A+ CATEGORY SCIENTIFIC UNIT

# Publishing house / Journals and Serials / Studia Mathematica / All issues

## Mappings on some reflexive algebras characterized by action on zero products or Jordan zero products

### Volume 206 / 2011

Studia Mathematica 206 (2011), 121-134 MSC: Primary 47L35; Secondary 17B40. DOI: 10.4064/sm206-2-2

#### Abstract

Let $\mathcal{L}$ be a subspace lattice on a Banach space $X$ and let $\delta:\mathop{\mathrm{Alg}}\mathcal{L}\rightarrow B(X)$ be a linear mapping. If $\bigvee\{L\in \mathcal{L}: L_-\nsupseteq L\}=X$ or $\bigwedge\{L_-:L\in \mathcal{L}, \, L_-\nsupseteq L\}=(0)$, we show that the following three conditions are equivalent: (1) $\delta(AB)=\delta(A)B+A\delta(B)$ whenever $AB=0$; (2) $\delta(AB+BA)=\delta(A)B+A\delta(B)+\delta(B)A+B\delta(A)$ whenever $AB+BA=0$; (3) $\delta$ is a generalized derivation and $\delta(I)\in (\mathrm{Alg}\,\mathcal{L})^\prime$. If $\bigvee\{L\in \mathcal{L}: L_-\nsupseteq L\}=X$ or $\bigwedge\{L_-:L\in \mathcal{L}, L_-\nsupseteq L\}=(0)$ and $\delta$ satisfies $\delta(AB+BA)=\delta(A)B+A\delta(B)+\delta(B)A+B\delta(A)$ whenever $AB=0$, we show that $\delta$ is a generalized derivation and $\delta(I)A\in(\mathrm{Alg}\,\mathcal{L})^\prime$ for every $A\in \mathrm{Alg}\,\mathcal{L}$. We also prove that if $\bigvee\{L\in \mathcal{L}: L_-\nsupseteq L\}=X$ and $\bigwedge\{L_-:L\in \mathcal{L},\, L_-\nsupseteq L\}=(0)$, then $\delta$ is a local generalized derivation if and only if $\delta$ is a generalized derivation.

#### Authors

• Yunhe ChenDepartment of Mathematics
East China University of
Science and Technology
Shanghai 200237, People's Republic of China
e-mail
• Jiankui LiDepartment of Mathematics
East China University of
Science and Technology
Shanghai 200237, People's Republic of China
e-mail

## Search for IMPAN publications

Query phrase too short. Type at least 4 characters.