1, λ2) :=

{
f(λ1)− f(λ2)

λ1 − λ2
if λ1 6= λ2,

0 otherwise.
(6.3)

Theorem 6.9. Let p, q ∈ [1,∞] with p = 1 or q =∞ (with `∞ replaced
by c0). Let A ∈ Ld(`p) and B ∈ Ld(`q), and let f : C → C be Lipschitz.
Then

(6.4) ‖f(B)S − Sf(A)‖L(`p,`q) ≤ KAKB‖f‖Lip‖BS − SA‖L(`p,`q)
for all S ∈ L(`p, `q). In particular, for p = q = 1,

‖f(B)− f(A)‖L(`1) ≤ KAKB‖f‖Lip‖B −A‖L(`1),
and for p = q =∞,

‖f(B)− f(A)‖L(c0) ≤ KAKB‖f‖Lip‖B −A‖L(c0).

Proof. Let λ = {λj}∞j=1 and µ = {µk}∞k=1 be sequences such that A ∈
Ld(`p, λ, U) and B ∈ Ld(`q, µ, V ) for certain U ∈ L(`p) and V ∈ L(`q). By
Proposition 5.4, it suffices to prove that

sup
n∈N
‖T λ,µϕf ,n

‖L(L(`p,`q)) ≤ ‖f‖Lip.

Fix n ∈ N and note that T λ,µϕf ,n(S) = M ∗ S for all S ∈ L(`p, `q), where
M = {mjk}∞j,k=1 is the matrix given by mjk = ϕf (λj , µk) for 1 ≤ j, k ≤ n,
and mjk = 0 otherwise. Then

sup
j,k∈N

|mjk| ≤ sup
j,k∈N

|ϕf (λj , µk)| ≤ ‖f‖Lip.

Remark 6.4 now concludes the proof.

Remark 6.10. Theorem 6.9 shows that each Lipschitz function f is op-
erator Lipschitz on `1 and c0, in the following sense. For fixed M ≥ 1 and
f : C→ C Lipschitz, there exists a constant C ≥ 0 such that

‖f(B)− f(A)‖L(`1) ≤ C‖B −A‖L(`1)
for all A,B ∈ Ld(`1) such that KA,KB ≤ M , and C is independent of A
and B. Similarly for c0.
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For p < q an analogous statement holds. By considering A, f(A) ∈ L(`p)
and B, f(B) ∈ L(`q) as operators from `p to `q, and by letting S be the
inclusion mapping `p ↪→ `q in Theorems 6.8 and 6.9, one can suggestively
write

‖f(B)− f(A)‖L(`p,`q) ≤ C‖B −A‖L(`p,`q)
for all A ∈ Ld(`p) and B ∈ Ld(`q) with KA,KB ≤M . Here f is the absolute
value function for general p < q in [1,∞] and any Lipschitz function if p = 1
or q =∞.

This remark also applies to Corollaries 6.11 and 6.12 below.

In the case of Theorems 6.8 and 6.9 where p = 2 or q = 2, we can ap-
ply our results to compact normal operators. By the spectral theorem, any
compact normal operator A ∈ L(`2) has an orthonormal basis of eigenvec-
tors, and therefore A ∈ Ld(`2, λ, U) for some sequence λ of real numbers
and an isometry U ∈ L(`2). Thus Theorems 6.8 and 6.9 yield the following
corollaries.

Corollary 6.11. Let p ∈ (1, 2). Then there exists a constant C ≥ 0
such that the following holds. Let A ∈ Ld(`p) have real spectrum and let
B ∈ L(`2) be compact and self-adjoint. Then

‖f(B)S − Sf(A)‖L(`p,`2) ≤ CKA‖BS − SA‖L(`p,`2)
for all S ∈ L(`p, `2), where f(t) := |t| for t ∈ R. Moreover,

‖f(B)S − Sf(A)‖L(`1,`2) ≤ KA‖f‖Lip‖BS − SA‖L(`1,`2)
for each A ∈ Ld(`1) and S ∈ L(`1, `2), each compact normal B ∈ L(`2) and
each Lipschitz function f : C→ C.

Corollary 6.12. Let q ∈ (2,∞). Then there exists a constant C ≥ 0
such that the following holds. Let A ∈ L(`2) be compact and self-adjoint, and
let B ∈ Ld(`q) have real spectrum. Then

‖f(B)S − Sf(A)‖L(`2,`q) ≤ CKB‖BS − SA‖L(`2,`q)
for all S ∈ L(`2, `q), where f(t) := |t| for t ∈ R. Moreover,

‖f(B)S − Sf(A)‖L(`2,c0) ≤ KB‖f‖Lip‖BS − SA‖L(`2,c0)
for each compact normal A ∈ Ld(`2), each B ∈ Ld(c0) and S ∈ L(`2, c0),
and each Lipschitz function f : C→ C.

6.3. The case p ≥ q. We now examine the absolute value function f
on L(`p, `q) for p ≥ q, and obtain the following result.

Proposition 6.13. Let p, q ∈ (1,∞] with p ≥ q. Then for each s < q
there exists a constant C ≥ 0 such that the following holds (where `∞ should
be replaced by c0). Let A ∈ Ld(`p, λ, U) and B ∈ Ld(`q, µ, V ) have real
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spectrum. Then

‖f(B)S − Sf(A)‖L(`p,`q) ≤ C‖U‖L(`p)‖V
−1‖L(`q)‖V (BS − SA)U−1‖L(`p,`s)

for all S ∈ L(`p, `q) such that V (BS − SA)U−1 ∈ L(`p, `s).
In particular, if p = q and V (B −A)U−1 ∈ L(`p, `s), then
‖f(B)− f(A)‖L(`p) ≤ C‖U‖L(`p)‖V

−1‖L(`p)‖V (B −A)U−1‖L(`p,`s).

Proof. Let R := V (BS − SA)U−1. With notation as in Lemma 5.3,

‖f(B)Sn − Snf(A)‖L(`p,`q) ≤ ‖U‖L(`p)‖V
−1‖L(`q)‖T

λ,µ
ϕf ,n

(R)‖L(`p,`q)
for each n ∈ N. Proposition 5.6, Lemma 6.7 (with p = r and with q and s
interchanged) and Proposition 6.3(iii) (with q and s interchanged) yield a
constant C ′ ≥ 0 such that

‖T λ,µϕf ,n
(R)‖L(`p,`q) ≤ C

′(‖R‖L(`p,`q) + ‖R‖L(`p,`s)).
Since L(`p, `s) ↪→ L(`p, `q) contractively,
‖f(B)Sn−Snf(A)‖L(`p,`q) ≤ C‖U‖L(`p)‖V

−1‖L(`q)‖V (BS−SA)U−1‖L(`p,`s)
for all n ∈ N, where C = 2C ′. Finally, as in the proof of Proposition 5.4, one
lets n tend to infinity to conclude the proof.

In the same way, appealing to the second part of Proposition 6.3(iii), one
deduces the following result.

Proposition 6.14. Let p, q ∈ [1,∞) with p ≥ q. Then for each r > p
there exists a constant C ≥ 0 such that the following holds (where `∞ should
be replaced by c0). Let A ∈ Ld(`p, λ, U) and B ∈ Ld(`q, µ, V ) have real
spectrum. Then

‖f(B)S − Sf(A)‖L(`p,`q)
≤ C‖U‖L(`p)‖V

−1‖L(`q)‖V (BS − SA)U−1‖L(`r,`q)
for all S ∈ L(`p, `q) such that V (BS − SA)U−1 ∈ L(`r, `q).

In particular, if p = q and V (B −A)U−1 ∈ L(`r, `q), then
‖f(B)− f(A)‖L(`p) ≤ C‖U‖L(`p)‖V

−1‖L(`p)‖V (B −A)U−1‖L(`r,`q).
We single out the case where p = q = 2. Here we write f(A) = |A| for a

normal operator A ∈ L(`2), since then f(A) is equal to |A| :=
√
A∗A. Note

also that the following result applies in particular to compact self-adjoint
operators. For simplicity of presentation we only consider ε ∈ (0, 1].

Corollary 6.15. For each ε ∈ (0, 1] there exists a constant C ≥ 0 such
that the following holds. Let A ∈ Ld(`2, λ, U) and B ∈ Ld(`2, µ, V ) be self-
adjoint, with U and V unitaries, and let S ∈ L(`2). If V (BS − SA)U−1 ∈
L(`2, `2−ε), then∥∥|B|S − S|A|∥∥L(`2) ≤ C‖V (BS − SA)U−1‖L(`2,`2−ε)
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and if V (BS − SA)U−1 ∈ L(`2+ε, `2) then∥∥|B|S − S|A|∥∥L(`2) ≤ C‖V (BS − SA)U−1‖L(`2+ε,`2).

In particular, if V (B −A)U−1 ∈ L(`2, `2−ε), then∥∥|B| − |A|∥∥L(`2) ≤ C‖V (B −A)U−1‖L(`2,`2−ε)
and if V (B −A)U−1 ∈ L(`2+ε, `2), then∥∥|B| − |A|∥∥L(`2) ≤ C‖V (B −A)U−1‖L(`2+ε,`2).

Remark 6.16. Let J be the class of all f : R→ R such that

(6.5) f(t) = at+ b+

t�

−∞
(t− s) dµ(s)

for all t ∈ R, where a, b ∈ R and µ is a signed measure of compact support.
This class is introduced by Davies [11, p. 156], and he states that f : R→ R
satisfies (6.5) for a positive µ if and only if f is convex and linear for large |t|.
The results in this section for f the absolute value function can be extended
to all f ∈ J , in the same way as in [11, Theorem 17]. We leave the details
to the reader.

7. Lipschitz estimates on the ideal of p-summing operators. Let
H be a separable infinite-dimensional Hilbert space. It was shown in [2] that
a matrix M = {mjk}∞j,k=1 is a Schur multiplier on the Hilbert–Schmidt class
S2 ⊂ L(H) if and only if supj,k |mjk| < ∞. By [25], S2 coincides with the
Banach ideal Πp(H) of all p-summing operators (see the definition below)
for all p ∈ [1,∞). Hence a matrix M = {mjk}∞j,k=1 is a Schur multiplier on
Πp(H) if and only if supj,k |mjk| <∞. In Corollary 7.2 below we show that
the same statement is true for the Banach ideal Πp(`p∗ , `p) in L(`p∗ , `p),
for p ∈ [1,∞). As a corollary we obtain operator Lipschitz estimates on
Πp(`p∗ , `p) for each Lipschitz function f on C.

Let X and Y be Banach spaces and 1 ≤ p <∞. An operator S : X → Y
is p-absolutely summing if there exists a constant C such that for each n ∈ N
and each collection {xj}nj=1 ⊆ X,

(7.1)
( n∑
j=1

‖S(xj)‖pY
)1/p

≤ C sup
‖x∗‖X∗≤1

( n∑
j=1

|〈x∗, xj〉|p
)1/p

.

The smallest such constant is denoted by πp, and Πp(X,Y ) is the space of
p-absolutely summing operators from X to Y . We let Πp(X) := Πp(X,X).
By [15, Propositions 2.3, 2.4 and 2.6], (Πp(X,Y ), πp(·)) is a Banach ideal in
L(X,Y ).

Below we consider p-absolutely summing operators from `p∗ to `p. We
first present the following result.
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Lemma 7.1. Let p ∈ [1,∞) and S = {sjk}∞j,k=1. Then S ∈ Πp(`p∗ , `p)
(with `∞ replaced by c0) if and only if

cp :=
( ∞∑
j=1

∞∑
k=1

|sjk|p
)1/p

<∞.

In this case, πp(S) = cp.

Proof. It follows from [15, Example 2.11] that, if cp <∞ for p ∈ (1,∞),
then S ∈ Πp(`p∗ , `p) with πp(S) ≤ cp. An inspection of the proof of [15,
Example 2.11] shows that this statement in fact also holds for p = 1. For
the converse, let n ∈ N and let xj := ej ∈ `p∗ for 1 ≤ j ≤ n. By (7.1) (with
X = `p∗ and Y = `p), ( n∑

k=1

∞∑
j=1

|sjk|p
)1/p

≤ πp(S).

Letting n tend to infinity concludes the proof.

For the following corollary of Lemma 7.1, recall that a matrixM is said to
be a Schur multiplier on a subspace I ⊆ L(`p, `q) if S 7→M ∗S is a bounded
map on I. Recall also the definition of the standard triangular truncation
T4 from (6.1).

Corollary 7.2. Let p ∈ [1,∞) and let M = {mjk}∞j,k=1 be a matrix.
Then M is a Schur multiplier on Πp(`p∗ , `p) (with `∞ replaced by c0) if and
only if supj,k∈N |mjk| <∞. In this case,

‖M‖L(Πp(`p∗ ,`p)) = sup
j,k∈N

|mjk|.

In particular, T4 ∈ L(Πp(`p∗ , `p)) with ‖T4‖L(Πp(`p∗ ,`p)) = 1.

Observe that T4 /∈ L(L(`p∗ , `p)) if p∗ ≥ p, by Proposition 6.3(ii). Never-
theless, T4 is bounded on the ideal Πp(`p∗ , `p) ⊂ L(`p∗ , `p) for all p ∈ [1,∞).

We now prove our main result concerning commutator estimates on
Πp(`p∗ , `p).

Theorem 7.3. Let p ∈ [1,∞), A ∈ Ld(`p∗) (with `∞ replaced by c0)
and B ∈ Ld(`p). Let f : C→ C be Lipschitz. Then

(7.2) πp(f(B)S − Sf(A)) ≤ KAKB‖f‖Lipπp(BS − SA)
for all S ∈ L(`p∗ , `p) such that BS − SA ∈ Πp(`p∗ , `p).

Proof. Let A ∈ Ld(`p∗ , λ, U) and B ∈ Ld(`p, µ, V ) for certain λ =
{λj}∞j=1, µ = {µk}∞k=1, U ∈ L(`p∗) and V ∈ L(`p). If {Sm}∞m=1 ⊆ Πp(`p∗ , `p)
is a πp-bounded sequence which SOT-converges to S ∈ L(X,Y ), then S ∈
Πp(`p∗ , `p) with πp(S) ≤ lim supm→∞ πp(Sm), by (7.1). Hence, by Rem-
ark 5.5, it suffices to prove that supn∈N ‖T

λ,µ
ϕf ,n‖L(Πp(`p∗ ,`p)) ≤ ‖f‖Lip, where
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ϕf is as in (6.3). This is done as in the proof of Theorem 6.9, using Corol-
lary 7.2 instead of Remark 6.4.

Problem 7.4. Let p, q, r ∈ [1,∞] be such that q ≥ 2, 1/q − 1/p < 1/2
and 1/r = 1/p − 1/q + 1/2. Then the Schatten class Sr coincides with the
Banach ideal Πp,q(`2) of (p, q)-summing operators on `2 (for the definition of
(p, q)-summing operators see [15]). Hence, by [16], the standard triangular
truncation is bounded on Πp,q(`2). For which r1, r2 ∈ [1,∞] is the stan-
dard triangular truncation bounded on Πp,q(`r1 , `r2)? For which ideals I in
L(`p, `q) is the standard triangular truncation bounded on I? As shown in
Theorem 7.3, answers to these questions are linked to commutator estimates
for diagonalizable operators.

8. Matrix estimates. In this section we apply the theory developed
in Sections 4–6 to finite-dimensional spaces. We leave the derivation of the
dimension-independent estimates that follow from the results in Section 7 to
the reader.

8.1. Finite-dimensional spaces. For n ∈ N let X be an n-dimensional
Banach space with basis {e1, . . . , en} ⊂ X and the corresponding basis pro-
jections Pk ∈ L(X) for 1 ≤ k ≤ n. Recall that an operator A ∈ L(X) is
diagonalizable if there exists U ∈ L(X) invertible such that

UAU−1 =
n∑
k=1

λkPk

for some λ = (λ1, . . . , λn) ∈ Cn. We then write A ∈ Ld(X,λ, U). Recall also
the definition of spectral and scalar type operators from Section 3.1.

Lemma 8.1. Let A ∈ L(X). Then A is a spectral operator, and A is a
scalar type operator if and only if A is diagonalizable. If A ∈ Ld(X,λ, U)
then the spectral measure E of A is given by E(σ) = 0 if σ ∩ sp(A) = ∅,
σ ∈ B and E({λ}) =

∑
λj=λ

U−1PjU for λ ∈ sp(A).

Proof. It was already remarked in Section 5 that any diagonalizable
operator is a scalar type operator, with spectral measure as specified. By
[17, Theorem XV.4.5], an operator T ∈ L(Y ) on an arbitrary Banach space
Y is a spectral operator if and only if T = S + N for a commuting scalar
type operator S ∈ L(Y ) and a generalized nilpotent operator N ∈ L(Y ), and
this decomposition is unique. The Jordan decomposition for matrices yields
a commuting diagonalizable S and a nilpotent N such that A = S + N ,
hence A is a spectral operator. If A is a scalar type operator, then the Jor-
dan decomposition yields a commuting diagonalizable S and a nilpotent N
such that A = S +N . By the uniqueness of such a decomposition [17, The-
orem XV.4.5], N = 0 and A = S is diagonalizable.
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Let Y be a finite-dimensional Banach space. As in [6], a norm ‖ · ‖ on
L(X,Y ) is said to be symmetric if

• ‖RST‖ ≤ ‖R‖L(Y )‖S‖‖T‖L(X) for all R ∈ L(Y ), S ∈ L(X,Y ) and
T ∈ L(X);
• ‖x∗ ⊗ y‖ = ‖x∗‖X∗‖y‖Y for all x∗ ∈ X∗ and y ∈ Y .

Clearly (L(X,Y ), ‖·‖) is a Banach ideal in L(X,Y ) in the sense of Section 3.2
if and only if ‖ · ‖ is symmetric. Note that, for A ∈ Ld(X,λ, U),

f(A) = U−1
( n∑
k=1

f(λk)Pk
)
U,

as in (5.3). Let A := A(C × C) be as in Section 3.3, and for f ∈ B(C) and
(λ1, λ2) ∈ C2 with λ1 6= λ2 let ϕf (λ1, λ2) := f(λ2)−f(λ1)

λ2−λ1 , as in (4.5). The
following corollary of Theorem 4.6 extends results for self-adjoint operators
and unitarily invariant norms (see e.g. [20] and [6, Chapter X]) to diago-
nalizable operators and symmetric norms. Note that a symmetric norm on
L(X,Y ) need not be unitarily invariant.

Corollary 8.2. Let f ∈ B(C) be such that ϕf extends to an element
of A. Let X and Y be finite-dimensional Banach spaces, let ‖ · ‖ be a sym-
metric norm on L(X,Y ), and let A ∈ Ld(X) and B ∈ Ld(Y ). Then

‖f(B)S − Sf(A)‖ ≤ 16ν(A)ν(B)‖ϕf‖A‖BS − SA‖
for all S ∈ L(X,Y ). In particular, if X = Y ,

(8.1) ‖f(B)− f(A)‖ ≤ 16 ν(A)ν(B)‖ϕf‖A‖B −A‖.
Corollaries 4.8 and 4.9 yield dimension-independent estimates for f ∈

Ḃ1
∞,1(R).

Remark 8.3. Let σ1, σ2 ⊂ C be finite sets. Then any ϕ : σ1 × σ2 → C
belongs to A(σ1 × σ2). Indeed, one can find a representation as in (3.8)
by letting Ω be finite and solving a system of linear equations. Therefore
Theorem 4.6 yields an estimate

‖f(B)S − Sf(A)‖ ≤ 16 ν(A)ν(B)‖ϕf‖A(sp(A)×sp(B))‖BS − SA‖
as in (4.6) for all f ∈ B(C). This might lead one to think that the as-
sumption in Theorem 8.2 that ϕf extends to an element of A is not really
necessary. However, for general f ∈ B(C) the norm ‖ϕf‖A(sp(A)×sp(B)) may
blow up as the number of points in sp(A) and sp(B) grows to infinity. In-
deed, for f ∈ B(C) the absolute value function and ‖ ·‖ the operator norm, a
dimension-independent estimate as in (8.1) does not hold for all self-adjoint
operators on all finite-dimensional Hilbert spaces [6, (X.25)]. Hence ϕf does
not extend to an element of A, and one cannot expect to obtain Theorem 8.2
for all bounded Borel functions on C.
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8.2. The absolute value function. We now apply our results for
the absolute value function to finite-dimensional spaces. First note that
Lemma 5.3 and Proposition 5.6 relate commutator estimates for general
symmetric norms to triangular truncation operators.

For n ∈ N and p ∈ [1,∞] let `np denote Cn with the p-norm

‖(x1, . . . , xn)‖p :=
( n∑
j=1

|xj |p
)1/p

((x1, . . . , xn) ∈ Cn),

with the obvious modification for p = ∞. Applying Theorem 6.8 with S :
Cn → Cn the identity operator yields the following. This result is false for
p = q = 2.

Corollary 8.4. Let p, q ∈ [1,∞] with p < q and let f(t) := |t| for
t ∈ R. Then there exists a constant C ≥ 0 such that the following holds. Let
n ∈ N and let A ∈ Ld(`np ) and B ∈ Ld(`nq ) have real spectrum. Then

‖f(B)− f(A)‖L(`np ,`nq ) ≤ CKAKB‖B −A‖L(`np ,`nq ).

Theorem 6.9 shows that, for p = 1 or q =∞, Corollary 8.4 extends to all
Lipschitz functions f : C → C, with C = ‖f‖Lip. Corollaries 6.11 and 6.12
imply that for p = 2 or q = 2 and A or B self-adjoint, the estimate in
Corollary 8.4 simplifies.

From the results for p ≥ q we obtain for instance the following.

Corollary 8.5. For each ε ∈ (0, 1] there exists a constant C ≥ 0 such
that the following holds. Let n ∈ N and let A ∈ Ld(`n2 , λ, U) and B ∈
Ld(`n2 , µ, V ) be self-adjoint operators, with U and V unitaries. Then∥∥|B| − |A|∥∥L(`n2 )

≤ Cmin(‖V (B −A)U−1‖L(`n2 ,`n2−ε), ‖V (B −A)U−1‖L(`n2+ε,`n2 )).

Finally note that, under the assumptions of Corollary 8.5,∥∥|B| − |A|∥∥L(`n2 ) ≤ C‖B −A‖L(`n2 )min(‖V ‖L(`n2 ,`n2−ε), ‖U
−1‖L(`n2+ε,`n2 )).
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