Maria Leśniewicz, Lucyna Rempulska Institute of Mathematics Poznań University of Technology E-mail: mlesniew@math.put.poznan.pl, lrempuls@math.put.poznan.pl

Approximation properties of certain positive linear operators

In this paper we examine approximation properties of general positive and linear operators L_n , $n \in N = \{1, 2, ...\}$, acting from the polynomial weighted space $C_p(Q)$ into $B_p(Q)$ and satisfying the condition $L_n(1; x) = 1$ for every $x \in Q$ and $n \in N$. Here $B_p(Q), p \in N_0 = N \cup \{0\}$, is the set of all real-valued functions f defined on the interval $Q = [0, \infty)$ for which fw_p ,

$$w_0(x) := 1, \quad w_p(x) := (1+x^p)^{-1} \quad \text{if} \quad p \ge 1,$$

is bounded on Q. The norm in the space $B_p(Q)$ is defined by:

$$||f||_p = \sup_{x \in Q} w_p(x) |f(x)|$$

Moreover $C_p(Q)$, $p \in N_0$, is the set of all $f \in B_p(Q)$ for which fw_p is a uniformly continuous function on Q.

Approximation properties of these operators L_n give the following

Theorem. Let $p \in N_0$ be a fixed number. Then there exists a positive constant M(p), depending only on p, such that for every $f \in C_p(Q)$ the following inequality holds

$$w_p(x)|L_n(f;x) - f(x)| \le M(p)\,\omega(f;\delta_n(x)),$$

for $x \in Q$ and $n \in N$, where $\omega(f)$ is the modulus of continuity of f and

$$\delta_n(x) = \left(L_n((t-x)^2;x)\right)^{\frac{1}{2}}$$

In our paper we give also other approximation theorems.