Inverse scattering problems with non-over-determined data

Alexander G. Ramm
Mathematics Department, Kansas State University, Manhattan, KS 66506-2602, USA
ramm@math.ksu.edu
http://www.math.ksu.edu/ ${ }^{\sim}$ ramm

Abstract

From the mid-forties of the last century there were no uniqueness theorems for threedimensional inverse scattering problems with non-over-determined data. Such theorems are now proved.

First we present the uniqueness theorem for inverse obstacle scattering problem ([7], [8]). Let $A(\beta, \alpha, k)$ be the scattering amplitude, and $A(\beta):=A\left(\beta, \alpha_{0}, k_{0}\right)$, where α_{0} and $k_{0}>0$ are fixed.

Theorem 0 The surface S of a bounded obstacle and the boundary condition on S are uniquely determined by the data $A(\beta)$ known for all β on an open subset of the unit sphere S^{2}.

Let $A(\beta, \alpha, k)$ be the scattering amplitude corresponding to a real-valued compactly supported potential, $\alpha \in S^{2}$ is the direction of the incident plane wave, $\beta \in S^{2}$ is the direction of the scattered wave, $k>0$ is the wave number, S^{2} is the unit sphere in R^{3}.

The Schrödinger equation $\left[\nabla^{2}+k^{2}-q(x)\right] u=0, x \in R^{3}$, is the governing equation. For potentials $q \in H_{0}^{\ell}, \ell>3$, where H_{0}^{ℓ} is the Sobolev space of functions with compact support, the inverse scattering problem with backscattering data has at most one solution. The following uniqueness theorem is proved:

Theorem 1. If $A_{q_{1}}(-\beta, \beta, k)=A_{q_{2}}(-\beta, \beta, k) \forall \beta \in S^{2}, \forall k \in\left(k_{0}, k_{1}\right)$, and $q_{1}, q_{2} \in H_{0}^{\ell}$, $\ell>3$, then $q_{1}=q_{2}$.

Here S_{1}^{2} is an arbitrarily small open subset of S^{2}, and the interval $\left|k_{0}-k_{1}\right|>0$ can be arbitrarily small.

Under the same assumptions on the class of the potentials, the following uniqueness theorem holds:

Theorem 2. If $A_{q_{1}}\left(\beta, \alpha_{0}, k\right)=A_{q_{2}}\left(\beta, \alpha_{0}, k\right) \forall \beta \in S^{2}, \forall k \in\left(k_{0}, k_{1}\right)$, and for a fixed $\alpha_{0} \in S^{2}$, then $q_{1}=q_{2}$.

The uniqueness theorems for inverse scattering problems with fixed-energy data are proved in the monograph [6].

\section*{References} [1] A.G.Ramm, Uniqueness theorem for inverse scattering problem with non-over-determined data, J.Phys. A, FTC, 43, (2010), 112001. [2] A.G.Ramm, Uniqueness of the solution to inverse scattering problem with backscattering data, Eurasian Math. Journal (EMJ), 1, N3, (2010), 97-111. [3] A.G.Ramm, Uniqueness of the solution to inverse scattering problem with scattering data at a fixed direction of the incident wave, J. Math. Phys., 52, 123506, (2011). [4] A.G.Ramm, Inverse scattering with non-over-determined data, Phys. Lett. A, 373, (2009), 2988-2991. [5] A.G.Ramm, Uniqueness of the solution to inverse scattering problem with non-over-determined data, Proceedings of the International Conference on Inverse Problems in Engineering, May 4-6, 2011, Orlando, Florida, USA, vol.5, (2011), pp. 281-286. [6] A.G.Ramm, Inverse problems, Springer, New York, 2005.

[7] A.G.Ramm, Uniqueness of the solution to inverse obstacle scattering with non-over-determined data, Appl. Math. Lett., 58, (2016), 81-86.
[8] A.G.Ramm, Inverse obstacle scattering with non-over-determined data, (submitted)

