PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Convolution operators with singular measures of fractional type on the Heisenberg group

Volume 245 / 2019

Tomas Godoy, Pablo Rocha Studia Mathematica 245 (2019), 213-228 MSC: Primary 43A80; Secondary 42A38. DOI: 10.4064/sm8781-12-2017 Published online: 24 August 2018

Abstract

We consider the Heisenberg group $\mathbb{H}^{n}=\mathbb{C}^{n} \times \mathbb{R}$. Let $\mu_{\gamma}$ be the fractional Borel measure on $\mathbb{H}^{n}$ defined by $$ \mu_{\gamma}(E) = \int_{\mathbb{C}^{n}}\chi_{E}(w,\varphi(w)) \prod_{j=1}^{n} \eta_j ( |w_j|^{2}) | w_j |^{-{\gamma}/{n}}\,dw, $$ where $0 \lt \gamma \lt 2n$, $\varphi(w) = \sum_{j=1}^{n} a_{j} \vert w_{j}\vert^{2}$, $w=(w_{1},\ldots ,w_{n}) \in \mathbb{C}^{n}$, $a_{j} \in \mathbb{R}$, and $\eta_j \in C_{c}^{\infty}(\mathbb{R})$. In this paper we study the set of pairs $(p,q)$ such that right convolution with $\mu_{\gamma}$ is bounded from $L^{p}(\mathbb{H}^{n})$ into $L^{q}(\mathbb{H}^{n})$.

Authors

  • Tomas GodoyFaMAF
    Universidad Nacional de Córdoba
    5000 Córdoba, Argentina
    e-mail
  • Pablo RochaFaMAF
    Universidad Nacional de Córdoba
    5000 Córdoba, Argentina
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image