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Clustering in Hilbert space:

kernel K-Means algorithm and its application in ophthalmology

This paper presents the kernel K-Means clustering algorithm and its application in the seg-
mentation of cup region in digital fundus eye image (FEI). This is the first stage of the proposed
automatic method supporting glaucoma diagnosis in ophthalmology. The remaining two stages
of this method comprise cup feature selection based on genetic algorithms and classification
using support vector machine (SVM) classifier.

Traditional K-Means clustering algorithm aims to partition the data set composed of N

samples x1, . . . , xN into K clusters: G1, . . . , GK , and then returns the center of each cluster:
c1, . . . , cK as the representatives of the data set. The assumption behind the above algorithm is
the belief that the data space consists of isolated elliptical regions. However, such assumption is
not always held on specific applications. To tackle this problem, one idea is to apply a transfor-
mation Φ : Rd → Q, that maps each data xi from the input space Rd to a new space Q, being
a Hilbert space, where the given algorithm can be used. Such transformation is done implicitly
by means of a kernel function k, satisfying:

k(xi, xj) = Φ(xi) · Φ(xj) (1)

for example a Gaussian one: k(xi, xj) = exp(−
‖xi−xj ‖2

2r2 ). Mercer’s theorem guarantees that as
long as the kernel function is positive definite, the algorithm implicitly operates in a higher
dimensional space. This kernel trick saves the algorithm from the computational expense of
explicitly representing all of the features in a higher-dimensional space.

The key issue extending traditional K-Means clustering algorithm to kernel K-Means is
the computation of the Euclidean distance between ui = Φ(xi) and tk, the cluster center in the
transformed space:

D2(ui, tk) = k(xi, xi) + h1(xi, Gk) + h2(Gk), (2)

where

h1(xi, Gk) = −
2

|Gk|

N
∑

j=1

ω(uj , Gk)k(xi, xj), (3)

h2(Gk) =

N
∑

j=1

N
∑

l=1

ω(uj , Gk)ω(ul, Gk)k(xj , xl), (4)

ω(ui, Gk) =

{

1 if ∀j 6= k h1(xi, Gk) + h2(Gk) < h1(xi, Gj) + h2(Gj), j = 1, . . . , K,

0 otherwise.
(5)

Since the cluster center in a transformed space cannot be expressed explicitly, we have to choose
a pseudo center instead, for example the sample that is closest to the center:

ck = argmin
xi:ω(ui,Gk)=1

D(Φ(xi), tk). (6)

In the second stage, genetic algorithms are used to select the most significant features character-
izing the shape of the segmented cup region. The last stage is the training and testing procedure
of SVM classifier with Gaussian kernel.

The following results were obtained on the set composed of 200 segmented FEI: mean
sensitivity: 93% and mean specificity: 97%.


