
Urszula Stańczyk

Silesian University of Technology

Institute of Informatics

Synthesis of Boolean functions for image processing

In binary image processing every finite window operator can be expressed as a Boolean
function depending on surrounding pixels ([2]). However, such functions are known only for
relatively few operations, which means that for the rest of possible image transformations it is
necessary to perform some synthesis procedure.

Finding the output value of a transformed pixel requires checking values of points contained
in the processing window and depending on these values (and possibly distribution of those
values) computing the result, that is deciding whether the output pixel should take value 0 or 1.
In this situation pixels in the processing window can be directly interpreted as variables of the
logic function and their binary values as assumed logic values.

The size and shape of the processing window depend on the goal of image transformation
([1]). For square processing window (that is most often used) the typical enumeration of variables
is given by the figure 1 below. The origin is usually placed at the centre.

x3 x2 x1

x4 x x0

x5 x6 x7

x14 x13 x12 x11 x10

x15 x3 x2 x1 x9

x16 x4 x x0 x8

x17 x5 x6 x7 x23

x18 x19 x20 x21 x22

a) window 3 by 3, b) window 5 by 5.
Fig. 1. Enumeration of variables corresponding to a pixel neighbourhood

The first step of synthesis, in general being the statement describing what action the
function should take, here becomes establishing the goal of image transformation along with the
size and shape of a processing window. This input can assume some different forms: it can be
defined by specifying known morphological transformation type and a structuring element, it
can be given through the set of masks causing hits, or by natural language statements.

An example of the first form can be given by Hit-or-Miss transformation detecting left lower
corners in contours of objects. Such transformation requires the composite structuring element
D = (B, C) with B = {(0, 0), (0, 1), (1, 0)} and C = {(0, −1), (−1, −1), (−1, 0)} respectively. In
general a BF defining HMT takes the form Fb(x1, . . . , xN ) = x1·· · ··xM ·xM+1·· · ··xN for structur-
ing elements B = {d1, . . . , dM } and C = {dM+1, . . . , dN }. Assuming presented enumeration of
variables in the pixel neighbourhood, in this case the function becomes Fb(x, x0, x2, x4, x5, x6) =
x x0 x2 x4 x5 x6. If the function is considered as operating on 3 by 3 neighbourhood, then it
is degenerate in x1, x3 and x7 variables. If the truth table is specified for this function then
minimising process results in obtaining the same logic expression as presented above. In such
case omitting vacuous variables brings more compact representation.

In an example of the second form there will be used the concept of connectivity, which
for discrete images is usually defined for rectangular grid as happening only in direct horizontal
and vertical manner (4-connectivity) or allowing also diagonal neighbours (8-connectivity). This
second type can cause problems with interpretation of pixels as either comprising an object that
is 8-connected or comprising several disconnected objects that are 4-connected and how this re-
lates to the connectivity of the background. To settle the matter there can be used an approach
that for foreground pixels there is defined 4-connectivity, while for the background there is used
8-connectivity. In such case it may be needed to substitute any 8-connectivity that exists in ob-



jects of the considered image. Thus the transformation should check 4-connected neighbourhood
and if there is any 8-connectivity case within, it has to be changed into 4-connectivity. The list
of patterns that cause the output to equal 1 is given by the following.

0

0 1 0

0

,

0

0 1 0

1

,

0

0 1 1

0

,

0

0 1 1

1

,

0

1 1 0

0

,

0

1 1 0

1

,

0

1 1 1

0

,

0

1 1 1

1

1

0 1 0

0

,

1

0 1 0

1

,

1

0 1 1

0

,

1

0 1 1

1

,

1

1 1 0

0

,

1

1 1 0

1

,

1

1 1 1

0

,

1

1 1 1

1

0

0 0 1

1

,

0

1 0 0

1

,

0

1 0 1

1

,

1

0 0 1

0

,

1

0 0 1

1

,

1

1 0 0

0

,

1

1 0 0

1

,

1

1 0 1

0

,

1

1 0 1

1

.

Secification of patterns if considered in terms of variables and logic functions brings immedi-
ate recognition of on-set for the function. Thus the logic synthesis is already performed. However,
it is always possible to yield some useful conclusions from analysis of given patterns. The exem-
plary function is always 1 whenever the central pixel equals 1 or when any number of following
four situations happens: either (x2 and x4 are 1) or (x2 and x0 equal 1) or (x4 and x6 are 1) or
(x6 and x0 equal 1). This observation gives Fb(x, x0, x2, x4, x6) = x+x0 x2+x0 x6+x2 x4+x4 x6,
which also would be obtained by minimisation process.

Natural language statements describing image transformations constitute the most difficult
case for logic synthesis because this form requires a designer’s skill to turn such definition into
some more precise form. As an example one can consider widely known median operators. For
binary case such operator should set the output to the value of the majority of neighbouring
pixels. For the window of 3 by 3 the number of pixels is 9 — so the output value should be
equal to the state of 5 (or more) surrounding points. It means that if at least 5 out of 9 variables
are 1 the output value equals 1 too, otherwise it is 0. The Boolean function that performs such
operation written in the SoP minimal form would be equal to summed products of all possible
combinations of fives of function variables. Due to Boolean algebra theorems, these terms cover
the rest of terms with all possible combinations of 6, 7, 8 and 9 variables of the function. There
are 126 combinations of fives of variables, so the function would have that number of terms.

In general case, however, the task specification can be much too complex to obtain the
logic function in the simple straightforward manner described. In such situations there are two
possible solutions: either generating all possible combinations of input variables and specifying
corresponding to them output values, which is in fact the generation of the truth table; or
producing a chosen representation type basing on several partial definitions of the transformation
that usually are obtainable in much simpler way ([3]).

Since for the processing window of a given shape and containing N pixels there can be
defined 22

N

different functions, instead of attempts to synthesise one of them, it is possible to
generate all, and then, basing on observations of results of image processing with such definitions
of transformations, state what they do to an image. With this approach the process of logic
synthesis becomes logic analysis.

References

[1] Robert M. Haralick, Stanley R. Sternberg, Xinhua Zhuang. Image analysis using Mathematical Morphology .
IEEE Transactions on Pattern Analysis and Machine Intelligence 9, No. 4, July 1987.

[2] Henk J.A.M. Heijmans. Mathematical Morphology: a modern approach in image processing based on algebra

and geometry . SIAM Review 37, No. 1, March 1995.
[3] William K. Pratt. Digital Image Processing . John Wiley & Sons, New York, 1991.


