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Summary

This thesis is concerned with studying the Quantitative Fatou Property (QFP) and the e-approximability,
as well as notions such as the nontangential maximal function, the area function and Carleson mea-
sures. Let us briefly describe QFP and e-approximability. Suppose that Q is a domain in a space that
we are interested in and suppose there is a function u : Q — R. The g-approximability states that there
is a function which is sufficiently regular such that it is € close to # in L* norm and such that the norm
of its gradient gives rise to a Carleson measure. QFP usually follows from e-approximability. QFP
states that a function counting oscillations of u is in the space L}OC(OQ). It is a property stronger than
Fatou theorem which reads that for a harmonic function there exists a nontangential limit at almost
every point of the boundary of Q. The thesis focuses on extending the results known for harmonic
functions in the Euclidean setting. The conducted research contains results pertaining to not neces-
sarily harmonic function in the Euclidean setting and to harmonic functions in settings that are not
Euclidean. To be precise, these non Euclidean settings are Riemanninan manifolds and Heisenberg
groups. The thesis is based on three papers, [AGG], [Gr], [AdGr].

Firstly, in Chapter 3 based on [AGG], the case of not necessarily harmonic functions in the Eu-
clidean setting is dealt with. We show that for Lipschitz-graph domains, i.e. superlevel sets of Lipschitz
functions, a certain class of functions satisfies QFP. This class contains harmonic functions, but it is
broader as nonnegative subharmonic functions are also elements of this class. We first show that for
such functions e-approximability holds and then how QFP follows from it.

Next chapter, that is Chapter 4 based on [Gr], handles the case of harmonic functions in Riemannian
manifolds. We deal with Lipschitz domains. We prove g-approximability of harmonic functions, and
more generally A-harmonic functions. Then we proceed with the proof of QFP.

Finally, in the last Chapter 5 based on [AdGr], we work in the setting of Heisenberg groups with
nontangentially accessible domains (NTA) and domains admissible for Dirichlet problem (ADP). We
prove several theorems concerning the Carleson measures, the nontangential maximal functions and
the area functions. We say that a measure u defined on € is a Carleson measure if a measure of a ball
intersected with Q, i.e. u(Q N B(x,r)) for x € 0, is comparable with the measure of a boundary
ball, i.e. 6(d€2 N B(x,r)), where ¢ denotes a surface measure. The nontangential maximal function
of function u is the supremum over a cone with vertex at the boundary of Q of the absolute value of
u. The area function of u at point x € 9dQ is the integral over a cone with vertex at x of the square of
the norm of the gradient of u multiplied by the distance to dQ raised to the appropriate power. First,
we prove the characterization of Carleson measures in the first Heisenberg group H' using the nontan-
gential maximal function for regular enough domains. Then, we prove characterization of Carleson
measures on balls. We then prove that for a harmonic function u on NTA domain Q with boundary
data f the L? norm of the area function is bounded by the L? norm of f. We also prove the Carleson
type estimate, saying that the squared norm of the gradient of a harmonic function multiplied with the
Green function defines a Carleson measure. Lastly, we prove a refined version of the Fatou theorem.
The refinement lies in the fact that we prove that the set where the nontangential limit does not exist
is of capacity zero, rather than of measure zero.

Keywords: Quantitative Fatou Property, e-approximability, nontangential maximal function, area
function, Carleson measure.
AMS Subject Classification 2024: 58J05, 35J05, 35R01, 35R03, 31B05, 31C05.
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Streszczenie

Ta rozprawa dotyczy studiéw nad IloSciowa WtasnoScig Fatou (IWF) oraz e-aproksymowalnoscia,
jak réwniez pojeciami takimi jak niestyczna funckja maksymalna, funkcja area, czy miary Carlesona.
Teraz krotko opiszemy IWF i e-aproksymowalnos$é. Niech Q bedzie dziedzing w interesujacej nas
przestrzeni, a u: Q — R bedzie funkcja. Wilasnos¢ e-aproksymowalnosci méwi, ze istnieje dostate-
cznie regularna funkcja, ktora jest odlegta of u o nie wigcej niz € w normie L® oraz norma jej gradi-
entu zadaje miar¢ Carlesona. Zazwyczaj IWF wynika z e-aproksymowalnosci. IWF mowi, ze funkcja
liczaca oscylacje u jest w L}OC(GQ). Ta wlasnos¢ jest silniejsza niz twierdzenie Fatou mowiace, ze
funkcja harmoniczna ma granice niestyczne w prawie kazdym punkcie brzegu Q. Rozprawa skupia
si¢ na rozszerzeniu wynikow znanych dla funkcji harmonicznych w przestrzeniach euklidesowych.
Przeprowadzone badania zawieraja wyniki dotyczace funkcji z klasy szerszej niz tylko harmoniczne
w przestrzeniach euklidesowych oraz dotyczace funkcji harmonicznych w przestrzeniach nieeuklides-
owych. Precyzyjniej, w rozmaitoSciach riemannowskich i grupach Heisenberga. Rozprawa jest oparta
na trzech artykutach [AGG], [Gr], [AdGr].

Wpierw, w rozdziale 3 opartym na [AGG], zajmujemy si¢ przypadkiem funkcji niekoniecznie
harmonicznych w przestrzeniach euklidesowych. Pokazujemy, ze dla dziedzin, ktore sa nadpoziomi-
cami funkcji lipszycowskich, szczeg6lna klasa funkcji spetnia IWF. Ta klasa zawiera funkcje harmon-
iczne, ale jest szersza, gdyz nieujemne funkcje subharmoniczne rowniez s3 jej elementami. Najpierw
pokazujemy e-aproksymowalno$¢, a potem jak wynika z niej IWF.

W rozdziale 4 opartym na [Gr] zajmujemy si¢ przypadkiem funkcji harmonicznych na rozmaitos-
ciach riemannowskich. Pracujemy z dziedzinami lipszycowskimi. Dowodzimy e-aproksymowalno$¢
funkcji harmonicznych, ogélniej A-harmonicznych. Nastgpnie pokazujemy IWFE.

W ostatnim rozdziale 5 opartym na [AdGr] pracujemy w grupach Heisenberga z dziedzinami os-
iagalnymi niestycznie (NTA) oraz dziedzinami dopuszczalnymi dla zagadnienia Dirichleta (ADP).
Dowodzimy kilka twierdzen dotyczacych miar Carlesona, niestycznej funkcji maksymalnej i funkcji
area. Mowimy, ze miara u zdefiniowana na € jest miarg Carlesona, jesli miara przecigcia kuli z Q,
tj. u(Q N B(x,r)) dla x € 0Q, jest porownywalna z miarg kuli brzegowej, tj. c(dQ2 N B(x, r)), gdzie
o oznacza miar¢ powierzchniowa. Niestyczna funkcja maksymalna funkcji u jest supremum wartoSci
bezwzglednej u po stozku o wierzchotku na brzegu Q. Funkcja area funkcji u w punkcie x € d€2 jest
catka po stozku o wierzchotku w x z normy gradientu u w kwadracie pomnozonej przez odlegtos$¢ do
brzegu podniesiona do odpowiedniej pot¢gi. Wpierw, dowodzimy charakteryzacje¢ miar Carlesona w
pierwszej grupie Heisenberga H' dla dostatecznie regularnych dziedzin, uzywajac niestycznej funcji
maksymalnej. Nastgpnie, dowodzimy charakteryzacj¢ miar Carlesona dla kul. Potem pokazujemy,
ze dla funkcji harmonicznej u na dziedzinie Q, ktora jest NTA, z wartoscia brzegowa f, norma L?
funkcji area dla funkcji u szacuje si¢ przez norme L? funkcji f. Dowodzimy réwniez oszacowanie
typu Carlesona méwiace, ze kwadrat normy gradientu funkcji harmonicznej pomnozony przez funkcje
Greena definiuje miar¢ Carlesona. Na koniec, dowodzimy mocniejsza wersj¢ twierdzenia Fatou. Zmi-
ana polega na tym, ze pokazujemy, ze niestyczna granica nie istnieje na zbiorze o pojemnoSci zero, a
nie tylko o mierze zero.

Stowa kluczowe: IloSciowa Wiasnos$¢ Fatou, e-aproksymowalno$¢, niestyczna funkcja maksy-
malna, funkcja area, miara Carlesona.
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Chapter 1

Introduction

1.1 Outline of the thesis

This thesis is divided into five chapters.

The first chapter is Introduction. It contains main theorems included in the thesis as well as moti-
vation for investigating given topics.

The second chapter is Preliminaries. It consists of definitions and notions used throughout the
thesis. Nevertheless, some definitions or notions may be repeated later when they are needed, so that
it is more comfortable for the reader.

Chapters three, four and five constitute the main part of the thesis. Each of them is based on one
paper and, in particular, includes proofs of theorems presented in the Introduction.

1.2 Quantitative Fatou Property and e-approximability

The Quantitative Fatou Property and the e-approximability are the key notions throughout the research
that led to this thesis.

The main motivation of the author was to expand the knowledge concerning Quantitative Fatou
Property (QFP) and e-approximability which is an essential tool used to prove QFP.

The author’s research interests grow from the studies of harmonic functions and their boundary
behaviour. A special interest is devoted to various settings of metric spaces, such as the Riemannian
manifolds, see Def. 4.1.1, and the Heisenberg groups, see Chapter 5.1.1, as well as important types of
domains, including Lipschitz and nontangentially accessible domains (NTA domains), see Chapters
2.9, 5.1.2 for detailed discussion of such domains and Definitions 2.9.4, 5.1.1 for definition of such
domains. Moreover, the Carleson measures, see Chapter 2.6 and Def. 5.1.8, play an important role
in these studies, along with the area/square functions and nontangential maximal functions, see Chap-
ters 2.5 and 5.1.4. The investigations involve tools from the geometric analysis and PDEs, harmonic
analysis and geometric measure theory.

Let us now describe the motivation for our studies and the prior results.

In 1906 it was proved by Fatou that a harmonic function defined on a planar disc has a radial limit
at almost every point of its boundary, i.e. a unit circle. Since then there was a huge advancement in
this area of research. Namely, theorems concerning existence of not only radial limits but rather non-
tangential limits were proved in a wide array of settings, up to nontangentially accessible domains. Let
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us list a few of the advancements that happened in the last 100 years. Stein proved the Fatou theorem
for half-space in [St1, Chapter VII]. Jerison-Kenig proved it for NTA domains in [JK]. Carleson intro-
duced (nowadays called) Carleson measures to deal with nontangential phenomena in [Carl], [Car2].
Fefferman-Stein dealt with estimates concerning nontangential maximal function and square function
in [FS]. There are also negative results giving examples when the Fatou theorem does not hold. Wolff
in [W] proved that there are p-harmonic functions for which nontangential limit exists only on the set
of measure zero, Manfredi-Weitsman in [MW] proved there is a bound on the Hausdorff dimension
of that set. See also Akman-Lewis-Vogel in [ALV] for more theory concerning such functions. The
Fatou theorem was investigated not only in the Euclidean space, but also in the setting of Carnot-
Carathéodory groups, see e.g. Capogna-Garofalo [CG].

Furthermore, there is a quantitative version of the Fatou theorem which gives a bound on the integral
oscillations of a function. Let us be more precise.

From now on Q will denote an open connected bounded set which is a subset of either Euclidean space
or Riemannian manifold, unless stated otherwise.

We will denote by N a function that counts oscillations of a harmonic function u. That function
for each point in the boundary g € 0Q takes each sequence of points, inside a truncated cone of
radius r with vertex at ¢, such that function u varies on consecutive points by at least €, and these
points converge sufficiently quickly (controlled by €). Then it takes the supremum of lengths of such
sequences. We write N (r, €, 8)(q), so that it is obvious what are the parameters. For precise definitions
of counting functions in different settings, see Chapter 2.4.

In different settings a counting function may be defined in different ways, see Bortz- Hofmann
[BH, Section 1], Garnett [G, Chapter VIII, Section 6], Kenig-Koch-Pipher-Toro [KKPT, Section 2].
For Lipschitz domains it is natural to consider cones. Nevertheless, in every of mentioned cases the
idea is the same. The goal is to somehow count oscillations.

One can reformulate a classical Fatou theorem, stating that nontangential limit exists at a.e. point
of boundary, in terms of counting functions. It is equivalent to saying that N (r, €, 8) is finite for almost
every point g € dQ and every € > 0. However, a stronger quantitative Fatou theorem (QFT) reads:

Letu : Q — R be a bounded harmonic function with ||u|| , < 1. Then for every point p € 02

sup 1
O<r<diam(@) ¥~

/ N(r,e,0)(q)do(q) < C(g,a,0,n,Q),
QN B(p,r)

where €, 0 are constants in the definition of the counting function and « denotes an aperture of a
cone. In particular, constant C is independent of u.

From this statement the classical theorem follows, but it is much stronger. Garnett proved that
for a harmonic function u defined on upper half-plane and satisfying ||u||, < 1 the counting function
satisfies the estimate

/ N, (x)dx < Ce™’
1

for every € > 0 with constant depending on &, a, 8, but independent of u, where I is any interval of
length 1.

It was proved by Bortz and Hofmann, see [BH], that in the Euclidean space for nontangentially
accessible (NTA) domains QFP is equivalent to uniform rectifiability of a boundary of a domain. NTA
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domains are a wide class of domains which include e.g. Lipschitz domains, Zygmund domains or qua-
sispheres, see e.g. Jerison-Kenig [JK].

Theorem 1.1 in [BH]. Let Q C R"™!, n > 2, be an open set satisfying an interior corkscrew
condition, whose boundary is n-dimensional Ahlfors-David regular (see Chapter 2.8). Suppose that
L = —divAV is a uniformly elliptic divergence form operator whose coelfficients satisfy Egs. 2.5 and
2.6. Then a quantitative Fatou theorem holds for bounded null solutions of L and its adjoint L*, if and
only if 0 is uniformly rectifiable.

Let us notice how remarkable this result is. It gives a deep connection between a theory of PDEs
and geometry of a domain. What is more, it states that a certain property of solutions of some PDEs is
equivalent to some geometric properties of a domain. One can say that such a theorem builds a bridge
between two branches of mathematics.

It is worth mentioning the importance of the notion of uniform rectifiability, see Def. 4.3.3. It
was introduced by David and Semmes, see [DS1], [DS2], [DS3]. See Mattila [M] for a survey about
uniform rectifiability. See also Bate-Hyde-Schul [BHS] for uniform rectifiability in metric spaces. It
was developed to prove boundedness of certain singular integral operators. It turns out that uniform
rectifiability is equivalent to that boundedness. It is a natural refinement of the notion of rectifiability,
which in a sense provides the broadest class of sets worth considering in geometric measure theory.
Making the notion of rectifiability uniform, allows to obtain a variety of quantitative results such as
e.g. QFT.

A crucial step in proving QFT is the so-called e-approximability. It was first established on the
upper half-plane for some 1 > € > 0 by Varopoulos in [Val], [Va2], and then proved for any € > 0 by
Garnett in [G, Chapter VIII, Section 6, Theorem 6.1].

Later the property was proved for harmonic functions on Lipschitz domains by Dahlberg, see [D1].
In [KKPT] the result is proven for A-harmonic functions, i.e. solutions to real divergence form equation
divAVu = 0, in Lipschitz domains.

Fairly recently, it was shown that for real divergence form operator satisfying the Carleson measure
condition and pointwise local Lipschitz bound, e-approximability is equivalent to uniform rectifiabil-
ity, see Hofmann-Martell-Mayboroda [HMM1], Azzam-Garnett-Mourgoglou [AGMT].

Definition 1.2.1 (e-approximability). Let € > 0 and Q C RTI satisfy (1.2). We say that a function
u . Q — Ris e-approximable, if there exists a function ¢ € BV/,.(€2) such that

L lu—-oll, <e.

2. |Ve| defines a Carleson measure on €2, i.e. for every x € 0Q2

1 n
sup = IVeld2"'(y) < C., (1.1)
re,diamQ) " J QnB(x,r)

where .Z"*! denotes (n + 1)-dimensional Lebesgue measure.

We refer to Chapter 2.10 for a definition of BV functions used in the above definition.



Let us remark that condition (1.1) can be equivalently formulated in terms of the surface measure,
since domain € is given by the Lipschitz graph, and thus the surface measure is n-Ahlfors regular on
the boundary, implying that 6(B(x,r) N 0Q2) = r".

Here again, different authors have different definitions of e-approximability, see [D1], [G], [BH].
The difference lies in the function space to which ¢ is supposed to belong to. It turns out that in the
Euclidean setting all these definitions are equivalent. However, in a different setting it may not be the
case, see e.g. [Gr].

Let us stress that the importance of this condition comes from an observation that a natural candi-
date for a Carleson measure of a harmonic function, namely |Vu(x)|dx, may fail to be a Carleson mea-
sure, see e.g. [G, Section 6, Ch. VIII]. In order to bypass this problem, the notion of e-approximability
has been introduced and has turned out to be important in the studies of the BMO extension problems
and Corona theorems ([G], Hofmann-Tapiola [HT]), the characterization of the uniform rectifiability
(Hofmann-Le-Morris [HLM], [HMM 1], Hofmann-Martell-Mayboroda-Toro-Zhao [HMMTZ]) and in
the Quantitiative Fatou theorems ([G], [BH]).

Investigating QFP or e-approximability is important because it gives a connection between proper-
ties of certain functions defined on Q and its geometry. In Euclidean setting QFP is equivalent to
e-approximabilty, but it is also equivalent to uniform rectifiability of a boundary, see [BH], [HMM1].
Hence, in a sense geometry is determined by some properties of solutions of PDEs and vice versa.

In the hitherto work the author focused on investigating QFP and other notions related with har-
monic analysis on Euclidean spaces and beyond them. Firstly, in [AGG], we have been studying
e-approximability in Euclidean space for a certain class of functions beyond harmonic ones. Then, in
[Gr], we proved e-approximability and QFT for Lipschitz domains in Riemannian manifolds. Lastly, in
[AdGr], we investigated properties of nontangential maximal functions, square functions and Carleson
measures in the Heisenberg groups.

1.3 Introduction to the third chapter

The third chapter is based on the manuscript [AGG]. There, we consider the Lipschitz-type domains
in the form
Q={(x,y) R y>¢p(x)}, (1.2)

where ¢ : R" — R is an L-Lipschitz function. On such domains, we study functions u € C?(Q)
which satisfy the following condition on any ball B, C € such that 2B, C Q:

1
2
oscp (w) < C <rl‘” / (|Vul® + |uAu|)d$"+l> (%)
' (1+n)B,

for some n € [0,1) and C > 0. Such a class has been considered by Gonzalez-Koskela-Llorente-
Nicolau in [GKLN], when studying the relationships between the nontangential maximal function and
convenient versions of the area function of general (nonharmonic) functions. A priori, it might not
be clear how wide is this family of functions. However, Proposition 5.1 in [GKLN] shows that (:)
follows from the following pointwise condition:

luAu| < 0|Vu|? in Q #)

4



for some € > 0. However, further restriction on € is necessary in order to control the area function by
the nontangential maximal function of u. Namely, we need to assume that 0 < 6§ < 1. From now on
we will say that a function u satisfies condition (#) if 0 < 6 < 1.

The class of functions (#) clearly encloses harmonic ones, but also others, see Proposition 3.3.3 in
Chapter 3.3. However, what is perhaps more important from our point of view is that, the oscillation
condition (x) holds for several non-harmonic examples, for instance for non-negative C?> subharmonic
ones, see Proposition 3.3.1 or non-negative C? functions u with subharmonic |Vu|%, for a € (0, 2], see
Proposition 3.3.2. Estimate () together with (#) imply that

(0scp () S, 7' ™" / |Vul? d.z", (1.3)

(1+n)B,

which can be understood as the Morrey-type estimate for u.
The main goal of the third chapter is to prove the following result.

Theorem 1.3.1. Let Q C [R’jr“ be the Lipschitz-graph domain as in (1.2) and let further u : Q — R
be bounded and satisfy condition (#). Then for every € > 0 function u is e-approximable in €.

The result generalizes the existing ones, as it is to best of our knowledge, first e-approximability
result for functions that need not be solutions of PDEs in the divergence form. Moreover, we would
like to emphasize that condition (#) can be obsolete for some classes of functions and () instead
suffices, as illustrated by nonnegative subharmonic functions, see Proposition 3.3.1 in Chapter 3.3.
This observation follows from a brief analysis of the proofs of Theorem 1.1 and Lemmas 4.3 and 4.5
in [GKLN].

The key consequence of Theorem 1.3.1 is the following Quantitative Fatou Theorem in Corol-
lary 1.3.2 (see Definition 2.4.1 of the counting function).

Corollary 1.3.2 (Quantitative Fatou Theorem). Let Q C Ri“ be the Lipschitz-graph domain as in
(1.2) and let further u : Q — R satisfy condition (#) and be bounded with ||ul|, < 1. Then for every
point w € 02

sup l N(r,e,p)(2)do(z) < C(e,a, f,n,Q),

0<r<ry r' 0QNB(w,r)

where €, a, f are constants in the definition of the counting function N. In particular, constant C is a
independent of u.

The proof of Theorem 1.3.1 utilizes methods used in [G, Chapter VIII, Section 6] and in [HMM1].
We use dyadic decomposition of the boundary and a Whitney-type covering of a domain chosen in
such a way that a union of appropriate elements of it forms a "nice" set. However, our approach mixes
constructions from [G] and [HMM1] in a new way. What is more, we introduced some new elements
to the constructions employed in the proof. Let us mention Proposition 3.2.6. In the aforementioned
works it is an essential part of the proof of e-approximability. However, in our setting it was impossible
to use the same methods as the mentioned authors. Therefore, we had to come up with a new idea of
a proof of that result.



1.4 Introduction to the fourth chapter

The fourth chapter is based on the paper [Gr].

Our goal is to extend Quantitative Fatou Property to the setting of Riemannian manifolds. They are
much broader than Euclidean space, however in a sense they are a first step in generalizing any results
from R” to more general metric measure spaces, see Mitrea-Taylor [MT]. We believe that Riemannian
manifolds are an interesting class of spaces as they arise naturally in a variety of problems and hence
better understanding of boundary behaviour of harmonic functions may be useful. Moreover, under-
standing QFP in Riemannian setting gives as an insight into the possibility of investigating it in other
non-Euclidean spaces. A priori one does not know whether QFP should hold in a setting different than
the Euclidean one. Knowing that QFP is true in Riemannian setting gives hope that it may hold in even
more general settings. Furthermore, the fact that QFP holds in different settings would suggest that
it is a notion deeply intertwined with the notion of harmonicity and independent from the underlying
space. The main difference between the Euclidean space and a Riemannian manifold is the fact that
there are no global coordinates in a Riemannian manifold. Therefore, we need to deal with charts and
then glue them. What is more, the fact that the space is curved makes a geometry different and finding
"nice" paths joining points requires more effort.

Since some notions are not even yet defined outside Euclidean space or fully established, e.g.
uniform rectifiability, see [BHS], [M, Chapters 6 and 9], we deal with the case of Lipschitz domains.
We prove the following:

Theorem 1.4.1. Let M be a complete Riemannian manifold and let further Q C M" be a Lipschitz
domain. Furthermore, letu : Q — R be a harmonic bounded function with ||ul|, < 1. Then for every
point p € 0Q2

1
sup — N(r,e,0)(q)do(q) < C(e, a,0,n,Q),
O<r<ty,; I n= AQNB(p,r)
where €, a, 0 are constants in the definition of the counting function. In particular, constant C is
independent of u.

One of the key auxiliary results to prove Theorem 1.4.1 is the following e-approximability property:

Theorem 1.4.2. Let M be an n-dimensional complete Riemannian manifold and Q C M be an
open bounded connected Lipschitz set. Let u be a harmonic bounded function in Q. Then u is €-
approximable for every € > 0.

Main difficulty is the fact that we do not have one map available on whole of Q. Therefore we deal
with pieces of € where there are maps. However, we cannot take any open sets as our charts. It is
essential that we choose them to be Lipschitz. What is more, we need to make sure that the number
of sets covering our domain is bounded. On these pieces we take local e-approximants, which exists
due to [HMM1]. We need to show that we can choose all maps in a uniform way and that we can later
glue everything together to obtain e-approximant ¢ on Q. Then we have to show that the integrals of
the norm of its derivative over cones, i.e. /r |V| gives a Carleson measure.

To obtain Theorem 1.4.1 we need to come up with a bit different approach than in the Euclidean
case. In the Euclidean case there is usually a certain way to integrate counting function to obtain de-
sired estimate. We deal with it by taking an appropriately constructed curve and its neighbourhood
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contained in a nontangential cone, see Lemma 4.4.4. The curve joins consecutive points from admis-
sible sequence, see definition of a counting function in Chapter 2.4. We need it to have bounded length
and derivative. Then, using coarea formula enables us to arrive at our estimate, see Lemma 4.4.7. In
our proof we follow the idea of [KKPT], but adjust it to the setting of Riemannian manifolds.

1.5 Introduction to the fifth chapter

The fifth chapter is based on the paper [AdGr]. The Carleson measures play an important role in
geometric mapping theory and, especially in recent years, also in the studies of relations between
geometry, analysis and the measure theory. The importance of such measures has been growing in
the last decade via the results on PDEs on rough domains, for instance, the studies of the solvability
of the Dirichlet problems for elliptic equations, in analysis of the boundary behaviour of harmonic
functions, also in relations to the square functions on NTA domains or uniformly rectifiable sets, see
e.g. [HMM1], [HLM], [HMMTZ]. From our point of view the two main motivations come from
the investigations of the uniform rectifiability and the e-approximation, see e.g. [BH], [GMT], [HT]
and from the Hardy spaces of quasiconformal mappings, see [AK], [AF]. Moreover, it turns out that
the Carleson measures are closely related to the geometry of functions and mappings also in the set-
tings beyond the Euclidean one, for example on homogeneous spaces Hofmann-Mitrea-Mitrea-Morris
[HMMM] and on Riemannian manifolds, see Mitrea-Mitrea-Mitrea-Schmutzler [MMMS], [Gr] and
in the Heisenberg group H' see [AF]. Even though, the need for further studies of Carleson measures
in the non-Euclidean setting arises, this topic in the subriemannian setting has not yet been explored
as much, as in the Euclidean spaces. Therefore, one of the goals of the fifth chapter is to pursue this
direction of investigations. In particular, we focus our attention on the Heisenberg groups H”, espe-
cially on the first Heisenberg group H! and on the subelliptic harmonic functions, see Chapter 5.1.3 for
definition of such functions, on bounded nontangentially accessible domains (NTA domains) and on
bounded domains admissible for the Dirichlet problem (ADP domains), see Chapter 5.1.2 for details
about NTA and ADP domains. The fundamental results in the Euclidean setting that have inspired us
are discussed in Chapters I and VI of the book [G] and in [JK], while the main tools in the potential
theory in the Heisenberg groups employed in this work are proven in [CG], Capogna-Garofalo-Nhieu
[CGN].

Let us present and briefly discuss our main results. We show the following characterization of the
Carleson measures on ADP domain in H! in terms of the level sets of the harmonic functions. The
lemma is well known in the setting of the upper-half plane, see Lemma 5.5, Chapter I in [G]. We refer
to Chapter 2.6 for the discussion of the Carleson measures and their properties.

Theorem 1.5.1. Let Q C H! be a smooth ADP domain with 3-regular boundary and u be a positive
measure on . Then u is a Carleson measure on Q if and only if there exists a constant C = C(a)
such that for every harmonic function u on Q and every A > 0 it holds that

u({x € Q : lu(x)| > A}) < Co({w € 0Q : N u(w) > A}), (1.4)

where N u stands for the nontangential maximal function of u (see Definition 5.1.9) and o is the
surface measure on 0Q, i.e. ¢ = H? |0Q. Moreover, if C is the least constant such that (1.4) holds,
then the Carleson constant of u satisfies y, =, C.



While the proof of the sufficiency part of the theorem follows by applying fairly general approach
based on the Whitney-type decomposition, the proof of the necessity part relies on the potential-
theoretic properties of harmonic functions, including the boundary Harnack estimate in Garofalo-Phuc
[GP] and the results proven in [CGN].

Our next result generalizes a characterization of Carleson measures on the unit disc in the Euclidean
plane, cf. Lemma 3.3 in Chapter VI.3 in [G]. One of the key features that give the result in the plane
is the rich family of Mdobius self-transformations of a disc, a property which is no longer true in the
subriemannian setting due to the rigidity of Carnot groups. However, recently in [AF, Section 4.1]
a counterpart of Mobius self-maps of a ball in R” has been introduced on the Koranyi-Reimann unit
ball B(0, 1) C H' by the price of giving up that the target domain remains a ball, see the definition of
maps T :=T,,,in (5.16) and their property (5.18). The following result characterizes the Carleson

X,a,p

measures on B(0, 1) in terms of the boundary growth of 1-quasiconformal mappings T'.

Theorem 1.5.2. A measure u on the unit gauge ball B := B(0,1) C H' is a Carleson measure if and

only if
d(T,,, 1), 0T, BN\
/B < d(y.0B) ) w =t -

forallx € B, a € H! \E, and p > 0 such that p S min{d(x,0B),d(a,0B)} and p ~ d(a, x).

In Remark 5.3.1 we also point to the generalization of the above theorem to the setting of higher
order Heisenberg groups H" for n > 2.

One of the main results of this chapter is the L’-estimate for the square function of a subelliptic
harmonic function on a bounded NTA domain in H” with respect to the L? boundary data and the
harmonic measure w. The result generalizes Theorem 9.1 in [JK] proved for bounded NTA domains in
R". We refer to Chapters 2.5 and 5.1.4 for the definition and further discussion of the square functions.

Theorem 1.5.3 (L?-boundedness of the square function). Let Q C H" be a bounded NTA domain. Let
further f € L*(dw) and u(x) := /ag f(»)dw*(y). Then, the following estimate holds for the square
function S, of a subelliptic harmonic function u in €

”Sau”m(dw) < C”f”LZ(dw),
where the constant C depends on n, M, constant from Harnack inequality, a, €2.

Our second main result is the subriemannian counterpart of the Euclidean result, i.e. Theorem 9.6
in [JK]. Moreover, it also generalizes Theorem 3.4 in [G, Chapter V1.3] for the unit disc in the plane,
see Remark 5.4.3. We further refer to Example 5.4.4 for the case of the unit gauge ball in H", where the
Green function G in the assertion of Theorem 1.5.4 can be explicitly estimated from below in terms
of the distance function, thus providing more classical and handy estimate (5.26). In order to obtain
this estimate we prove Proposition 5.5.5 in the Appendix.

Theorem 1.5.4 (Carleson measure estimate). Let Q C H" be a bounded NTA domain and u be subel-
liptic harmonic in Q such that u(x) = /asz f(dw*(y) for some f € BMO(0L2). Further, let D > 1.
Then for any choice of D there exists a constant C = C(D) > 0 such that for any ball B(x,, r) centered
at x, € 0Q \ T, with any 0 < r < ry, < min{1, %} it holds that

/ |V ul?G(x, A,(xy))dx < Co(B(x,, ) N 0Q),
B(x(,r)NQ
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where constant C depends on n, M, ry and || f || pro0)-

Among corollaries of Theorem 1.5.4 we show the corresponding Carleson estimates on an ADP
domain (Corollary 5.4.1) and on the (Euclidean) C!!-domain (Corollary 5.4.2).

The proof of Theorem 1.5.4 consists of several steps and auxiliary observations which largely
follow the steps of the corresponding proof of Theorem 9.6 in [JK]. However, we expand several
arguments in [JK] and clarify steps which in the new setting of Heisenberg groups require using the
subriemannian tools. In particular, we frequently use a variety of properties of subelliptic harmonic
functions such as e.g. Harnack inequality. What is more, we heavily rely on the theory of Green
functions in subriemannian setting as well as harmonic measures in that setting. We also employ re-
sults from the theory of metric measure spaces concerning existence of Whitney-type decompositions.
Moreover, our proof requires John-Nirenberg theorem in the subriemannian setting.

Our last result, is a counterpart of the classical Fatou theorem for harmonic functions on (e, 6)-
domains in H”, under the condition of the L”-integrability of the gradient of the function. The (g, 0)-
domains in H" can be thought of as the quantified version of the uniform domains and contain large
family of NTA domains.

Theorem 1.5.5. Let Q C H" be a bounded (e, )-domain and let further u be harmonic in Q. If
fg |V ul? < oo for some 1 < p < 2n + 2, then u has nontangential limits on 0Q along horizontal
curves in L outside the set of p-Sobolev capacity zero.

This result extends previous observations in the Heisenberg setting in two ways:

1. the considered domains are slightly more general than in a Fatou theorem on NTA domains in
H" [CG, Theorem 4] and in R” [JK, Theorem 6.4];

2. the assertion gives the existence of nontangential limits not only up to the measure zero set as
e.g. in [CG], but outside the set of p-Sobolev capacity zero, which is a refined measure.



Chapter 2

Preliminaries

The goal of this chapter is to introduce and discuss some necessary definitions and theorems used
throughout this thesis. The chapter is divided into subchapters in such a way that each subchapter
corresponds to one of the notion used in the thesis.

2.1 Notation

Let us begin by introducing some notation used throughout this work.
e a =~ b means that there exists a constant C > 0 such that
1
—a <b<Ca,
C

if the symbol = has something in the lower index e.g. =, it means that the constant depends on
n,

e a < b means that there exists a constant C > 0 such that

a<Cbh,

e H" denotes the n-Hausdorff measure of a set,

e d(x,E) :=dist(x, E) for apoint x € X and E C X, where (X, d) is a metric space,

2.2 Lipschitz-graph domain
In Chapter 3, we consider the Lipschitz-graph domains in the form
Q= {(x,y) €RI : y> P(x)}, 2.1)

where ¢ : R” - R is an L-Lipschitz function.
Unless specified otherwise, in Chapter 3, by € we always denote a Lipschitz-type domain as
in (2.1).
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Such domains were studied primarily in [GKLN]. The authors proved inequalities between norms
of the area function and the nontangential maximal function of functions from a certain class which
was broader than harmonic functions. Notice that a half-space is a special case of such domains.
The case of a half-space was studied in [G], where the author proved e-approximability of harmonic
functions on a half-plane. The case of half-spaces was also researched in [FS], where the authors
proved inequalities similar to those in [GKLN].

Notice that Lipschitz-graph domains are also a special case of Lipschitz domains. The notions of
e-approximability and inequalities between the area and nontangential maximal functions for Lipschitz
domains were studied in e.g. [D1] and [KKPT].

2.3 Cones

In Chapter 3 we use the following definitions of a cone, see also Figures 2.1 and 2.2 below.

Definition 2.3.1. For a > 0 a cone with a vertex at point (x, ¢(x)) € dQ and aperture « is defined as
follows

L) 1= {(z,y) €RY 1 |z—x| < aly - p(x)}.

Notice that for every x € R" a cone I' (x) is congruent to a cone {(x,y) € [R’jr“ D x| < ay}.
However, such cones need not be contained in domain Q. Therefore, we introduce the truncated cone:

[ :=T,x)N{(z,9) : p(2)+5<y<P(z)+1},

where 0 < s <t < oo. In that notation I' j(x) = T" (x). Since function ¢ is L-Lipschitz, it holds
that I', 5 ,(x) C Q only for @ < % (and hence, from now on we only consider @ < %).

In Chapter 3 we also use a different notion of truncated cones in Corollary 1.3.2, in particular in
the definition of the counting function, see. Def. 2.4.1.

a,0,00

Definition 2.3.2 (Cones truncated with hypersurfaces). For 0 < a < %, 0 < s <t < o and a point
(x, Pp(x)) € 0€2 we set

foz,s,t(x) = Fa(x) n <H<Z,s \ H;,t)’
where Hj = {(z,y) € R™! 1y > p(x) +r}.

However, in Chapter 4 we use a different definition of a cone, more appropriate for the Riemannian
setting. We define these different cones in Chapter 4.1 so that it is more convenient to the reader, see
Def. 4.1.13, 4.1.14.

The two notions of a cone are different from each other. The cones used in Chapter 3 are congruent
to Euclidean cones, whereas the cones used in Chapter 4 are curvilinear and their shape depends on
the distance to the boundary of a domain.

2.4 Counting function

First, we present the definition used in Chapter 3.
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Fa,s,t( x) Graph(¢ + 1)

-

. o

“‘Fa,O,s(x) Graph(¢ + s)
/\N@»
Rn
o~ >

Figure 2.1: This figure depicts cones used in Chapter 3 from Def. 2.3.1.

..: Fa(.x) = Fa’o’oo(x)

{(z,y) € R™ 1y =¢(x) + s}

/‘\/Ql ”

.X

Figure 2.2: This figure depicts cones used in Chapter 3 from Def. 2.3.2.
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Definition 2.4.1 (Counting function). Let I:a,o,,(x) be a truncated cone with the vertex at a point
(x, p(x)) € 0Q. Let u be a continuous function defined on 53 Fixe>0,0<f<land0<r< 1.
We say that a sequence of points (x,,,?,) such that (x,,7,) € ', ,(x) is (r, €, f, x)-admissible for u if

a,0,r

bl =€ and  f, — @(x) < p(t,_; — P(x)).

lu(x,,t,) — u(x
Set
N(r,e, p)(x) := sup{k : there exists an (r, €, f, x)-admissible sequence of length k}.
We will call N a counting function.

In Chapter 4 we use a different definition of the counting function N, more appropriate for the
Riemannian setting. We give that definition in Chapter 4.1, see Definition 4.1.15.

The main difference is the type of cones used. The first definition is utilized in Chapter 3 and
the definition with Riemannian manifolds is employed in Chapter 4. Another discrepancy lies in the
distances. The first definition makes use of the Euclidean distance, while the second uses the distance
on a manifold.

2.5 Area and nontangential maximal functions

One may find area function (sometimes called square function) and nontangential maximal functions
e.g. in works [D1], [FS], [JK], [KKPT] and many more. The area function and the nontangential
maximal function have been studied by many authors. Let us mention the work of Dahlberg [D2] and
Dahlberg-Jerison-Kenig [DJK], see also Stein [St2] for an interesting account on the history of the
notion of the area/square function. In these papers the authors prove the comparability of L? norms of
the area function and the nontangential maximal function under certain conditions. The nontangential
maximal function plays a role similar to the role of Hardy-Littlewood maximal function in classical
analysis. The area/square function has been investigated by many authors, see e.g. [Stl], [FS]. It
arises naturally in a lot of estimates regarding e.g. harmonic functions and that is why doing research
pertaining to it is useful in harmonic analysis. These notions provide useful tools in harmonic analysis
and related fields. It actually turns out that the comparability of their norms is equivalent to a uniform
rectifiability of a boundary of the domain, see e.g. [HMM1], [HMM2]. Hence, it gives a connection
between analysis and geometry.

Definition 2.5.1 (Area function). Let f : Q — [0, co] be a measurable function. The area function
associated to the density f is defined by

(A f)(x) = < fz - ¢(X))1_”dzdy> " xeRn

()

Similarly, we define the truncated version of the area function A, f with respect to cones I', , ..
In what follows we are mostly interested in the case f = |Vu|? for a function u € C?*(Q). Then we
write

(A () 1= (A, [Vul)(x) = ( / |Vu(z, p)I*(y - d)(X))l_"dZdy) :
[ps()
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Definition 2.5.2 (Nontangential maximal function). Let f : Q — [0, co] be a continuous function.
The nontangential maximal function function of u is defined as follows

(N )x) = l§1§p) lf I, xeR"™

As above, the truncated nontangential maximal function of u, denoted by N . ,u is defined analo-

a,s,t
gously with respect to cones I' ..

2.6 Carleson measures

The following notion will be employed in Chapters 3.2, 4.3.

Definition 2.6.1 (Carleson measure in R"*!). Let Q be an open set in R"*!. We say that a (positive)
Borel measure u on Q is an a-Carleson measure on €, if there exists a constant C > 0 such that

u(Qn B(x,r) <Cr", forallx € 0Qandr > 0.

The Carleson measure constant of u is defined as the infimum of constants C above.

Carleson measures were introduced by Carleson in [Carl] to deal with interpolating by bounded
analytic functions and the famous corona problem. Carleson measures are also used in the definition
of e-approximability. Namely, the gradient of an approximation gives rise to a Carleson measure.
As already mentioned, it may happen that a gradient of even a harmonic function is not a Carleson
measure. Therefore, it is necessary to have an object such as a Carleson measure to obtain Quantitative
Fatou Property. Since Carleson defined these measures, they have been used by many authors. Garnett
used this notion in [G] to prove e-approximability of harmonic functions in upper half-plane. They
were used by Dahlberg in [D1], to prove e-approximability in Lipschitz domains. It was used in other
works concerning harmonic analysis such as [KKPT], [HMM1], [BH] and many more.

It is a useful tool that allows to obtain estimates of certain integrals by the measure of the boundary
of a set.

For the definition of the Carleson measures in Heisenberg groups, see Definition 5.1.8 in Chapter
5.14.

2.7 Cavalieri’s principle

The following well-known representation of an integral of the superlevel sets will frequently be used
in Chapter 3. Let Q C R", y be a measure on Q and f : Q — R, be measurable. then for every
monotone ® € C', @ : R, —» R, with ®(0) = 0, we have

/(D(f(x))dﬂ =/ D' (Du({x € Q : f(x) > AhdA.
Q 0
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2.8 Ahlfors-David regularity

The following definitions will be employed in Chapters 4.3, 4.4, 5.2.

Definition 2.8.1. Let (X, d, 1) be a metric measure space. We say that X is n-Ahlfors-David regular
(n-ADR), if there exists a constant C < 0 such that

érn_l < u(B(p,r )N E)<Cr~!, forall pe E and 0 < r < diam(E).

In particular, if M is an n-dimensional Riemannian manifold and (n — 1)-dimensional E C M we
can take (E, d,,, H""") as a metric measure space and obtain:

Definition 2.8.2. We say that set E C M is Ahlfors-David regular, of Hausdorff dimension n — 1, if
it is closed and there exists a constant C < 0 such that

ér”_l <o(B(p,r)NE)<Cr~!, forallpe E and 0 < r < diam(E),

where 0 = H"!| denotes a surface measure on E.
E

Among examples of (n — 1)-Ahlfors-David regular spaces let us mention boundaries of smooth,
Ck or Lipschitz domains in R" or Riemannian manifolds of dimension n. Furthermore, examples of
Ahlfors-David regular sets with n being noninteger enclose a boundary of Koch snowflake or Cantor
set.

If X = H" and Q C H" is a non-empty open connected set, we get the following definition.

Definition 2.8.3. We say that Q has s-regular boundary for some s > 0, if there exists a constant
C > 1 such that

érs <H(B(x,r)noQ) <Cr’, forallx € 0Qand 0 < r < diam(0Q).

2.9 Nontangentially accessible domains

We now recall one of the fundamental notions of the dissertation, used in Chapters 4.3, 5.2, 5.4, 5.5.

Let (X, d) be a metric space.

Definition 2.9.1 (Interior corkscrew condition). Let Q C X be an open set. We say that it satisfies
interior corkscrew condition if there exists a constant ¢ such that for every set B(p, r)Nn0€ with p € 0Q
and 0 < r < diam(0Q) there is a ball B(X, cr) C B(p, r)N&Q. We say that Q satisfies exterior corkscrew
condition if X \ Q satisfies interior corkscrew condition.

Definition 2.9.2 (Exterior corkscrew condition). Let  C X be an open set. We say that it satisfies
exterior corkscrew condition if its exterior 2, , = X \ Q satisfies interior corkscrew condition.

See Figures 2.3 and 2.4 for the illustration of the above definitions. Let us add that the corkscrew
conditions play a role in studies of the solvability of the Dirichlet problem, see Chapter 15.4 in [GT].
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p
B(p.r)

&

Figure 2.3: This figure shows interior corkscrew condition. Namely, for every point p € 02 and 0 <
r < diam(Q), there exist a constant ¢ > 0 and a point X € QN B(p, r) such that B(X, cr) C QN B(p, r).

Figure 2.4: This figure depicts an example of a domain which does not satisfy interior corkscrew
condition. The cusp is the reason why the condition is not met.

Definition 2.9.3 (Harnack chain condition). Let Q C X be an open set. We say that Q satisfies Harnack
chain condition, if for every € > 0 and x, y € Q such that d(x, 0Q) > €, d(y,0Q) > e and d(x,y) < Ce
there exists a sequence of balls B, ..., B, with the following properties:

l. xe B andy € B,

2. ﬁ < d(By(x,r),0Q) < Mrforeveryi=1,...,p,
3. BNB,, #@0fori=1,...,p—1,

4. length of the chain p depends on C but not on .

The Harnack chain condition appears in a variety of problems in geometric analysis, for instance
in working with John domains or uniform domains, see e.g. [TT].
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Definition 2.9.4 (Nontangentially accessible domains (NTA)). Let Q C X be an open set. We say
that it is a nontangentially accessible domain (NTA) if it satisfies both interior and exterior corkscrew
conditions and Harnack chain condition.

Examples of NTA domains enclose smooth, C* or Lipschitz domains in R” or in a Riemannian
manifold. Furthermore, Zygmund domains are NTA as well as quasispheres are NTA, see [JK]. As an
example of one-sided NTA, i.e. without exterior corkscrew condition, one can consider a ball in R?
with a corner 1-dimensional Cantor set removed.

In Heisenberg group, NTA sets are, for example, Karanyi-Reimann balls, but not balls in Carnot-
Carathéodory distance, or upper half space, [I-I]i = {(z,...,2,1) € H" : t > 0}. Let us mention that
H’} is not even a Lipschitz set in H", see [CG]. Therefore, in the setting of Carnot-Carathéodory groups
the class of NTA domains in a sense is the smallest class for which it is possible to do a reasonable
analysis. It is the case, because even sets that would seem to be "nice", such as half-space, are not
regular in any traditional sense.

2.10 BY functions

The following definition will largely be used in Chapters 3, 4.3, 5.4, see also the next definition of
g-approximability.

Definition 2.10.1 (Local BV functions). Let Q be an open set in R"*!. We say that an Ll‘oc-function
f has locally bounded variation in &, and denote it by f € BV, .(Q), if for any open set Q" € Q the
total variation of f over €' is finite:

sup / f(x)divP(x)dx < co.
QI

YeC) (@ R, ¥l o<1

BV functions are a natural class of functions to use for our research. We require that a norm of a
gradient of e-approximation gives rise to a Carleson measure (see the definition below). Gradients of
BV functions are Radon measures. Hence, the class of BV functions is exactly what is needed.

According to our best knowledge BV functions were first introduced by Jordan in [J], to deal with
convergence of Fourier series. After him the notion was vastly developed and used for various appli-
cations in e.g. geometric measure theory, calculus of variations or partial differential equations.

Let us now generalize the definition of BV functions to the setting of Riemannian manifolds.

Definition 2.10.2. Let Q C M be an open set and u € L'(€2). We say that u has bounded variation in
Q and denote it by u € BV (Q) if

sup{ /udiv(cl)X) P X €T(Q), ¢ € CT(LR), lp| < 1} < 00,
Q

where
I'(€Q2) 1s a family is of smooth vector fields on € such that g(X(x), X(x)) < 1 for every x € Q,
where g denotes the metric on M. The above supremum is called a variation of u.

If Q ¢ M = R", then we retrieve the definition of functions of bounded variation in £ in Definition
2.10.1.
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2.11 e-Approximability

Definition 2.11.1 (e-approximability). Let € > 0 and Q C R’J’r“ satisfy (1.2). We say that a function
u . Q — Ris e-approximable, if there exists a function ¢ € BV/,.(€2) such that

L lu=oll =@ <&,

2. |Ve| defines a Carleson measure on €2, i.e. for every x € 0Q2

1
sup — IVo)ldL"(y) < C,. (2.2)

re0.diamQ) " J QnB(x.r)

However, to our best knowledge so far, it has only been used in Euclidean setting. Therefore, we
give the definition in the setting of Riemannian manifolds.

Definition 2.11.2. Let Q C M be a Lipschitz domain on a Riemannian manifold M. Letu : Q - R
be a harmonic function with ||u|| , < 1. We will say that function u is e-approximable for some € > 0
if there exists a function ¢p € BV (Q) such that

L lu—=¢ll e <&

2. |V¢| defines a Carleson measure on £, i.e. for every x € 9Q

sup —— IVeldX < C..

re0.diam @) I~} B(p,)NQ

Notice that these definitions are basically the same. The only difference is the measure with respect
to which we integrate the norm of the gradient of ¢.

It is worth noting that the notion of e-approximability is essential in proving the results that we are
interested in. Let us repeat that it turns out, as indicated by Exc. 9 Ch. VI in [G], that for a harmonic
function u it may happen that | Vu| does not give rise to a Carleson measure. What is more, one cannot
assume that ¢p may be taken as another harmonic function as indicated by Exc. 12 Ch. VIII in [G].
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Chapter 3

e-Approximability and Quantitative Fatou
Property for non-harmonic functions

This chapter is based on the manuscript [AGG] written jointly with Tomasz Adamowicz and Maria J.
Gonzalez. Recall that a Lipschitz-graph domain is in the form of

Q={(x,y) eRY 1 y> $(x)}, (3.1

where ¢ : R” - R is an L-Lipschitz function.
The main goal of this chapter is to prove the following result:

Theorem. 1.3.1 Let Q C IR’:rl be the Lipschitz-graph domain as in (1.2) and let furtheru : Q — R
be bounded and satisfy condition (#). Then for every € > 0 function u is e-approximable in Q.

The result generalizes the existing ones (see e.g. [G], [D1], [KKPT], [HMM1]), as it is to best
of our knowledge, first e-approximability result for functions that need not be solutions of PDEs of
divergence form. Moreover, we would like to emphasize that condition (#) can be obsolete for some
classes of functions and () instead suffices, as illustrated by nonnegative subharmonic functions,
see Proposition 3.3.1 in Chapter 3.3. This observation follows from a brief analysis of the proofs of
Theorem 1.1 and Lemmas 4.3 and 4.5 in [GKLN], which we present in Chapter 3.3.

The key consequence of Theorem 1.3.1 is the following Quantitative Fatou Theorem (see Defini-
tion 2.4.1 of the counting function).

Corollary. 1.3.2 (Quantitative Fatou Theorem) Let Q C RTI be the Lipschitz-graph domain as in
(3.1) and let further u : Q — R satisfy condition (#) and be bounded with ||u|| ;«q, < 1. Then for
every point € 0€2

sup i N(r,e, p)(z)do(z) < C(e, a, p,n,Q),

n
O<r<ry '™ JoQnB(w,r)

where €, a, p are constants in the definition of the counting function N. In particular, constant C is a
independent of u.

The proof of the corollary is a direct repetition of the proof of Lemma 2.9 in [KKPT] and, therefore,
we only briefly sketch it at the end of Chapter 3.2.

19



Lemma (Lemma 2.9 in [KKPT]). Suppose u is i-approximable in Q C R". Then

/ N(r, g, p)(z)do(z) < Cr™1,
0QNB,(Q)

where C depends on €, a, f, n and the Lipschitz constant of .

Let us recall, that the notion of the counting function is known in the literature, see for instance
[G, KKPT, BH]. However, the definition varies depending on the authors. Nevertheless, the essential
purpose of introducing the counting function always remains the same. It provides a way to estimate
how much a function oscillates while approaching the boundary.

3.1 Preliminaries and notation

In this chapter we use | - | to denote the norm of a vector or an n-Hausdorff measure of a set, depending
on the context. Symbol .#"+! denotes the (n + 1)-Lebesgue measure.

In what follows we will use the notions of cones, see Definition 2.3.1 in Chapter 2.3, also the
counting function (Def. 2.4.1), area function (Def. 2.5.1), nontangential maximal function (Def.
2.5.2). Moreover, recall the definition of a Carleson measure (Def. 2.6.1).

Next, we introduce some geometric constructions used in the proof of our main result.

Curved cubes and associated centers. Fix € > 0 and denote by Q,, the unit cube in R". We
denote by {Q;’: o } the family of dyadic cubes in the dyadic decomposition of Q:

Q;’:j ={(x},....,x,) €R" : j27" <x, < (j;,+1)27"}, formeNand j,,...,j, € {0,...,2" = 1}.

In the case parameters m and j, ..., j, are fixed or their exact values are not important for the discus-
sion, we will write Q to denote a cube in the m-th generation for some m. For the sake of notation, in
what follows we will usually denote the side length of QO by /(Q) rather than 2.

Let further

Q= {(x,y) ER™ : x € Qp, p(x) <y < 1+ ¢(x)}

be an associated curved unit cube in R™!, where ¢p : O, — R is a Lipschitz function. Similarly, for
a given cube Q, we define the curved cube

0={(x,y) €R™ : x€0Q,p(x) <y < px)+1(Q)}.

In what follows we will often omit the word curved when discussing sets Q and instead simply write
cube.

Let x4 denote a center of a (curved) cube O.ie. X 1= (xg, P(xp) + 27m=1) where X, 1s a center
of Q. Note that since by (1.2) it holds that ¢ is L-Lipschitz, we have the following inclusions:

VL2+2L+2. (3.2)

B<xQ, ;@> C O C B(x4,C(DI(Q)), C(L) :=
1+12 2

N =

Let us prove the above inclusions.
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Proof of (3.2). We begin with the left inclusion. Without loss of generality, we may assume that
xo = 0and ¢(0) = 0. The bottom face of O is given by the graph of ¢ and the top one by the graph of
¢+1(Q). Since ¢ is a Lipschitz function, it holds that its graph lies in a region bounded by a cone such
that its generatrix is given by a line with the slant L. It follows that we can restrict ourselves to the case
when dimension is equal to 1, as we are only interested in the distance of a point x to the surface of
that cone. Therefore, we can project (n + 1)-dimensional space to its 2-dimensional subspace, which
corresponds with the case n = 1. And so the constant C(L) does not depend on n.

To prove the inclusion, we need to know that the distance of x4 to the boundary of O is no bigger

[ ((9)

than ———.
14102 2

Obviously, the distance to the vertical sides of Q is equal to %. It remains to calculate the distances
to the top and bottom sides.

To bound the distance to the bottom side, it suffices to calculate the distance to the cone which
bounds the graph of ¢. In the case of n = 1 the cone is given by two lines with equations: L, : y = Lx
and L, : y = —Lx. We directly calculate that:

K@)( L Q) zﬂl@v>= 1 Q)

d(xp, L) =d(xp, L)) =d <<O,

2 1+L2 2 "1+L% 2 1+12 2
One can similarly calculate the distance to the top side of Q. Therefore, we get B (xQ, \/117 %) cO.
+

Let us now prove the second inclusion. In order to obtain it we need to estimate the distance of x

to the boundary of O, but this time we need to estimate from above. Let us estimate it for any x such
that |x| < %:

l 2
d%@XLMMD=MF+<%?—¢@»

1(0)?  1(0)* 10?10

< Tt + L > + L n
2

=%(L2+2L+2),

where the inequality is a consequence of ¢ being L-Lipschitz. Thus, the proof of the second inclusion
is concluded. U

Next, we define the associated center of O as follows:

le = x5 te,,1(Q) = (xg, P(xp) + 271 1 1(Q)) = (xQ, d(xp) + %2"") . (3.3)

The name of this point is justified by the fact that le does not lie inside O, and is the center of the

curved cube lying directly above cube Q and obtained by shifting up Q in /(Q), see Figure 1.

We will now describe the stopping time procedure, which is one of the key underlying technique
used in the proof of Theorem 1.3.1. This kind of technique is commonly used in Harmonic Analysis,
see e.g. [G], [D1], [HMM1], [BH].
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! e xl»
- X w ¥
0 -
T(O)
\Q/\/\
\/\/\ n o
XQ R

Figure 3.2: The set T(Q) (brown set) with

. respect to the set 0 (set bounded by black
O and its associated center le . line).

Figure 3.1: The center x4 of a cube

/\/

Figure 3.3: An example of how a set R(Q) may look like. Cubes Q 1s Qz, Q3 are removed from cube O to
obtain R(Q). In general there may be infinitely many sets that are removed from Q.

Stopping time conditions.

Set
G, := {Q,} and denote by
G, := afamily of maximal curved cubes 0c QO such that |u(xQ0) — u(x’Q )| > e.
Next, define
G, = 6,0,
0eG,

where G, (Q) is defined the same way as G, with Qo replaced with Q Then define inductively families
of sets G,, for k = 2, .... Denote by

G=JG. (3.4)
k=0

Domains R(Q). Let us introduce a domain which roughly can be understood as follows: given
any curved cube Q € G consider its subset constructed by removing those maximal curved cubes Q,,

22



where the jump of the values of u at associated centers is big: |u(xy) — u(x’Q )| > €, i.e. we define

R) :=0\ U Qi, for any O € G.
0,€G,(0)

Thus, set R(Q) consists of all curved subcubes in Q with small oscillations of u, see Figure 3. We
remark that this construction is similar to the one in Garnett’s book, see the proof of Theorem 6.1
in [G, Section 6 in Ch. VIII]. . .

Notice that given two different sets Q, W € G, the corresponding domains R(Q) and R(W) can
only intersect piecewise along boundaries, but their interiors are pairwise disjoint.

Blue and red sets. Finally, we define blue and red sets, which are essential in our construction.
Denote by T(Q) the set O translated vertically by %l (0):

TO) = {(x,)) €R™ : x € 0, $(x) + %I(Q) <y <P+ %I(Q)}- (3.5)

The key feature of sets T(Q), to which we appeal several times below, is that they are separated from
the graph of the Lipschitz function ¢, i.e. from the boundary of 2. Moreover, an important feature of
sets T'(Q) is that the associated center of O is the center of an upper side of T’ (0), see Figure 2.

Sets T(Q) are not disjoint. However, for a given set O a set T(Q) intersects only finitely many
other sets of form T(Q ;). Moreover, the cardinality of a family of sets #{; : TO)NTO ) F @} is
uniformly bounded for all choices of 0. When dealing with set QO, we set T(QO) = {(x,y) € R :
X € Qy, Pp(x) + %I(QO) <y < p(x)+1(Qy)}, 1.e. its upper half.

Let k > 0. We say that T(Q) is blue, if

Otherwise, we say that T(O) is red.

3.2 Proof of Theorem 1.3.1

Let us briefly describe our approach to the proof of the main result. First, we construct function ¢,
the first approximation of ¢, see (3.6) and show in Proposition 3.2.1 that ¢, gives rise to the Carleson
measure. The proof of Proposition 3.2.1 relies on two auxiliary observations, namely Lemmas 3.2.2
and 3.2.3. The first one gives a lower bound estimate for area function and is applied in the proof of
Lemma 3.2.3 to control the sum of volumes of cubes obtained by the stopping procedure. Then, we
construct the function ¢, see (3.18) and show that it e-approximates function u in the L*-norm. In
order to show condition (2.2) in Definition 2.11.1, we study the decomposition of the gradient of ¢,
see (3.19), and show that each of its terms leads to the Carleson condition, see estimates (Carl) and
(Car2). An important auxiliary result, perhaps of the independent interest, is presented in Proposi-
tion 3.2.6 and proved in the Appendix. It gives the L? bounds for the area function on cubes. The
above approach has been inspired by the discussion in [G, Section 6, Ch. VIII]) and also by [HMM1].
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Proof of Theorem 1.3.1. First, we define an auxiliary function ¢, : | 0,66 RO ) — R, which later
on will be used to define the e-approximation of u, cf. (3.18)

01(2) 1= )0 Y ulxp) o, (2). (3.6)

J=l 9,eq,;

Notice that, ¢, is in fact defined for all z € Q and, moreover, for any Q € G it holds that

/ Ve, 1dg™! < 3T [0 naRWQ)), (3.7)
0 0,eG
where | - | denotes the n-Hausdorff measure. Here, the expression |V, | is understood only in the

distributional sense and the component functions of V¢, are the signed measures supported on the
appropriate faces in dR(Q ;), see the discussion for the upper-half space in R? on pg. 345 in [G,
Section 6, Ch. VIII]. Therefore, | ){R(Qk)l in (3.6) are the n-Hausdorff measures of on 6R(Q ;) and the
above estimate is justified.

Our first step is to prove the following observation, which applied at (3.7) shows that |V, | d.Z"*!
is a Carleson measure.

Proposition 3.2.1. For any Q it holds that ZQAAGG 10N aR(Qj)l < Ce2(Q)".

Proof. We may assume, without loss of the generality, that O € G. For otherwise, we consider a
family M (Q) of cubes such that Ql eEM (Q) if O , C 0.0 | € G and 0) , 1s maximal. Then it suffices
to prove the assertion for each of the cubes in M (0). Hence, from now on we assume that O € G.
In order to show the assertion of Proposition 3.2.1 we consider two cases depending whether O ;18
contained in Q or not and then prove two auxiliary observations in Lemmas 3.2.2 and 3.2.3.

CASE 1: 0, is such that O N dR(Q,) # P and O, ¢ O.

(1.1) Let(Q;) < I(Q). Then, it holds that intQ N intQ ;= @, but the boundaries of curved cubes O
and Q i still intersect.

It holds that O n aR(Q ) is a subset of the vertical faces of Q (throughout this chapter, by vertical
faces we mean those different from the bottom and the top deck of a cube/curved cube). It is the
case, since: (1) O ; has to touch O, as otherwise O N IR(O )= @ and such a curved cube does
not contribute to the sum ZQjeG |Q NnoR(O DI; (2) since 1(Q;) < I(Q), only vertical sides can
touch.

For different curved cubes Q ; satisfying /(O j) < 1(Q), the corresponding sets on dR(Q ;) can
intersect along a set of positive (n — 1)-Hausdorff measure only, due to the definition of G and
R(Q)). Indeed, let Q, # Q, be such cubes. Then we have three cases:

(a) cubes Q, and Q, have no common face and intQ,nintQ, = @ in which case the corresponding
sets O NJR(Q,) and QO N IR(Q,) can intersect along a set of positive (n — 1)-Hausdorff measure
only. See Figure 4.

(b) cubes Q, and Qk have a common face and intQ, N intQk = ). Then sets Q N aR(Qk) and
Q N OR(Q,) are subsets of a common face of Q, which can only intersect along an (n — 1)
dimensional set 30 N GQk N aQ,.
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c)

S

Figure 3.4: This figure illustrates a) and c) in Case 1.1 in Proposition 3.2.1. Since b) may only be observed if
the dimension is greater than two, it is not shown as a figure. Red line is a set 00 N 0Qj. A set aR(Qj) NnQisa

subset of a red set, whereas a set 0R(Q N Q is contained in a yellow line above a red one. Therefore these sets
may only intersect along a set of dimension n — 1.

(1.2)

(c) interiors of cubes Q ; and Q « 1ntersect, but this means that one of the cubes contains another,

for instance let Q ;i C 0 «- However, then 0 ;N R(Q ) = ¥ and so the conclusion is as in case (a)

above.

Therefore, all such O ; amount to at most C(n)/(Q)" in ZQ-GG |0 N oR(O )|, as they cover at
J

most all vertical faces of Q.

Let [(Q,) > 1(Q).

Then, there are at most C(n) of such cubes Q It In order to see that this holds, let us consider two
cases. If Q ¢ Q It then there cannot be more of such Q i than faces of Q This is a consequence
of the following observations: (1) on aR(Q ) #F @ by assumptions, and so O and O i have to

touch; (2) since O ; € Gand I(Q)) > I(Q), then for each face F of O there is at most one curved
cube in G such that it touches F with the face of side length bigger than /(Q) and, moreover,
on aR(Qj) # @ (see also Figure 5).

Letnow O c O ;» then there exists exactly one cube in family G such that on dR(Q ) # @. To
prove it, note that for any bigger cube Qk € G with Q C Q ; C Qk it holds that Q N dR(Qk) =0,
as for such Q,, the cube Q i is not contained in R(Q, ), as it had to be removed in the construction
of R(Qk). Therefore, there is only one cube such that O0coO ; and O N dR(Q ;) # @.

Thus, similarly to case (1.1), such cubes contribute at most C(n)/(Q)" to the sum ZQ-GG |Q N
ORO))!.

In summary, the discussion in cases (1.1) and (1.2) gives that

Y. 10Nn0RQ))| < CmI(Q)". (3.8)

0,€G,0,¢0

CASE 2: Qj is such that O N dR(Qj) # () and Qj cO.
Then, trivially we have that

Y 10ndRQ)I<Cm) Y Q)" (3.9)

0,€G.0,c0 0,€G.0,c0
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Figure 3.5: This figure shows Case 1.2 in Proposition 3.2.1. The purple cube refers to the case O ¢ Q ; and
the green one refers to the case O C Q i

To continue the proof of Proposition 3.2.1 let us prove the following observation.

Lemma 3.2.2. Let O € G, where G is as in (3.4). It holds that

Y Q) <ce /~ |VuCx, y) Py = () dxdy,

0,€6G,(0) R©)

where C = C(n, L, 0,n) and the set R(Q) is defined as follows:

~ {T(Q D, I T(Q,)is red (3.10)

R(Q) = O. where O, := . AL
Q,eLGJI(Q) j j UXEUQj Fa,O,%l(Qj)(X)’ if T(Q;) is blue.

ByUQ ;» we denote the upper deck of 0 ;- (We refer to the discussion in the proof below, see (3.15),

where the set R(Q) is constructed and its meaning explained).

Proof. Let Q; € G,(Q).

CASE 1: The translated curved cube T'(Q ;)isred (cf. (3.5) for the definition of T(O ;). Then, it follows
by (1.3) and (3.2) that

2.2 2 1- 2
k*e® < (0scrp )* Sypon 1(Q)) "/ A
(0,

for some k > 0 whose exact value will be determined later in this proof. Hence, since T'(Q )NoQ =0
we have that y — ¢(x) =, | 1(Q)) for all (x, y) € T(Qj). Thus, we get

K1Q))" SuLon 5‘2/ . |Vu(x, »)I*(y — ¢p(x)) dxdy. (3.11)
T(Q))

CASE 2: Set T(Q,) is blue.

26



Since Qj € GI(Q), we know that |u(x’Q_) —u(xp)| > €. Next, let us define the point

31 5 1 _

xéj =xY% + El(Qj)enH,

which has the same x coordinate as the center of the curved cube x5 but its y coordinate equals
J

d(x)+1(Q;). Thus, one can think that such point is a vertical projection of the center of the cube Q; on

1
the upper deck of Q;, denoted by UQ;. However, notice that xél_ does not lie in the boundary 0Q2 while

J
we would like to consider a cone with the vertex at that point. Therefore, we let Q; = Q +¢,,,/(Q))

1
be a subdomain of Q obtained by shifting €2 vertically up by /(Q;). Now xgi € 09Q;.

Therefore, we have
1
L
Na,O,%l(Qj)(u - u(xQ))(xéj) > g, (3.12)
where the (truncated) nontangential maximal function N is considered with respect to domain Q.

1 A
We now show that estimate (3.12) holds not only at xélv , the center of the upper deck of Q, but in
fact at its all points X, i.e. :

Na,O,%l(Qj)(u - U(PQ))(X) 2 E.

Let us consider vertical shifts of points X € UQ ; so that they belong to TO j)\Q eg X+ ien +11Q))
and notice that they satisfy

X+, 710) €T,(X) and X +12,,1(Q) € T(©D)).

As a consequence we get, by the triangle inequality and since T(Q ;) s blue, that

£ < lu(xy) = u(xg)| < luCxy) = (X + 72, 1Q)] + [u(X + 72,71(Q)) — ulxg)|

< ke + |u(X + ie“ll(Qj)) —u(xp)|

and hence

u(X + 52,.71(0))) — u(xg)l > (1 = k)e. (3.13)

Therefore, for every X € UQ ;» we obtain the following estimate
(1 =K)e < Ny 140, @ = ulxg)(X).

Hence, for any X € UQ i

(1= KPEHQ,)" Sy (N 110 (1 — ulx)V(X) / 4w
2 J UQJ
< / (N, 10 — (X)) P(X) A
vo,; 2
< / A / IVulP(y - b(x) - 1(0,) " dxdy (N < A)
vo, Jr

«0.1/2100,)X)
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S / [Vul*(y — p(x) — 1(Q)) dxdy (Fubini’s Theorem)
UA La0.1/210)X)

XeUo;

< / |Vul*(y — ¢(x)) dxdy, (3.14)
UA La0,1/210)X)

XeUQj

where the third (N < A) inequality follows by the fact that UQ ; C 0Q; and by applying the local
version of Theorem 1.1 (b) for p = 2 in [GKLN] allowing us the consider the truncated versions of
the N, and the A, functions, see the comment following the statement of Theorem 1.2 in [GKLN].

The inequalities (N < A) and (A < N) refer to inequalities between L” norms of nontangential
maximal function and area function. They were pioneered by Fefferman and Stein in [FS] for half-
space. Dahlberg proved similar results in [D2] for Lipschitz domains. One can find such results also
in [KKPT] for the L-harmonic functions. The result that we use comes from [GKLN] and we now
recall it, specialized to our setting of Condition () and @(¢) := ct, cf. page 194 in [GKLN].

Theorem (1.1 [GKLN]). Let u be a C? function which satisfies (x) in [R’fl. Fix0 < a < f and assume
there exists x, € R" such that (N, ,4)(x,) < oo. Then,

,0,00

(a) Fora.e x € {x € R" : (Spu)(x) < oo}, the function u(w, y) has finite limit when (w, y) € T',(x)
tends to Xx.

(b) Assume that limu(x,y) = 0 as |[(x,y)|| = . For 0 < p < oo, there exists a constant C
depending on p, a, f, n such that

”Nau”u(R") < C”Sﬁu||Lp(Rn)~

We continue the proof of Case (2) in Lemma 3.2.2 and notice that the set | Xeuo, Lot ,(Q_)(X )
J > J

consists of the upper-half of T(Q ;) and additional parts belonging to neighbouring curved cubes.
However, those parts may only be contained in cubes in the same generation (in the dyadic de-
composition), say generation m, as T(Q ;) orin a previous generation m — 1 and intersect only finitely
many of such cubes whose number is estimated by a constant C(n, ), see Figure 3.8. To be more spe-
cific, notice that the distance of a point in Lo 1 l(Qj)(X ) to the axis of the cone can be at most %al Q).

Hence, for cubes in the same generation as T(O ;), in each direction such a cone can only intersect at
most [%] other cubes. For cubes in the previous generation we have the same estimate as there are
fewer cubes in the previous generation. Therefore, for every direction there are at most 2 [%] cubes
that a cone can intersect. Moreover, as faces of Q ; are n-dimensional, a cone can overlap with up to
w,(2 [%] )" other cubes, where @, stands for the measure of n-dimensional unit ball. Therefore, upon

adding up in (3.14) over all cubes 0 ; € GI(Q), we increase the constant on the right-hand side only
by a factor of C(n, ) + 1. Thus, also the discussion of case 2 is completed.

In order to estimate the sum in the assertion of the lemma we now combine cases 1 and 2. For this,
we also need to analyze how a red set T(Q ;) may intersect other red sets. Notice that the case of cubes

in the same generation as a red T(Q ;) 1s already taken care of above. However, it may happen that
T(O ;) intersects with sets that belong to one generation below the one of T(O ;) or one above, i.e. to
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Figure 3.6: This figure shows how sets Q, and

0 ; look like for T(Q wredand T (o) ) blue, respec-

tively. Notice that for a blue T(O ;) we drew a bit
more of a graph of ¢ as a blue set is a union of — . .
truncated cones and the way in which the cone is R(Q) is constructed. It is a union of red and

truncated depends on ¢. blue sets of the form Q.

M
AN

Figure 3.7: This figure shows how a domain

(m+ 1)-th or (m — 1)-th generation for T(Q ;) belonging to the m-th generation, for some m, see Figure

3.8. However, since the number of such cubes is finite, T(Q j) can only intersect C(n) of such cubes.
Finally, we combine estimates (3.11) and (3.14) to arrive at the assertion of Lemma 3.2.2:

Y 1) <ce? [ 1vumpo - g

0,€G,(0) k@)

where R(Q) := UQjGGl(Q) Qj with

~ T(Q), ifT(Q,)isred
0= ! ! ) AL, (3.15)
UXeUQj Fa,O,%I(Qj)(X)’ if T(Q)) is blue.
See Figures 3.6 and 3.7 illustrating the construction of the set R(Q).
Notice, that by (3.11) and (3.14), the assertion of the lemma holds with C depending on
max{k~2, (1 — k)~2} and, thus taking into account also (3.13), any 0 < k < 1 is suitable. []

Lemma 3.2.2 implies the following observation.
Lemma 3.2.3. Let Q € G. Then, Y5 <5 o Q)" < Ce21(Q)".

Before we prove the lemma, let us recall the following notion of shadow of a point and show the
claim needed to complete the proof of Lemma 3.2.3.

Definition 3.2.4. Let w € R" and z € Q. The shadow of z, denoted by S(z) := S (z), is a subset
of 0Q2, defined in the following way:

(@, pw) €S, () zel ().
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Figure 3.8: This figure depicts the blue set | J xevo, L wo.110(X) and how it can intersect sets of the
J k) J

form T(Q ;) which are drawn with red color. Additionally, on the left side of the figure dotted red sets
indicate how different red sets can intersect each other.

Claim 3.2.5. Let z = (x,y) € C(n, ®)Q. Then

a
1+ La

B((x, P(x)), (y- ¢(X))> N0Q C Sy cinaio)(2)-

Proof. First, we may assume that z = (0,¢) and ¢(0) = 0. As we did in the proof of (3.2), we can
restrict ourselves to the case when n = 1. First, we find 7 € R" such that (n, (1)) € S, o cnayi0)(2)-

One of the sides of the cone ', ¢(,.411(0)(0) is given by the equation y = ix. Suppose that n > 0.

Then, one of the sides of the cone I, , ¢, ay1(0)(") 18 given by y = —ix + én + ¢d(n).
By Definition 3.2.4, point (n, () € Sy o.cmano)(?) iIf 2 € Uy, ciuayio)(M)> Which happens if
t> in + ¢(n). Therefore, we have

én +¢(n) <t < C(n,a)l(Q), andso 5 < —agp(n)+ aCn,a)l(Q).

By the Lipschitzness of ¢ and since ¢(0) = 0, we get

—Lan < —agp(n) < Lan.
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Hence, we obtain

a
1+ La

n < —Lan + aC(n,®)l(Q), and hence 7 < Cn,0)l(0).

Therefore for points (1, ¢(n)) with || < 1+”La C(n, @)I(Q) it holds that (1, p(1)) € S, o.cnay0)(2)-
Notice that by the definition of a cone we have t < C(n, @)/(Q).
It follows that for n < ——t, it holds that # € S, ; c(.ay0)(2)-

Therefore,

1+La

a
1+ La

B((O, 0), t) N0 C S, 0 cmaio)(?)-
If we now let z = (x, y) we obtain

a
1+ La

B ((x, $(x)), (y- cb(X))) N 0L C S, 0.cmaio(2)

which concludes the proof of the claim. [

Proof of Lemma 3.2.3. It holds that

Yooy =y Y 1)

0,€G.0,c0 k20 0,eG,(0)
=10+ ), D, Q)
k21 0,eG,(0)

=1+, DD oy

k21 0'eG_,1(0) 0,€G6,0")

Suron Q" +E2) Y /~|Vu<x,y)|2(y—¢<x))dxdy

k21 0’ eG,_,(0) R@)
(Lemma 3.2.2)

Surog Q) +€7° / | Vu(x, y)P(y = p(x)) dxdy,
C(n,0)Q

where the second inequality follows, by the discussion similar to the one at the end of the proof of
Lemma 3.2.2, from the fact that any cube may be counted at most finitely many times with the uniform

constant depending on n and a. However, since sets R(Q") may contain also unions of cones, we may

need to consider a cube bigger than O so that U R(Q’) C C(n, a)Q. We enlarge the cube because the
union of cones need not be contained in Q. The proof of Lemma 3.2.3 will be completed once we
show that

/ Vulx, Py = ¢p(x) dxdy S, 1.4, (O)". (3.16)
C(n,a)Q

In order to prove this estimate, notice that for z = (x,y) € C(n, a)0 it holds that y — ¢(x) Sha
d(z,0Q).
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Then Claim 3.2.5 together with the Fubini theorem allow us to obtain the following estimate

/ | Vu(x, y)IP(y = ¢(x)) dxdy
C(n,a)Q

~ / [Vu(x, pIP(y = p(x)'"(y = p(x))" dxdy (3.17)
C(n,@)Q
~nLa / X |Vu(x, y)[(y — p(x)' ™" </ )(B((x,d)(x)),HaLa(y—qb(x))ndeo-) dxdy
C(n,0)Q 0Q
Snla / [Vu(x, »)*(y — p(x)'™" </ XS, 0 comn (z)da> dxdy (by Claim 3.2.5)
C(n,a)Q 00 @,0,C(n,a)l(Q)

= /C(n w0 oo |Vu(x, Y)|2(y - d)(x))l_n)(savoiyc(n_a),(g)(z)deXdy

= / < / Vu(x, )2 (y — q')(x))l'”;(r o ),(Q)(x)dXdY> do (Fubini’s theorem)
0Q CinQ e
2
N La / (A(x,O,C(n,a)l(Q)u) (x)dx S (C(n, )I(Q))".
o

The last inequality follows from the following observation, whose proof we present in the appendix.

Proposition 3.2.6. Let Q C Ri“ be the Lipschitz-graph domain as in (1.2) and let furtheru : Q — R
be bounded and satisfy condition (#). Then for any dyadic cube Q C R" it holds that

/ (Aa,O,l(Q)u)2 (x)dx < c(I(Q))",
(0]

where the constant ¢ depends only on a, 0 as in (#), n and the Lipschitz constant L of ¢.

Therefore, the inequality (3.16) is proven and, hence the proof of Lemma 3.2.3 is completed. [

Upon combining the discussion in (3.8) and (3.9) together with Lemma 3.2.2 we complete the
proof of Proposition 3.2.1. [

CONTINUATION OF THE PROOF OF THEOREM 1.3.1:
Recall, that as already mentioned in the discussion following (3.6) and (3.7), Proposition 3.2.1
shows that |V, |d-Z"*! is a Carleson measure in Q. Let us now define the following function ¢ :

Q- R:
u(z)  if z belongs to any red T(Q),
o(z) = { oAy (3.18)

@,(z) otherwise.

Our goal is to prove that ¢ is an g-approximation of u as in Definition 2.11.1. Denote by

RED the union of all red sets 7(Q) and by BLUE the union of all blue sets T(0), for O C QO.

If z € RED, then u(z) — ¢(z) = 0, whereas if z € BLUE, then z € R(Q) for some O € G. Suppose
that z € T(O - Since, by the definition (3.5), the set T(Ql) is a vertical translation of cube Ql, its
upper half may be a subset of one R-set (i.e. R(Q) for some Q € G), while its lower half may lie
in another R-set. Moreover, it can also happen that T(Ql) is entirely contained in one R-set. This
discussion leads to the following two cases.
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Figure 3.9: This figure shows the situation when z belongs to the upper half of T(Ql). A green cube is a cube
Q,, the cube bounded by a brown line is a parent of O, i.e. PQ,.

IfT(Q,) € R(Q), then

4(2) = @(2)] = lu(z) = 9,(2)
= lu(z) = u(xg, ) £r@y(2) < lu(z) = ulxly )| + u(xly ) = ulxo)| < ke +é,

where the first ke comes from the fact that T(Q,) is blue and the second ¢ is obtained because Q, is
not entirely removed from R(Q).

If T(Ql) ¢ R(Q), then suppose first that z belongs to the lower half of T(Ql), ie. z € T(Ql)ﬂ Ql.
Then z € R(Ql) and since T (Q ) is blue, we have that |u(z) (p(z)l < ke.

If z belongs to the _upper half of T(Q ),l.e. z € T(Ql) \ Ql, then z lies in T(PQ ), where PQ1
denotes the parent of Q1 , meaning the smallest cube Q containing Q1 Moreover,z € T (PQ 1) N PQ1
If T(PQ ) is blue, then |u(z) — @(z)| < ke in a similar manner as before. Otherwise, if T(PQ ) is red,
then this case has already been taken care of above (see also Figure 3.9).

This discussion shows that ||u — @[, < (k + D)e.

Notice that

where J denotes jumps along boundaries of RED. We already proved that |V¢,|d.Z"*! is a Carleson
measure. Therefore, by the definition of ¢ in (3.18), it remains to prove that on the set RED, the

measure |Vo|d. L™ = |Vu|dZ"! is a Carleson measure and that also J gives a Carleson measure.
Since ||lu||, < 1 and |lu — @||, < € it follows that

oo ~k
JIs+e) Y 1Q)"

red T(0;)
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From those it will follow that |V ¢| defines a Carleson measure.
Our goal amounts to proving the two inequalities (Carl) and (Car2). The first one allows us to
handle the Vu term in (3.19), while (Car2) takes care of the J part.

/A |Vul NnL,,—l(Q)”, (Carl)
7(0,) red, 0,c0 * @)

Y Q) Sy @ (Car2)

T(Q;)red, 0;cO

Let us begin with proving (Car2). Recall that we say that a ball B is a hyperbolic ball if its radius is
comparable to its distance to the boundary 0Q and B C . Let us choose a finite cover by hyperbolic
balls centered at points of any given cube T(Q);). Since we are interested now in red cubes, we have

by (1.3) that for any such ball B, of radius r from the covering of T (o) ;) it holds

£ < (oscgu)’ S r'" / |Vu|?, for some fixed 7 € [0, 1). (3.20)

(14m)B,
Notice that for any point z € T ;) it holds that the distance 6,(z) of z to the bottom face of 0) It
satisfies %I(Q ;) < 6,(z) < I(Q;). Moreover, for any hyperbolic ball B, containing z it holds, by the

definition of a hyperbolic ball, that r < §,(z) < Cr, for some fixed numerical constant C > 0. Thus,
we have that

r=o6,(z)~1(Q)).
Let us fix one ball B, from the covering of T (Q 1), centered at the point Xg, + %%l (Q)) a center of
T(Q ;) and such that (1 +#)B, € T(Q ;). Such a ball can be obtained by similar reasoning as in (3.2)
Q)

(14m)C(n,L)
Therefore, upon multiplying inequality (3.20) by /(Q;)", we get

and hence, there is a constant C(n, L) > 0 such that r := suffices.

Q) < = / Vul’s,(2). (3.21)
€ J1©)

as the above constructed ball B, satisfies (1 + #)B, C T(O ;). From this and the Holder inequality
together with (3.2) we infer the following estimate

2 2
[owa) s ([ v )ieyta( [ ware oy s L[ s, )
7)) 7)) T(Q)) € 7))

which gives
/ Vul S, 1/ Vuls,.
T(0)) € Jr©)

We now proceed with the first inequality (Carl), as it turns out that proving it, will also complete the
proof of (Car2).

/ [Vu(z)| < / |Vu(2)[*6;(2) 1 = / |Vu(2)*5(z),  (3.22)
7)) 7))

T(Q )red Q cO T(Q )red Q cO
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where in the last inequality, by 6(z) we denote the distance of point z to the bottom face of Q. Moreover,
the last inequality holds true, due to observation that although sets T(Q ;) may, in general intersect, for
different O ;» each point in O belongs to at most two sets T(Q ;). Thus, the integral on the right-hand
side of the last estimate in (3.22) may increase at most twice. Finally, similarly to the discussion of
estimate (3.16) in the proof of Lemma 3.2.3, we observe that for any point ® € O N oQ, ie. in the
bottom face of cube Q, it holds that

2= (x.3) € T,00(@) © @ $@) € S,00/(2) D B((x. ) == = $(x)) ) n 02
Moreover, notice that for z = (x, y) € O it holds that §(z) < I(Q) ~, 1 ¥ — $(x). These observations,
together with the analogous computations as in (3.17) and Proposition 3.2.6, imply that

! / IVu(2)*6(2)dz =, 1 / |Vu(x, 1Py = ¢(x)' ™y — ¢p(x))" dxdy
N La l/ (Aa,O,l(Q)u)2 (x)dx 5 é(l(Q))”. (3.23)
(0]

E

This completes the argument for inequality (Carl) and the proof of (Car2) follows as well, upon com-
bining (3.21) with (3.22) and (3.23).

Hence, |Vp|dZ"! is a Carleson measure and, therefore, the proof of the e-approximability of u
in Q, is completed.

Notice that in the proof it is not important that we consider a unit cube. Hence, our reasoning gives
e-approximation for any cube O regardless of its side length. To obtain an e-approximation in set €,
we follow the approach in the end of the proof of Theorem 1.3 in [HMMI1, Section 5]. Namely, let us
choose a point x; in R". Let Q, be a family of cubes in R"” such that x; is a center of each of those
cubes and /(Q,) = 2*. Denote by ¢, an e-approximation on set Q,. Define

@ =@yt Z PrXo,, \O,
k=0

Let us verify that ¢ is an e-approximation in €. Obviously it holds that [lu — @|| ;) < €. It remains

to check that |Vg|d.Z"+' gives rise to the Carleson measure. Take » > O and x € O, \ Q,_, if > 1
or x € Q, otherwise (then assume / = 0) and consider a set .S = B(x, r) N Q. We need to obtain

/ [VoldL™! < C.r.
B(x,r)nQ
Let k € N be such that 2 < r < 28*1if r > 1. Then the integral of |V¢| consists of the jump terms J

over the faces of Qk N <B(x, r)n Q) and also the term /B(x ey |Vo|d.Z" .

Let us begin with estimating the jump terms. If » < 1 then .S only lies in no more than three of the
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sets Q,. If r > 1 then S lies in no more than k + 2 of sets Q,. In the latter case, we have

|J| S Cg((l)n + (21)11 + - + (2k+2)n)
nk+2n __
o (X1
21
2n,n __
<. c (2=l
B m_ 1

1
< C npn _
Nk,n 6( 2n_1>

Sin Gt (3.24)

In case r < 1 we have
|J| < C.2r".

Hence, the jump terms are taken care of. We now proceed to deal with the remaining terms. First
suppose that r > 1, then

i=k+1 i=k+1

/ |V(0|d$n+l+ Z / |V(0|d$n+l SCE<1n+ Z (2i+1)n> ch’nrn,
SnQ, i=0 7 SN041\0) i=0

by the estimate in (3.24).
If r < 1, then we have

i=k+1
/ IVoldz™! + ) / |Vold2™! < C3r.
SN0, i=0 JSN0;;1\0)

Therefore, |Vp|d.Z"*! gives rise to a Carleson measure. Thus, the proof of e-approximability of u in
Q is completed. 0

Remark 3.2.7. Asobserved in several works (e.g. [HMM1, G, HT)), the regularity of the e-approxima-
tion ¢ obtained in the proof above, can be improved to C*®. Indeed, this follows by Lemmas 3.2 (i)
3.6 and 3.8 in [HT] and by the standard mollification procedure, see e.g. [EG, Section 4.2].

Let us now prove Corollary 1.3.2. The proof is the repetition of the proof of Lemma 2.9 in [KKPT].
Recall that for a definition of a counting function we use cones from Def. 2.3.2, not from Def. 2.3.1.
The reason is that for dealing with QFP it is more convenient with cones truncated with hypersurfaces,
than cones truncated with graphs. Whereas for proving e-approximability it is more convenient to use
the latter.

Sketch of a proof of Corollary 1.3.2. Consider a family of truncated cones I:ﬂ,o’s(x) with x € R” such
thatI', C I'y. Put
d

A = v - '
S((P)(x) /IN“ﬂ,O’S(x) Vol 1z — (x, p(x)|"

Let us first state the claim and show how it implies assertion of Corollary 1.3.2.
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Claim 3.2.8. Suppose that N(a, s, €,0)(x) > k and @ is the i-approximation of u. Then
A(@)(x) > kC_.

Now notice that the Claim implies that

/ A (p)(q)do(q) £ C / |IVo(z)|dz,
0QNB(x,r)

QN B(x,r)

and hence

/ N(a,s,€,0)(g)do(q) < / A (p)(q)do(g) < C/ IVo(2)|dz 5 r".
0QNB(x,r) 0QNB(x,r)

QNB(x,r)

The last estimate follows by Theorem 1.3.1, as ¢ is the e-approximation and defines the Carleson
measure on €. [

Proof of the Claim. We follow closely the steps of the proof of Lemma 2.9 in [KKPT]. Assume that
s =1,x =0, ¢(x) = 0. Since the counting function N(a, 1,€,0)(0) > k, there is a sequence of
points Z;, = (xj,tj) with j = 1, ...,k such that |xj| < at, and 0 < 7, < -+ < t; < 1 satisfying
u(Z;) —u(Z,;_;)| = €. Since u is C?, and so, in particular, Holder continuous and ||u||, < 1, there is
& depending on € such that [u(Z) — u(Z))| < % for Ze L, ={Z =(x,t) : |x—x;| <ét;,t =t}
We get similar result for j — 1. Hence, we getforany Z € L;and Y € L,_, that [u(Z) —u(Y)| 2 %6.
By taking 6 small enough, we make sure that any L; is contained in the cone 1:/3,0,1-

Let ¢ be a smooth i—approximation of u given by Theorem 1.3.1. For Z € L;and Y € L, | we

get |p(Z) — p(Y)| > i. For Z =(x,t;)€ L;and 1 <y <y, = t’I—"] , set

— y—1
X = —x)yv+(1-=— 4+ ——x. ., )t ).
y <(x Xx;)y < yj—1>x’ yj_lxj_l yj>

Then X, € Iy, aty = y; wehave X, € L; ; and X, € L;. Hence, |/1yj aiygo(Xy)dyl > i. Moreover,

0 1 1
a_yXy= <(x—xj)— yj — lxj+ yj — lxj_l,tj>

= <(x—xj)+ﬁ,tj .

J

2at;_
ya_ill +y;, < Ct;, because t; | —t; = (1 = 0)t,_,.
J

Let us now consider the change of variables (x,y) = X, = (z,s), where |x — x;| < 6t; and

and therefore, |ainy| <ot +

n—1

t
J

1 <y < y;. This map is one to one and dxdy = “—dzds as the Jacobian is given by the inverse of

st

y (%)

0 _ _
det 5 . =y't; = (ytj)”tjl. = s"t} "

0 0 1t
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where (x) stands for some coefficients that do not affect the determinant. Hence, for 'y ; = T';n{(x,?) :

tj S t S tj-[}?
dzds 1 Vi 0 €
Vol >C —n/ / | —(X )|dydx | > Cs-.
/I“M s" ? Ot} Jix—x,1<or, J1 O Y °4
Now we sum over j with j = 2, ..., k to obtain
dzds I3
A (@)(x) =/~ Vol 2 (k—1DCs—.
i s" 4

$.0.s

]

3.3 Examples of functions satisfying Theorem 1.3.1 and the re-
lated PDEs

In this chapter we provide an example of the class of functions satisfying condition () and, moreover,
that are also e-approximable. Furthermore, we also discuss some sufficient conditions giving ()
and (#). The importance of the latter condition comes from the fact that it implies (), see Chapter
1.3. Our examples illustrate that for some classes of functions, a condition () more general than (#),
suffices for the e-approximability to hold.

Let us recall Proposition 5.2 in [GKLN]. It asserts that if u is a C?-regular function defined in
a ball B C R"™! such that «?* is subharmonic in B for some positive integer k > 0, then u satisfies
condition () in B.

Let us recall lemmas 4.5 and 4.6 from [GKLN].

Lemma 4.5 in [GKLN]. Suppose u € C*(Q) satisfies (#) for some 0 < 6 < 1. Then, for each
1
(x,y) € Qandany 0 < € < N one has

/|Vu|2§£/ u’,
2
B 2B

where r = e(y — ¢p(x)), B = B((x, y), r) and C depends only on n and 6.

Lemma 4.6 in [GKLN]. Suppose u € C*(Q) satisfies (#) for some 0 < 6 < 1 and |u| < 1in Q.
Then for any cube Q C R" of side length |,

/ (A2, W) do*(x) < C,
o @0
where C depends on L,n,a and 0, the constant in (#).

These observations give us the following wide class of functions satisfying Theorem 1.3.1.

Proposition 3.3.1. Let u € C? be nonnegative and subharmonic in an open set Q C R"! i.e. Au > 0.
Then u satisfies (x). Moreover, u is e-approximable in domains € as in (1.2).
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The proof of the first assertion follows by direct computations showing that Au?* > 0 for any
positive integer k > 0. Indeed, we have that:

dxl.

i=n+1 a 2 az
=2k Z 2k — 1)u2k_2<a—Xiu> + u2k_1—2u
= 2ku**2((2k — 1)|Vu|* + uAu) > 0.

Hence, u** is subharmonic and by Proposition 5.2 in [GKLN] it satisfies ().

The second assertion follows immediately from Theorem 1.3.1, upon noticing that proofs of Lem-
mas 4.5 and 4.6 in [GKLN] hold as well for functions satisfying assumptions of the proposition. In-
deed, the scrutiny of the proofs of Lemmas 4.5 and 4.6 reveals that under assumptions of the proposi-
tion, it holds that Au? = 2(|Vu|*+uAu) > 2|Vu|? and Lemma 4.6 in [GKLN] follows, if u satisfies (*).

Proposition 3.3.2. Let Q C R"*! be an open set and u € C*(Q) be nonnegative and such that
AlVul* > 0
forany 0 < a < 2. Then, conditions () holds.

Proof. Since |Vu|® is C?-regular subharmonic, it satisfies the submean value property on Euclidean

balls B C Q. Hence for any x, y € B and some point z € B, lying on a line segment joining x and y,
we have

lu(x) = u|* < [Vu(2)|*|x = y*

< Cln.n) <][ |Vu|“> e
(1+n)B
< Cnm) <#/ |Vu|2>%
- ’ pnt+l1-2 (1+n)B
1
< C(n,n) <L1/ |Vul* + |MAU|>
"= Ja+nB

Therefore, we proved that () holds with ¢(r) = Ct with C depending on n,# and the diameter of
domain Q. [

a

Recall that a C?-function satisfies (#), if |[uAu| < 0| Vu|? for some 0 < 6 < 1.

Proposition 3.3.3. Let Q C R"*! be an open set and u be a C*-function. If uAu > 0 in Q, then each of
the following conditions implies (%): Alnu < 0, Au~' > 0. Moreover, if Au® < 0 for some 0 < a < 1,
then condition (#) holds with 0 .= 1 — a, and hence, also () holds.

39



Proof. The proof of the first assertion is based on the same type of computations and therefore, we
will show only argument for the first of the two conditions. We have that, at points in Q where u # 0,
it holds that

b

_ 2
0> Alnu =div(lw> uhu — |Vul?

u u?

and so |uAu| < |Vu|? holds in Q (as, if u = 0 at some point in €, then this inequality holds triv-
ially). Thus, by the comment following definition of (#) in Introduction, condition () follows from
Proposition 5.1 in [GKLN], even though # = 1. By analogy, the following direct calculations give us
condition (#) and show the second assertion:

0> Au® = div (Lw) = % (whu—(1—a)|Vu]).
ul—a u2—a

Appendix: the proof of Proposition 3.2.6

The reasoning relies on the presentation in [GKLN, Section 4] and on a variant of the observation
stated on page 261 in Garnett’s book [G, Exc. 4], see also [S]. Let us state Exc. 4:

Let f(x) be measurable on R. Suppose there exist a < % and A > 0 such that for each interval 1
there is some constant a; such that

Hx el :[f(x)—a;| > A} <alll.
Then f € BMO. Let us recall the definition of BMO functions:

Definition 3.3.4. Let f € Llloc(Q)' For a ball B CC Q define a mean value of f over B:

_ 1
fg= |Bl/Bf(x)dx.

We say that f € BMO(Q) if
1
sup—/lf(x)—fBIdx < oo,
B |B| /g

where sup is taken over all balls compactly contained in Q.

It is worth noting that instead of balls in the above definition we could take cubes Q.

According to our best knowledge there is no simple proof of this result for n > 1 in the literature.
Therefore, we state our version of it and provide its proof.

First, we state the claim and show how it implies the assertion of Proposition 3.2.6. Then, we prove
the claim.

CLAM. Let f : R" - R be a measurable function and let ¢ € (0, %) and A > 0. If for any cube
O C R" there exists a constant ag, such that

[{xe0: 17— apl > 4}| < clOl.
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then it holds that
[{x€ 01/ =apl>1}| <0,

where t = 3nA, while ¢, = (34)71In(4/3).

Suppose that the claim is proven. Then Lemma 4.2 (1) in [GKLN] asserts that A, ,(f) < Ay, (fp),
for some a’ > a, !’ > [, all 0 < € < g,(a, L) and a nonnegative measurable function f. Here, f B,
stands for the mean value integral of f over a hyperbolic ball B, = B((z,y), e(y — ¢(z))). Namely:

st L= fBE(Z,y) = ][ f, (Z, y) (S Q.
B((z,),e(y—¢(2)))

Thus, Proposition 3.2.6 will be proven provided that we show that
2
/ (Auor!Vul ) x)dx < clQ] = (@)Y
o
However, we find that

2
(AurorVal} ) (0 dx

2 2
/ (AvoclVull ) 0 = (AgplVul} ) (x)dx
Q & &
<A
o

2 2
wowlVil} ) ()= (A lVul} ) (o) dx (3.25)

S~

<

,

The second integral on the right-hand side is bounded above by c(a,n, L)|Q| in a consequence of
applying Lemma 4.3 in [GKLN] with f(z) := ][B 29) |Vu|?, provided that we know that

c
VuP< —E for(z,y) € Q.
]ég(z,y) (y - ¢(Z))2

However, this condition immediately follows from the Caccioppoli inequality, see Lemma4.5 in [GKLN],
with the constant ¢ = c(n, 0)e 2 ||u|?...

2 2
(Aurscel Vil ) i) = (Al Vul3 ) )] d.

Lemma 4.3 in [GKLN]. Assume that f > 0 is measurable in Q and satisfies the uniform estimate

A
< —
TED 2 50k

for some A > 0 and any (z,y) € Q. Then if Q C R" is a cube of side length I, ) < a < ﬁ we have

|42, o (N)0x) = A2, (Nl < C

a,l,c0 a,l,00

for any x,,x, € Q, where C is a constant depending only on L, a, A, n.
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As for the integral (3.25) we estimate it by the Cavalieri’s formula, see Chapter 2.7, for ®(x) = x
as follows:

2 2
/ (AvowlValh ) 0 = (AypalVul} ) (xo) dx
(0]

=/ ){xEQ : ‘( a,0w|Vu|2 ) (x)—aQ‘ >t}‘dt
0

2
where a,, = (Aa,,,,’ooWul% ) (x).

Let us employ reasoning analogous to the proof of Theorem 4.7 in [GKLN] and Corollary 4.8 in [GKLN].
Corollary 4.6 in [GKLN] states that

2
w* <{x €Q: (Aa,,o,,,wu@e) (x) > t)}> <C

Using the fact that harmonic measure and surface measure are mutually absolutely continuous by
Theorem 2.1 in [GKLN], we obtain:

" (Q)
—

2
(x€0: (AgorlVul} ) > t)}' < c@

for some b > 0. Now, we apply Lemma 4.3 from [GKLN] to get:

2 2
<Aa/’0,l/|vu|%£> (x) - <Aa/’0’,/|Vu|ég> (y)' S Cl

for any x, y € Q. Hence, we have:

<[ (Avoal ¥, ) 0= (AclVull ) 50)
)

) o)~ (AwsalVal}, ) @

" (AwsalValy) @

S ‘

/000|Vu|

o' 10 |VM|
I 00

Val}, ) () = (AuplVal} ) 0

<C +

(4
(4
(4,
(4

/O[/|Vu| ) (X)

+

2
( aaoy,/lVUlé{) (X) .

Thus, it follows that

: Clo|
{(xeQ: ‘( w000l ViUl ) (x) —agy >t}‘_( —Cy
We know that there exists 7, such that for all # > ¢ it holds that
: 2 1
xeQ: |< o 0,00 V| > (X)—0Q|>f ZlQl’
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as by following the notation of [GKLN], see page 217, we may choose ¢, such that 7 CC = i. By the
0~ %1

2
claim applied to f := (AO,,’O’00 | Vul%e ) , the latter estimate implies a corresponding one with e™'|Q|,
which in turn gives us the assertion of Proposition 3.2.6.

It remains to show the above Claim. Without the loss of generality let ¢ = i for the constant ¢ as in
the assumptions of the claim.

First, let Q; C Q denote any cube in the dyadic decomposition of cube Q and set G, := Uo ;» the
union of all maximal cubes Q; satisfying the following stopping time condition:

1
Hx € Q; 1 |f(x)—ag| > A} 2 §|QI.
The family of cubes G| has the following properties:
(i) 0¢Gasc=1.

(1) If O ; € G, and Q ; denotes a parent of Q I i.e. Q ; is the minimal cube containing O It then as

O, &G, we have that
2O S Hx e 1 17t —agl > A < 1(x €0, & 1f() - aol > A}l < 516, = 21Q)1

(i) If x & Gy, then [f(x) —ap| < Aae. in Q. Indeed, if x € Q, for a cube not satisfying the
stopping condition, then foraset E := {x € O : |f(x) — ay| > A}, we have that

[ENQO 1
l,=————< =, andhence 1,(x) =0and x ¢ E.
E O] 3

The Lebesgue Differentiation Theorem applied to 1, a characteristic function of set E, gives
the property (iii) to hold at a.e. point of Q.

@iv) ZleGl 0| < %lQl. Indeed, since by the stopping condition |Q;| < |Q| < 3|{x € O, :
|f(x) —apl > A}], we get

>Ioi< ¥ 3lxe 0t Ifm-agl> A <3lx € Q1 If(0 - agl > A}l < 310l.

0,€G, 0,€G,

Next, we construct a family of cubes G, := |J Q,, consisting of maximal subcubes of cubes in G,
satisfying the following stopping time condition:

1
[{x € 0, : |f(x)—an| > A > ngjl, for some Q; € G.

By property (iv) we get that

Yieds Y (Y ied)s Y diols <§>2|Ql. (3.26)

0,€G, 0,€G,  0,C0,.0,€G, 0,€G,
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Furthermore, for a.e. point x ¢ G, it holds that
|f(x) —ap| <34. (3.27)

In order to show (3.27), note that if x & G,, then we consider two cases: either (1) x € G, or (2)

x € Q, for some Q; € G,. In the first case, we have | f(x) — ay| < 4 by property (ii). In the second

case, an argument similar to the one giving property (iii) shows that | f(x) — anl < Aforaex & G,.
Next, we show that |a, — anl < 2A. Define sets

E :={yeQ;: /W -apl >4}, E,:={ye€Q;:[f(y)—ay|>4}.
Then, by property (ii) it holds that | E, | < %lQ ;| and, moreover, by the hypotheses of the claim (recall
that we fixed ¢ = i) we have |E,| < ilel. Furthermore, (Q; \ E|) N (Q, \ E,) # @, as otherwise
1 2 1 1
|QJ| 2 |QJ \ Ell + |QJ \ E2| > ( - §)|QJ| +( - Z)lel > |Qj|

Therefore, there exists y € Q; such that [f(y) — ap| < A and |f(y) — anl < A. This immediately
results in the desired estimate

lag = ag | < 1£() = apl + 1) — ag | < 24.
Hence, (3.27) follows, as
| f(x) — an < |f(x) - anl + |aQ - anl <34

We iterate the above stopping time procedure and after » steps obtain the family of cubes G, with the
following properties, cf. property (iv) and (3.26), (3.27) and :

M Y 10l (3) 10l @ 17 -agl <3ni forac. x £ G,

0,eG,

In a consequence, we get that | {x €0 |f(x)—ap|> 3n/1} | < (%) |Q|. The latter implies, upon

setting ¢ := 3nA4, the assertion of Claim, as (3/4)" = e~(n4/33D7 This completes the proof of Claim
and the proof of Proposition 3.2.6 is completed as well.
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Chapter 4

e-Approximability and Quantitative Fatou
Theorem on Riemannian manifolds

This chapter is based on the paper [Gr].

We deal with e-approximability and Quantitative Fatou Property on Riemannian manifolds. We
first prove e-approximability. In order to obtain that goal we construct the covering of the domain with
desired properties. Then we take e-approximant on each of the sets from that covering. To this end we
apply Theorem 1.3 from [HMM1], which states that there is an e-approximant in the Euclidean space.
Finally, we glue these approximations together to get e-approximation on a domain in a Riemannian
manifold.

Having e-approximation in our hands we may proceed to proving Quantitative Fatou Property. We
follow the approach from Lemma 2.9 in [KKPT]. Since we are in the Riemannian setting, not the
Euclidean one, we have to prove all the necessary claims in this broader setting and also develop some
of them.

The following are the key results of this chapter:

Theorem. 1.4.2 Let M be an n-dimensional complete Riemannian manifold and Q@ C M be an
open bounded connected Lipschitz set. Let u be a harmonic bounded function in Q. Then u is €-
approximable for every € > (.

Theorem. 1.4.1 Let M be a complete Riemannian manifold and let further Q C M" be a Lipschitz
domain. Furthermore, letu : Q — R be a harmonic bounded function with ||ul|, < 1. Then for every
point p € 0Q2

sup —— N(r,,0)(@)do(q) < Cle, a,0,n, ),

-1
o<r<ty; "7 JoonBp.r)

where €,a,0 are constants in the definition of the counting function. In particular, constant C is
independent of u.

Even though we state our theorems for harmonic functions, we are actually able to prove these
results for A-harmonic functions on Riemannian manifolds, see Definition 4.1.9.
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4.1 Preliminaries

In what follows we will investigate the setting of Riemannian manifolds and, therefore, we recall some
of the basic properties and definitions.

Definition 4.1.1. Let M" be a smooth n-dimensional manifold. We will say that M" is a Riemannian
manifold if it is equipped with a scalar product g, : T.M" X T.M" — R depending smoothly on
the point x € M. Usually g is represented by a matrix which is also denoted by g. Its determinant
is denoted by det g and its coefficients are written with lower indices as g;; for i,j = 1,...,n. The
inverse matrix, which exists at every point since g is invertible as scalar product, is denoted by g~!
and its coefficients are written with upper indices g"/ for i, j = 1, ..., n. In what follows we will write
M := M" to denote the Riemannian manifold when the dimension # is fixed.

Recall that on a Riemannian manifold there exists a canonical measure defined by a Riemannian
metric given by a volume form. Throughout this chapter we simply write d X when dealing with any
integral. But it always means integrating with respect to this canonical measure.

When working with manifold one often uses local coordinates. In our case a certain choice of
coordinates is convenient.

Definition 4.1.2. Let M be a Riemannian manifold. For any point p € M and any neighbourhood
of p we introduce normal coordinates in a following way. Let exp, : T,M — M be a map such
that exp,(v) = y,(1), where y, is a unique geodesic satisfying y,(0) = p and y,(0) = v. It is known
that one can find such a neighbourhood of point p that exp, is a diffeomorphism, call it U,. Since the
tangent space T, M can be identified with space R", say by isomorphism T" : T,M — R", the map
To exp;1 : M D U, — R" defines a local coordinate chart which we will call normal coordinates.
In the sequel with an abuse of notation we will omit the isomorphism between a tangent space and
Euclidean space and use only exp, or exp;l.
Notice that if one takes V' CC U, then exp, is also a Lipschitz map.

Definition 4.1.3 (Injectivity radius). Let M be a Riemannian manifold. For a point x € M we define
injectivity radius r;;(x) at x as the supremum of the set of all numbers r > 0 such that on a ball
B(0,r) ¢ T, M the exponential map exp, : T, M — M is a diffeomorphism. Then, the injectivity
radius of a set Q C M is defined by:

Tinjo = )lcrel;[; i (X)-
Usually, we omit the lower case Q if the set is fixed.

For more information on geometry of manifolds we refer e.g. to [H], [Li].
We will mostly deal with Lipschitz domains. Therefore, it is necessary to recall what we mean by
a Lipschitz set on a manifold M.

Definition 4.1.4. Let €2 be an open connected subset of a manifold M and let p € dQ2. We say that Q is
locally Lipschitz at p if there exist a neighbourhood U of pin M and alocalchart f : U — f(U) C R”
such that f(U N Q) is a Lipschitz set in R". We say that Q is a Lipschitz set if it is locally Lipschitz at
every point of its boundary 0€2.
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Definition 4.1.5 (Gradient). Let M be a Riemannian manifold with metric g. In particular at point
X € M we have a scalar product g, defined on the tangent space T, M at x. Let f be a scalar function
on M. The gradient V is a vector field defined by the following property:

& (Vf(x),v) = df(x)(v,),

where v, € T, M and d denotes differential.
In the local coordinates one obtains:

(VA =of=) g"of,

where g are coefficients of the inverse of g.

Definition 4.1.6 (Divergence). Let M be an n-dimensional Riemannian manifold with metric g. Let
X be a vector field on M. The divergence of X denoted by divX is defined by:

dixX vol, = Ly vol,,,

where in local coordinates vol, = 4/| det g|dx! A --- A dx" denotes the volume form on M and L is
a Lie derivative along X.
In local coordinates we obtain:

divk = — L Za,.< |detg|X">.
\/ldetg| i

Definition 4.1.7 (Laplacian). Let M be a Riemannian manifold. The Laplace (or the Laplace-Beltrami)
operator is defined on functions u defined on M as follows

Au = div(Vu).

In local coordinates we get:

1 ( .
Au=——— ) 0, V/|detg| g”df).
v/ | det g| Z Z ’

Definition 4.1.8. We say that a Sobolev function u on M is harmonic if Au = 0.

The following generalizes Definition 2.4 in [BH] to the setting of Riemannian manifolds. We
retrieve that definition for M = R".

We call a class of functions satisfying the definition below A-harmonic. Some authors use the
name L-harmonic. This class of function is a natural generalization of harmonic functions. In [N] and
[DG] one can find the proof of continuity of L-harmonic functions. They have been studied for many
years. Moser proved Harnack inequality for such functions in [Mos], in [CFK] one can find discussion
about L-harmonic measures. In [CFMS] pertains to existence on nontangential limits of A-harmonic
functions at the boundary of the domain. The authors of [DJK] prove the comparability of p-norms of
nontangential maximal function and square/area function for A-harmonic functions. In [HMM1] one
can find the proof of e-approximability of such functions and in [BH] there is a proof of Quantitative
Fatou Property of such functions.

For an overview of some properties of A-harmonic functions on Riemannian manifold, see [CM].
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Definition 4.1.9. We will say that a Sobolev function u : Q — R is A-harmonic if it satisfies the
following equation
div(AVu) =0, (4.1)

understood in the weak sense, where A : TM — T M is such that for each point x € Q we have
A(x) : T.M — T M is alinear map and for every fixed vector field X the map A(-, X) is measurable.
Furthermore, we assume that there is a constant C > 1 such that

CE)? < g (AX)E ), Al < C,

forall x € Qand { € T,M. Moreover, we impose that operator A has bounded coefficients and
satisfies the following conditions (&) and (&&) in [BH]

e the Carleson measure condition

sup ! IVAX)IdX < C < oo, &)
xeaQ.0<r<diam(@@) H""1(B(x,r) N 082) J pxmna

e the pointwise gradient estimate

C

IVA(X)| < TSt 0.0’ for all X € Q. (&&)

Condition (&) means that the norm of the gradient of A gives rise to a Carleson measure. Since
we ultimately want to prove e-approximability, which requires that |V¢@|dX is a Carleson measure, it
is a natural condition. Notice that for A = Id this condition is satisfied. Condition (&&) means that A
cannot change too rapidly as we approach the boundary. Again A = Id satisfies this condition. A case
A = Id is important, because it recovers the Laplace-Beltrami operator. Examples of operators which
satisfy conditions (&) and (& &) are for instance operators with constant coefficients or operators with
linear coefficients on bounded domains.

Remark 4.1.10. If in the above definition operator A is such that for every x € Q we have A(x) :
T.M — T _M is an identity transformation, then we obtain a Laplace-Beltrami operator. For more
information about harmonic functions on manifolds, see e.g. [Li].

Recall that in the Preliminaries we define the functions with bounded variation in the Euclidean
setting as well as in the setting of Riemannian manifolds. Below, we recall the generalized Definition
2.10.2 in the setting of Riemannian manifolds.

Definition 4.1.11. Let Q C M be an open set and u € L'(€2). We say that u has bounded variation in
€ and denote it by u € BV (Q) if

sup{ /udiv(qu) : X eT(Q), ¢ € CX(QR), |¢] < 1} < oo,
Q

where
I'(Q2) is a family is of smooth vector fields on € such that g(X(x), X(x)) < 1 for every x € Q,
where g denotes the metric on M. The above supremum is called a variation of u.
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If Q ¢ M = R", then we retrieve the definition of functions of bounded variation in Q in Definition
2.10.1.

The main advantage of BV functions is the fact that it is a class wider that W!! functions and
in particular, it allows discontinuities along hypersurfaces. Therefore, it is well-suited for studying
geometric variation problems. Let us mention that the BV functions on manifolds have been studied
e.g. in [GuP], [MPPP], [CaM].

Let us now recall the definition of e-approximability. The discussion regarding that notion is con-
tained in the Preliminaries. It has often appeared in the literature for many years. However, to our best
knowledge so far, it has only been used in Euclidean setting. Therefore, we give the definition in the
setting of Riemannian manifolds.

Definition 4.1.12. Let Q C M be a Lipschitz domain on a Riemannian manifold M. Letu : Q - R
be a harmonic function with ||u|| , < 1. We will say that function u is e-approximable for some € > 0
if there exists a function ¢ € BV () such that

L flu— ¢||L°o(g) <Eg,

2. |V¢| defines a Carleson measure on €, i.e. for every x € 9Q

1
sup VgldX < C..
re0,diam Q) """ J B(p.nne

Now we will define a generalized cone, a notion that in the Euclidean setting corresponds to the
notion of the cone.

Definition 4.1.13. Let Q be a connected, open subset of a Riemannian manifold M and let p € Q.
Let 0 < a < o0. The set

I'(p) :=T,(p)={q€Q:dp,q < (1+a)d(g,0Q)},

is called a generalized cone. Moreover, we also define a truncated generalized cone as follows

" (p) :=T(p) N B(p,r).

For the sake of simplicity we will use a name "cone" instead of generalized cone. In literature a
name nontangential approach region is also used, see [KKPT]. We call it a generalized cone because
in the case when M = R” and 0Q = R"!' x {0} we obtain for p € 0Q as I'(p) the usual Euclidean
cone. Compare this Definition to Definition 2.3.1 in Preliminaries.

Similarly to Definition 4.1.14 we introduce the following notion.

Definition 4.1.14. Let Q C M be open, bounded, connected and p € 9Q. Let further I'(p) denote a
cone at p. We define a doubly truncated cone I, , (p) as follows

L, ., () := @) n B(p,r)) \ T(p) N B(p,ry)),
where 0 < r,r, < c0.

Let us state one of the key definitions used in this chapter.
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Definition 4.1.15 (Counting function). Let I""(p) be a cone for some point p in the boundary of an
open set  C M". Let u be a harmonic function defined on Q. Denote by d a Riemannian distance in
manifold M. Fixe > 0,0 < 8 < 1and 0 < r < 1. We say that a sequence of points (Q,) such that
Q, €l"(p)is (r,€,0, p)-admissible for u if

u(@Q,) —u(@,_)l2¢ and d(Q, p) <0d(Q,_,p)

Set
N(r,g,0)(p) = sup{k : there exists an (r, €, 0, p)-admissible sequence of length k}.

We call N a counting function.

4.2 A special case of s-approximability

Before presenting the general case of n-dimensional complete manifold, we would like to give the taste
of the e-approximability in the special, but important, case of M = S>- the unit sphere in R>. Since
then the maps can be found explicitly, the e-approximability can be proven directly.

Proposition 4.2.1. Let Q C S? be a Lipschitz domain in the 2-dimensional sphere such that the surface
measure o of the set S* \ Q is positive. Let u be a Laplace—Beltrami harmonic function in Q such that
there exists a point p* € Q with u(p*) = 0. Then for every € > 0 there is a BV function ¢ such that
lu(x) — Pp(x)| < € for every x € Q and |V | defines a Carleson measure i.e.

/ |IVp|dA < Cr
B,(NNQ

for every point y € 0, 0 < r < diam(Q) and for some positive constant C depending on Q. Namely,
C depends on dist(Q, e;), where e, denotes unit vector (0,0, 1) in R>,

In the proof of the above proposition, we employ the following auxiliary observation.

Lemma 4.2.2. The stereographic projection f : R?> D S? — R? given by the formula

_ (X L)
is a Lipschitz map on any open set Q C S? such that o(S* \ Q) > 0. Moreover, there exists constant
C = C(dist(L2, e5)) such that the Jacobian of f satisfies

|J f(x,y,2)| = C.

n

T, we denote the standard orthonormal vector basis in R”.

Here and in what follows by {e,}

Proof of Lemma 4.2.2. Let us first notice that, upon rotating the sphere, we may assume that the north
pole e; € $? \ Q and the distance on a sphere of e; to Q is positive. Since rotation is an isometry,
it does not affect the harmonicity of function u. Moreover, as the Jacobian of rotation equals 1, the
Carleson measure estimates are not affected. Finally, recall that f is a conformal diffeomorphism.
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Let us cover S? with six sets open in the topology of the sphere uru_, Uy+, ur, U, U_, where

U= {(x,y,z)ES2 DX > ILO}’ U- = {(x,y,z)€§2 : x<—i}
and similarly for the remaining of those sets. We choose 11—0, because we want to be separated from
a circle {x = 0}. Analogously for sets with subindices y or z we want to be separated from circles
{y = 0}, {z = 0} respectively. We could choose any constant such that aforementioned sets cover
the sphere. Here we take 1—10 for convenience. Then on each of sets U, the remaining two coordinates
form local coordinates on sphere, e.g. on U coordinates are given by (y,z). Next, we express f
on any of aforementioned sets with these new coordinates. In particular, on U we have f(x,y) =

< o , J ) and so by the direct computations we find that
1=y/1=x2—)2" 1=4/1=x2—)2

_ V1=x2—y2—14+2x%+)? xy >
Df(x,y) =a(x,y) ( Xy VI—2 o2 —14x242)2 ) 7

-1
where a(x, y) = [\/1 —x2=y2(1=1—=x2— y2)2] . Since (x, y, z) € U, we know that \/% =
2y

Zl—z < 100. Moreover, upon setting d := d(£2, e;) > 0, we infer that
1 _ 1 < 1
(1-2)? (1= 1/1=x2—)2) (1 —cosd)?’

An elementary estimate gives us that [\/1 — x> — y? — 1 + 2x*> + y*| < 5 for all (x,y,z) € U} and,
hence on Q N U we have

DSl < —0__

(1 —cosd)?
The case of U is handled by analogous computations. The cases of sets with indices x and y are
different, because in the formula for the stereographic projection we divide by 1 — z and on these sets
z is one of coordinates. However, again by similar computations we see that whether it is set U,
U, U;r orU’, the result is the same. Moreover, the formula for stereographic projection allows us to

handle sets U;r and u; in a similar fashion. On U we have f(y,z) = (—”l_yz_zz i) and hence

1-z ’1-z

—y(1-2) 1-y*—
Dj(y,2) = b(y,2) ((l—z)y\/l—;—z2 y\/l—yyzfz2 > ’

-1
where b(y, z) = [\/1 —y2—z%(1 - z)z] . The computations analogous to the above allow us to

Tcosd? 1—i(o)gd)2’ The remaining three sets U_, Uy+, Uy‘ can be handled in the
same way, and therefore, || Df||;«q, is bounded. Hence f is Lipschitz on € with Lipschitz constant
_ 500
T (1—cosd)?”

Finally, let us show the bounds for the Jacobian of f. First, we compute directly that on U it holds

estimate L*-norm again by

2z+ 1

I )
T, )| = ———|z||1 —z]*| =2z — 1] = =T~
970 = eIl = 2P =22 = 1 = 22
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which combined with the fact that 11—0 < z < cosd gives us the following inequalities:

12 /10N> 1 2cosd + 1
— (= <|Jf(x, | <10 ——mm—.
10(9) cosd SIS (1 —cosd)?
Similarly on U we have
1
Jfy,z)| = ————
|J f(y,2) A= 27

which, in a consequence, results in the following bounds for |J f|:

1 1 1
1 —— < |Jf(y,2)| <10 max >
By analogous computations we find bounds for J f on other sets U. U

We are now in a position to show the proof of e-approximability on Lipschitz domains on S?.

Proof of Proposition 4.2.1. Let f be the stereographic projection as in Lemma 4.2.2. Since u is har-
monic, we get that uo f~! is also harmonic on f(€) due to conformal invariance of harmonicity in
dimension 2. Furthermore, by Lemma 4.2.2 it holds that f(Q) C R? is a Lipschitz domain. There-
fore, by Dahlberg’s result [D1, Theorem 1] for any € > 0, we find a function (Z which e-approximates
uo f~!. Upon setting ¢ := ¢po f we immediately obtain that ¢ is a desired function in the first part of
the assertion of the theorem, that is ¢ e-approximates u. Indeed,
|u(x) = p(x)| = |uof ™' (f(x)) = p(f (X)) < &

as 5 approximates uo f ~! and f is a bijection.

The proof that |V¢| gives a Carleson measure requires slightly longer argument. Note that by
definition of ¢, Lipschitz bound on | D f| and by the standard identity |J f(x)| |J f~'(f(x))| = 1, we
have

/ V(0)ldo(x) “2)
B,(NnQ
< / VGG 1D (o) ldo(x)

By(r)ﬂQ

< L/ VO NN I F NI (x)ldo(x),
B,(NnQ

where L is a Lipschitz constant, which depends also on d = dist(£2, e;), see the proof of Lemma 4.2.2
for details. Since f(€2) is bounded and f is a diffeomorphism, it holds by the second part of assertion
in Lemma 4.2.2 that |J f~'(f(x))| is bounded as well by C = C(d). Therefore,

/ VG NI FEOL T £ (o))l do(x) (4.3)
B,(NNQ

<cC / VB G 1 £ (0)ldo(x)
B,(NnQ

=C / |V(2)|dz,
F(B(rNnL)

52



where in the last step we use the change of variables formula. The set f(B,(r) N €2) need not be equal
to f(€2) N By,,(r") for some r’, but there is such 7 = #(y) that f(B (r) N Q) C f() N B, (7).
Since, by Dahlberg’s result, |V$ | defines a Carleson measure on R?, we trivially have that

/ IVé(2)|dz < CF < CKr. (4.4)
FE)NB s, ()

The last inequality is a consequence of a fact that we can find a global constant K such that for each
y € 0Q it holds that #(y) < Kr. For example, take K = L + 1.
By combining estimates (4.2)-(4.4) we obtain that |V ¢| defines a Carleson measureon Q ¢ S%2. [

4.3 Harmonic and A-harmonic e-approximability

The crucial part of the proof of Quantitative Fatou Theorem is the e-approximability. Definition 4.1.12
shows that the e-approximation function ¢ is close to harmonic function u, but has a property that its
gradient gives the Carleson measure, which may not necessarily by true for any harmonic function,
see the discussion in Chapter 1.2. This is the essential part of estimates needed to obtain Quantitative
Fatou Theorem.

Theorem. 1.4.2 Let M be an n-dimensional complete Riemannian manifold and Q C M be an
open bounded connected Lipschitz set. Let u be a bounded harmonic function in Q. Then u is &-
approximable for every € > 0.

In the proof of Theorem 1.4.2 we use the following deep result, see [BH, Theorem 2.15]. For the
reader’s convenience let us recall this theorem:

Theorem. Suppose Q C R™! is an open set satisfying the (interior) corkscrew condition such that 02
is uniformly rectifiable and L is an A-harmonic elliptic operator with coefficients satisfying equations
(&) and (& &). Then all bounded solutions to Lu = 0 in L are e-approximable for all € € (0, 1) with
constant C, depending on equations (&), (&&), €, n, and the UR character of 0€.

Therefore, in the case when M is the Euclidean space and Q is a Lipschitz domain and operator
L is given by Laplace-Beltrami operator in local coordinates, all the assertions of this theorem are
satisfied and we are allowed to use it.

Our strategy is as follows: we cover set £ with finitely many open sets such that on each we are
able to use normal coordinates. The properties of these coordinates and the fact that Q is Lipschitz
enable us to prove existence of e-approximation on each of the sets in the covering. Finally we glue
these approximations and show that it is an g-approximation on Q. We need normal coordinates on
a manifold in order to express the Laplace equation on the manifold in these coordinates as an A-
harmonic equation. We prove that a Lipschitz set satisfies interior corkscrew condition, which is an
essential property of a set €. Due to Lipschitzness, the boundary d€ satisfies the Ahlfors-David
regularity condition, which is necessary for our theorem to hold.

Before proving Theorem 1.4.2 let us discuss two auxiliary results. First we establish a relation
between BV functions on manifolds and in R”. Lemma 4.3.1 enables us to produce a BV function on
a manifold M if we have a BV function defined on a subset of R”. Lemma 4.3.2 allows us says that
bounded Lipschitz sets in R” satisfy interior corkscrew condition. This property is necessary in the
proof of Theorem 1.4.2.
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Lemma 4.3.1. Let M be a Riemannian manifold. Furthermore, let ¢ : U — R be a BV function
defined on a set U C V C R", where V' is such a set that exp,, is a diffeomorphism on V' into M for
some point p € V. Then, the composition ¢o exp;1 is a BV function on exp,(U) C M.

Proof. By the definition, a function ¢ € BV (U) if

sup/ ¢ divo < oo,
U

where the supremum is taken over the set of all v € C*(U,R") with |v| < 1. We would like to find
uniform estimate for the integral /e » ) (@° exp;l)divv, where v € C*(exp,(U), R"). By the change

of variables formula we obtain
/ (o exp;l)divv = / ((¢o exp;‘)o exp, ) div(vo exp,)|J exp, | S / ¢ div(vo exp,).
expp(U) U U

The approximate inequality is the consequence of the fact that Jacobian of exp, is bounded on U by a
constant depending on U and M, since set U C V' and so, by assumptions, exp, is a diffeomorphism
on U. In the last integral, instead of v, we now have vo exp,, which may a priori change the set of
functions over which supremum is taken. However, it turns out that any function w € C*(U,R"),
|w| < 1 can be written as vo exp, for some function v € C*(exp,(U),R"), |v| < 1. Indeed, this
follows from writing w = (wo exp;l)o exp, and setting v = wo exp;l. This completes the proof of
the lemma. 0

We now state as a lemma the well-known result. Its proof is contained in the Appendix to this
chapter. It seems to us that this fact is the mathematical folklore in geometric analysis. However, we
were not able to find any written proof of it and hence we decided to include ours.

Lemma 4.3.2. A bounded Lipschitz set in the Euclidean space satisfies interior corkscrew condition.

We are now in a position to prove one of the main results of this chapter (the second being Quan-
titative Fatou Property).

Proof of Theorem 1.4.2. Before we start the proof, let us outline the main steps.

Step 1. Construct a covering of Q. Each set in the covering is diffeomorphic to a subset of R” and
partial derivatives of diffeomorphisms are uniformly bounded and each set is Lipschitz.

Step 2. Use Theorem 1.3 in [HMM1] to obtain e-approximation on each of the sets of the covering.

Step 3. Glue together all e-approximations to get an e-approximation on Q.

Step 1.

We begin with covering domain Q with appropriately constructed Lipschitz sets, such that each of
these sets is diffeomorphic to a subset of R” and all the partial derivatives of such diffeomorphisms
are uniformly bounded in Q. Let us describe how it can be achieved.

Let us cover Q with sets V, for p € €, such that each V, is a neighbourhood of p with the prop-
erty that exp, is a diffeomorphism on exp;l(Vp). Since Q is closed and bounded, it holds that Q is

compact by completeness of M. Therefore, there exists a finite cover of Q by sets denoted by V; with
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l € {1,2,...,m}, where m is a number of sets in the cover. Moreover, by p, we denote points p corre-
sponding to sets V.

Claim: Sets V; can be chosen to be Lipschitz.
In order to prove the claim, take any ball B(p,, R;) C M, where R, = r;,:(p,) is injectivity radius at
p; € Q,forl =1,...,m. Due to the fact that Qis compact, it holds that

li,relgrinj(p) = r;gg_l;lrinj(p) i= Ty > 0.
Next, consider balls B(p,, R, — 6) with 6 > 0 small enough, say 6 = %rinj. If it turns out that such
smaller balls do not cover €2, then increase m so that the new larger family of balls covers €. Since
B(p;, R, — 6) CC B(p;, R;) and the map exp;l1 is a diffeomorphism on B(p,, R;), we have that the
derivative of exp, is bounded on each of B(p,, R, — 6). Moreover, balls B(p;, R, — 6) are Lipschitz
because they are images of balls B(0, R, — 6) in Euclidean space under exp,. This holds since the
latter balls are Lipschitz sets in R" and exp,, is a Lipschitz map.

Since in our setting function u is defined only on €2, we need to intersect balls B(p,, R, — 6) with
Q. Unfortunately, sets V, := B(p;, R, — 6) N Q need not be Lipschitz nor satisfy interior corkscrew
condition. Thus, it is necessary to augment our covering.

Notice, that as Q is Lipschitz, sets ¥/ have finitely many connected components. Since / < m, the
set of all connected components of these sets is finite as well. Hence we may further assume that sets
V! are connected.

Each set V/" is locally Lipschitz at almost every point of the boundary d¥;. In general, the intersec-
tion b, := QN JB(p,, R, — §) may consist of several connected components and, moreover, different
components may have different dimensions. Some components may have dimension » — 1 when a
piece of dB(p,, R, — 0) is also a piece of d€2, i.e. when locally Q and B(p,, R, — 6) share a boundary.
However, these connected components of b, are Lipschitz because € is Lipschitz. Therefore, only
lower dimensional components of b, may form a set of points ) such that 0¥}’ is not locally Lipschitz
at points from bj. Hence, indeed V} is locally Lipschitz at almost every point of its boundary.

Take such n-dimensional neighbourhoods A; D b that sets ¥/ \ A, are Lipschitz. We can also

choose A, so that d(V/\ A;, b)) < %J It can be done because each set ¥/’ is "almost Lipschitz". Let us
be more precise and clear what we mean by "almost Lipschitz". The boundary of ¥/ consists of parts
that are subsets of 0Q and subsets of 0 B(p,, R, —6). Both of these sets are Lipschitz. Hence, the subset
of the boundary of ¥, which may be an obstacle to V) being Lipschitz has measure zero. Therefore, we
only have to take A, small enough so that the part of its boundary inside V" is Lipschitz and does not
form cusps with 0V". The latter means that V" \ A, satisfies interior and exterior corkscrew conditions.
Hence, (04, NV/)U 9V, \ A)) is locally Lipschitz. Since there are finitely many sets V,’ the Lipschitz

constants of all sets are uniformly bounded. Put B, := A; N V/ and set

— 1
i

v v/ if V| is Lipschitz
Vl’ \ B, if Vl/ is not Lipschitz.

Sets Vl” are Lipschitz but they need not cover whole set Q. Thus we need to deal with sets 5,.

Divide sets B, into subsets B, ; such that:

e #ieN: B} S M < Yol for every /.

~ n
inj rinj
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e diam(B,;;) <r1,;  foreveryiandevery/,

o U, B,=8B  foreveryl.

To construct such a partition, it is sufficient to cover set El with sets B(p, r2—') OE, for points p € B,

and take a finite subcover. Let us denote the sets from this finite subcover by B, ; := B(p,;, %) NB,. In
particular, we refer to the centers of the balls by p, ;. Let us mention that sets B, ; need not be connected.
However, again, they may have only finitely many connected components and hence we will assume
that /3, ; are connected.

Define sets C;; 1= B(p;;, I;,; — 6) N Q. Let us again assume that C;; are connected. Notice that

inj

4

I
Bl,i C Cl,i’ Bl,i CC B(pl,i’ ran - 5), d(Bl,i’ aB(pl’l-, ran - 5)) > - .

Moreover, sets C;; need not be Lipschitz.
Now we improve a family of sets C; ; to a family of sets Cl,i which are constructed as Lipschitz and

B, C Cl., ;- That such Cl,l. can be chosen in such a way follows from

Linj

Notice that this means that sets 53;; and dB(p,;, 1;,; — 6) are separated from each other. Moreover,
sets C;; are already "almost Lipschitz" as their boundaries consist of pieces of 0€2 and dB(p, ;. 1)
Therefore, one can find a set Cl’ ; such that it is Lipschitz and B,J. - Cl’ - Again, because there are

finitely many sets C, ,, Cl' ; all their Lipschitz constants are uniformly bounded. Hence we obtained
that all B, C |, C[,i. Therefore, we covered our "bad" sets 53, with Lipschitz sets.

Altogether sets Vl" and Cl, ; provide the covering of Q with Lipschitz sets. Let us rename and
renumber the constructed collection of sets to obtain the covering {V;} of € with Lipschitz sets.

Therefore, we can assume that sets V; are Lipschitz and the claim is proven.

The estimate for m, the number of sets V, in the constructed covering.
Observe that, since the image of a ball centered at the origin under exp is a ball with the same
radius and in the proof of the Claim we set 6 = %rinj, we have that diam(Vl”) R Iy, Next, notice that

since the radius of any geodesic ball in € does not exceed r;,;, each such a ball has volume comparable

n
to <irinj> and the same holds for sets C, ,. Therefore, the number m of sets V; required to cover Q is

10
Vol(Q)\°
m59< - ) )

Linj

The square in the above estimate is the result of the fact that the number of sets V" is comparable to

Yol and for each set V" the number of sets C;, is, again, comparable to Yol The implicit constant
n N T n

Tinj inj

depends only on the geometry of Q, as the volume of a ball (with a small enough radius) can be
bounded by the n-th power of radius multiplied by a function depending on dimension and curvature.
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Due to our construction, on each set ¥, we have normal coordinates. This allows us to write the
Laplace-Beltrami equation A ,,u = 0 in local coordinates as follows:

1 Z i,. det gg" gu ) - 0, (4.5)
Vdetg 5 0x = ox’

where g denotes a metric tensor on M.
From this representation we infer that on every V, C M the equation A,,u = 0 corresponds to
div(AVu) =0 on exp;/l(V,) C R", where the square matrix A € M"™" depends on a point on M and

A = y/det g(g"). (4.6)

Let us notice that any set exp~!(V)) is Lipschitz, because the derivative | D exp,, | is bounded on each
V,. Moreover, since there are finitely many sets V;, the derivatives D exp,, are uniformly bounded

on Q. Therefore, in maps our harmonic equation locally reduces to an A-harmonic one on Lipschitz
domains in R".

Step 2.

At this point we would like to apply [BH, Theorem 2.15], see also [HMM1, Theorem 1.3], which
provides conditions on an underlying domain and a bounded A-harmonic function implying its &-
approximability. Namely, the domain has to satisfy the interior corkscrew condition and its boundary
must be uniformly rectifiable. Here, we study domains

W, i=exp,' (V) C BO,R -8 CcT,M =R", [=1,....m. 4.7)

Notice that, by Lemma 4.3.2, V}, and hence also W, satisfy the interior corkscrew condition. Fur-
thermore, since all ¥, and hence also all W, by the above discussion, are Lipschitz, the uniform rec-
tifiability condition holds because every Lipschitz set is in particular uniformly rectifiable, by direct
verification of Definition 2.7 in [BH] with 8 and M, depending on Lipschitz constant of £ and curva-
ture of Q. Indeed,for the reader’s convenience, let us recall that definition.

Definition 4.3.3 (2.7 [BH]). An n-dimensional ADR set E C R"*! is uniformly rectifiable if and only
if it contains "Big Pieces of Lipschitz Images" of R”, see e.g. [BH], [M, Section 6]. This means that
there are positive constants § and M,,, such that for each x € E and each r € (0, diam(E)), there is a
Lipschitz mapping p = p,, : R" — R, with Lipschitz constant no larger than M, such that

H'(EnB(x,r)np({zeR": |z<r|})) = 0r".

As for the assumptions on the A-harmonic function u, the matrix A in [BH, Theorem 2.15] has
bounded coefficients and defines an elliptic operator (cf. Definition 2.4 in [BH]). This is the case of
matrix in (4.6), since W, are bounded, metric g is smooth and positive definite. Moreover, as in [BH]
coefficients of an A-harmonic operator are locally Lipschitz, again by the smoothness of g. What
remains to be checked are conditions (&) and (&&) in Definition 4.1.9.
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In order to check (&&) we compute the gradient of A, cf. (4.6). For i, j,k = 1,...,n it holds that

aa.. 0
ij P
= 2 (\/det ,,>
oxk axk< ctgg
1 Jddetg i 4

B 24/detg O0x*

1 9 5 9 .
= det g tr <g_1—g> g” +/det g—g" (4.8)
24/det g ox* oxk

— d t - ab_Y ij Y Sl ,
b (B ) e

where in (4.8) we use the following Jacobi’s formula for derivatives of a matrix determinant.

detg % g"
x

. dA JA
%det At) =tr <adJ(A(t))%> = (det A(t)) tr <A(t)‘1 ' djt))

By compactness of W, and continuity of g, g;;, g and their derivatives we have that

. sl 0
€ 1= sup {Ig(x)l, 1, 87Ol 'ﬁgﬁm‘, 'ﬁg«x)

} < 0. 4.9)
Let further

d, 1= sup dist(x, oW)). 4.10)

xeW,

Then forall i, j,k =1, ..., n it holds that

Cn.C o
< ey (57°C3+G) < e <€ @.11)
2 d, dist(x, dW))

Therefore, (&&) holds and it remains to prove (&). First, since W, are Lipschitz, then dW, satisfy
the Ahlfors—David regularity condition (see Definition 2.8.1). This observation, together with the
above estimates of partial derivatives of a;; imply the following inequality for x € W, and 0 < r <
diam(dW))

()aij
W(x)

— VACOUX S, o [ Lax
H"™1(B(x,r)NoW)) J pxnow, T S peonow, 4
SnC 11 / ldX
T Baenow, T
H"(B(x,
— l dX < M < C(n).
" J Bennw, rt

Upon taking the supremum over x € 0W, we arrive at (&&). In consequence, Theorem 2.15 in [BH]
gives us the e-approximation of u by BV functions on sets exp;ll(V,) forl=1,...,m.
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Step 3.

In the last step of the proof, we glue together the BV functions constructed above, to obtain one
BV function approximating u on €.

For each V), for I = 1,...,m, denote by ¢, a BV function approximating u on V,. Let ¢ be a
permutation of indices / = 1, ..., m satisfying following conditions: The value of permutation (1), is
any number from 1 to m. The value of ¢(2) is any index / such that V,,, NV, # @. Then ¢(3) is such
an index that V5 N (V,;, U V,,)) # @ and so on. Let us denote by ¢, ;) a BV function approximating
uonV, . OnasetV,, \ V, take a function ¢, . Let function ¢' : V,ayUV,n — Rbe

Vo) \Vo(1)

P! = d)a(l) on V,q
boy ON V05 \ Voay-

defined as follows

Next choose any set V5, that has a nonempty intersection with V,,,UV,,, and a function ¢, BRI
o(3)\Ve(1)VV6(2)
Similarly as above, we define function ¢? as follows:

boay 0N Vo
¢ = bo) ON V0 \ Vo
oy On Vg \ (V) UV, 0).

After finitely many steps we construct a function ¢ := ¢™! defined on Q. Such a function has
bounded variation as a consequence of the following reasoning. Firstly, each ¢, has bounded varia-
tion. Secondly, on sets dV; N V, where the function ¢ may have additional jumps, the norm of the
derivative of ¢ is bounded by (1 + ¢) times surface measure of these boundaries. Since all sets V;
are bounded Lipschitz and there are finitely many of them, the variation of ¢ remains finite. Finally,
the fact that |[V¢| gives rise to the Carleson measure follows from the fact that |V¢;,| all give rise to
Carleson measures and the surface measures generated by jumps mentioned above are already Car-
leson measures. Indeed, |V¢,|dX are Carleson measures because they were obtain by Theorem 1.3 in
[HMM1]. The surface measures are Carleson measures because the measure of any ball is equal to the
measure of its intersection with the boundary which is (n—1)-dimensional. The proof of Theorem 1.4.2
is therefore completed. [

Let us illustrate the above theorem with the example of the Laplace-Beltrami harmonic equation
on the n-dimensional sphere S".

Example 4.3.4. Letus consider an n-dimensional sphere S” equipped with the coordinates t = (7, ... ,t,)
and |t = Y z‘l.2 which come from stereographic projection. Take a stereographic projection and denote
by (x,, ..., x,,,) the standard coordinates in R"*!. Then we have:
2t; .
X, = fori=1,...,n,
]2+ 1
1* -1

X = —.
n+1 |t|2+1
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Therefore, the metric induced on a sphere has a form

4

= —I,
ST P+ 12

where [ is an n X n identity matrix. Hence, we get det g = ( )n. Notice also that

(It12+1)2

L P17
4

Let us now use Definition 4.1.7. Then the Laplace-Beltrami operator Ag,u reads

n n n-2
71 + 1 0 2 ou
A n t,...,t = _ _— —_—
sl 2 < 2 ; or, \\|t?+1/) o1

2 _ 2 2 2
_(|t|+12)(n Dy gy () g ‘)_;‘ for n > 3,

1.

i=1"1g, 4 i=l gr
(|1]2+1)? Zn 0%u
4

i=1 (37 for n = 2.

Hence, if u is harmonic i.e. Ag,u = 0, then the associated matrix A from Definition 4.1.9 is diagonal

n—=2
and takes form A = diag <<i) ) Let Q C S" be a Lipschitz domain as in Theorem 1.4.2. Set

2+1
dg 1= sup,q distg,(x, 0Q) < diam(0Q2) and since €2 is bounded we have |f,| < K, for some constant
K, > 0. By direct computations, we obtain that:

n—1
VAl == 2)vn <t2 i 1 ) 'S (=2 <2n_1\/;K9>

B dg, ~d, ~ dist(x,0Q)’

where C,, = 2" 'n(n — 2)K,,. Therefore, condition (&&) holds for matrix A.
Moreover, for x € 9 also condition (&) in Definition 4.1.9 can be verified directly:

C
11 / IVA|dX < 11 / —“d4x Sc, 11 / ldX ~ lr” =1.
"= JBxrnQ " Jpxnne do " JBxrna T r

Remark 4.3.5. Notice that everything that was proved so far in this chapter applies as much to A-
harmonic functions on an open set Q C M. Indeed, in local coordinates equation (4.1) takes the

form
1 i It au _
\/detg Z oxi (Z Z Vdetga; (x)g _0xf> =0.

Equivalently, it can be written as

div(B(x)Vu) =0, 4.12)
detg
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where for any x € Q, the matrix B(x) has coefficients b,;(x) = Y 1/detg(x)(a;(x)g"(x)),
j=1,...,n

Hence, Theorem 1.4.2 holds for A-harmonic functions on Lipschitz domains on manifolds. In
order to show this, it is enough to prove that B(x) satisfies (&) and (&&). In order to prove (&&) we
directly compute that for all i, j, kK = 1, ..., n it holds that

ob

EZ " oxk (Z Vdet ga,s(x)g”>

<<aak M) a;,(x)g" + v/ det 4l P gsj A detga,s(x) >

1 1 08 ls( X)
det g tr <g > a;(x)g" + \/det g———g"
<2\/det g ox* xk

_ “ 1 bagba sj a lS(x) sj agsj
= deth[z( an ak)a,S(x)g + Ok g’ +a;(x) |

Denote by M := || A||;~(£2) and let constants C, be as in (4.9). Then we have

det ga;,

é n*Ca, (x )+ ( )C,+a (x)C,‘

| Yis

M 1

< 7 —+ — by (4.7), (4.10) and (4.11 4.13
~n,C, dl diSt(X,()VI/l) y (4.7), ( ) and ( ) ( )
R —
dist(x, oW))
Let us now proceed to proving (&). We have foreach/ =1, ...,n
__ IV B(X)|dX
H1(B(x, r)NOW)) J pexriow,
1 / 1
< — - +4/n!C'nC,|VA|d X (4.14)
MG Bee.w, diam W) e
< / Ly \/ncrnc valax (4.15)
"= JBannw, T
Sum C, (4.16)

where in the inequality (4.14) we use the fact that d, ~ diam W, and inequality (4.13). In the
inequality (4.15) we notice that r < diam W,. Lastly, in the inequality (4.16) we use property (&) for
matrix A.

Therefore, upon repeating the gluing argument (Step 3) above, Theorem 1.4.2 extends to the setting
of A-harmonic functions with A = A(x) as in Definition 4.1.9.
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4.4 Quantitative Fatou Property

The goal of this chapter is to apply the e-approximability to prove the Quantitative Fatou Property on
Lipschitz domains in Riemannian manifolds.

Since the choice of good maps and their properties will be important in what follows, let us briefly
recall some necessary facts.

If M is a Riemannian manifold, then we always have a chart preserving the Lipschitzness of a set,
namely exp;1 taken on such set U C M that exp;1 is a diffeomorphism,see the proof of Theorem 1.4.2
above.

However, the stronger result is available. Namely, we can take charts that preserve bounded Lip-
schitz sets. Indeed, Lemma 4.4.2 shows that any chart would do as long as Lipschitz domains are
1-connected at the boundary and the image is bounded. Therefore, we do not need to necessarily use
exponential maps. Nevertheless, we use them because they are convenient and handy to work with,
but any chart with similar properties would be sufficient. By similar properties we mean that:

e we can take such sets U, as charts, that each U, contains a ball with radius uniformly bounded
from below,

o the Lipschitz constants of maps are uniformly bounded from above.

The only difference between the above choice of Lipschitz maps and the exponential map is that now
different charts will have different Lipschitz constants. However, it only affects the constants in the
estimates, which yields that all results are still true.

In the next definition we recall topological notion that plays a crucial role in the studies of the
extension of mappings, including the continuous and homeomorphic extensions, see e.g. theorem in
[V, Chapter 2, Section 17]. Moreover, see [A], where the notion of prime ends is used to determine
the existence of extension.

Definition 4.4.1. Let X be a metric space. We will say thataset U C X is 1-connected at the boundary
if for every point x € JU there exists its arbitrarily small neighbourhood U, such that U n U, is
connected.

An example of a set that is not 1-connected is a slit disc. It is a disc B(p, r) C R? with a removed
line segment joining the center p with a boundary, say at point x. Then at point x any small enough
neighbourhood U, has a property that B(p, r) N U, has two connected components.

Lemma 4.4.2. Let U C (X, d) be an open, connected, precompact and 1-connected at the boundary
set. Let further h : U — h(U) be a homeomorphism such that h(U) is bounded in (Y, d). Then for
any bounded Lipschitz subset U' C U it holds that h(U") is also bounded Lipschitz in h(U).

The proof of the lemma is in the Appendix of this chapter.

Remark 4.4.3. One can approach defining the counting function N either independently of maps
or in maps. In what follows we take the first approach as it is more natural in the manifold setting.
Nevertheless we would like to briefly comment on the approach via maps. Namely, at every boundary
point we can choose the local coordinates and in those coordinates define locally the N function.
Then we cover 0€2 with balls of radius R << r;;, e.g. R = %rinj centered at some points p;, €
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0Q. Define counting function in the set B(p,, R) N 02 by using a chart that preserves Lipschitzness
on that set, e.g. exp;ll. Then proceed inductively. Namely, define a counting function on the set
(B(p,, R)\ B(p,, R)) N 0L by using a chart on that set, and continue until all boundary is covered. For
different choices of charts we obtain different counting functions, but the Quantitative Fatou Property
holds for all of them with different constants. Now, since we already know that a harmonic function
defined on € is e-approximable for every € (Chapter 4.3) we may apply Lemma 2.9 in [KKPT] and
get the Quantitative Fatou Property for Lipschitz domains in complete Riemannian manifolds on balls
with radii r < ¢ <1y,

Recall Definition 4.1.15 and observe that the counting function N defined in such a way does not
depend on a chosen chart. We would like to prove the Quantitative Fatou Property for such N, since it
would be desirable that the QFP is independent of charts and relies only on the Riemannian structure
of the manifold.

Recall Definition 4.1.13 of the (generalized) cone. In what follows, we apply this definition to
r, and r, the distances of p to the consecutive points in an (r, €, 6, p)-admissible sequence, cf. Def.
4.1.15. Moreover, if point p is fixed , then we skip writing it and denote I', , =T, . (p).

Lemma 4.4.4. Let Q C M be a Lipschitz domain and T, , , the doubly truncated cone with the
aperture a, be connected. Let further x, € I', ., N S(p,ry), x, € I, . N S(p,r,) be elements of

the (r,€, 0, p)-admissible sequence corresponding to r, and r,, respectively. Denote by F,l’rz(p) a

7r ’r

doubly truncated cone with the aperture @ > a, so thatT', . C IN“rI,,Z. Then there exists a curve
y i lr.rl— IN“rI,,2 with y(r,) = x, and y(r,) = x, and such that y(r) € l:,l’r2 forallr € [r,,r,], with
the following properties:

o the length I(y) satisfies [(y) < Kd(x,, x,) for some K > 0,

g—yl < C,, for some constant C, , depending only on a and 0,
, , ,

e y intersects every sphere S(p,r) for ry <r < r, exactly once.

The setI’, ,
S(p, r,) the regularity of the boundary of I',

, may fail to be Lipschitz, because at the points of intersection of a cone I', and a sphere
», may worsen, for instance be only Hélder as some cusps

~

may occur. That is why we take a bigger setI', , .

Proof. First, by using the exponential map we can reduce the discussion to the ambient space R”.
Notice also that the Lipschitzness of Q implies that by taking I'; with R small enough, we may ensure
that I', . is connected for every pair ry, r,. It is enough to consider such R that for every point x €
B(p, R) the distance d(x, 0€2) is achieved at some point y € dQ2 N B(p, R). Such R exists because 92
is compact and it is Lipschitz. Moreover, such R depends on Lipschitz constant of d€2 and €.

Note that for small enough R, the boundary dI"; does not "turn". By turn we mean the following
property. Take a tangent space to dQ at p, denoted by T,,(9€2). Such a space exists at almost every point
p € 0L, because 0Q is a Lipschitz set. Moreover, that space is an (n — 1)-dimensional subspace of
n-dimensional tangent space T,(M). Then any line perpendicular to T,(9€Q) intersects oIy as long as
that line is close enough to point p. Furthermore, such a line intersects dI ', at least twice: once when
it intersects the surface, where d(q, p) = (1 + a)d(q, 0Q2) and the second time when it intersects sphere
S(p, R). However, it can occur that the surface defined by the equation d(q, p) = (1 + a)d(g, 0L) is
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intersected more than once. If it happens, then we say that that oIy turns, whereas if there are only
two points of intersection we will say that o', does not turn. Again, due to compactness and Lipschitz
property of 0Q2 we can ensure that for R small enough 0I'; does not turn. Moreover, compactness of
Q allows us to choose R small enough satisfying all the aforementioned properties at every point of
boundary 0Q i.e. sets I', . (p) are connected for all p € 0Q and all 0 < r; < r, < R and I'g(p) does
not turn.

Next, let us prove the following observation.

r

Claim 4.4.5. There exists a constant 5, > 0 such that for every point x € 0Frl’

~

I_‘(1+6a)r1,(1—5m)r2'

Proof. Let X € B(x,6,d(x, p)). Denote by ¢ and ¢ points on dQ such that d(x, 0Q) and d(X, 0Q) are
attained, i.e. d(q, x) = d(x,0Q) and d(q, X) = d(q, 0Q), respectively. Then

,a ball B(x, 6,d(x, p)) C

d(x,0Q) < d(x,§) < d(X,0Q) + d(x,%)
< d(X,0Q) + 6,d(x, p)
= d(X,0Q) + 6,(1 + a)d(x, 0Q),

where the equality is the consequence of x € dI',
of the boundary of I'(p), cf. Definition 4.1.13.
Hence

, and so, in particular x satisfies the equation

r

(1 =6,(1+ a))d(x,0Q) < d(X,0Q). 4.17)

Note, that for this inequality to make sense, 6, < H—La Now we can estimate the distance of X to
vertex p:

d(X,p) <d(x,p) +d(X,x) < (1 +6,)d(x, p)
=(1+6,)(1 + a)d(x,0Q)
(1+68)(1+a)

S T Y00 (by (4.17))
B a+26,(1+a) 1300
_< + 1—6a(1+a)> (x, 9€2).

Therefore, in order to make sure that ball B(x, 6,r) C Fr., , we need to find 6, such that

r

a+25,(1+a) _
—Sa
1-6,(1+a)

which gives

5 < a-a < I
““A+02+a 1+a

and completes the proof of the claim. 0
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We now show that there exist certain two- dlmensmnal quasirectangles contained in F , which

enable to choose curve y in such a way that is uniformly bounded in F . Recall that by as-
sumption x; and x, are given points such that x1 er, , nSpr)xel, n S(p,ry). Letl, and
[, denote line segments beginning at p and crossing x, and X, respectively. Let further L, denote a
two-dimensional cone spanned between /, and /,. Set 7 = (1 — 6,)r,. We would like to show now that
a quasirectangle K, ; 1= L, N (B(p,ry) \ B(p,F)) C 1~“rl’r2 .
First we need to know that # > r,. Since r, < 0r, it is enough to take 6, < 1 — 6. We slightly
abuse the notation and let
0,9 -=min{6,,1 —0}. (4.18)

Then we change 7, if necessary, and let 7 := (1 — 6,4)r,. For every point in K, ; there exists a
line segment /. joining point p with some point X € dI'; such that this point lies on Iz Denote by
¥ :=d(X, p). Since by the previous step of the proof we know that a ball B(X, §, ,7) C Fr », it suffices

to observe that /; C B(X, 60’[} Indeed, since d(p, K, P :) > 7, it is therefore enough to show that

~

Moreover, the latter is trivially equivalent to 7 < r, which is always true.

Let us now construct a curve y as in the assertion of the lemma. It consists of two subcurves. First
one, denoted by y,, is contained in a line segment starting at p and containing x, and the second one,
denoted by y,, is contained in a quasirectangle K, ,_; . between r, and (1 -, 4)r,. Moreover, we

can choose 7, in such a way that its derivative is bounded. Indeed, on y, it holds that |aair'| = 1, while
on y, we can estimate that

0 72

<1+—
or

a,0

To see the above estimate take as y, a quasidiagonal of quasirectangle. By this, we mean a curve
that in polar coordinates in the plane L,, with point p corresponding to O is given by

}/(r) = (r,¢2+g(r_(l _5a,6)r1>>

a,6"1

with r € [(1 = 6,4)r,r ], where x; = (r{, ¢;) and x, = (r,, ¢,). This curve starts at the endpoint of
v, and ends at x,. One gets that % = (1, M) Hence,

2,671

i <¢1 cpz)
5a,0r1

Thus, the derivative with respect to r is bounded on both curves. Furthermore, we can choose y,

such that its length with respect to Euclidean distance [(y,) < 2zr,, since any two points on different

concentric spheres can be connected by a curve of length smaller than perimeter of a bigger of those

two spheres and quasidiagonal is such a curve. Quasidiagonal also intersects every sphere centered at
p with radius between r, and r, exactly once.

on
or
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Finally we estimate the Euclidean length of y:

Iy) = I(ry) + () < (1 = 8, )1y — 1) + 27,
< (r = 1)+ 21r < (= 1)+ ~2E—(r = 1) 4.19)

1-0
2
1-6

< (1+ 25 ) dxpxo),

where in (4.19) we use that x,; and x, belong to the (r, €, 8, p)-admissible sequence and so r, < 0r,.
Let us notice that constants in all estimates depend only on «a, @, 6 and the Lipschitz constant of the
exponential map, but there is no dependence on r, and r,. 0

Remark 4.4.6. In order to apply Lemma 4.4.4 we need radius r to be sufficiently small. Fortunately
for the Quantitative Fatou Property it is necessary to know only the behaviour of harmonic function u
close to boundary 0Q2. Therefore, it is not a problem that we need to restrict possible r, as long as we
can find uniformly some radius r for all boundary points such that every I, satisfies all our assumptions
at every point p of dQ. Since € is compact, it can be achieved.

If r is small enough, i.e. r < Finjs then I',(p) is contained in a ball centered at p such that there
are local coordinates due to the exponential map which is a bounded diffeomorphism on that ball.
Therefore, for sufficiently small » we can always assume that the ambient space is Euclidean.

The following lemma is the key auxiliary observation needed in the proof of the Quantitative Fatou
Property, see Theorem 4.4.8 below. Moreover, the lemma is a Riemannian counterpart of the main
claim in the proof of Lemma 2.9 in [KKPT].

Lemma 4.4.7. Let Q C M be a Lipschitz domain and u . Q — R be a bounded harmonic function
with ||ul|, < 1. Suppose that € > 0 and ¢ is an i-approximation of u. If the counting function
N(r,g,0)(p) > k for some k € N, then the following holds

\Y%
/ | ¢(x)|1dx > kcne&a’ (4.20)
r,p d(x, p)" U
where C, , , . > 0 is a constant depending only on n, €, 0, a.

Proof. Without loss of generality we may assume that € C R”, see Remark 4.4.6. Let us also assume
that p = 0. Since, by assumptions N(r, €, 0)(p) > k, there is a finite sequence of points x;,...,x, €
I",(0) such that

0<|x| <o < x| <1, %011 < 0]x;] forj=1,...,k—1

and

lu(x;) —u(x;,)| = €.
Since u after composing with exponential map is Lipschitz, it is in particular Holder continuous and
bounded. Thus, there exists 6 = 6(g) > 0 such that

|u(x)—u(xj)| < % for x € [, 1= {ye I',(0) n SO, |xj|) : de(y,xj) < 5|xj|}, “4.21)
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where d s, denotes a distance on a sphere S(0, |x,|). Therefore, forall x € /; and y € [, it holds that:

lu(x) — u(y)| > %E. Moreover, we have |¢p(x) — d(y)| > i.

Let U; be a doubly truncated Euclidean cone such that its angle is 24, its vertex is 0 and for every
z € U, the following holds: r; < |z| <r;_;. Lety; C U, be a curve given by the assertion of Lemma
4.4.4. Consider the transformation F; : U; — R" with the following properties:

1. the image of a symmetry axis of U, denoted by luj is y;, le. Fj(lUj) =y, F,(x) = yj(lxl) for
every x € lU]_.

2. for every ritholds that F;[;; 5, is arotation such that a point on a symmetry axis is transformed
into y;(r).

Such F; is piecewise smooth, because y; is piecewise smooth. Furthermore, F; does not change the
volume of a set U}, and hence the absolute value of its Jacobi determinant equals 1. To see this claim
let U C U, be measurable and compute that

ri-1
Vol(F,(U)) := / ldx = / / 1dH"'dr.
F;(U) r F;(U)nS(O.r)

Here we apply the coarea formula with function f(x) = |x|, see [EG, Chapter 3.4]. Moreover, the
Jacobian of f equals 1, see [EG, Chapter 3.2] for the definition of the Jacobian of a real-valued function.
Since the (n — 1)-Hausdorff measure on a sphere is rotation invariant we get

ri-1 ri-1
/ / ldH"‘ldr:/ / ldH"‘ldr:/ldx,
r Fj(U)nS(O,r) r UnsSO,r) U

where the latter equality follows again from the coarea formula. Hence for every measurable set U C
U; we have
Vol(F;(U)) = Vol(U)

and the claim is proven.
Notice that Fj(Uj N S0, rj)) =1 and F;,(U;n S0, rj+1)) =1

ri_y 9
[ = p(Fdr

J

j+1- It follows that

>

€
27 (4.22)

Since F; is given by a rotation, its partial derivative with respect to r is solely determined by 3—:.

However, due to Lemma 4.4.4 we know that ‘Z—Z| <1+ 5“ and hence ‘%Fj) <1+ 6" . We are now

.0 .0

in a position to show assertion (4.20). It holds that:

Vo(F.(X
[ ey, [ el [ IVUEO)
T | x|t F,(U) | x|t g | x|t

as F;(U;) C 1“,/_,,1_+l and by the change of variables formula.
Let us notice that by the chain rule we have

V(¢oF)(X) = (adDF))(X)V(F;(X)),
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where by (adDFj)(?c) we mean the adjoint operator of DF j(f) defined via the scalar product given by
the Riemannian metric g:
g(DF;(X)X,Y) = g(X,(adDF))(X)Y) (4.23)

forall X,Y € T;M". Therefore, in the spherical coordinates (r, ¢,, ..., ¢,_;) on Q it holds that

i(<l'>°F,)(§) = (r;((adDF;)(X)), V$(F;(X))),
or

where rl((adDFj)(%)) stands for the first row of matrix (adDFj)(i) and (-, -) denotes the Euclidean
scalar product. Hence we get

2(¢oF))

((adDF)(X)| (4.24)

IV(F,())| = E

Let us now explain how to obtain metric g in spherical coordinates. Set f to be a parametrization:

x; = rcos(¢,),

s—1
x, = reos(p,) [ [ sin(e,) fors=2,...n-1,
m=1

n—1

x, =r [ sin(e,).

m=1

In the standard coordinates x; the metric has a form g;; = 6,;, where 6,; denotes the Kronecker delta.

The pullback metric g; » = (S78),- We get the following equation
S 0x,0X; & 0x,0x;
/ i J i i
= L=y L 4.25
Sa Z 899, T & o, 9, (4.25)
i,j=1 a i=1 a
where 0, d, denote derivatives with respect to either r or one of ¢,, and we have a convention that

a = 1 corresponds to coordinate r and @ > 1 corresponds to ¢,_;.
Notice that if a # b the sum (4.25) becomes zero. When a = b we get

[
gll_l’
' _ 2
g22_r7

a-2
g, =r[[sin@,) fora=3...n
m=1

Therefore, metric g’ in spherical coordinates is given by the following matrix (we change the name g’
back to g):

P2 sin’(@y) - ... - sin’(¢,)
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where r stands for |X|.

We are now in the position to compute 7 ((adDFj)(?c’)). Letus denote tangent vectors X, Y € TyM
by X = (X,,....,X,).Y = (Y},...,Y,) and recall that they are arbitrary. Let us also denote by
(21 29y ooe s 2,) 2= (ry ¢y, ..., d,_,). For brevity we skip writing X. By using (4.23), we get:

oOF,
YZ JlX+YrZ a: e n2'2 1 e sin® (¢,
= X, Z(adDFj)uY,- + X,r? ) (@dDF)), Y, + -+ + X, sin*(¢h,) - - - sin*(¢,,) ) (adDF)), Y,

We now continue the computations to obtain that

X, Y. (adDF), Y, + Xor* ¥ (adDF)), Y, + -+ + X, r? sin*(¢) - -+ - sin’(h,_y) ¥ (adDF)), Y,
=Y,(X,(adDF)), | + X,r*(adDF,), | + -+ + X,r* sin’(h,) - -+ - sin’(¢,_,)(@dDF)), )

+ Y,(X,(adDF)), , + X,r*(adDF)),, + - + X,r* sin’(¢,) - -+ - sin’(¢,_,)(@dDF)),,) + ...
+Y,(X,(@dDF)), , + X,r*(adDF)),,, + -+ + X,r* sin’(¢,) - --- - sin’(¢,_,)(@dDF,), ).

Since X, Y are arbitrary we may think about above expressions as polynomialsin X, ..., X,,Y;, ..., Y,.
Moreover, since we are interested in the first row of the adjoint operator r,((adDF j)(i)) we need to
obtain ((adDFj)(Fc))u fori =1,...,n. Hence, we need to compare the appropriate coefficients in these

polynomials.

We get

dDF ia % v x
(a Dy = oz, = Tor or IyAq,

aF,z aF,z
(fsldl)l:vj)l’z:r2 azjl :rZ 0; for YZXI’
oF,, oF;,
(@dDF)),, = 1 sin’(gh) - -+ - sin*(h, )=+ = P2 sin’(hy) - -+ - sin’(h, ) === for ¥, X,
1

Finally, we have

- 0 0 . . 0
r1((adDF))(X)) = (EFM, 20 F,,, 1% sin (¢) ”,...,rz sin*(¢,) - ... -sm2(¢n_2);Fm>.

Furthermore, we can now find the following estimate needed to complete (4.24):

|1 ((adDF))())I”
2
(0 2 0

2
+ r sin ((;b ) ...-sin (qbn 5) r? sin (¢ ) - sinz(d)n_z)%l’j,n)

0 g P 2
< <6er’1> +r4<r2<aF12> + -+ 4 r?sin (¢) sin2(¢n_2)<aFj’n> )
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o\ o\ o\
< <<EFM> +r2<51~“j,2> +---+rzsin2(¢1)-...~sin2(¢)n_2)<;Fj’n> >-<1+(n—1)2r4>

= iF(z)2 1+ m—-1D%) <2(n— 1) iF(%)2
or ’ ~ or ’

where | - | stands for the length of a vector with respect to the scalar product g also in the first
inequality we use that sin is bounded by 1. We employ the above estimate in(4.24) and get the following
inequality:

F@or®|

/ IVO(F,)| / 1
N—dx Z — x
u x| v, In(@DF)x)| x|
o L [peen®| w26
~ x. .
V2 -1y, %DFj(¥)| % |71
Hence, due to Lemma 4.4.4 we obtain
1L [seen®| s0or)®] _
6a9+a/ me o (27

1
u|LF®| KT
r

where 6, , stands for the constant in the proof of Lemma 4.4.4, see (4.18).
Since U, is measurable and the integral on the right-hand side of (4.27) exists, we may apply the
coarea formula with the Lipschitz function f : R” - R given by f(X) = |X| = t, see [EG, Chapter

3]. Therefore,
[5@er)®| )(x)\ |2(poF)@,)
/ / / —dH” Yw,)dr,
x|~ R U,nS(O.r) rn-l

where w, stands for a point in set U; N S(0,r). By the change of variables w, C"T = w, we scale
every sphere to the unit sphere .S(0, 1) and obtain

[£@or)@)| | 2o F)(rw)
/ / 1 dH" (w,)dr = / / " dH" (w)dr,
U,nS(0,r) r- r A r-

where A = {x € S(0,1) : dg,(»,x) <5} for some y € S(0, 1), also see (4.21) to recall how we
define 6 = 6(¢). In order to understand the geometry of set A, recall that U; is a doubly truncated
cone. Since H"~!-measure of A is independent of choice of y, it holds that A is just a radial projection
of U, on a sphere with radius 1 while point y only denotes the projection of the axis of U; onto that
sphere. Now we can use the Fubini theorem to change the order of integration and get

rj-1 |§(¢°Fj)("w) Yo
/ / L AH (@)dr = / / ’—(¢°Fj)("a’)
. A | AJr; or
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This together with (4.26), (4.27) and (4.22) imply the following

|V¢(F(~))|
/ %1 = 5 +a// ‘—(¢0F)(tw)‘dtd7-[” Hw)
U; a0
a0 e lN
2> 5a,9+06/4dH C(n,e,a,0).

Finally, recall, by the discussion at the beginning of this proof that in fact 6 = 6(¢). Thus, it is enough
to sum over j = 2, ..., k to get the assertion of a Lemma. OJ

Recall that r, .(€2) denotes the infimum of injectivity radii taken over set 2. When Q is fixed, we

inj

will write r;,; 1= 1;,(€) for the sake of simplicity of the notation. We are now ready to prove one

of the key results of our work, namely the Quantitative Fatou Theorem for harmonic functions on
Riemannian manifolds.

Theorem 4.4.8. Let M be a complete Riemannian manifold and let further Q C M" be a Lipschitz
domain. Furthermore, letu @ Q — R be a bounded harmonic function with ||ul|,, < 1. Then, for
every point p € 0€2

sup —— N(r,e,0)(@)do(q) < Cle, a,0,n,Q),

-1
0<r<r,; r" 0QNB(p,r)

where €, a, 0 are constants in the definition of the counting function. In particular, constant C is
independent of u.

Proof. Recall that a shadow of a point x € €, denoted by S(x), is defined as follows, cf. Defini-
tion 3.2.4 ~
Sx):={qeodQ . xel(q)}.

Furthermore, the shadow and the cone are related as follows:
x eT(q) & q € Skx). (4.28)

Let us first estimate the following integral

/ [ |Vp(x)|d(x, g)'"dxdo(q)
0QNB(p,r) JI7(q)

= / / IVold(x, @)™ ap gy (x)dxdo(g).
0QNB(p,r) J QNB(p,2r)

Here, the integration over F’(q) can be replaced with the integration over Q N B(p, 2r) with character-
istic function of I""(g), as every truncated cone I', is contained in a ball with radius 2r.
Now we use the Fubini theorem to change the order of integration:

0QNB(p,r) J QNB(p,2r)

= / IVp(x)| d(x, )" i (0)do(g)dx
QNB(p,2r) 0QNB(p,r)

< / V()| d(x, )" 150 (@do(g)dx,
NB(p,2r) QN B(p,r)
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where in the last inequality we use (4.28) and the fact that f,(q) - f(q). Furthermore, since d(x, q) >
d(x, 0Q) we have the following estimate:

/ V(x| d(x,9)"" x5 (@)do(g)dx
QN B(p,2r) 0QNB(p,r)

< / |Vp(x)|d(x,09Q)' ™" / Xs(@)do(g)dx.
QNB(p,2r)

0QNB(p.r)

Next, we need the following observation. For every x € Q, it holds that
S(x) Cc 0Qn B(q,, (2 + a@)d(x,0Q)),
where ¢, denotes a point in  where d(x, 0Q) is attained. Indeed, let y € S(x). Then
d(y,q) <d(x,q,)+d(x,y) =d(x,0Q) +d(x,y) < 2+ a)d(x,0Q).

Therefore,

/ [V (x)ld(x, 0Q)' ™" / X5 (q)do(g)dx
QNB(p,2r)

0QNB(p,r)

< / IVp(x)|d(x,0Q)' ™" / XoanB(q, +idxoe)(@)do(g)dx
QNB(p,2r)

20QNB(p,r)

o / |Vp(x)|d(x,0Q) "d(x, 02)" 1dx
QNB(p,2r)

= / |Vo(x)|dx < C(Q)(2r)"", (4.29)
QNB(p,2r)

where in the second inequality we appeal to the Ahlfors-David regularity of 0€2 which results in the
estimate

c <agz N B(q,, (2 + a)d(x, am)) S Q2+ (d(x,0)" ",

while in the last inequality in (4.29) we use the fact that ¢ is e-approximation of u. Finally, by Lemma
4.4.7 and (4.29) we get the assertion of the theorem

C£,0 / N(r’ &, 0)(Q)dG(Q) S /~ Iqu(x)ld(x, q)l_”dxda(q)
0QNB(p,r) oQNB(p,r) J17(q)

<C@E@r"™! 5 Cle, a,0,n,Qr"",

which proves the theorem.

Appendix

The following result is a mathematical folklore. However, since our argument is elementary and direct,
we decided to include it in the dissertation.

72



Lipschitz sets in R” satisfy the interior corkscrew condition

Proof of Lemma 4.3.2. Let Q be any bounded Lipschitz set in R”. By definition of the Lipschitz set,
for each z € dQ there are a hyperplane H such that z € H and numbers 7, h with a cylinder C =
{x+yn:x € B(z,F;)Nn H,—h < y < h} and a Lipschitz function g : H — R such that

. AnC={x+yn:x€ Bz, /ANH,-h<y<gx)},
2.0NC={x+yn:x€B(z,F))N H,y = g(x)},

where n is a unit vector normal to H that is outer with respect to Q. If at point z € d€2 the boundary is
of class C!, then we take as a hyperplane H a tangent plane at z. Otherwise, we take any hyperplane
that satisfies the aforementioned above conditions. In other words, there is a cone contained in Q with
vertex at z, an angle a such that tana = — liz, where L denotes the Lipschitz constant of g, and
height h. Since 0Q is compact there exist minimal A, denoted by H, minimal 7, denoted by R, and
maximal Lipschitz constant, denoted by L, such that any cone with vertex in 0 and parameters given
by H, R and L is contained in Q. Let us denote a cone with such parameters and vertex at z by K(z).
We would like to show that the interior corkscrew condition holds, i.e. that there exists a constant
¢ > 0 such that for each z € dQ and each 0 < r < diam(€2) there exists a point Z € Q N B(z, r) with
the property that B(Z, cr) C QN B(z,r). For apoint z € 0Q set Z = z — % min(H, r)n. We notice that
min(H ,r)
V1412
% and the base of a cone K(z) is given by H — % min(H, r). We need to find a constant F such that
the ball B(Z, Fr) is contained in both ball B(z, r) and cone K(z). To ensure that a ball with radius Fr

is contained in a cone K(z) the following inequalities have to be satisfied:

the distance from Z to the lateral surface of a cone K(z) is given by and the distance between

min(r, H)
2V 1+ 12

The condition needed for ball with radius Fr to be contained in B(z, r) reads:

Fr<d= and Fr< H - %min(r, ). (4.30)

Fr+%min(r,f])<r. (4.31)

Upon choosing

PR A

T 52, 1 12 diam(Q)

we now directly check that such F satisfies all the necessary conditions.
After inserting F, the first inequality in (4.30) becomes

Hr . ~
— < ,H).
2 diam(cy) < minC H)
If H < r we get 2dia:n(£2) < 1, which holds, as r < diam(Q). Otherwise, r < H and we have
—A_ <1, which holds as A < diam(€).
2 diam(€2)

Similarly, the second inequality in (4.30) becomes

! Hr < H - lmin(r, o).

1
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Again, there are two cases to be considered. If H < r we get

11 r 1
2513 2 diam@) 2’

which holds as r < diam(€). Otherwise, r < H and we get

1 1 Hr ~
= - < H
2 24 /1 + l~42 dlam(Q)

Notice that H — %r > %f{ , and hence it is enough to prove

1
—r.
2

11 Hr _

which reduces the discussion to the first case.
Finally, the inequality in (4.31) becomes

g
2

- ) i
H min(r, H) <9

1
- +
1+ 12 diam(€2) r

b

which holds as +— < 1 and 2 < .

Thus, it holds that a ball B(Z, F'r) is contained both in a cone K(z) and in a ball B(z,r). Hence
B(Z,Fr) Cc QN B(z,r). L]
Proof of Lemma 4.4.2

Proof. Recall that U C (X, d) is an open, connected, precompact and 1-connected at the boundary
setand h : U — h(U) is a homeomorphism s&ch that A(U) is bounded in (Y, d).
First we prove that & can be extended to U. Let x € dU and let further (x,) be any sequence of

points x,, € U such that (x,) converges to x. We define h:U— h(U) by the following formula:

~ h(x),x e U,
h(x) =< .
lim h(x,),x € oU.

n—oo

We have to check whether h(x,) converges. Since h(U) is bounded, we may take a convergent sub-

sequence (h(xnk)) and denote its limit as y. Notice that y € h(U). Suppose that there is another
convergent subsequence (h(xnl)) and it has a different limit y. Since y and y are distinct we can find
their disjoint neighbourhoods ¥ and V such that almost all of h(x,,k) and h(xn[) are in V and V, re-

spectively. Now we consider V' N A(U) and V N h(U) and notice that their preimages under h are also
disjoint subsets in U. However, these preimages contain subsequences (x, ) and (x,, ), respectively.
There are two cases to be considered. In the first case, we find subsequences of (x,) which converge to
different limits, which leads to contradiction with convergence of (x,). In the second case, both (xnk)

and (x,,[) converge to x and A~ (V') and h=Y(V) are disjoint while x belongs to both of their boundaries.
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However, since there is a connected neighbourhood of x in U, denoted by U N U, , and by convergence
almost all x, are in that neighbourhood, it holds that A(U n U, ) is connected and almost all A(x,) be-
long to this image. On the other hand, we may choose U, with arbitrarily small diameter. Therefore,
(h(xnk)) and (h(xnl)) have to converge to the same limit, and hence y = .

For our extension mapping T to be properly defined, we need to prove that if (z,) is a different
sequence converging to x, then (h(zn)) also converges to y. If we assume that (h(zn)) converges to
z # y, we can take disjoint neighbourhoods V,, V, of z and y, respectively, and intersect them with
h(U) to obtain sets W, W, . Both of these disjoint sets contain almost all points A(z,) and h(x,),
respectively, and hence their preimages under h, i.e. h~'(W)), h‘l(I/Vy), contain almost all points
(z,) and (x,), respectively. However, (x,) and (z,) both converge to x, so x belongs to both of their
boundaries a(h"(I/Vz)) and a(h‘l(VVy)). Again, by using existence of a connected neighbourhood of

x, we can prove that z = y. To summarize, we have proved that the extension h is well defined and
due to the construction, it is continuous. L

Next, we prove that / is actually a homeomorphism. Suppose that there is y € dh(U) that is not the
image of a point from oU. Then h(U) # h(U). However, as U is precompact, then U is compact and
therefore h(ﬁ) is compact. Moreover, 71(6) contains A(U) and by the definition, m is the smallest
closed set containing h(U). Hence, h(U) C h(ﬁ). The inverse inclusion is assured because of the
definition of h. Therefore, we proved that A is onto.

We would like to know that a point x € dU is mapped to a point in d0A(U). Suppose that there is
y € h(U) such that x € A~'(y). We also know that there is some ¥ € U that is also a preimage of y.
We can find disjoint neighbourhoods of x and X. However, by assumptions # is the homeomorphism
on U, so the images of these neighbourhoods would also have to be disjoint, but we assumed they have
a common point y. This contradiction gives us that a point in 0U is mapped to a point in 0A(U ).

Take x, % € oU and suppose h(x) = h(%). Let sequences (x,) and (X,) be converging to x and
X, respectively. We may find disjoint neighbourhoods V" of x and V" of % such that almost all x, and
x, are elements of V and V, respectively. Since 4 is a homeomorphism the images of intersections
V' NnU and V N U are also disjoint, which means that h(x) # hA(%). Hence, h is one-to-one.

We know that / is a continuous bijection, but Uis compact and hence 7 is ahomeomorphism. Since
U is compact, & is Lipschitz. Similarly A~! is Lipschitz. Therefore, A is bi-Lipschitz and preserves
bounded Lipschitz sets, and thus the same applies to A. [
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Chapter 5

Carleson measures on domains in Heisenberg
groups

This chapter is based on the manuscript [AdGr] written jointly with Tomasz Adamowicz. Main results
of this chapter include Theorems 1.5.1, 1.5.2, 1.5.3, 1.5.4, 1.5.5 presented in Chapter 1.5.

5.1 Preliminaries

In this chapter we recall key definitions employed in the chapter. Our presentation includes the Heisen-
berg group, various types of domains and their geometry, basic information on subelliptic harmonic
functions and Green functions in the sub-Riemannian setting, the Carleson measures, the nontangential
maximal function and the BMO spaces.

5.1.1 Heisenberg groups

There are number of approaches to define the Heisenberg groups and, more general, Carnot-Carathéo-
dory groups, see [BLU], [CDPT], [Gro], [Mon]. One approach is based on introducing the Lie algebra
which defines a connected and simply connected Lie group. However, in what follows, we choose a
different, although equivalent, approach to define the Heisenberg groups.

The n-th Heisenberg group H" as a set is R*" X R ~ C" x R with the group law given by

n
(zl,...,zn,t).(z/l,...,z;,t/) = <Z1 +z,1,...,zn+z;,t+t/ +21m<2 z,-z;.>>,

i=1

where (z,, ..., z,,t) = (x;,y;, ..., X,, ¥,, 1). Furthermore, we define the following left-invariant vector
fields
0 d d 0 0
X(p)=—+2y—, Y(p)=—-2x,—, T=—
P =50+ g N0 =50 -2y, ot

for which the only nontrivial brackets are

[X,.Y]:=X,Y,—Y,X,=—4T i=1,...,n
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It is worth noting that the above commutator relations are a reason for the name of the Heisenberg
groups. They work exactly the same as position and momentum operator in quantum physics. Namely,
if X denotes a position operator, p denotes momentum operator and I is identity operator, we get:

[x,pl =inl, [Xx,ihl]=0, [p,inl]=0.

Due to the similarity with quantum mechanics, the Heisenberg group got it name alluding to one of
the founders of that branch of physics. Let us mention that Heisenberg was working using matrices
and the Heisenberg group may also be defined as a group of matrices.

The horizontal space at p € H"” is given pointwise by

leH]n = span{Xl(p)’ Yl(p)’ ey Xn(P), Y,,(P)}

The horizontal space plays the role of the tangent space. In Riemannian geometry all curves on a
manifold have their derivatives in a tangent space. However, the Heisenberg group is a subriemannian
manifold. Hence, we only allow curves that have their derivatives in a subspace of a tangent space,
called horizontal space. Spaces which are subriemannian manifolds occur naturally whenever one
has to deal with a situation which a certain direction of movement is excluded. For example in the
first Heisenberg group H' at point 0 := (0, 0, 0), the horizontal space HyH" is a 2-dimensional space
spanned by %, aiy and hence we are only allowed to use curves whose derivatives lie in that space.
In particular, the direction along the z axis is excluded. It follows that the shortest path from a point
(0,0, z) to 0 is achieved along a spiral.

Let us also notice that the Heisenberg group is exceptional among subriemannian manifolds, be-
cause it is also a group. Therefore, it is a Carnot-Carathéodory group. A Carnot-Carathéodory group
of step k is a connected, simply connected, finitely-dimensional Lie group such that its Lie algebra g
admits a step-k stratification, i.e.

a=V,®&---dV, [V,V]I=V, fori=1,....,k—1and[V,V,]=0.

For more information about Carnot-Carathéodory groups, see e.g. [BLU].

The fact that the Heisenberg groups have so many different structures such as being a subrieman-
nian manifold, a Carnot-Carathéodory group and also a contact manifold, makes it a great object to
study. The multitude of structures makes it a good starting point whenever one wants to work with
subriemannian manifolds or Carnot-Carathéodory groups. It is often the first object studied in these
settings as usually understanding any phenomenon in the Heisenberg groups gives an insight to what
may be happening in more general situations.

Lety : [0,8] — R?*"*! be an absolutely continuous curve. We will say that y is horizontal if
7(s) € H,,H" for almost every s. Now, we equip H,H" with left invariant Riemannian metric such
that fields X, Y; are orthonormal and so if v = Y}"_ a,X;(p) + b,Y,(p), then the following expression

defines anorm |v],; = 4/ Y. a7 + b?. Ina consequence, we define the Carnot-Carathéodory distance
in H" as follows:

b
dec(p, ) = inf / [7()] g,

where I, | denotes a set of horizontal curves joining p and g, such that y joins points p and g: y(a) = p
and y(b) = gq.

77



Equipped with the above structure, the Heisenberg group H” becomes a subriemannian manifold and a
Carnot-Carathéodory group, in addition to being a metric space. Nevertheless, Carnot-Carathéodory
distance may be troublesome and, hence, we introduce the so-called Koranyi-Reimann distance, de-
fined as follows:

di(p. @) = llg™" - pll,

where the pseudonorm is given by

Ipll := Nzl = (12 +7)7.

The Korinyi-Reimann distance is equivalent (comparable) to d and hence both distances generate
the same topology, see e.g. [Be]. However, dy;, is easier in computations and therefore, throughout
this work we use Kor4nyi-Reimann distance dy;,. In particular, all balls are defined using that distance,
ie. Blx,r)={yeH" : dyu(x,y) <r}.

Finally, we recall that the left-invariant Haar measure on H" is simply the (2n + 1)-dimensional
Lebesgue measure on H” and it follows that H” is Q-Ahlfors regular, with Q = 2n+ 2, i.e. there exists
a positive constant ¢ such that for all balls B with radius r > 0 we have

Lo <o) < e,
C

where H? stands for the Q-dimensional Hausdorff measure induced by dy,.

5.1.2 Geometry of domains

One of the fundamental types of domains studied in this chapter are the NTA domains and the ADP
domains, whose definitions and basic properties we now recall, cf. Chapter 2.9.

Below, we partially repeat the presentation from Chapter 2.9, but we here we also discuss the NTA
domains in more details, as they will play a key role in the results of this chapter.

Definition 5.1.1 (NTA domain, cf. Definition 5.11 in [CGN]). We say that 2 C H" is a nontangentially
accessible domain (NTA, for short) if there exist constants M, r, > 0 such that:

(1) (Interior corkscrew condition). For any x € d€2 and r < r there exists A,(x) € € such that

r r
— <d(A,.(x),x) L d d(A.(x),0Q)> —.
M (A,(x),x) <r and d(A,(x),00Q) M
(2) (Exterior corkscrew condition). The complement Q¢ := H" \ Q satisfies interior corkscrew
condition.

(3) (Harnack chain condition). For every € > 0 and x, y € Q such that d(x, Q) > ¢, d(y,0Q) > €
and d(x, y) < Ce there exists a sequence of balls By, ..., B, with the following properties:

() x€ Byandy € B,
(b) i < d(B;(x,r),0Q) < Mrforeveryi=1,...,p,
(c) BNB,,, #Pfori=1,...,p—1,
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(d) length of the chain p depends on C but not on €.

Q

Figure 5.1: This figure depicts a Harnack chain of balls between points x and y.

Figure 5.2: This figure shows an example of a domain which does not satisfy Harnack chain condition.
Due to the presence of a slit one can take pairs of points on the opposite sides of a slit which are
arbitrarily close to each other. However, then there is no bound on the length of a chain of balls
joining them.

In the corresponding Definition 1 in [CG] the analogous notion of the X-NTA domains is consid-
ered. There, one lets X = { X, ..., X,,} be a family of smooth vector fields satisfying the Hormander
rank condition, and so d. denotes the Carnot-Carathéodory distance related to X. For example, in
the Heisenberg group H" our family of vector fieldsis X := {X,,Y},..., X,.Y,}, see Chapter 5.1.1.

The notion of the NTA domain originates from a work of Jerison-Kenig, see [JK, Section 3]. Notice
that the above definition makes sense also in the setting of metric space, in which case, the distance
need not be induced by a family of vector fields.

Examples of NTA domains in R” encompass:

- Lipschitz domains, see Proposition 3.6 in [JK],
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- Zygmund domains, see Proposition 3.6 in [JK],
- quasispheres (snow-flake domains), see Section 2 in [GO], [Jon].

Another example of NTA domain is domain €2, defined as a complement of a planar Cantor set in
a large enough ball in R”. It turns out that € satisfies our definition, even though such a Cantor set
is not rectifiable as a part of the 1-dimensional boundary of €. Intuitively speaking, one can think
that conditions (1) and (2) exclude both interior and exterior cusps, while condition (3) eliminates a
possibility of slits within a domain or narrowings that are infinitely thin. Examples of NTA domains
in H", or in more general Carnot groups, include:

bounded C!! sets with cylindrical symmetry (Theorem 5 in [CG]),

level sets of fundamental solutions of the real part of the sub-Laplacian (Corollary 2 in [CG]),

balls in the metric dy;,, see Corollary 4 and Proposition 1 in [CG],

an image of an NTA domain H” under the global quasiconformal map f : H" — H”" is an NTA
domain, see [CT].

We refer to Section 5 in [CG] for further examples of NTA domains. However, it turns out that balls
in d are not NTA domains. This partially motivates that from the point of view of our studies, the
dy;. distance has an advantage over Carnot-Carathéodory distance.

From now on, unless specified differently, let us denote by d := d..

Basing on the notion of the NTA domains we now recall one of the second fundamental types of
domains considered in this chapter, namely the so-called domains admissible for the Dirichlet problem,
ADP in short, see [CGN]. Such a class is defined by combining the above notion of NTA domains
with the existence of a uniform outer ball. As observed in [CGN], it can be viewed as the closest
nonabelian counterpart of the class of C'! domains from Euclidean analysis.

Definition 5.1.2 (cf. Definition 2.1 in [CGN]). We say that a bounded domain Q C H! is admissible
for the Dirichlet problem, denoted by ADP, if Q is NTA and satisfies the uniform outer ball condition
with respect to the metric d.

Examples of the ADP domains include:

Koréanyi-Reimann ball, see result of Theorem 2.13 in [CGN],

level sets of some entire solutions to Yamabe type equations, see Section 1 in [CGN],

- C"! domains which are convex (at the level of Lie algebra) and which have partial symmetry
near their characteristic sets, see Theorem 2.13 in [CGN],

C? convex domains with strongly isolated characteristic points, see Theorem 2.16 in [CGN].
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5.1.3 Subelliptic harmonic functions and Green functions

Below we collect some of the basic definitions and potential theoretic results for the theory of subel-
liptic functions in Heisenberg groups H".

Let Q C H" be an open set in the Heisenberg group H". We say that a function u : Q — R belongs
to the horizontal Sobolev space HW '2(Q), if u € L*(Q) and the horizontal derivatives X,u, Y,u for
i = 1,...,n exist in the distributional sense and belong to L*(Q). Similarly, we define the local
horizontal Sobolev space H I/Vll’cz(Q).

The horizontal gradient V ju is given by the following equation:

Vyu= Y (XX, + Yy,

i=1

Next, we define the sub-Laplace operator of u:
Ayu= Y (X)u+ ¥ u
i=1

and say thatu € H I/Vl(l)f(Q) is subelliptic harmonic in , if Ayu = 0 in the weak sense. In what
follows, for the sake of simplicity, we will omit the word subelliptic and write harmonic functions,
instead.

Recall that functions in H" are smooth (in fact analytic) and satisfy the weak maximum principle
and the Harnack inequality, see Chapters 8 and 5 in [BLU], respectively.

Let G(x,y) = G(y,x) = Gu(x,y) denote the Green function for the sub-Laplacian and for the
domain Q C H". We refer to [CG] and to Chapter 9 in [BLU] for definitions and basic properties of
Green functions.

For the reader’s convenience, we recall a definition of a Green function.

Definition 5.1.3 (cf. Definition 9.2.1 in [BLU]). Let Q C H" be an open set and x € Q. The function
y = I'(x~'oy) is superharmonic and nonnegative in €, where I" denotes a fundamental solution for
A . Then it has the greatest harmonic minorant in €. Let us denote it by 4. The function

QX Q3 (x,y) = Gulx,y) :=T(x""oy) — h(y) € (0, )
is the Green function for Q.

We write G instead of G, whenever it is clear what € is. Let us remark that G(x, -) is harmonic in
Q\ {x}. By symmetry of G also G(-, y) is a harmonic function in Q \ {y}.

Moreover, in the Appendix we provide a proof of one of the standard properties of Green functions
needed in Example 5.4.4. The result is likely a mathematical folklore in H", but since we did not find
it explicitly in the literature for Carnot groups, we provide the full argument.

The following observations from [CG] will frequently be used, especially in Chapter 5.4 devoted
to proofs of Theorem 1.5.3 and Theorem 1.5.4. Here, we formulate them for the gauge balls rather
then for the metric balls. This is justified by the equivalence of both metrics in H".

Let

A(x,r) := B(x,r) N 0Q (5.1)

denote the surface ball at x € 0Q with radius r > 0.

81



Theorem 5.1.4 (Dahlberg-type estimate, cf. Theorem 1 [CG]). Let Q C H" be an NTA domain with
parameters M,r, > 0 and let further x, € 0Q and r < %0 Then, there exist a > 1 and C > 0,
depending on A, M and r,, such that for every x € Q \ B(x,, ar)

c!B&x. 1) |
2

———G(x, A,(xp)) £ @ (A(xy, 1) < C” 1|r—G( » A(x0)),

where G denotes a Green function of €.

Theorem 5.1.5 (The Carleson-type estimate, Lemma 1 in [CG]). Let x, € 0Q and r < r,,. There exist
constants C, p > 0, depending on Ay, M and r, such that for any nonnegative subelliptic harmonic
Sfunction u on Q N B(x,, 2r), vanishing continuously on A(x,,2r), one has

d(x, x,) P
=)

ux)<C < sup u
QNoB(xy.r)
forany x € QN B(x, r).

Theorem 5.1.6 (Local comparison theorem, cf. Theorem 3 [CG]). Let Q C H" be an NTA domain
with parameters M ,r, > 0 and let further x, € 0Q and 0 < r < rﬁo If u, v are harmonic functions in

Q, that continuously vanish on A(x,, Mr), then for any x € B(x,, ﬁ) N Q one has

u() _ o MAL)
v(x) T u(A,(x)))

for some constant C > 0 which depends only on Ay, M and r,,.

Theorem 5.1.7 (Theorem 9 in [CG]). Let x, € 0Q, r < r,. There exists a positive constant C
depending on Ay, M and r, such that for any nonnegative subelliptic harmonic function u in Q N
B(x,, 2r), which vanishes continuously on A(x,,2r), one has

u(x) < Cu(A,(x,))

forany x € QN B(x,,r).

5.1.4 Carleson measures and related notions in Harmonic analysis

Recall that the definition of regularity of a set, also known as Ahlfors-David regularity for metric
spaces was formulated in Definition 2.8.1.

Definition 5.1.8 (Carleson measure in H"). Let | < @ < oo and s > 0. We say that a positive Borel
measure 4 on an open connected set 2 C H" with non-empty s-regular boundary is an a-Carleson
measure on Q, if there exists a constant C > 0 such that

u(Qn B(x,r) <Cr*, forall x € 0Q and r > 0. (5.2)
The a-Carleson measure constant of u is defined by
Y,(u) :=1nf{C > O such that (5.2) holds for all x € 92 and r > 0}

We also call 1-Carleson measures simply Carleson measures.
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We define two objects that are essential for analyzing the behavior of harmonic functions. Both
of these objects were studied in the setting of Euclidean spaces, but now we give the definitions for
Heisenberg groups, cf. Chapter 2.5.

Definition 5.1.9. Let u : Q — R be a continuous function. We define the nontangential maximal
function N u : 0Q — R as follows:

(No)(x) = sup{[u(y)| : y € T (%)},

where ' )(x) = {y € Q : d(y,x) < (1 + a)d(y,0L2)} is a cone with vertex x € d€2 and aperture given
by a.

In the next definition we assume that the function is C!, but the Sobolev regularity H I/Vhl);2 would
suffice as well, cf. [GMT] for the Euclidean setting. Since the definition below is applied only to
subelliptic harmonic functions on H”, which are analytic, our regularity assumption is enough.

Definition 5.1.10. Letu : Q — R be a C!'(Q) function. We define the square function (S u)? : 0Q —
R as follows:

(S, u)*(x) = / |V yu(y)*d(y, 02)*Cdy,
I (x)
where Q = 2n + 2 is a homogeneous dimension of H".
Another important notion of this thesis is one of the harmonic measure.

Definition 5.1.11. Let Q C H” be a domain. For a continuous function f € C(dQ) there exists a
unique solution to the following boundary value problem:

Ayu=20 in Q,
u=f on 0Q.

Hence, for each x € €, owing to linearity of A, we may define a linear functional

f o up(x),

where u, is the unique subelliptic harmonic function with boundary data f. Hence, by the Riesz
representation theorem, we get

us(x) :/ f(z2)dw*
o0

for some Borel regular measure w?, which we call the harmonic measure.

For a given domain € C H" choose a point y € € and consider the harmonic measures @” on €.
Then for a given x € dQ and r > 0 we let A(x,r) := B(x,r) N 0Q and recall the mean-value of a
function f : 0Q — R on A(x, r):

fA(x,r) L= f(Z) da)y(z)-

A(x,r)

In Chapter 3.3 we recalled the definition of the BMO space for domains in R”, see Definition 3.3.4.
Below, we recall the definition of the boundary BMO space in H”, see Definition 8.4 in [JK].
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Definition 5.1.12 (Boundary BMO space). Let Q C H” be a domain. We say that a function f :
0Q — R belongs to the space BM O(0€2, dw) with respect to the harmonic measure w in €, if

sup ———— [ 1) = fapenldow < .
8 OB 1) e o

When discussing the NTA domains in H" we may omit the reference point in the harmonic measure
dw? and write w for simplicity.

5.2 Characterizations of Carleson measures on ADP-domains

The purpose of this chapter is to show Theorem 1.5.1, which can be understood as the nonabelian
counterpart of the following well-known characterization of the Carleson measures in the upper-half
plane R?.

Theorem (Lemma 5.5 in [G] Section 5, Ch. I). Let ¢ be a positive measure on H = R X R, and let
a > 0. Then o is a Carleson measure with constant y if and only if there exists A = A(a) such that

o({lu(z)] > A}) < A|{t : Nu(t) > A}|, A>0 (5.3)
for every harmonic function u on H. If A is the least constant such that (5.3) holds, then y, ~ A.
However, here we prove Theorem 1.5.1 only for bounded domains in H'.

Theorem. 1.5.1 Let Q C H! be a smooth ADP domain with 3-regular boundary and u be a positive
measure on Q. Then u is a Carleson measure on Q if and only if there exists a constant C = C(a)
such that for every harmonic function u on Q and every A > 0 it holds that

u({x € Q : lu(x)| > A}) < Co({w € 0Q : N u(w) > A}), (5.4)

where o is the surface measure on 0Q, i.e. ¢ = H?*|0Q. Moreover, if C is the least constant such that
(5.4) holds, then the Carleson constant of p satisfies y, =, C.

Remark 5.2.1. Upon the necessary modifications, Theorem 1.5.1 can be as well formulated for the
smooth ADP domains in H” for n > 1. However, for the sake of the simplicity of the presentation and
in order to emphasize the similarity to the corresponding result in [G], we restrict our discussion to H!
only.

The proof of the sufficiency part relies on the corresponding one for Proposition 6.3 in [AF] and
in fact holds for Borel regular functions in general metric spaces.

In order to show the necessity part of the assertion we adapt the idea of the proof of Lemma 5.5
in [G, Section 5, Ch. I] for the Carleson measures on the upper half plane Ri and the Euclidean
harmonic functions. There, by choosing the constant boundary data 44 with support contained in the
interval I C R and by defining the harmonic function u as the convolution of the Poisson kernel in the
upper half plane [Rfr with the function 44 y,, one shows that the superlevel set {x € [R_ZF Du(x) > A}
contains the square Q with base I and so its measure satisfies: u(Q) < u({x € Ri s u(x) > A}). This
combined with the weak-L' estimate for the Hardy-Littlewood maximal function gives the assertion
of the theorem.
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Our strategy of the proof relies on the following facts: first, existence of the Poisson kernel on AD P
domains allows us to construct the appropriate harmonic function u. Then we invoke the harmonic
measure representation of u together with the mutual absolute continuity of the harmonic measure with
respect to the surface measure. Finally, the subelliptic counterparts of the weak-L' estimates and the
estimates for the nontangential maximal function allow us to conclude the necessity part of the proof.

Definition 5.2.2. Let Q C H"” be a domain. We say that a point x € dQ2 is characteristic if the tangent
space to d€2 at x is horizontal. The set of all such points in d€2 is denoted by Z,.

For the reader’s convenience we will now recall results from [CGN] and [GP] that are essential for
the proof of the Theorem 1.5.1:

(A) (Theorem 1.1 [CGN]). Let Q& C H" be a smooth ADP domain. Then, for any x € Q the (subel-
liptic) harmonic measure do* and the surface measure do are mutually absolutely continuous.
Moreover, for every p > 1 it holds that L?(0Q, do) C L'(0Q, dw*).

(B) (Theorem 5.5 [CGN]). Let Q C H" be an NTA domain. Fix x, € Q and for a given ¢ €
L'(0Q, dw*) define the following function

u(x) :=/ d(y)dw (), x € 0Q.
oQ

Then u is subelliptic harmonic in € and the following estimate holds for the nontangential max-
imum function of u and the Hardy-Littlewood maximal operator:

(N,(w)(x) L CM (p)(x), x € L.

Here,

L 1
M (P)(x) := 0<ri1;£mg D20 B ) Jromsen |p(z)|dw(z), x € Q. (5.5)

(C) (Theorem 4.9 in [CGN]). Let Q c H" be a smooth domain, then o(Zg) = 0.

(D) (Theorem 1.1 in [GP]) Let & C H" be an ADP domain and let x, € 0Q,0 < r < % where
R, > 0 depends only on the ADP character of Q. If u is a nonnegative p-harmonic function in
€N B(x,, 6r) which vanishes continuously on 0Q2nN B(x,, 6r), then there exists C = C(n, L2, p) >
0 such that for every x € € N B(x,, ) one has

u(x) < Cd(x, 0Q)
u(A,(xy) — r )

(E) (Theorem 1.2 in [GP]) Let u be a nonnegative p-harmonic function in a bounded (Euclidean) C"!
domain Q C H". then, there exists M > 1 depending only on €2 such that for every x, € 0Q\ Z

d(xp,2q)

andevery 0 < r < one has for some constant C = C(n, 2, p) > 0

u(x) S d(x,0Q)
u(A,(xy) — r

for every x € QN B(x,, r).
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Proof of Theorem 1.5.1. The sufficiency part of the proof follows from the discussion analogous to
the one in the proof of Proposition 6.3 in [AF]. In particular, formula (6.5) in [AF] fora = 1 and s = 2
gives assertion (5.4). For the sake of completeness of the presentation we now provide some key steps
of the reasoning in [AF]. Moreover, for the sufficiency part it is enough that function u in (5.4) is a
continuous function.

Let u be a Carleson measure on Q. We define the following superlevel sets

EA) :={xeQ: |ux)|>1} and U(4) :={w€dQ: Nu(w) >Ai}, Ai>0.
In this notation, assertion (5.4) reads
u(E(A) < CH*(U(4)) forall 4> 0. (5.6)

Asin [AF] we employ the Whitney-type decomposition of U (1) based on the general result [HKST,
Proposition 4.1.15] applied to the metric space (09, d|,,) and the open set U (4). It allows us to find
a countable collection W, = { B(w,,r;) : i =1,2,...} of balls with centers w; € U(A) such that

v = | B@.rpno, (5.7)

i=1,2,...

Z X Bw, 2r)n00 = 2N7, (5.8)

where r; = (1/8)d(w;,0Q \ U(4)) and N depends only on the 3-regularity constant of 0Q. Let x be
an arbitrary point in E(A), then

N, u(w) > A, forallow € S(x) = B(x,(1+ a)d(x,0Q)) N oL,

where S'(x) stands for shadow of x, see Definition 3.2.4. Hence,

(5.7)
Sx)cU@) = | B@,r)noQ, forall x € E().

Next, for x € E(A), let w, € 0B be such that d(x, w,) = d(x, 0Q), due to compactness of d€2. Thus
o, € S(x) and, since S(x) C U(4), we moreover know that d(w,,0Q \ U(1)) > d(w,,0Q \ S(x)).

Furthermore, there exists i, € {1,2, ...} such that o, € B(w, ,r; ). By repeating the reasoning

in [AF] we find that
XEB <a) (2 + 1) rl.x) = %d(a)ix,dQ \UW)).

Since x was chosen arbitrarily from E(4), we have thus shown that E(4) is covered by the countable
family of balls B(w,;,Cr;), i = 1,2, ..., where C = C(a) = % + 1. By using the assumption that u
is a Carleson measure, the fact that H?|,q is 2-regular, and that the multiplicity of Whitney balls is
controlled by (5.8), we deduce that

5.8)

WED) < Y uB@.Cryn@ <y, (2+1) X 7 $ Y HB@.r)no@) S HUW).

1
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as desired. This concludes the proof of the sufficiency part of Theorem 1.5.1.

Next, let us prove the necessity part of the assertion. First, we need the solvability of the subelliptic
harmonic Dirichlet problem for continuous boundary data. Such a result holds for bounded open sets
in H! satisfying the uniform outer ball condition, see Remark 3.4 in [LU] and references therein.
Therefore, since every gauge ball B satisfies the uniform outer ball condition and, by assumptions, so
is Q, it holds that also Q N B(x,, 3r) satisfies the condition, see Remark 3.5 in [LU] for convex open
sets. However, the set QN B(x,, 3r) does not have to be convex, but a ball is convex and hence satisfies
the uniform outer ball condition. Therefore, the intersection of two sets satisfying uniform outer ball
condition also satisfies it, as it suffices to take a smaller radius of those defining outer balls for € and
B(x,, 3r).

By the discussion at (4.1) in [LU] we define the Poisson kernel P = P(x, w) related to Q, for x € Q
and w € dQ \ Z,. Recall, that 6(Z,) = 0 by (C) in our presentation following Definition 5.2.2.

Let ¢ : 0Q2 — R be a continuous function such that ¢ = 44 on the set 0Q N B(x,,6r), ¢ = 0
outside the set 02 N B(x,, 7r) and 0 < ¢ < 4A. Then a function u(y) = /a p P(y, )p(w)do(w) is the
unique harmonic solution to the Dirichlet Problem in € for the Poisson kernel P of domain Q with
boundary data given by ¢p. Moreover, by the weak maximum principle in Theorem 8.2.19 (ii) in [BLU]
we obtain the weak minimum principle for u, so that 0 < u < 44 in Q. Let us consider a function
w :=4A—u. Such a function is harmonic in Q, satisfies 0 < w < 441 and it has zero boundary values
on d€2 N B(x,, 6r). therefore, we can use Theorem 1.1 from [GP], see (D), to obtain

wx)  4d—ulx) < cd(x, 0Q)
w(A,(xp)  44—u(A(xy) ~ ro

Then it follows that

u(x) > 44 (1 - Cd(x,_dQ)) d(x,0Q)

+ cu(A,(xy)) ———
r r

for x € QN B(x,,r) and ¢ = c(n, ).
If x € QN B(x,,7) with 7 < :—Cr, then 1 — c@ > i. In the consequence, we get

u(x) > A+ cu(A,(xo))w > .

In particular, u > A on Q N B(x, zl—cr) and so it holds for any ball B(x,, r) that

54
u(B(xy, 1) N Q) S u(B(x,, zicr) NQ) < u({x e Q : ulx)> A} (S) Co({w € 0Q : N u(w) > 1}).
(5.9)
Since ¢ € C(0L2), we have that ¢ € LP(0d€2,do) for any 1 < p < oo. This holds, as 6(d2) < oo,
due to the 3-regularity of 0€2 and the boundedness of the diameter of Q. Hence, Theorem 1.1 in [CGN],
see (A), implies that ¢ € LP(0Q2, dw”) for any given y € D. Moreover, it holds that dw” = P(y, -)do,
for a Poisson kernel. Therefore, Theorem 5.5 (i) in [CGN], see (B), implies that

{0 €0Q : Nuw) > A} C {a) €Q : M, ($)(w) > %} : (5.10)
where M, (¢) stands for the Hardy-Littlewood maximal operator of function ¢ € L'(0Q,dw”),
see (5.5)

1

M , w) = su 2)|[dw’(z), w € 0Q.
o (P)@) O<r<diI:mQ @(0Q2 N B(w, 1)) JosonBw.r P@lder(z)
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Next, we appeal to the following relation between the maximal operator considered with respect to the
harmonic measure @” and the surface measure o, see (6.7) in [CGN]:

M, (p)(w) < C (Ma|¢|”)’l3 (w), € 0Q, anyfixedy € Q. (5.11)

The estimate holds forany 1 < p < o0 and 1 < f < p. Since ¢ € L*®(0€2, dw”) we may choose p = .

By [CG], pg. 414 it holds that (0, dw*, d,q,) is the homogeneous space. Recall that a metric
measure space (X, d, i) is the space of homogeneous type if (X, d) is a quasimetric space and y is a
doubling measure. Thus, by collecting estimates in (5.9)-(5.11) and by applying the weak-L' estimate
for doubling spaces in Theorem 3.5.6 in [HKST] and by the definition of ¢ we obtain the following
estimate

H(B(xp, )N Q) < Co ({w €0Q : M, (¢)(w) > %})

< Co <{a) €0Q : M, |p () > (%)ﬁ}>

leli
< 181 g040) S CoO(Bxg,3r) N Q) S 7. (5.12)
Since y € Q is arbitrary and any two harmonic measures @’ and ®” are comparable for any
v,y € Q with the constant depending on the diameter diam Q < oo, it follows that u is Carleson in

Q, as the constants in (5.12) do not depend on the choice of r.
O

5.3 Carleson measures and Mobius-type transformations on the
unit gauge ball

The purpose of this chapter is to show Theorem 1.5.2, a counterpart of Lemma 3.3 in Section 3, Chapter
VI in [G] characterizing the Carleson measures on the unit disk D in terms of the canonical Mobius
transformations on D. Namely, the lemma stays that a positive measure y on D is a Carleson measure
if and only if the following holds:

I- |Zo|2
sup ————du(z) = M < . (5.13)
20D J D 11— zozl2

Moreover, the constant M is comparable to the Carleson constant, i.e. M =~ Yu with absolute con-
stants. Notice that, for a given z, € D, the integrand in (5.13) satisfies the following

2

izl e r-mer 51
11—2Zz2 1—]z2 11—z ° '

where T, (z) = e‘ieolz_#, for z, = rye’® is the Mobius self-mapping of D with the property T, (zp) =
Zyz

0. Such family of conformal mappings, and its #n-dimensional counterpart, play an important role in the
studies of quasiconformal and quasiregular mappings and related Hardy spaces, see e.g. [AK, AGI,
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AG?2] and [Ah] for basic properties of such mappings. The relation between expressions in (5.14) and
the Carleson condition becomes more apparent once we observe that for small enough radii » > 0, any
w € 0D and z € D N B(w, r) it holds that

-, 1-IT,G
o~ -, (5.15)
1—1z|? 1—|z| r

see Lemma 2.2 in [AG2] and Formula (33) in Ch. 1T in [Ah]. Hence, (5.15) together with (5.13) imply
the Carleson condition for p:

u(D N Bw, r)) = / “du < Mr.

DnB(w,) ¥

The class of the Mobius transformations 7', has no direct counterpart in the Heisenberg setting as a
class of the conformal maps from a unit Koranyi—Reimann ball into itself due to lack of rotational
symmetry of Koranyi-Reimann ball. Nevertheless, recently in [AF, Section 4.1] the notion of class
T’ has been extended to the subriemannian setting in the following way.

Recall that the Kordnyi-Reimann unit ball in H' is defined as follows:
B(0,1) :={x € H' : d};,(0,x) < 1}.

Recall the Kordnyi inversion in the Koranyi unit sphere centered at the origin defined as follows:

I(y) = —W (v.(y.I> +iy), ), where y = (y.,y,) € H" \ {0}. It is the restriction of a conformal

self-map of the compactification I]/-\I]l, with 1(0) = oo and I(o0) = 0. Moreover, if y lies in the complex
plane (i.e. y, = 0), the inversion I agrees with the well-known inversion in the unit circle.
Letus fix x € H', a € H' \ {x}, and p > 0. Definethemap T :=T,, : H' — H' as follows

T =6, ([16" ] - [1@ )], (5.16)

where 6, denotes the Heisenberg dilation by p, i.e. 6,(x) = 6,(x, Xy, X3) 1= (pxy, pxy, p°X3).
Below we collect some properties of maps 7, , , proven in Proposition 4.2, Corollaries 4.9 and 4.11
and Proposition 4.13 in [AF]:

(1) The mapping
Tl : B '\ {a} = H'\ {8, (@ - 017"}

is 1-quasiconformal. Moreover, T(x) = 0, T(a) = o0, T(c0) = 5, ([I(a™" - x)I""). Recall that
1-quasiconformal maps are conformal both in R”, see [V], [Geh], [IM], and in H', see [CC],
[CCLDO].

(2) Forall y,y" € H' \ {a}, it holds that

d@y,y d(x, 4
- ) ||T<y>||=p%, I = =2

dT(y),T(y)) = Pd (Ty)g’

(a,y)d(a,y')’

where J. denotes the Jacobian of map 7.
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(3) Letany x € B,a € H' \ B and p > 0, be such that
p Smin{d(x,0B),d(a,0B)} and p = d(a,x). 5.17)
Thenthe map T =T, , , satisfies
B(0,m) c T(B) C B(0O, M). (5.18)

for radii m and M depending on x, a, and p only through the implicit multiplicative constants in
the inequalities in (5.17). This property is a reflection of the similar one for the Mobius self-maps
of a unit ball in R”, see e.g. Lemma 2.2 in [AG2]

(4) Letw € 0B, x € B, and p > 0. Assume that a € H! \E and » > O are such that d(a,w) S r
and d(a, B) > Cr, for a constant C > 1. Then, the map T =T , satisfies

x.a,p

d(T(»),0T(B)) _  p
d(y,0B) € d(y,a?

for all y € B(w,r) N B. (5.19)

The similar property holds in R", see Lemma 2.2 in [AG2].

After the above preparatory observations we are in a position to formulate and prove the main
result of this chapter. For the reader’s convenience we recall the statement of Theorem 1.5.2.

Theorem. 1.5.2 [cf. Lemma 3.3 in [G]] A measure u on the Kordnyi-Reimann unit ball B .=
B(0,1) c H! is a Carleson measure if and only if

d(T ,OT.  (B)\°
/( (T, (3, 0T 4 ,( ))) du(y) = M < oo, (5.20)
B

d(y,0B)

forall x € B, a € H! \E, and p > 0 such that p S min{d(x,0B),d(a,0B)} and p ~ d(a, x).

Basing on (5.15), one could expect that the corresponding hypotheses (5.20) of the above theo-
rem in H' should involve the Kéranyi norms of points in y € B and their images T(y). Indeed, by
property (5.18) we have that

1= T, DI 1= 1T, WI? 1=|T,,WIl
<m+1> ,a.p < ,,pz <(M+1) a.p
2 1=yl =1yl L=yl

However, due to the geometry of balls in H! it is more convenient to work with the distances to the
corresponding boundaries of y and T'(y), see the proof below.

Proof of Theorem 1.5.2. SetT :=T,, , and observe that by (5.19) and by assumptions the following
holds for any y € B(w, r) N B:
d(T(»).0T(B) = p _ d(ax)
d(y.0B) Cd(y.a?  d(y.a)?

(5.21)
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Choose x such that x € B(w, ) N B and d(w, x) = % Then, for a choosen as in (5.19), it holds that

r<d(a,y) <d(a,x)+d(x,y) ~ d(x,0B) + %, ~ %,,

d(a,x) ~d(x,0B) ~ d(x,w) ~ r.
Hence, by applying these estimates in (5.21) we obtain that

d(T(y),dT(B)) ~Llo 1 (5.22)
d(y,0B) r  d(x,0B)

In order to show the necessity part of the assertion, let us assume that (5.20) holds. Then, for any
w € dB and r > 0 we have

d(x,0B)’

B(w, B) = —d
u(B(@.r) N B) /B A aB )

d(T(»),0T(B))\’
~ d(x,0B)’ / < ) d
(x,0B) o 10y.0B) uy)

< Md(x,0B)’ = r.

In order to show the opposite implication in the assertion of the theorem let us consider two cases for
points x € B in the definition of maps T =T, : (1) d(x,dB) > , and (2) d(x,dB) < 1. In the first
case by (5.22), we trivially have that

d(T(»),0T(B))\’
du(y) Sc u(B) < C .
/B(w,r)nB < d(y,0B) > () Sc H(B) < Cy, <

Therefore, we may assume that points x € B satisfy d(x,dB) < i and mimic the approach in the proof
of Lemma 3.3 in [G, Section 3, Chapter VI]. However, we need to take into account the differences
between the Euclidean and the Heisenberg settings.

Recall that the Euclidean radial curves need not be horizontal in H' and hence may have an infinite
subriemannian length. However, by works [KR1] and [BT], see also the discussion in Section 2.1.2
in [AF], we have that the following formula describes the radial curves given by the horizontal curves
joining the origin with the point @ = (z, t) belonging to the boundary dB \ {z = 0}:

y(s,(z,1) = <Sze_i\ztl2 oes s2t> , (z,)€dB\ {z=0). (5.23)

It is easy to compute that ||y(s)|| = s. Moreover, given x € B we may find a point @ € dB corre-
sponding to x = (x,, x,), in a sense that x = y(s, ) for some 0 < s < 1, by solving (5.23) for z and ¢.

Namely, we have that
X Xy ity logllx]

= 7z = ——e¢ Ixz
[1x]12° [l x]]

We denote such point by @, and define the following family of subsets in B:

E ={yeB:dyw,)<2'dx,0B)} n=12,....
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Therefore, since y is assumed to be a Carleson measure in B, we find that

u(E,) = u(B(w,,2"d(x,0B)) N B) <y,2"d(x,0B)’, n=12,....

Hence, by appealing to (5.21), we obtain the following estimate

/ (d(T(y» aT(B)>>3 4
B(w,r)NB d(y,0B)

d(T(y),0T(B))\’ & / <d(T<y>,aT(B)>>3
d d .
S/E< 4(y,9B) > # W; pe \ d(.0B) HO)

Since, by assumption d(a, x) = d(x,0B) and for y € E, \ E,_, it holds that
2" 'd(x,0B) < d(y,w,) < 2"d(x,0B),
we have that

d(a, x) < d(x,0B) < 1
d(y,a? ~ d(y,w)* ~ 22d(x,0B)’

(5.24)

as d(y,a) > d(y,w,) due to the assumption that @ € H' \ B. We are in a position to complete the

above estimate (5.24) as follows (cf. (5.21)):

d(T(y),dT(B)) / <d(T<y>,aT<B>>>3 |
/E< d(y.0B) ) ()+2 ewe \ " d(y.0B) HO)

H(E)
= %d(x.0By Z; / 26"d( 2. a8y Y

n

< o |
$ 2 Faam 522—

This completes the sufficiency part of the proof and thus, the whole proof is completed as well.

]

Remark 5.3.1. We observe that since the Koranyi inversion can be defined in groups H", see e.g.

[KR2], so is the class of maps T,

x,a,p*

Moreover, the horizontal curves (5.23) exist not only in H!,

but also in H” (in fact, in polarizable groups, see Section 3 in [BT]). Therefore, Theorem 1.5.2 has
a counterpart in H”. However, for the sake of simplicity of the presentation and in order to avoid
repeating similar construction of maps T, , , presented in [AF, Section 4.1], we decided to state the

theorem only in the H' setting.

5.4 Square function and Carleson measures for 1.> and BMO

boundary data

The purpose of this chapter is to prove main results of this chapter, namely Theorems 1.5.3 and 1.5.4,
which generalize, respectively, Theorem 9.1 and Theorem 9.6 in [JK]. Theorem 9.1 provides the bound
for the L?-norm of the square function in terms of the L2-norm of the boundary data on NTA domains.

92



Theorem 9.6 gives a Carleson-measure estimate for a subelliptic harmonic function defined by the
integral of a BMO function with respect to harmonic measure on the NTA domain. Such estimates in
R" are essential, for example, when proving the e-approximability for harmonic functions. We refer
to Chapters 3.2 and 4.3 of this thesis for proofs of e-approximability. Recall that in Chapter 3.2 we
proved e-approximability for a class of nonharmonic functions on Lipschitz-graph domains and in
Chapter 4.3 we proved g-approximability on Riemannian manifolds.

Recall Definition 5.1.10 of the square function (also known in the literature as the area function,
depending on the authors and the context)

Su(x)’ 1= / |V yu(y)*d(y, 02)*“dy.
r,()

For the reader’s convenience we recall our main results.

Theorem. 1.5.3(L>-boundedness of the square function) Let Q C H" be a bounded NTA domain. Let
further f € L*(dw) and u(x) := fag f)dw*(y). Then, the following estimate holds for the square
function S, of a subelliptic harmonic function u in

||Sau||L2(da)) < C”f”Lz(d(u)’
where the constant C depends on n, M, constant from the Harnack inequality, a and Q.

The corresponding Euclidean result in [JK], cf. Theorem 9.1, is proven for any 1 < p < oo.
However, for us the case p = 2 is the most interesting, as it is the one that we would like to use to
prove e-approximability for harmonic functions. According to our best knowledge, the result is new
in the subriemannian setting.

Theorem. 1.5.4 (Carleson measure estimate) Let Q C H" be a bounded NTA domain and u be subel-
liptic harmonic in Q such that u(x) = fag S () dw*(y) for some f € BMO(0L2). Then, for any D > 1
there exists a constant C > 0 such that for any ball B(x,,r) centered at x, € 0Q \ Z, with any

0<r< - <——min{l, %} it holds that

/ |VHu|2G(x, Ap(x0))dx < Caw(B(x,, r) N 0L2),
B(x,r)NQ

where constant C depends on D,n, M, ry and || f || gpr000) @nd G denotes the Green function of Q.

Let us remark that the assertion of the theorem can be formulated equivalently in a way similar to
the bottom of page 3 in [HT], i.e. by using the supremum over radii and the averaged integral.

In the theorem, w stands for a harmonic measure with respect to any but fixed point y € Q \
B(x,ar) and so w := w”. However, for the sake of convenience of the presentation in what follows
we omit the reference points. The constant a can be taken equal to M, see [CGN, Section 5].

Upon strengthening the regularity assumptions of the boundary, the following consequence of
Theorem 1.5.4 holds, as the ADP condition allows us to compare the harmonic measure with the
surface measure, see (A) in the discussion following Definition 5.2.2.

93



Corollary 5.4.1. Under the assumptions of Theorem 1.5.4 if we additionally assume that Q is a smooth
ADP domain, then it holds that for any ball B(x,,r) centered at x, € 0Q \ X, with radius 0 < r <

oo < L omin{1, ey 40,
DM = DM M

/ IV yul*G(x, Apy,(x0))dx < Cré!,
B(x(,r)NQ

where C depends on D,n, M , ry and ||f||3M0(asz)-

An important class of examples of NTA domains in H” is the one of (Euclidean) C!! domains,
see [CG, GP]. Since the Green function G(-, Ap,,,(x,)) is nonnegative subelliptic harmonic in Q \
{Apy,(x0)} we may use Theorem 1.2 in [GP] to get the following lower boundary Harnack-type esti-
mate for a (Euclidean) C!*! domain Q C H", any x, € dQ \ £, and

0<r < ﬁ min{1,d(xy, Zo)/C. d(A,(x,),0Q)},

where C is a constant from Theorem 1.2 in [GP], and for all x € B(x,, ") N Q:

d(x,0Q
G(x, A, (xy) = C(n, QG(A,(x), Ar(xo))¥ Rcma G(AL(xp), A, (x))d(x, 0Q).

Moreover, notice that by building a chain of balls joining A, (x,) with fixed, but any y € € such that
dist(y, 0Q2) > r, for r, as in the definition of the NTA domains, and by the standard iteration of the
Harnack inequality on metric balls (see e.g. [BLU, Corollary 5.7.3]), we obtain that

G(A,(x0), A (xp)) = CNG(y, A, (xp)),

where the length of the Harnack chain N depends on diam € and r and the constant C depends on the
distance d and the geometric parameters of H” and A, cf. [BLU].
The above discussion and the Proposition 5.6 in [GP] implies the following Carleson-type estimate.

Corollary 5.4.2. Let Q C H" be a (Euclidean) C"' domain which also satisfies the uniform outer ball
condition. Then, under the assumptions of Theorem 1.5.4, it holds for any ball B(x,r) centered at

X, € 0Q \ =, with radius 0 < r < 2= < -1 min{1, L0200l y 34
DM DM M

/ |V ul2G(A, (xy), App,(x0))d (x, 0Q)dx < Cro!, (5.25)
B(x(,r)NQ
where C depends on D,n, M, r,,diam Q and || f || gyr000) and the radius r’ satisfies

0</r < ﬁ min{1,d(x,, £o)/C, d(A,(x,), 0Q)}.

Let us observe some further consequences of Theorem 1.5.4. First, we explain how it corresponds
to Garnett’s result, see [G, Theorem 3.4]. Then, in Example 5.4.4 we show how for the gauge unit
ball, a special but important case of the NTA domain in H”, the estimate in the theorem takes simpler
and convenient form.
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Remark 5.4.3. Theorem 1.5.4 generalizes part of the following characterization of the Carleson mea-
sures on the unit disc in the plane to the setting of NTA domains in H", see Theorem 3.4 in [G]:

Let ¢ € L'(S") and u be a Poisson extension of ¢ to the unit disc in R*. Let

di, = [Vé(2)]* In — dxdy,
|z

Then ¢ € BMO(S") if and only if Ay is a Carleson measure. Moreover, the Carleson constant of A

is comparable to |I¢|I%MO-

Recall that, up to the constant i, the function In % is the Green function of the planar unit disc

with a pole at 0; also that Euclidean balls are NTA domains. Moreover, the harmonic measure w = o,
where o stands for the surface measure on S', see Exc. 3, Ch. I in [G]. Therefore, the sufficiency part
of Remark 5.4.3 corresponds in R? to the assertion of Theorem 1.5.4.

The next consequence of Theorem 1.5.4 addresses the fact that for some NTA domains in H" the
Green functions can be found explicitly and so the Carleson condition in Theorem 1.5.3 can be refined.

Example 5.4.4. Let Q = B(0, 1) be a unit gauge ball in H". By Corollary 4 in [CG] such balls are
NTA domains. Below, we show that on € it is possible to refine the estimate for G(A,. (x,), A4,(xy))
and obtain the following more natural Carleson estimate.

Recall that for the unit gauge ball in H" the set of characteristic points X, consists of the north and
south poles only.

Fix 6 € (0,1) and let u be as in Theorem 1.5.4, i.e. a subelliptic harmonic function on Q with
the boundary data in BMO. Then, for all points x, = (z,t) € 0B\ {z : |z| £ 6} and all radii
0 < r < ry < min{1, <222} it holds

/ |V yul*d(x,0Q)dx < Cro". (5.26)
B(x(,r)NQ

Here, the constant C is as in Corollary 5.4.2 and, additionally, depends on 6.

In order to show this estimate, we appeal to the horizontal curves joining the origin with the point
X, = (z,1) in the boundary 0B\ {z = 0}, see (5.23). The proofs of Lemmas A.2 and A.4 in [AF] show
the following properties of curves y, :

s'—s
d(y,,(5), 7, (s") < length(y, ()i, ,) = 0<s<s <1,

|z|
1—s

|z|

These properties allow us to choose s such that 1 — s = r|z| and obtain a point on y, which
satisfies the definition of a corkscrew point A,(x,) in the interior corkscrew condition in Definition
5.1.1. Choose ¥’ close enough to r (i.e. |r — | < 1) and the corresponding s’ with 1 — 5" = r/|z|.
Therefore, we get that

d(yxo(s)a aB) Z ’ lf 1 ) S |Z|

|s’

d(A,(x0), Ay (xp)) = d(r, (), 7, () < Y Su %d(Ar,(xo), 0B),
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where M stands for the NTA constant of a gauge ball in H”. In a consequence, we may estimate
function G from below as follows:

0-2

1 |z| -
G(A,(xy), A > > > |2]972,
(A, (X)), A,(x)) AOA o), A (202 < =] > |z|
and the proof of the first inequality follows by repeating the steps of the corresponding proof of Prop-
erty (1.9) in Theorem 1.1 in [GW], see Proposition A.1 in Appendix. From this, the estimate (5.26)
follows immediately, by applying Corollary 5.4.2 upon noticing that under our assumption on x,, it
holds that |z|?>~€ remains bounded from above by §27¢.

5.4.1 Proof of Theorem 1.5.3

Before proving Theorem 1.5.3 we need to show a counterpart of the Euclidean result in Theorem 5.14
in [JK], but in H". Here we present it in a weaker form, i.e. only one implication, cf. [JK].

Proposition 5.4.5. Let Q C H" be an NTA domain. Let f € L*(0Q,dw?) for some z € Q and such
that /ag fdw* = 0. Then a function u(x) := fag f()dw*(y) satisfies the following identity

/ |V yul*G(x, z)dx:l / F()*dw’(y) < . (5.27)
Q 2 0Q

Proof. The proof closely follows the corresponding one in [JK] and, therefore, we discuss only the
main steps. The key tool used in [JK] is the Riesz representation theorem for subharmonic functions
in R”, whose subriemannian counterpart is given by Theorem 9.4.7 in [BLU], applied to —u in the
notation of [BLU]; see also Definitions 9.4.1 and 9.3.1 in [BLU]. Namely, the following holds.

Let v be a subharmonic function in a domain Q C H". Then /Q G(x, z)Au(x)dx < oo for some
z € Q if and only if v has a harmonic majorant. Moreover, if h denotes the least harmonic majorant
of v, then it holds

v(x) = h(x) — / G(x, )A ;v(y)dy. (5.28)
Q

For the proof of Proposition 5.4.5 one defines a subharmonic function v = u?, as A ;v = 2|V yu|> > 0
and applies the above representation theorem. Moreover, v(z) = u*(z) = 0 by assumptions of the
proposition. Since Green’s function is zero at the boundary of Q we have, by (5.28), that A = f? on
0Q, and so h(z) = /asz F(»?*dw?*(y). Upon collecting these observations we obtain (5.27). Then, as
in [JK], we assume that f € L*(0Q, dw?) with [, fdw* = 0 and approximate f in the L*(0Q, dw?)-
norm by the sequence of continuous functions. We can approximate L?-functions with continuous
functions e.g. by Proposition 3.3.49 in [HKST]. Let f; € C(0€2) be such that f; converges to f in
L? norm. Denote by u and u ; harmonic extensions of f and f, respectively. Then V ju; approaches
V yu uniformly on compact subsets of Q. Hence,

/ IV yul’|GCx., 2)|dx < sup lim / IV 1, P1G x. 2)ldx < sup = / £, dar () < oo.
i P/ "2 oo

A limit procedure implies assertion (5.27). [
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Proof of Theorem 1.5.3. Since an L*(0Q, dw) function can be approximated by C(d2) functions we
may assume that f € C(dQ2). Moreover, without the loss of generality, we may also assume that
f > 0, as otherwise we split f into a positive and negative parts and consider two cases separately.
In what follows we will employ the Green function G of domain £ and so, in order to avoid
problems with the pole of G, we need to bring on stage the truncated square function, i.e. the operator
S, u(x) considered with respect to truncated cones FZ(x) :=T,(x) N B(x, h), for x € 02 for h small
enough, so that the pole of G at z € Q does not belong to any of such truncated cones. Thus, we split

S, u(x) as follows
S u(x)* = / + / : (5.29)
I (x) L (NI (x)

The second integral can be handled by the gradient estimates for subelliptic harmonic function u (see
[LU, Proposition 2.1]) and by the Harnack inequality as follows:

2
/ |V 4u(y)Pd(y, 027 Cdy < c(n) ———( s lul) dw.00rCdy
T, GO\ (x) [ O\ (x) d(y,0Q) B(y,%d(y,r)(!))

14
L, (O\A(x) d(y, 0Q2)°

h -0
< 2 e Q.
Saomc Y (Z)<1 +a> 12|

(5.30)

2
Sn,M,C u=(z)

The Harnack inequality (see e.g. [BLU, Corollary 5.7.3]) is used in the second estimate: we choose
big enough compact subset of { containing points z and y. Since they both are enough far away from
the boundary, there exists a Harnack chain of finite length, depending on M, joining z and y. We iterate
the Harnack estimate along that chain and obtain (5.30) with constant C coming from the constants in
the Harnack inequality.

Therefore, since u(z) = fag f(»)dw?(y), we get the estimate

h

-0
V ,u(y)|?d(y, 0Q)>Cdy < —_— Q 2
L VP00 003 S e (7 ) 19

In order to get the L?*(dQ)-norm estimate we integrate both sides of the above inequality and use the
fact that harmonic measure is a probability measure to obtain

-0
h
V pu(y)|*d(y, 0Q)* Cdydew* < ) QlfIR
AQ Aa(x)\rz(x)l H (y)l (y ) y n,M,C (1 + a) | |||f||L2((,oz)

Sn,M,C,a,diam Q.h ” f ||L2(a)z)' (53 1)

We now proceed to estimate the first integral in (5.29). For any point y € Q let us denote by g,
a point at which the distance d(y, 0€2) is attained. Next, observe that a point y € I' (x) if and only if
x € S(y) the shadow of point y, defined as S(y) := QN B(y, (1 + a)d(y,0L)). For any z € S(y) it
holds that
d(x,z2) <d(x,y)+d(y,z) <2(1 + a)d(y, 0Q).

Therefore, {x € 0Q : y e T"(x)} C A(g,,2(1 + a)d(y, 0Q)), see (5.1) for a definition of A(q,,2(1 +
a)d(y, 0Q)).
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Weset Q, :={y € Q : d(y,0Q) < h}. An application of the Fubini theorem together with the
Dahlberg-type estimate, see Theorem 5.1.4, give us that

/ / |V u(y)|*d(y, 0Q)*?dydw(x)
0@ J T (x)

= [ IVuu)Pd(y, 09y o ({x€0Q : yeTh(x)})dy

Q,

< / IV u()Pd(, 9970 (Mg, 21 + @d (3, 0Q)) dy  (5.32)
Q,

< / IV a6 (v, 2) dy. (533)
Qh

The last inequality follows by standard reasoning which, however, deserves some details.
Letz € Q\ B(q,,2M (1 + a)d(y, 0€2)). Then by Theorem 5.1.4 we have (see also Section 5 in
[CGN] to see why constant a in Theorem 5.1.4 can be taken equal to M):

| B(q,,2(1 + a)d(y, 0Q))| Gle o
Z,
Q1 + a)d(y, 0Q))? 2(1+a)d(y,00)\dy
za d(y7 ()Q)Q—ZG(Z, A2(1+<Z)d(y,aQ)(qy))- (5‘34)
By taking h small enough we ensure that 2(1 + a)d(y, d€2) < r, so that we can use Theorem 5.1.4.

Notice that since Ay, 44(y.00)(4,) 18 a corkscrew point we know by ithe interior corkscrew condition,
see Definition 5.1.1 (1), that

o (A(q,, 2(1 + a)d(y, 0Q))) ~

2(1 + a)d(y, 0Q)
d (Ax11aao0(d)), 02) = :

Moreover, d(Aypa00)(4,),¥) < 41 + a)d(y,0Q), as both y and Ay, ,4,.00)(q,) lie in a ball
B(q,,2(1 + a)d(y, 0Q)).

Set & 1= min{d(y,0Q), ZHUE} » d(y, 0Q). Then d(Ay4ai.00)(4,)- ¥) < Ce with constant
C depending only on @« and M and independent of y. Therefore, there is a Harnack chain joining y
and Ay 1, 44(y.00)(q,) With length independent of y and hence by the Harnack inequality

G(z, Ay 1ard(r.00(y) Romc G(2,). (5.35)

Thus, by combining (5.34) and (5.35) and applying them at (5.32), we obtain (5.33), as desired.
Finally, we apply (5.27) to arrive at

/ / IVHu(y)Izd(y,GQ)Z‘Qdydwz(x)S% / |/ () = u(2)Pdo*(y) < 2 / |/ )P de(y).
0Q JTh(x) 0Q 0Q

Adding up together this estimate and (5.31) we obtain the assertion of the theorem. [

5.4.2 Proof of Theorem 1.5.4

The structure of the proof follows the corresponding one for the proof of Theorem 9.6 in [JK]. How-
ever, the subriemannian setting of H” requires applying different tools.
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CLAIM 1. Let x, € 09, r < ry and A,(x,) € Q be an internal corkscrew point as in Definition
5.1.1 such that it satisfies ﬁ < d(A,(xy),x,) < r. Then it holds that

V(A (x) 1= / |f(X) = fa, |dw* " (x) < CIIf | paroe, (5.36)
A\A,

where C is independent of r and f and A, := B(x,2r) N 082 the surface ball.

In order to the prove the claim, we repeat the reasoning from the proof of Lemma 9.7 in [JK], see
also the proof of Lemma on pg. 35 in [FB].

Fix y € Q and consider the harmonic measure w”. Define A j 1= B(x, 2/r) N 0Q and the related
ring domains R; 1= A; \ A;_, for j =1,2,.... Recall the notation fAj = ][A‘ fdw’.

Recall that similarly to the Euclidean case, also in the setting of Heisenberjg groups one can define
a kernel function associated with the boundary point Py, K : QX dQ — R, U {oo}. Function K is
normalized at y, € Q, i.e. K(y,, P,) = 1, and moreover, K(-, P,) is a solution to A,u = 0 in  and
K(-, Py) vanishes continuously on 0Q \ { P,}. We refer to Definition 2 in [CG] for details.

One of the key properties of such defined kernel function is that given a point y € €, there is
always a unique kernel function at P € 92, normalized at y, see Theorem 11 in [CG].

Therefore, we have that for a kernel K(A,(x,), x) it holds

U(A,(xy)) < Z/ | f(x)— fAjld(DA’(xO)(x) + Z/ |fAI _ fAjlda)Ar(xo)(x)
R;

jz2 Jjz2

/um @MMM@MMM+ZMMJM/KMM@MM®
J>2 j>2 R;

L (R)
(D)

C2K
3w [, = ds s (sl =1, 1) Bz

where in the last step we appeal also to the growth estimate for kernel functions, provided in Proposition
6 in [CG]. Namely, for x € 092, 0 < r < r,, there exist constants C, Cj, k > 0, with Cj < C2%/, such
that

. CJ'
sup{ K(A,(xp),x) : x € R;} < a)y(Aj)'

Finally, the standard argument involving mean value integrals gives us that

o= fa| = 2 (L [0 - £, Jaor o)
A Bt _a)Y(Ak_l) @?(Ay) Ja, B
1
sC<Wm0AJﬂm—AMWuO.

Here we also appeal to the doubling property of w”, see Theorem 2 in [CG]. We remark that Theorem
2 in [CG] is proven for k and r small enough so that radii 2*r < r,. In order to obtain the doubling
property for large k we use the Harnack inequality and Corollary 3 in [CG], cf. the discussion following
Lemma 4.9 in [JK] and the proof of Lemma 4.2 therein.

Namely, there exists j € N such that 277~'r < r,. The Harnack inequality allows us to change
the reference point of the harmonic measure. Therefore, using it we may change the corkscrew point
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A, (A(xy, s)) for s < r, to any point y € . We change it because in Corollary 3 in [CG] a reference
point is a corkscrew point. Hence, the Harnack inequality and the mentioned Corollary 3 give:

a)y(A(xo,2r)) < a)y(A(xo,2r)) < 1
o (A7)~ @ (A(xy27r)) ~ C

Hence, also for big r, the harmonic measure is doubling.
By applying the definition of the seminorm in BM O(0L2), cf. Definition 5.1.12, we obtain

oA (50) < 11 Nsssoann (€ + € X427 ) < Cll S awsorany

Jj=2

and Claim 1 is proven.
CLAIM 2. Let x, € 0Q and Ay, (x,) € Q be an internal corkscrew point as in Definition 5.1.1
(1), with constant D > 1. Denote by A(x,, r) := B(x,,r) N 0L the surface ball. Then it holds that

200-2) G3(x, App(x0))
x<C, (5.37)
(Ao (A(xg, 1)) S pigrne d(x, 0Q)?

where C depends only on n, the geometry of H" and r, and M (the NTA parameters of Q).

We again follow the corresponding proof of Lemma 9.8 in [JK], although observe that instead of
the dyadic Whitney cubes we need a different family of sets covering the set B(x,,r) N €. Such a
family can be constructed by the direct modification of the proof of Proposition 4.1.15 in [HKST] as
follows:

There exists a countable family of balls in B(x,, r) N L denoted by

€ Q,

F = {B(x,., éd(xi,aﬁ))}, X,
such that each ball B(x;) has a non-empty intersection with set B(x, r) N Q and, moreover,
>0 Bx) S 2N 3, where N stands for the doubling constant in H".

We can find such a family because Heisenberg group H” with a standard measure is a doubling
space. Then the existence of family 7 follows from the 5-covering lemma.

Let us define the following subfamily of F:

F, :={B(x,.)er L0k <

< éd(xi,dﬂ) < 2—k+1}, k=—[log,ry] = 1,...,0,1,2, ...

Notice that we do not need to take exponents bigger than [log, r,| + 1 because any x; has to satisfy
8 8
d(x;,0Q) <d(x;,xy) < =" < 7ro-
In order to prove the second inequality above let us set d(x;, x,) = (1 + t)r, for some ¢ € R and notice
that d(x;, xo) < r + £d(x;, 0Q).Thus, we have

d+0)r=d(x;,x)) <r+ %d(xi,aﬂ) <r+ %d(xi,xo) =r+ %(1 + tr,
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andsot < %
With the above introduced notation we may reduce the estimate in (5.37) to the estimate over the

balls in F:
G (x, A G(x, A
/ (x DMr(XO))dX < 2N5 Z Z / (x DMr(XO))dx. (5.38)
B(xq.nnQ k B(x)EF, Y Bx;)

d(x, 0Q2)? d(x, 0Q2)?

For a fixed k and given ball B(x;) € F, let x; € d€ denote a point such that d(x;, x*) = d(x;, 0Q).

That such a point exists is a consequence of compactness of Q, as Q is a bounded domain.
Set
A i= A2 = B(x!, 27 noQ  a surface ball.

Notice that any point A,,.(x,) by the Definition 5.1.1 lies outside the set B(x,,r) N Q and hence
the function G(-, A,,,(x,)) is harmonic in B(x,,r) N Q. By the Harnack inequality for a harmonic
function G(-, Ap,,,(x,)) applied on a ball B(x,) we have that G(x, Ap,,,(x,)) ®c G(x;, Apy (X)) and,
thus,

G (x, Appr (%)) 3 o (1 0 \ .

’ - ~ - ~ (2-0)

/B o O g G A ()2 (Sd(x,., 00) ® G(x,, A pyy, (30240
(5.39)

Indeed, if x € B(x;) € F,, then d(x,;,0Q) < d(x,0Q) < d(x;,0Q) + d(x,x;) < 16 - 27¥! and so
d(x,0Q) ~ 27k,

Next we show that we may consider points x; as the corkscrew points in Definition 5.1.1, so that
X; 1= Apna(x7). Since B(x;) € F; we have

d(x;, x7) = d(x;,0Q) < 27,

On the other hand
2—k+4 2—k+4

>

M
for any M > 2. However, in the definition of NTA domains we only have existence of some constant
M. If it happens that M < 2, we can always make it larger without losing anything in the said
definition. Hence, without loss of generality, we can assume M > 2. This shows that indeed x;, =
A,-44(x7). Now let us choose a point y, € Q\ B(x7, a2~%**). In fact, one can take a = M, see Section
5 Theorem 5.4 [CGN] and, moreover, assume that y, := Ag,(x}) with C = 5(M ).

We apply Theorem 5.1.4 to obtain the following estimate

d(x;,x7) =d(x;,0Q) >

G, Ag,(x7)) = GlAg, (). Ay-s(x;)

D2(=k+4) Ax (x%) % A—k+4
~ N ooy @ (AGG, 27)
| B(Ag,(x7), 27k+4)]
< 2HKHI-0) A5 (KA Y (5.40)

where in the last inequality we use the doubling property of the harmonic measure. Furthermore,
observe that

G(x;, Az, (X)) = G(Ag.(X)), X)) Re .y p G(App(x0), x;) = G(x;5 Appy(X0)), (5.41)
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and the change of point Ag,.(x7) to Ap,,,(X,) in the middle estimate requires explanation: Indeed,
choose Ag,(x7) € Q\ B(x], a2~***) and observe that, by the above discussion, we can consider the
same y, = Ag,(x7) for any point x*. We also recall that d(y,, 0€2) > ﬁ Moreover, we can assume that
d(App,(x0), Ag.(x7)) < Cr, where C = C(M, D). Therefore, points A, (x,) and Ag,.(x]) can be
joined by a Harnack chain of length depending only on C(M, D). This observation together with the
Harnack inequality allow us to replace in (5.41) point Ag,(x7) with A,/ (x,) by the price of possibly
increasing constants.
Upon applying estimates (5.40) and (5.41) in (5.39) we obtain the following:

G3 ’A *
/ (x DMr(sz))dx ~ Gz(xi?ADMr(xo))a)Agr(Xi)(Ai). (5.42)
Baper,  d(x,0Q)

In order to estimate the expression on the right-hand side, we appeal to the Carleson-type estimate
Theorem 5.1.5. Recall that G > 0 in Q and G(-, Ap,,,(x,)) = 0 on 0L, also that G(-, Ap,,,(x,)) 1s
subelliptic harmonic in Q \ {Ap,,,(x,)}. Moreover, notice that A(x,,2r) C A(x7,Cr). Indeed, let
y € A(x,,2r). Then,

d(y,x5) < d(y,xo) +d(xg, x) + d(x;, x5) < r + (r+ 27 + 27 < Cr)

The last step requires that 27% < Cr and under our assumptions this restriction is sufficient. Since,
otherwise suppose that 27% > r. Then for any x; it holds that d(x;,0€Q) > 8 - 27% > 8r. On the other
hand,

i, 0Q).

1

d(x;,0Q) <d(x;,x,) <r+2r, <r+ id(x

Hence d(x;,0Q) < %r, giving the contradiction.
We apply Theorem 5.1.5 on B(x}, Cr) to get that, for an exponent # > 0 as in Theorem 5.1.5, the
following inequality holds

) d(x, x)\ ?
G(xi,ADMr(xo))gC(M,r0)<—> sup G(x, Apy (%) | - (5.43)

Cr XEIB(x},CrNQ

Denote by z € dB(x},Cr) N Q a point, where the function G(-, Ap,,,.(x,)) attains its maximum.
(Notice that this maximum cannot be obtained at a point in B(x7, Cr) N d€2, as then it would be zero,
as G(+, Apy, (X)) = 0 on 9Q and by the maximum principle G would be zero on whole B(x}, Cr)NL2.
Therefore, the Carleson estimate in Theorem 5.1.7 gives us that

G(z, App(X0)) Sarry CG(Ac, (X)), Appy, (X))

for all z € Qn B(x},Cr).

Here, in order to apply Theorem 5.1.7, we need to slightly increase constant C on the right-hand
side of the estimate, so that point z belongs to B(x},Cr) N . Moreover, in the case Ap,,(x) €
B(x7,2Cr) N Q one needs additional chaining argument, by the definition of NTA domains, to join
Ap (%) with the point Ac,.(xy) & B(x;,2Cr) N Q. This however, can be done by the price of
increasing again constant C. From this discussion and (5.43) we infer, by the Dahlberg-type estimate
in Theorem 5.1.4, that

_ 28
G*(x:, Apry (%) S 8. 27 P20 ( oA D (A(x,, 1)) ?
i “*DMr\*0//) ~C Cr 0> .
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Then we apply the last estimate in (5.42) and in (5.38) to arrive at the following inequality

G3 ’ A —k 2p . 2 .
/ (X DMr(sz)) dx SC 2N5 Z <2_> r2(2_Q) ((DAO(X" )(A(XO’ r))) a)Aa(xi )(Al)
Bagrne  d(x,0Q) k d

Finally, recall that by the discussion following (5.41) we may join points Az, (x}) and A, (x,) by the
Harnack chain whose length depends only on M and D. By applying this observation, we conclude
that

a)ADMr(XO)(A(xO’ ) R Mp a)ACr(x;k)(A(xo’ ).

Hence, (5.38) becomes

G3(x, A X —k\ %
/ ( DMr(2 0))dx < IN? Z <2_> r2(2—Q)(wADM,(x0)(A(XO’ I‘)))3
B(xq,r)NQ d(x9 aQ) k r
and thus the proof of Claim 2 is completed.
CONTINUATION OF THE PROOF OF THEOREM 1.5.4.

We are now in a position to complete the proof of Theorem 1.5.4. Suppose that f € BM O(0€2, dw)
and u is the harmonic function in € such that u(x) = /09 f(y)do*(y).

Let B(x,,r) be a ball centered at x, € Q2 and a radius r < min{1,r,} and denote by A, = 2A :=
B(x,,2r) n 0Q2. We modify the boundary data as follows:

fi = = fa)Xea, o = = fa)Xoarea,

and, as in [JK] we let 4, and u, be their harmonic extensions, respectively, i.e.

u(x)= [ f(ydo*(y), i=1,2.
0Q

By direct application of Proposition 5.4.5 to f, and u; we obtain that

1

_ 2
a)ADMr(XO)(A) Bl | VHul | G(xa ADMr(XO))dX

1
S Q)ADMr(XO)(A) [) |VHM1|2G('X’ ADMr(xO))dx (544)
= 1—1 2 z 2
- EQ)ADMr(XO)(A) AQ |(f(y) - fAl)/}/cAll dw (y) < ”f”BMO(BQ,dw)’ (545)

where in the last inequality we use the John—Nirenberg theorem to get the equivalent definition of
the BMO spaces in terms of the L?(0Q, dw) functions with L>-integrable means, well-known in the
Euclidean setting. Indeed, such an equivalent definition holds, as by Theorem 2 in [CG], the harmonic
measure @” is doubling in Q for z enough away from the boundary of € and we may repeat the
appropriate part of the standard reasoning of Proposition 3.19 [BB], as long as the John-Nirenberg
lemma holds for the surface balls A. However, this follows by direct application of Theorem 5.2 in
[AKBY]:
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Let A = B(x,,r) N 0Q be a surface ball and f € BM O(0L2, dw?). Then for all A > 0

_ ch
0*({z €A |f(X) = fal > A}) < 207(A)e Mavoam,

where ¢ depends only on the doubling constant of w*.

The proof of John-Nirenberg lemma in [AKBY] requires only that the measure is doubling. By
applying this result to the metric space (092, d|,q, dw*), we conclude that indeed (5.45) holds.

By the gradient estimate for harmonic functions (see Proposition 2.2 in [LU]) and by the Harnack
inequality on B-balls, we have that for any x € Q

4c(n)

C
V(0] < g |u|s—/ f = /s 1deo®.
PN A0 g tasay D A0D) Jaes,

We denote by v(x) the last integral on the right-hand side, i.e. v(x) = /(39\c A, lf - f A, |dw*, and
note that v is a positive part of u,. Next, we apply the (local) boundary Harnack inequality to u, and
G(-, Apy (%)), see Theorem 5.1.6, followed by the use of (5.36) in Claim 1 and the Dahlberg-type
estimate in Theorem 5.1.4, to arrive at the following estimate holding for x € B(x,,r) N Q

U(Ag - (X0))

0(X) Spntr, G () Apnr, (XO))G(x, Apn(x0)

Q-2
r

<

Snateo W mwrowasn e A D) ©

-2
r

<

~n,M,r ”f” BM O(0Q,dw) Q)A2M’(x0)(A(x0, I‘)) G(X, ADMr(XO))‘

(x, App,(xp))

Since € in an NTA domain, we may apply the Harnack chain condition to join points A ,,,(x,) and
A, (x) with the chain of at most C balls and invoke the Harnack inequality to conclude that

0 (A(xg, 1)) Ry p @ PV (A(xg, 7).
We apply this observation together with estimates for v and |V 4u,| and apply (5.37) in Claim 2 to
obtain that
1

_ 2
@Apmr ) (A) B(XOJ)OQ|VH”2| G(x, App,(x))dx

<ClfI? SO / g
s BMO®0Q,dw) (wApurx0)(A))3 B(xy Q2 d(x,0Q)?

2
<Cllf ”BMO(ag,dw)'

Finally, we combine this estimate with the previous one for |V ,u, |, see (5.44), and note that V ju =
V u, + V yu,. From this the assertion of Theorem 1.5.4 follows. ]

5.5 The Fatou theorem

The goal of this chapter is to prove a version of the harmonic Fatou theorem in the Heisenberg setting.
As mentioned in the Preliminaries, the studies of such theorems have led to several important notions
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and results to which our manuscript appeals to, for instance, the NTA domains, the area function and
the nontangential maximal function, see e.g. [JK, Section 1]. Recall that the classical Fatou theorem
asserts that a bounded harmonic function defined on the half-space in R” has nontangential limits at
almost every point of the boundary, see e.g. [S, Theorem 2, Ch. VII], see also [Car2] for the local
version. For the NTA domains in the Euclidean spaces, the Fatou theorem with respect to the harmonic
measure is due to [JK, theorem 6.4]. In the subriemannian setting the analogous results are proven in
[CG, Theorem 4] for bounded NTA domains.

We show a counterpart of the Fatou theorem for (g, 6)-domains and, thus, for more general domains
than the NTA ones, see the discussion below. Moreover, we are able to show the refinement of classical
results, namely that nontangential limits of a harmonic function u exist outside a set of p-capacity
zero, not only zero measure. This, however, is obtained under stronger assumption on the global L?-
integrability of the gradient of harmonic function.

We will now recall necessary definitions.

Definition 5.5.1 (cf. Definition 2.7 [Nh1]). We say that a bounded domain  C H" is an (¢, §)-domain
if for all x, y € Q such that d(x, y) < ¢ there exists a rectifiable curve y C Q joining x and y satisfying

1) < Ldex, ),
E

and
d(z,0Q) > emin{d(x, z),d(y,z)} forall zony.

The definition of the (g, 6)-domains in the Euclidean setting was first given in [Jon] and a fact that
such domains are uniform and hence, John domains, is observed in Remark 4.2 in [V]. The above
definition has also a counterpart in more general Carnot groups, see Definition 4.1 in [Nh2], and leads
to an extension theorem applied in the proof of Theorem 6.1 below, see Theorem 1.1 in [Nh2]. It
is also known that a large class of NTA domains in H” satisfies the definition of (e, §)-domains, see
Theorem 1.2 in [Nh2] and the discussion following it. Moreover, bounded (g, 6)-domains are uniform,
see also [CT].

The results below employ the following notion of the Sobolev p-capacity.

Definition 5.5.2. Let 1 < p < co0. The Sobolev p-capacity of set E C H" is:
C,(E) = inf/H (lul” + 1V yul”)dX,

where the infimum is taken over all functions u € H W "»(H") such that u > 1 on E outside a p-
exceptional set of measure zero.

The importance of this notion comes from the fact that p-capacity is more refined than a measure.
There exist sets of measure zero such that their capacity is not zero. However, every set that has
capacity equal to zero, has also measure equal to zero.

There is a vast literature on the topic of p-capacities in the Euclidean and metric measure spaces
settings, see e.g. [EG], [HKST], [BB].

For the definition and basic properties of p-Sobolev capacities we refer to [HKST, Chapter 7.2].
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Theorem. 1.5.5 Let Q C H" be a bounded (g, 6)-domain and let further u be subelliptic harmonic in
Q. If fg |V yul? < oo for some 1 < p < 2n+2, then u has nontangential limits on 0Q along horizontal
curves in L outside the set of p-Sobolev capacity zero.

The proof of the theorem employs among other results the following auxiliary observations. The
proof of the first one is new in the literature, due to applying results of [AW].

Lemma 5.5.3. Let u be subelliptic harmonic function in Q C H". Then, for any Kordnyi—Reimann
ball B(x,r) C B(x,2r) C Q and all ¢ € R we have that for any p > 1

»
sup |u(y) —c| < C(p,n) <][ lu(y) — CI”dy> :
B(x,r) B(x,2r)

The result is well-known in the Euclidean setting and for .A-harmonic functions, see Lemma 3.4
in [HKM].

Proof. We apply the mean-value theorem in H”, see Theorem 4.4 in [AW] (cf. Theorem 5.5.4 in
[BLU]). By Definition 5.5.1 in [BLU] and pg. 253 we know that |V ,d|*(x) < 1 for any x # 0 and
so, we have that for any point y € B(x, r)

lu(y)| < ][ lu(z)|dz.
B(y,r)

By the Holder inequality and the fact that if u is harmonic then so is u — ¢, for any constant ¢ € R, we
obtain that

lu(y) —c| < <][ Iu(z)—cl”dz>p
B(y.r)

Since for any y € B(x, r) it holds that B(y,r) C B(x, 2r), the claim follows by the doubling property
of the Lebesgue measure. 0

Lemma 5.54. Letu € HW'P(H",R) for some 1 < p < 2n+ 2. Then

lim lu(x) — u(y)|Pdx = 0,

-0 Bece(x,r)

for all points x € H" except for a set E C H" of p-Sobolev capacity zero, where B denotes a ball in
Carnot-Carathéodory distance.

The result is a counterpart of Lemma 3.2 in [KMV] and Theorem 3.10.2 in [Zr] proven for R” and
the Bessel capacity. The proof follows from more general results for complete metric measure spaces
supporting the p-Poincaré inequality, see Theorem 4.5 in [KL] and also Theorem 9.2.8 in [HKST].
The metric space (H", d, dx) satisfies the assumption of these theorems, see e.g the discussion on
pg. 400-403 in [HKST].

In the proof below we also need the following non-local version of the p-Poincaré inequality for a
John domain Q C H", see Theorem 2.31 in [Fr].

/ 1 = fal'dx < Cq / IV, /17dx, (5.46)
Q Q
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where ]l < p< QforQ=2n+2,q9 = 5—i =2+ % and f is a Lipschitz function. Moreover, the
constant C,, is independent of f. Here, we specialize the statement in [Fr] to our setting. In particular,
observe that the balance condition in [Fr, Theorem 2.14] is with our p, g and Q equivalent to the so-
called relative lower volume decay, cf. (9.1.14) in [HKST]. This in turn holds if an underlying measure
is doubling, which is the case for the Lebesgue measure in H".

Proof of Theorem 1.5.5. In the proof we follow the steps of the corresponding Euclidean result, cf.
[KMV, Theorem 3.1]. Since fg |V ul? < oo, it holds by the Poincaré inequality (5.46) that u €
HW1(Q), as u is subelliptic harmonic in Q and so analytic, in particular Lipschitz in a bounded
domain Q.

We apply an extension result, see Theorem 1.1 in [Nh2] with G = H" and £ = HW ! allowing
us to conclude that u € HW '"*(H") provided that Q is an (g, §)-domain. Notice that in the notation
of [Nh1], it holds that 0 < rad(2) < diam , as € is connected and bounded, cf. Definition 4.2
in [Nh2] and also [Nh1].

Let us consider a cone I',(x,) at any x, € dQ \ E, where FE is the set in Lemma 5.5.4. Hence, for
any x € I' (x,) we have that

d(x,xy) < (1 + a)d(x,0Q).

Therefore, it holds that

Bee <x, %d(x, am) C Bee <x0, (1+a+ %)d(x, am).

Recall that the Koranyi—Reimann distance and the subriemannian distance are equivalent in H” with
a constant depending on n, see Chapter 5.1.1, and thus we have that

B<x,c%d(x, asz)> C Bqe <x, %d(x, am) C Bec <x0, (1+a+%)d(x, am) C B(xo, l(l+a+%)d(x, am).
C

We apply Lemma 5.5.3 with a = u(x,)) to get that

lu(x) — u(xy)| < C(p,n) < ][ lu(y) — u(xp)l” dy)
B(x,%d(x,aﬁ))

<cenol / ju(y) — uCxo)lPdy )
B(x0,§(1+a+%)d(x,ag))

where in the last step we also use a consequence of the doubling property (the relative lower volume
decay (9.1.14) in [HKST]):

| B (0, 11 + @+ Dd(x,00)| . <2d(x’ag)+l>2n+2
|B(x, La(x, ag))( c '

The assertion of the theorem now follows from Lemma 5.5.4 by letting d(x, 0Q2) — 0. [
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Appendix. The lower bound for a Green function

The following result, applied in Example 5.1, is of independent interest and to best of our knowledge
did not yet appear in the literature on Green functions in the subriemannian setting.

Proposition 5.5.5 (cf. (1.9) in Theorem (1.1), [GW]). Let Q C H" be a domain and G : QX Q - R
be a Green function of Q associated with the Laplacian A . Then, it holds

G(Z’ y) Z C(n7 AH)d(za Y)Z_Q,
forall z,y € Q satisfying d(z,y) < %d(y, 0Q).

Proof. We follow the steps of the corresponding proof in [GW]. Recall that G > 0, G(x, -) = 0 for
x € 0Q,G(x,y) = G(y,x) and, moreover, for any fixed y € €, the following representation formula
holds: G(-,y) = I'(-,y) — h,(-), where I is the fundamental solution I" with the pole at y € Q (in the
Perron-Brelot-Wiener sense, PWB for short). A function is a solution in PWB sense if it is the largest
subharmonic function with boundary values below the desired values. Thus, A}, G(x,y) = —6,(x)
which in the weak sense reads:

/ (ViG(x, ),V yp(x))dx = §(y), forany ¢ € CZ(Q). (5.47)
Q

Let z, y € Q satisfy the assumption d(z,y) < %d (y,0Q) and set ¥ := d(z, y). Define the test function
¢ € C;°(€2) such that:

. C
0<¢p<1inQ, ¢=1lp,s. ¢=0lg sy, andalso|V,e| < —
Then by applying (5.47) with the above ¢, we obtain that
C
<< IV 2 G(x, )ldx, (5.48)

" JBGy\BY.S)

for all x € B(y, %). Similarly, we consider another test function 7(x) := G(x, y)y*(x), where y €
C;°(€2) is such that

0<ywy<1inQ, y= 1|B(y’r)\B(y’%),
v = 0on B(y, ir) and outside the ball B(y, %r),

also [V4y| < g
r

Since Vyn(x) = V,G(x, Yw?(x) + 2G(x, y)w(x)V zw(x), upon substituting this expression into
(5.47), we obtain the following equation:

/ IV, G(x, y)|Pw?(x)dx + 2 / (Vi G(x, ),V gw(x)G(x, y)y(x)dx = 0,
Q Q
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as the support of y does not contain y. Now, the standard inequality 2ab < iaz + 4b* for a,b € R
together with the Holder inequality imply that

2
1-1 VaGalPdxs S sup Gxr@.
4 BoanBoL) " BuINBGD)

We combine this estimate with (5.48) to arrive at the following inequality

1
2
( / IV, G(x, y>|2dx> rs
B(.I\B(,3)

<crs! <C2rQ-2 sup G2(x, y)>

B(,3\B(G,%)

sn’AH Cer—ZG(z, y)’

1<

2B Ie)

where in the last step we also appeal to the Harnack inequality for harmonic function G(-, y). Thus,
the proof is completed upon recalling that r = d(z, y). U
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