A simple variational approach to weakly coupled elliptic systems
Andrzej Szulkin (Stockholm)

Abstract: The elliptic system of 2 equations

$$
-\Delta u_{i}+\kappa_{i} u_{i}=\mu_{i} u_{i}^{3}+2 \lambda u_{i} u_{j}^{2}, \quad i, j=1,2, i \neq j
$$

where Ω is a domain in \mathbb{R}^{N} has been extensively studied in dimensions $N \leq 4$. This system appears e.g. in 2 -species physical problems (BoseEinstein condensates with 2 hyperfine states) and in population dynamics. The condition $\mu_{i}>0$ signifies that the interaction of species (or particles) of the same kind is attractive while $\lambda<0$ signifies the repulsive interaction of species of different kind. Also various extensions (nonlinearities other than cubic, M instead of 2 equations) have been recently studied. In this talk we will be concerned with the system of M equations and nonlinearities which are not necessarily cubic. We introduce a general variational setting and then discuss existence and multiplicity of fully nontrivial (i.e., $u_{i} \neq 0$ for all i) solutions under different hypotheses on Ω and p.

This is joint work with Mónica Clapp.

