PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Symmetric Lie models of a triangle

Volume 246 / 2019

Urtzi Buijs, Yves Félix, Aniceto Murillo, Daniel Tanré Fundamenta Mathematicae 246 (2019), 289-300 MSC: Primary 55P62; Secondary 17B01, 55U10. DOI: 10.4064/fm518-7-2018 Published online: 15 February 2019

Abstract

R. Lawrence and D. Sullivan have constructed a Lie model for an interval from the geometrical idea of flat connections and flows of gauge transformations. Their model supports an action of the symmetric group $\varSigma _2$ reflecting the geometrical symmetry of the interval. In this work, we present a Lie model of the triangle with an action of the symmetric group $\varSigma _3$ compatible with the geometrical symmetries of the triangle. We also prove that the model of a graph consisting of a circuit with $k$ vertices admits a Maurer–Cartan element stable by the automorphisms of the graph.

Authors

  • Urtzi BuijsDepartamento de Álgebra, Geometría y Topología
    Universidad de Málaga
    Ap. 59
    29080 Málaga, Spain
    e-mail
  • Yves FélixInstitut de Mathématiques et Physique
    Université Catholique de Louvain-la-Neuve
    Louvain-la-Neuve, Belgium
    e-mail
  • Aniceto MurilloDepartamento de Álgebra, Geometría y Topología
    Universidad de Málaga
    Ap. 59, 29080-Málaga, Spain
    e-mail
  • Daniel TanréDépartement de Mathématiques, UMR 8524
    Université de Lille 1
    59655 Villeneuve d’Ascq Cedex, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image