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Summary
This thesis is concerned with studying the Quantitative Fatou Property (QFP) and the 𝜀-approximability,
as well as notions such as the nontangential maximal function, the area function and Carleson mea-
sures. Let us briefly describe QFP and 𝜀-approximability. Suppose that Ω is a domain in a space that
we are interested in and suppose there is a function 𝑢 ∶ Ω → ℝ. The 𝜀-approximability states that there
is a function which is sufficiently regular such that it is 𝜀 close to 𝑢 in 𝐿∞ norm and such that the norm
of its gradient gives rise to a Carleson measure. QFP usually follows from 𝜀-approximability. QFP
states that a function counting oscillations of 𝑢 is in the space 𝐿1

𝑙𝑜𝑐(𝜕Ω). It is a property stronger than
Fatou theorem which reads that for a harmonic function there exists a nontangential limit at almost
every point of the boundary of Ω. The thesis focuses on extending the results known for harmonic
functions in the Euclidean setting. The conducted research contains results pertaining to not neces-
sarily harmonic function in the Euclidean setting and to harmonic functions in settings that are not
Euclidean. To be precise, these non Euclidean settings are Riemanninan manifolds and Heisenberg
groups. The thesis is based on three papers, [AGG], [Gr], [AdGr].

Firstly, in Chapter 3 based on [AGG], the case of not necessarily harmonic functions in the Eu-
clidean setting is dealt with. We show that for Lipschitz-graph domains, i.e. superlevel sets of Lipschitz
functions, a certain class of functions satisfies QFP. This class contains harmonic functions, but it is
broader as nonnegative subharmonic functions are also elements of this class. We first show that for
such functions 𝜀-approximability holds and then how QFP follows from it.

Next chapter, that is Chapter 4 based on [Gr], handles the case of harmonic functions in Riemannian
manifolds. We deal with Lipschitz domains. We prove 𝜀-approximability of harmonic functions, and
more generally 𝐴-harmonic functions. Then we proceed with the proof of QFP.

Finally, in the last Chapter 5 based on [AdGr], we work in the setting of Heisenberg groups with
nontangentially accessible domains (NTA) and domains admissible for Dirichlet problem (ADP). We
prove several theorems concerning the Carleson measures, the nontangential maximal functions and
the area functions. We say that a measure 𝜇 defined on Ω is a Carleson measure if a measure of a ball
intersected with Ω, i.e. 𝜇(Ω ∩ 𝐵(𝑥, 𝑟)) for 𝑥 ∈ 𝜕Ω, is comparable with the measure of a boundary
ball, i.e. 𝜎(𝜕Ω ∩ 𝐵(𝑥, 𝑟)), where 𝜎 denotes a surface measure. The nontangential maximal function
of function 𝑢 is the supremum over a cone with vertex at the boundary of Ω of the absolute value of
𝑢. The area function of 𝑢 at point 𝑥 ∈ 𝜕Ω is the integral over a cone with vertex at 𝑥 of the square of
the norm of the gradient of 𝑢 multiplied by the distance to 𝜕Ω raised to the appropriate power. First,
we prove the characterization of Carleson measures in the first Heisenberg group ℍ1 using the nontan-
gential maximal function for regular enough domains. Then, we prove characterization of Carleson
measures on balls. We then prove that for a harmonic function 𝑢 on NTA domain Ω with boundary
data 𝑓 the 𝐿2 norm of the area function is bounded by the 𝐿2 norm of 𝑓 . We also prove the Carleson
type estimate, saying that the squared norm of the gradient of a harmonic function multiplied with the
Green function defines a Carleson measure. Lastly, we prove a refined version of the Fatou theorem.
The refinement lies in the fact that we prove that the set where the nontangential limit does not exist
is of capacity zero, rather than of measure zero.
Keywords: Quantitative Fatou Property, 𝜀-approximability, nontangential maximal function, area
function, Carleson measure.
AMS Subject Classification 2024: 58J05, 35J05, 35R01, 35R03, 31B05, 31C05.
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Streszczenie
Ta rozprawa dotyczy studiów nad Ilościową Własnością Fatou (IWF) oraz 𝜀-aproksymowalnością,
jak również pojęciami takimi jak niestyczna funckja maksymalna, funkcja area, czy miary Carlesona.
Teraz krótko opiszemy IWF i 𝜀-aproksymowalność. Niech Ω będzie dziedziną w interesującej nas
przestrzeni, a 𝑢∶Ω → ℝ będzie funkcją. Własność 𝜀-aproksymowalności mówi, że istnieje dostate-
cznie regularna funkcja, która jest odległa of 𝑢 o nie więcej niż 𝜀 w normie 𝐿∞ oraz norma jej gradi-
entu zadaje miarę Carlesona. Zazwyczaj IWF wynika z 𝜀-aproksymowalności. IWF mówi, że funkcja
licząca oscylacje 𝑢 jest w 𝐿1

𝑙𝑜𝑐(𝜕Ω). Ta własność jest silniejsza niż twierdzenie Fatou mówiące, że
funkcja harmoniczna ma granice niestyczne w prawie każdym punkcie brzegu Ω. Rozprawa skupia
się na rozszerzeniu wyników znanych dla funkcji harmonicznych w przestrzeniach euklidesowych.
Przeprowadzone badania zawierają wyniki dotyczące funkcji z klasy szerszej niż tylko harmoniczne
w przestrzeniach euklidesowych oraz dotyczące funkcji harmonicznych w przestrzeniach nieeuklides-
owych. Precyzyjniej, w rozmaitościach riemannowskich i grupach Heisenberga. Rozprawa jest oparta
na trzech artykułach [AGG], [Gr], [AdGr].

Wpierw, w rozdziale 3 opartym na [AGG], zajmujemy się przypadkiem funkcji niekoniecznie
harmonicznych w przestrzeniach euklidesowych. Pokazujemy, że dla dziedzin, które są nadpoziomi-
cami funkcji lipszycowskich, szczególna klasa funkcji spełnia IWF. Ta klasa zawiera funkcje harmon-
iczne, ale jest szersza, gdyż nieujemne funkcje subharmoniczne również są jej elementami. Najpierw
pokazujemy 𝜀-aproksymowalność, a potem jak wynika z niej IWF.

W rozdziale 4 opartym na [Gr] zajmujemy się przypadkiem funkcji harmonicznych na rozmaitoś-
ciach riemannowskich. Pracujemy z dziedzinami lipszycowskimi. Dowodzimy 𝜀-aproksymowalność
funkcji harmonicznych, ogólniej 𝐴-harmonicznych. Następnie pokazujemy IWF.

W ostatnim rozdziale 5 opartym na [AdGr] pracujemy w grupach Heisenberga z dziedzinami os-
iągalnymi niestycznie (NTA) oraz dziedzinami dopuszczalnymi dla zagadnienia Dirichleta (ADP).
Dowodzimy kilka twierdzeń dotyczących miar Carlesona, niestycznej funkcji maksymalnej i funkcji
area. Mówimy, że miara 𝜇 zdefiniowana na Ω jest miarą Carlesona, jeśli miara przecięcia kuli z Ω,
tj. 𝜇(Ω ∩ 𝐵(𝑥, 𝑟)) dla 𝑥 ∈ 𝜕Ω, jest porównywalna z miarą kuli brzegowej, tj. 𝜎(𝜕Ω ∩ 𝐵(𝑥, 𝑟)), gdzie
𝜎 oznacza miarę powierzchniową. Niestyczna funkcja maksymalna funkcji 𝑢 jest supremum wartości
bezwzględnej 𝑢 po stożku o wierzchołku na brzegu Ω. Funkcja area funkcji 𝑢 w punkcie 𝑥 ∈ 𝜕Ω jest
całką po stożku o wierzchołku w 𝑥 z normy gradientu 𝑢 w kwadracie pomnożonej przez odległość do
brzegu podniesioną do odpowiedniej potęgi. Wpierw, dowodzimy charakteryzację miar Carlesona w
pierwszej grupie Heisenberga ℍ1 dla dostatecznie regularnych dziedzin, używając niestycznej funcji
maksymalnej. Następnie, dowodzimy charakteryzację miar Carlesona dla kul. Potem pokazujemy,
że dla funkcji harmonicznej 𝑢 na dziedzinie Ω, która jest NTA, z wartością brzegową 𝑓 , norma 𝐿2

funkcji area dla funkcji 𝑢 szacuje się przez normę 𝐿2 funkcji 𝑓 . Dowodzimy również oszacowanie
typu Carlesona mówiące, że kwadrat normy gradientu funkcji harmonicznej pomnożony przez funkcję
Greena definiuje miarę Carlesona. Na koniec, dowodzimy mocniejszą wersję twierdzenia Fatou. Zmi-
ana polega na tym, że pokazujemy, że niestyczna granica nie istnieje na zbiorze o pojemności zero, a
nie tylko o mierze zero.

Słowa kluczowe: Ilościowa Własność Fatou, 𝜀-aproksymowalność, niestyczna funkcja maksy-
malna, funkcja area, miara Carlesona.
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Chapter 1

Introduction

1.1 Outline of the thesis
This thesis is divided into five chapters.

The first chapter is Introduction. It contains main theorems included in the thesis as well as moti-
vation for investigating given topics.

The second chapter is Preliminaries. It consists of definitions and notions used throughout the
thesis. Nevertheless, some definitions or notions may be repeated later when they are needed, so that
it is more comfortable for the reader.

Chapters three, four and five constitute the main part of the thesis. Each of them is based on one
paper and, in particular, includes proofs of theorems presented in the Introduction.

1.2 Quantitative Fatou Property and 𝜀-approximability
The Quantitative Fatou Property and the 𝜀-approximability are the key notions throughout the research
that led to this thesis.

The main motivation of the author was to expand the knowledge concerning Quantitative Fatou
Property (QFP) and 𝜀-approximability which is an essential tool used to prove QFP.

The author’s research interests grow from the studies of harmonic functions and their boundary
behaviour. A special interest is devoted to various settings of metric spaces, such as the Riemannian
manifolds, see Def. 4.1.1, and the Heisenberg groups, see Chapter 5.1.1, as well as important types of
domains, including Lipschitz and nontangentially accessible domains (NTA domains), see Chapters
2.9, 5.1.2 for detailed discussion of such domains and Definitions 2.9.4, 5.1.1 for definition of such
domains. Moreover, the Carleson measures, see Chapter 2.6 and Def. 5.1.8, play an important role
in these studies, along with the area/square functions and nontangential maximal functions, see Chap-
ters 2.5 and 5.1.4. The investigations involve tools from the geometric analysis and PDEs, harmonic
analysis and geometric measure theory.

Let us now describe the motivation for our studies and the prior results.
In 1906 it was proved by Fatou that a harmonic function defined on a planar disc has a radial limit

at almost every point of its boundary, i.e. a unit circle. Since then there was a huge advancement in
this area of research. Namely, theorems concerning existence of not only radial limits but rather non-
tangential limits were proved in a wide array of settings, up to nontangentially accessible domains. Let
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us list a few of the advancements that happened in the last 100 years. Stein proved the Fatou theorem
for half-space in [St1, Chapter VII]. Jerison-Kenig proved it for NTA domains in [JK]. Carleson intro-
duced (nowadays called) Carleson measures to deal with nontangential phenomena in [Car1], [Car2].
Fefferman-Stein dealt with estimates concerning nontangential maximal function and square function
in [FS]. There are also negative results giving examples when the Fatou theorem does not hold. Wolff
in [W] proved that there are 𝑝-harmonic functions for which nontangential limit exists only on the set
of measure zero, Manfredi-Weitsman in [MW] proved there is a bound on the Hausdorff dimension
of that set. See also Akman-Lewis-Vogel in [ALV] for more theory concerning such functions. The
Fatou theorem was investigated not only in the Euclidean space, but also in the setting of Carnot-
Carathéodory groups, see e.g. Capogna-Garofalo [CG].
Furthermore, there is a quantitative version of the Fatou theorem which gives a bound on the integral
oscillations of a function. Let us be more precise.
From now on Ω will denote an open connected bounded set which is a subset of either Euclidean space
or Riemannian manifold, unless stated otherwise.

We will denote by 𝑁 a function that counts oscillations of a harmonic function 𝑢. That function
for each point in the boundary 𝑞 ∈ 𝜕Ω takes each sequence of points, inside a truncated cone of
radius 𝑟 with vertex at 𝑞, such that function 𝑢 varies on consecutive points by at least 𝜀, and these
points converge sufficiently quickly (controlled by 𝜃). Then it takes the supremum of lengths of such
sequences. We write𝑁(𝑟, 𝜀, 𝜃)(𝑞), so that it is obvious what are the parameters. For precise definitions
of counting functions in different settings, see Chapter 2.4.

In different settings a counting function may be defined in different ways, see Bortz- Hofmann
[BH, Section 1], Garnett [G, Chapter VIII, Section 6], Kenig-Koch-Pipher-Toro [KKPT, Section 2].
For Lipschitz domains it is natural to consider cones. Nevertheless, in every of mentioned cases the
idea is the same. The goal is to somehow count oscillations.

One can reformulate a classical Fatou theorem, stating that nontangential limit exists at a.e. point
of boundary, in terms of counting functions. It is equivalent to saying that𝑁(𝑟, 𝜀, 𝜃) is finite for almost
every point 𝑞 ∈ 𝜕Ω and every 𝜀 > 0. However, a stronger quantitative Fatou theorem (QFT) reads:

Let 𝑢 ∶ Ω → ℝ be a bounded harmonic function with ‖𝑢‖∞ ≤ 1. Then for every point 𝑝 ∈ 𝜕Ω

sup
0<𝑟<diam(Ω)

1
𝑟𝑛−1 ∫𝜕Ω∩𝐵(𝑝,𝑟)

𝑁(𝑟, 𝜀, 𝜃)(𝑞)𝑑𝜎(𝑞) ≤ 𝐶(𝜀, 𝛼, 𝜃, 𝑛,Ω),

where 𝜀, 𝜃 are constants in the definition of the counting function and 𝛼 denotes an aperture of a
cone. In particular, constant 𝐶 is independent of 𝑢.

From this statement the classical theorem follows, but it is much stronger. Garnett proved that
for a harmonic function 𝑢 defined on upper half-plane and satisfying ‖𝑢‖∞ ≤ 1 the counting function
satisfies the estimate

∫𝐼
𝑁𝜀(𝑥)𝑑𝑥 ≤ 𝐶𝜀−7

for every 𝜀 > 0 with constant depending on 𝜀, 𝛼, 𝜃, but independent of 𝑢, where 𝐼 is any interval of
length 1.

It was proved by Bortz and Hofmann, see [BH], that in the Euclidean space for nontangentially
accessible (NTA) domains QFP is equivalent to uniform rectifiability of a boundary of a domain. NTA
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domains are a wide class of domains which include e.g. Lipschitz domains, Zygmund domains or qua-
sispheres, see e.g. Jerison-Kenig [JK].

Theorem 1.1 in [BH]. Let Ω ⊂ ℝ𝑛+1, 𝑛 ≥ 2, be an open set satisfying an interior corkscrew
condition, whose boundary is 𝑛-dimensional Ahlfors-David regular (see Chapter 2.8). Suppose that
 = −div𝐴∇ is a uniformly elliptic divergence form operator whose coefficients satisfy Eqs. 2.5 and
2.6. Then a quantitative Fatou theorem holds for bounded null solutions of  and its adjoint ∗, if and
only if 𝜕Ω is uniformly rectifiable.

Let us notice how remarkable this result is. It gives a deep connection between a theory of PDEs
and geometry of a domain. What is more, it states that a certain property of solutions of some PDEs is
equivalent to some geometric properties of a domain. One can say that such a theorem builds a bridge
between two branches of mathematics.

It is worth mentioning the importance of the notion of uniform rectifiability, see Def. 4.3.3. It
was introduced by David and Semmes, see [DS1], [DS2], [DS3]. See Mattila [M] for a survey about
uniform rectifiability. See also Bate-Hyde-Schul [BHS] for uniform rectifiability in metric spaces. It
was developed to prove boundedness of certain singular integral operators. It turns out that uniform
rectifiability is equivalent to that boundedness. It is a natural refinement of the notion of rectifiability,
which in a sense provides the broadest class of sets worth considering in geometric measure theory.
Making the notion of rectifiability uniform, allows to obtain a variety of quantitative results such as
e.g. QFT.

A crucial step in proving QFT is the so-called 𝜀-approximability. It was first established on the
upper half-plane for some 1 > 𝜀 > 0 by Varopoulos in [Va1], [Va2], and then proved for any 𝜀 > 0 by
Garnett in [G, Chapter VIII, Section 6, Theorem 6.1].

Later the property was proved for harmonic functions on Lipschitz domains by Dahlberg, see [D1].
In [KKPT] the result is proven for A-harmonic functions, i.e. solutions to real divergence form equation
div𝐴∇𝑢 = 0, in Lipschitz domains.

Fairly recently, it was shown that for real divergence form operator satisfying the Carleson measure
condition and pointwise local Lipschitz bound, 𝜀-approximability is equivalent to uniform rectifiabil-
ity, see Hofmann-Martell-Mayboroda [HMM1], Azzam-Garnett-Mourgoglou [AGMT].
Definition 1.2.1 (𝜀-approximability). Let 𝜀 > 0 and Ω ⊂ ℝ𝑛+1

+ satisfy (1.2). We say that a function
𝑢 ∶ Ω → ℝ is 𝜀-approximable, if there exists a function 𝜑 ∈ 𝐵𝑉𝑙𝑜𝑐(Ω) such that

1. ‖𝑢 − 𝜑‖∞ < 𝜀,
2. |∇𝜑| defines a Carleson measure on Ω, i.e. for every 𝑥 ∈ 𝜕Ω

sup
𝑟∈(0,diamΩ)

1
𝑟𝑛 ∫Ω∩𝐵(𝑥,𝑟)

|∇𝜑(𝑦)|dL 𝑛+1(𝑦) ≤ 𝐶𝜀, (1.1)

where L 𝑛+1 denotes (𝑛 + 1)-dimensional Lebesgue measure.
We refer to Chapter 2.10 for a definition of BV functions used in the above definition.
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Let us remark that condition (1.1) can be equivalently formulated in terms of the surface measure,
since domain Ω is given by the Lipschitz graph, and thus the surface measure is 𝑛-Ahlfors regular on
the boundary, implying that 𝜎(𝐵(𝑥, 𝑟) ∩ 𝜕Ω) ≈ 𝑟𝑛.

Here again, different authors have different definitions of 𝜀-approximability, see [D1], [G], [BH].
The difference lies in the function space to which 𝜑 is supposed to belong to. It turns out that in the
Euclidean setting all these definitions are equivalent. However, in a different setting it may not be the
case, see e.g. [Gr].

Let us stress that the importance of this condition comes from an observation that a natural candi-
date for a Carleson measure of a harmonic function, namely |∇𝑢(𝑥)|d𝑥, may fail to be a Carleson mea-
sure, see e.g. [G, Section 6, Ch. VIII]. In order to bypass this problem, the notion of 𝜀-approximability
has been introduced and has turned out to be important in the studies of the BMO extension problems
and Corona theorems ([G], Hofmann-Tapiola [HT]), the characterization of the uniform rectifiability
(Hofmann-Le-Morris [HLM], [HMM1], Hofmann-Martell-Mayboroda-Toro-Zhao [HMMTZ]) and in
the Quantitiative Fatou theorems ([G], [BH]).
Investigating QFP or 𝜀-approximability is important because it gives a connection between proper-
ties of certain functions defined on Ω and its geometry. In Euclidean setting QFP is equivalent to
𝜀-approximabilty, but it is also equivalent to uniform rectifiability of a boundary, see [BH], [HMM1].
Hence, in a sense geometry is determined by some properties of solutions of PDEs and vice versa.

In the hitherto work the author focused on investigating QFP and other notions related with har-
monic analysis on Euclidean spaces and beyond them. Firstly, in [AGG], we have been studying
𝜀-approximability in Euclidean space for a certain class of functions beyond harmonic ones. Then, in
[Gr], we proved 𝜀-approximability and QFT for Lipschitz domains in Riemannian manifolds. Lastly, in
[AdGr], we investigated properties of nontangential maximal functions, square functions and Carleson
measures in the Heisenberg groups.

1.3 Introduction to the third chapter
The third chapter is based on the manuscript [AGG]. There, we consider the Lipschitz-type domains
in the form

Ω = {(𝑥, 𝑦) ∈ ℝ𝑛+1
+ ∶ 𝑦 > 𝜙(𝑥)}, (1.2)

where 𝜙 ∶ ℝ𝑛 → ℝ is an 𝐿-Lipschitz function. On such domains, we study functions 𝑢 ∈ 𝐶2(Ω)
which satisfy the following condition on any ball 𝐵𝑟 ⊂ Ω such that 2𝐵𝑟 ⊂ Ω :

osc𝐵𝑟(𝑢) ≤ 𝐶
(

𝑟1−𝑛 ∫(1+𝜂)𝐵𝑟
(|∇𝑢|2 + |𝑢Δ𝑢|) dL 𝑛+1

)
1
2 (∗)

for some 𝜂 ∈ [0, 1) and 𝐶 > 0. Such a class has been considered by González-Koskela-Llorente-
Nicolau in [GKLN], when studying the relationships between the nontangential maximal function and
convenient versions of the area function of general (nonharmonic) functions. A priori, it might not
be clear how wide is this family of functions. However, Proposition 5.1 in [GKLN] shows that (∗)
follows from the following pointwise condition:

|𝑢Δ𝑢| ≤ 𝜃|∇𝑢|2 in Ω (#)
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for some 𝜃 > 0. However, further restriction on 𝜃 is necessary in order to control the area function by
the nontangential maximal function of 𝑢. Namely, we need to assume that 0 < 𝜃 < 1. From now on
we will say that a function 𝑢 satisfies condition (#) if 0 < 𝜃 < 1.

The class of functions (#) clearly encloses harmonic ones, but also others, see Proposition 3.3.3 in
Chapter 3.3. However, what is perhaps more important from our point of view is that, the oscillation
condition (∗) holds for several non-harmonic examples, for instance for non-negative 𝐶2 subharmonic
ones, see Proposition 3.3.1 or non-negative 𝐶2 functions 𝑢with subharmonic |∇𝑢|𝛼, for 𝛼 ∈ (0, 2], see
Proposition 3.3.2. Estimate (∗) together with (#) imply that

(osc𝐵𝑟(𝑢))
2 ≲𝑛,𝜃 𝑟

1−𝑛
∫(1+𝜂)𝐵𝑟

|∇𝑢|2 dL 𝑛+1, (1.3)

which can be understood as the Morrey-type estimate for 𝑢.
The main goal of the third chapter is to prove the following result.

Theorem 1.3.1. Let Ω ⊂ ℝ𝑛+1
+ be the Lipschitz-graph domain as in (1.2) and let further 𝑢 ∶ Ω → ℝ

be bounded and satisfy condition (#). Then for every 𝜀 > 0 function 𝑢 is 𝜀-approximable in Ω.

The result generalizes the existing ones, as it is to best of our knowledge, first 𝜀-approximability
result for functions that need not be solutions of PDEs in the divergence form. Moreover, we would
like to emphasize that condition (#) can be obsolete for some classes of functions and (∗) instead
suffices, as illustrated by nonnegative subharmonic functions, see Proposition 3.3.1 in Chapter 3.3.
This observation follows from a brief analysis of the proofs of Theorem 1.1 and Lemmas 4.3 and 4.5
in [GKLN].

The key consequence of Theorem 1.3.1 is the following Quantitative Fatou Theorem in Corol-
lary 1.3.2 (see Definition 2.4.1 of the counting function).
Corollary 1.3.2 (Quantitative Fatou Theorem). Let Ω ⊂ ℝ𝑛+1

+ be the Lipschitz-graph domain as in
(1.2) and let further 𝑢 ∶ Ω → ℝ satisfy condition (#) and be bounded with ‖𝑢‖∞ ≤ 1. Then for every
point 𝜔 ∈ 𝜕Ω

sup
0<𝑟<𝑟0

1
𝑟𝑛 ∫𝜕Ω∩𝐵(𝜔,𝑟)

𝑁(𝑟, 𝜀, 𝛽)(𝑧)𝑑𝜎(𝑧) ≤ 𝐶(𝜀, 𝛼, 𝛽, 𝑛,Ω),

where 𝜀, 𝛼, 𝛽 are constants in the definition of the counting function 𝑁 . In particular, constant 𝐶 is a
independent of 𝑢.

The proof of Theorem 1.3.1 utilizes methods used in [G, Chapter VIII, Section 6] and in [HMM1].
We use dyadic decomposition of the boundary and a Whitney-type covering of a domain chosen in
such a way that a union of appropriate elements of it forms a "nice" set. However, our approach mixes
constructions from [G] and [HMM1] in a new way. What is more, we introduced some new elements
to the constructions employed in the proof. Let us mention Proposition 3.2.6. In the aforementioned
works it is an essential part of the proof of 𝜀-approximability. However, in our setting it was impossible
to use the same methods as the mentioned authors. Therefore, we had to come up with a new idea of
a proof of that result.
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1.4 Introduction to the fourth chapter
The fourth chapter is based on the paper [Gr].

Our goal is to extend Quantitative Fatou Property to the setting of Riemannian manifolds. They are
much broader than Euclidean space, however in a sense they are a first step in generalizing any results
from ℝ𝑛 to more general metric measure spaces, see Mitrea-Taylor [MT]. We believe that Riemannian
manifolds are an interesting class of spaces as they arise naturally in a variety of problems and hence
better understanding of boundary behaviour of harmonic functions may be useful. Moreover, under-
standing QFP in Riemannian setting gives as an insight into the possibility of investigating it in other
non-Euclidean spaces. A priori one does not know whether QFP should hold in a setting different than
the Euclidean one. Knowing that QFP is true in Riemannian setting gives hope that it may hold in even
more general settings. Furthermore, the fact that QFP holds in different settings would suggest that
it is a notion deeply intertwined with the notion of harmonicity and independent from the underlying
space. The main difference between the Euclidean space and a Riemannian manifold is the fact that
there are no global coordinates in a Riemannian manifold. Therefore, we need to deal with charts and
then glue them. What is more, the fact that the space is curved makes a geometry different and finding
"nice" paths joining points requires more effort.

Since some notions are not even yet defined outside Euclidean space or fully established, e.g.
uniform rectifiability, see [BHS], [M, Chapters 6 and 9], we deal with the case of Lipschitz domains.
We prove the following:
Theorem 1.4.1. Let 𝑀 be a complete Riemannian manifold and let further Ω ⊂ 𝑀𝑛 be a Lipschitz
domain. Furthermore, let 𝑢 ∶ Ω → ℝ be a harmonic bounded function with ‖𝑢‖∞ ≤ 1. Then for every
point 𝑝 ∈ 𝜕Ω

sup
0<𝑟<rinj

1
𝑟𝑛−1 ∫𝜕Ω∩𝐵(𝑝,𝑟)

𝑁(𝑟, 𝜀, 𝜃)(𝑞)𝑑𝜎(𝑞) ≤ 𝐶(𝜀, 𝛼, 𝜃, 𝑛,Ω),

where 𝜀, 𝛼, 𝜃 are constants in the definition of the counting function. In particular, constant 𝐶 is
independent of 𝑢.

One of the key auxiliary results to prove Theorem 1.4.1 is the following 𝜀-approximability property:
Theorem 1.4.2. Let 𝑀 be an 𝑛-dimensional complete Riemannian manifold and Ω ⊂ 𝑀 be an
open bounded connected Lipschitz set. Let 𝑢 be a harmonic bounded function in Ω. Then 𝑢 is 𝜀-
approximable for every 𝜀 > 0.

Main difficulty is the fact that we do not have one map available on whole of Ω. Therefore we deal
with pieces of Ω where there are maps. However, we cannot take any open sets as our charts. It is
essential that we choose them to be Lipschitz. What is more, we need to make sure that the number
of sets covering our domain is bounded. On these pieces we take local 𝜀-approximants, which exists
due to [HMM1]. We need to show that we can choose all maps in a uniform way and that we can later
glue everything together to obtain 𝜀-approximant 𝜑 on Ω. Then we have to show that the integrals of
the norm of its derivative over cones, i.e. ∫Γ |∇𝜑| gives a Carleson measure.

To obtain Theorem 1.4.1 we need to come up with a bit different approach than in the Euclidean
case. In the Euclidean case there is usually a certain way to integrate counting function to obtain de-
sired estimate. We deal with it by taking an appropriately constructed curve and its neighbourhood
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contained in a nontangential cone, see Lemma 4.4.4. The curve joins consecutive points from admis-
sible sequence, see definition of a counting function in Chapter 2.4. We need it to have bounded length
and derivative. Then, using coarea formula enables us to arrive at our estimate, see Lemma 4.4.7. In
our proof we follow the idea of [KKPT], but adjust it to the setting of Riemannian manifolds.

1.5 Introduction to the fifth chapter
The fifth chapter is based on the paper [AdGr]. The Carleson measures play an important role in
geometric mapping theory and, especially in recent years, also in the studies of relations between
geometry, analysis and the measure theory. The importance of such measures has been growing in
the last decade via the results on PDEs on rough domains, for instance, the studies of the solvability
of the Dirichlet problems for elliptic equations, in analysis of the boundary behaviour of harmonic
functions, also in relations to the square functions on NTA domains or uniformly rectifiable sets, see
e.g. [HMM1], [HLM], [HMMTZ]. From our point of view the two main motivations come from
the investigations of the uniform rectifiability and the 𝜀-approximation, see e.g. [BH], [GMT], [HT]
and from the Hardy spaces of quasiconformal mappings, see [AK], [AF]. Moreover, it turns out that
the Carleson measures are closely related to the geometry of functions and mappings also in the set-
tings beyond the Euclidean one, for example on homogeneous spaces Hofmann-Mitrea-Mitrea-Morris
[HMMM] and on Riemannian manifolds, see Mitrea-Mitrea-Mitrea-Schmutzler [MMMS], [Gr] and
in the Heisenberg group ℍ1 see [AF]. Even though, the need for further studies of Carleson measures
in the non-Euclidean setting arises, this topic in the subriemannian setting has not yet been explored
as much, as in the Euclidean spaces. Therefore, one of the goals of the fifth chapter is to pursue this
direction of investigations. In particular, we focus our attention on the Heisenberg groups ℍ𝑛, espe-
cially on the first Heisenberg group ℍ1 and on the subelliptic harmonic functions, see Chapter 5.1.3 for
definition of such functions, on bounded nontangentially accessible domains (NTA domains) and on
bounded domains admissible for the Dirichlet problem (ADP domains), see Chapter 5.1.2 for details
about NTA and ADP domains. The fundamental results in the Euclidean setting that have inspired us
are discussed in Chapters I and VI of the book [G] and in [JK], while the main tools in the potential
theory in the Heisenberg groups employed in this work are proven in [CG], Capogna-Garofalo-Nhieu
[CGN].

Let us present and briefly discuss our main results. We show the following characterization of the
Carleson measures on ADP domain in ℍ1 in terms of the level sets of the harmonic functions. The
lemma is well known in the setting of the upper-half plane, see Lemma 5.5, Chapter I in [G]. We refer
to Chapter 2.6 for the discussion of the Carleson measures and their properties.
Theorem 1.5.1. Let Ω ⊂ ℍ1 be a smooth 𝐴𝐷𝑃 domain with 3-regular boundary and 𝜇 be a positive
measure on Ω. Then 𝜇 is a Carleson measure on Ω if and only if there exists a constant 𝐶 = 𝐶(𝛼)
such that for every harmonic function 𝑢 on Ω and every 𝜆 > 0 it holds that

𝜇({𝑥 ∈ Ω ∶ |𝑢(𝑥)| > 𝜆}) ≤ 𝐶𝜎({𝜔 ∈ 𝜕Ω ∶ 𝑁𝛼𝑢(𝜔) > 𝜆}), (1.4)
where 𝑁𝛼𝑢 stands for the nontangential maximal function of 𝑢 (see Definition 5.1.9) and 𝜎 is the
surface measure on 𝜕Ω, i.e. 𝜎 = 𝐻2

⌊𝜕Ω. Moreover, if 𝐶 is the least constant such that (1.4) holds,
then the Carleson constant of 𝜇 satisfies 𝛾𝜇 ≈𝛼 𝐶 .
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While the proof of the sufficiency part of the theorem follows by applying fairly general approach
based on the Whitney-type decomposition, the proof of the necessity part relies on the potential-
theoretic properties of harmonic functions, including the boundary Harnack estimate in Garofalo-Phuc
[GP] and the results proven in [CGN].

Our next result generalizes a characterization of Carleson measures on the unit disc in the Euclidean
plane, cf. Lemma 3.3 in Chapter VI.3 in [G]. One of the key features that give the result in the plane
is the rich family of Möbius self-transformations of a disc, a property which is no longer true in the
subriemannian setting due to the rigidity of Carnot groups. However, recently in [AF, Section 4.1]
a counterpart of Möbius self-maps of a ball in ℝ𝑛 has been introduced on the Korányi-Reimann unit
ball 𝐵(0, 1) ⊂ ℍ1 by the price of giving up that the target domain remains a ball, see the definition of
maps 𝑇 ∶= 𝑇𝑥,𝑎,𝜌 in (5.16) and their property (5.18). The following result characterizes the Carleson
measures on 𝐵(0, 1) in terms of the boundary growth of 1-quasiconformal mappings 𝑇 .
Theorem 1.5.2. A measure 𝜇 on the unit gauge ball 𝐵 ∶= 𝐵(0, 1) ⊂ ℍ1 is a Carleson measure if and
only if

∫𝐵

(𝑑(𝑇𝑥,𝑎,𝜌(𝑦), 𝜕𝑇𝑥,𝑎,𝜌(𝐵))
𝑑(𝑦, 𝜕𝐵)

)3

d𝜇(𝑦) =𝑀 <∞, (1.5)
for all 𝑥 ∈ 𝐵, 𝑎 ∈ ℍ1 ⧵ 𝐵, and 𝜌 > 0 such that 𝜌 ≲ min{𝑑(𝑥, 𝜕𝐵), 𝑑(𝑎, 𝜕𝐵)} and 𝜌 ≈ 𝑑(𝑎, 𝑥).

In Remark 5.3.1 we also point to the generalization of the above theorem to the setting of higher
order Heisenberg groups ℍ𝑛 for 𝑛 ≥ 2.

One of the main results of this chapter is the 𝐿2-estimate for the square function of a subelliptic
harmonic function on a bounded NTA domain in ℍ𝑛 with respect to the 𝐿2 boundary data and the
harmonic measure 𝜔. The result generalizes Theorem 9.1 in [JK] proved for bounded NTA domains in
ℝ𝑛. We refer to Chapters 2.5 and 5.1.4 for the definition and further discussion of the square functions.
Theorem 1.5.3 (𝐿2-boundedness of the square function). Let Ω ⊂ ℍ𝑛 be a bounded NTA domain. Let
further 𝑓 ∈ 𝐿2(d𝜔) and 𝑢(𝑥) ∶= ∫𝜕Ω 𝑓 (𝑦)d𝜔

𝑥(𝑦). Then, the following estimate holds for the square
function 𝑆𝛼 of a subelliptic harmonic function 𝑢 in Ω

‖𝑆𝛼𝑢‖𝐿2(d𝜔) ≤ 𝐶‖𝑓‖𝐿2(d𝜔),

where the constant 𝐶 depends on 𝑛,𝑀 , constant from Harnack inequality, 𝛼,Ω.

Our second main result is the subriemannian counterpart of the Euclidean result, i.e. Theorem 9.6
in [JK]. Moreover, it also generalizes Theorem 3.4 in [G, Chapter VI.3] for the unit disc in the plane,
see Remark 5.4.3. We further refer to Example 5.4.4 for the case of the unit gauge ball in ℍ𝑛, where the
Green function 𝐺 in the assertion of Theorem 1.5.4 can be explicitly estimated from below in terms
of the distance function, thus providing more classical and handy estimate (5.26). In order to obtain
this estimate we prove Proposition 5.5.5 in the Appendix.
Theorem 1.5.4 (Carleson measure estimate). Let Ω ⊂ ℍ𝑛 be a bounded NTA domain and 𝑢 be subel-
liptic harmonic in Ω such that 𝑢(𝑥) = ∫𝜕Ω 𝑓 (𝑦)d𝜔

𝑥(𝑦) for some 𝑓 ∈ 𝐵𝑀𝑂(𝜕Ω). Further, let 𝐷 > 1.
Then for any choice of𝐷 there exists a constant 𝐶 = 𝐶(𝐷) > 0 such that for any ball𝐵(𝑥0, 𝑟) centered
at 𝑥0 ∈ 𝜕Ω ⧵ ΣΩ with any 0 < 𝑟 < 𝑟0 ≤ min{1, 𝑑(𝑥0,ΣΩ)

𝑀
} it holds that

∫𝐵(𝑥0,𝑟)∩Ω
|∇𝐻𝑢|

2𝐺(𝑥,𝐴𝑟(𝑥0))d𝑥 ≤ 𝐶𝜔(𝐵(𝑥0, 𝑟) ∩ 𝜕Ω),
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where constant 𝐶 depends on 𝑛,𝑀, 𝑟0 and ‖𝑓‖𝐵𝑀𝑂(𝜕Ω).

Among corollaries of Theorem 1.5.4 we show the corresponding Carleson estimates on an ADP
domain (Corollary 5.4.1) and on the (Euclidean) 𝐶1,1-domain (Corollary 5.4.2).

The proof of Theorem 1.5.4 consists of several steps and auxiliary observations which largely
follow the steps of the corresponding proof of Theorem 9.6 in [JK]. However, we expand several
arguments in [JK] and clarify steps which in the new setting of Heisenberg groups require using the
subriemannian tools. In particular, we frequently use a variety of properties of subelliptic harmonic
functions such as e.g. Harnack inequality. What is more, we heavily rely on the theory of Green
functions in subriemannian setting as well as harmonic measures in that setting. We also employ re-
sults from the theory of metric measure spaces concerning existence of Whitney-type decompositions.
Moreover, our proof requires John-Nirenberg theorem in the subriemannian setting.

Our last result, is a counterpart of the classical Fatou theorem for harmonic functions on (𝜀, 𝛿)-
domains in ℍ𝑛, under the condition of the 𝐿𝑝-integrability of the gradient of the function. The (𝜀, 𝛿)-
domains in ℍ𝑛 can be thought of as the quantified version of the uniform domains and contain large
family of NTA domains.
Theorem 1.5.5. Let Ω ⊂ ℍ𝑛 be a bounded (𝜀, 𝛿)-domain and let further 𝑢 be harmonic in Ω. If
∫Ω |∇𝐻𝑢|𝑝 < ∞ for some 1 < 𝑝 ≤ 2𝑛 + 2, then 𝑢 has nontangential limits on 𝜕Ω along horizontal
curves in Ω outside the set of 𝑝-Sobolev capacity zero.

This result extends previous observations in the Heisenberg setting in two ways:
1. the considered domains are slightly more general than in a Fatou theorem on NTA domains in

ℍ𝑛 [CG, Theorem 4] and in ℝ𝑛 [JK, Theorem 6.4];
2. the assertion gives the existence of nontangential limits not only up to the measure zero set as

e.g. in [CG], but outside the set of 𝑝-Sobolev capacity zero, which is a refined measure.
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Chapter 2

Preliminaries

The goal of this chapter is to introduce and discuss some necessary definitions and theorems used
throughout this thesis. The chapter is divided into subchapters in such a way that each subchapter
corresponds to one of the notion used in the thesis.

2.1 Notation
Let us begin by introducing some notation used throughout this work.

• 𝑎 ≈ 𝑏 means that there exists a constant 𝐶 > 0 such that
1
𝐶
𝑎 ≤ 𝑏 ≤ 𝐶𝑎,

if the symbol ≈ has something in the lower index e.g. ≈𝑛 it means that the constant depends on
𝑛,

• 𝑎 ≲ 𝑏 means that there exists a constant 𝐶 > 0 such that
𝑎 ≤ 𝐶𝑏,

• 𝑛 denotes the 𝑛-Hausdorff measure of a set,
• 𝑑(𝑥,𝐸) ∶= dist(𝑥,𝐸) for a point 𝑥 ∈ 𝑋 and 𝐸 ⊂ 𝑋, where (𝑋, 𝑑) is a metric space,

2.2 Lipschitz-graph domain
In Chapter 3, we consider the Lipschitz-graph domains in the form

Ω = {(𝑥, 𝑦) ∈ ℝ𝑛+1
+ ∶ 𝑦 > 𝜙(𝑥)}, (2.1)

where 𝜙 ∶ ℝ𝑛 → ℝ is an 𝐿-Lipschitz function.
Unless specified otherwise, in Chapter 3, by Ω we always denote a Lipschitz-type domain as

in (2.1).
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Such domains were studied primarily in [GKLN]. The authors proved inequalities between norms
of the area function and the nontangential maximal function of functions from a certain class which
was broader than harmonic functions. Notice that a half-space is a special case of such domains.
The case of a half-space was studied in [G], where the author proved 𝜀-approximability of harmonic
functions on a half-plane. The case of half-spaces was also researched in [FS], where the authors
proved inequalities similar to those in [GKLN].

Notice that Lipschitz-graph domains are also a special case of Lipschitz domains. The notions of
𝜀-approximability and inequalities between the area and nontangential maximal functions for Lipschitz
domains were studied in e.g. [D1] and [KKPT].

2.3 Cones
In Chapter 3 we use the following definitions of a cone, see also Figures 2.1 and 2.2 below.
Definition 2.3.1. For 𝛼 > 0 a cone with a vertex at point (𝑥, 𝜙(𝑥)) ∈ 𝜕Ω and aperture 𝛼 is defined as
follows

Γ𝛼(𝑥) ∶= {(𝑧, 𝑦) ∈ ℝ𝑛+1
+ ∶ |𝑧 − 𝑥| < 𝛼(𝑦 − 𝜙(𝑥))}.

Notice that for every 𝑥 ∈ ℝ𝑛 a cone Γ𝛼(𝑥) is congruent to a cone {(𝑥, 𝑦) ∈ ℝ𝑛+1
+ ∶ |𝑥| < 𝛼𝑦}.

However, such cones need not be contained in domain Ω. Therefore, we introduce the truncated cone:
Γ𝛼,𝑠,𝑡(𝑥) ∶= Γ𝛼(𝑥) ∩ {(𝑧, 𝑦) ∶ 𝜙(𝑧) + 𝑠 < 𝑦 < 𝜙(𝑧) + 𝑡},

where 0 ≤ 𝑠 ≤ 𝑡 ≤ ∞. In that notation Γ𝛼(𝑥) = Γ𝛼,0,∞(𝑥). Since function 𝜙 is 𝐿-Lipschitz, it holds
that Γ𝛼,0,𝑡(𝑥) ⊂ Ω only for 𝛼 < 1

𝐿
(and hence, from now on we only consider 𝛼 < 1

𝐿
).

In Chapter 3 we also use a different notion of truncated cones in Corollary 1.3.2, in particular in
the definition of the counting function, see. Def. 2.4.1.
Definition 2.3.2 (Cones truncated with hypersurfaces). For 0 < 𝛼 < 1

𝐿
, 0 ≤ 𝑠 < 𝑡 ≤ ∞ and a point

(𝑥, 𝜙(𝑥)) ∈ 𝜕Ω we set
Γ̃𝛼,𝑠,𝑡(𝑥) = Γ𝛼(𝑥) ∩

(

𝐻𝑥
𝜙,𝑠 ⧵𝐻

𝑥
𝜙,𝑡

)

,

where 𝐻𝑥
𝜙,𝑟 = {(𝑧, 𝑦) ∈ ℝ𝑛+1 ∶ 𝑦 > 𝜙(𝑥) + 𝑟}.

However, in Chapter 4 we use a different definition of a cone, more appropriate for the Riemannian
setting. We define these different cones in Chapter 4.1 so that it is more convenient to the reader, see
Def. 4.1.13, 4.1.14.

The two notions of a cone are different from each other. The cones used in Chapter 3 are congruent
to Euclidean cones, whereas the cones used in Chapter 4 are curvilinear and their shape depends on
the distance to the boundary of a domain.

2.4 Counting function
First, we present the definition used in Chapter 3.
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Γ𝛼(𝑥) = Γ𝛼,0,∞(𝑥)

Graph(𝜙)

x

Graph(𝜙 + 𝑠)

Graph(𝜙 + 𝑡)Γ𝛼,𝑠,𝑡(𝑥)

Γ𝛼,0,𝑠(𝑥)

Γ𝛼,𝑡,∞(𝑥)

ℝ𝑛

Figure 2.1: This figure depicts cones used in Chapter 3 from Def. 2.3.1.

Γ𝛼(𝑥) = Γ𝛼,0,∞(𝑥)

Graph(𝜙)

x ℝ𝑛

{(𝑧, 𝑦) ∈ ℝ𝑛+1 ∶ 𝑦 = 𝜙(𝑥) + 𝑠}

{(𝑧, 𝑦) ∈ ℝ𝑛+1 ∶ 𝑦 = 𝜙(𝑥) + 𝑡}
Γ̃𝛼,𝑠,𝑡(𝑥)

Figure 2.2: This figure depicts cones used in Chapter 3 from Def. 2.3.2.
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Definition 2.4.1 (Counting function). Let Γ̃𝛼,0,𝑟(𝑥) be a truncated cone with the vertex at a point
(𝑥, 𝜙(𝑥)) ∈ 𝜕Ω. Let 𝑢 be a continuous function defined on Ω. Fix 𝜀 > 0, 0 < 𝛽 < 1 and 0 < 𝑟 < 1.
We say that a sequence of points (𝑥𝑛, 𝑡𝑛) such that (𝑥𝑛, 𝑡𝑛) ∈ Γ̃𝛼,0,𝑟(𝑥) is (𝑟, 𝜀, 𝛽, 𝑥)-admissible for 𝑢 if

|𝑢(𝑥𝑛, 𝑡𝑛) − 𝑢(𝑥𝑛−1, 𝑡𝑛−1)| ≥ 𝜀 and 𝑡𝑛 − 𝜙(𝑥) < 𝛽(𝑡𝑛−1 − 𝜙(𝑥)).

Set
𝑁(𝑟, 𝜀, 𝛽)(𝑥) ∶= sup{𝑘 ∶ there exists an (𝑟, 𝜀, 𝛽, 𝑥)-admissible sequence of length 𝑘}.

We will call 𝑁 a counting function.
In Chapter 4 we use a different definition of the counting function 𝑁 , more appropriate for the

Riemannian setting. We give that definition in Chapter 4.1, see Definition 4.1.15.
The main difference is the type of cones used. The first definition is utilized in Chapter 3 and

the definition with Riemannian manifolds is employed in Chapter 4. Another discrepancy lies in the
distances. The first definition makes use of the Euclidean distance, while the second uses the distance
on a manifold.

2.5 Area and nontangential maximal functions
One may find area function (sometimes called square function) and nontangential maximal functions
e.g. in works [D1], [FS], [JK], [KKPT] and many more. The area function and the nontangential
maximal function have been studied by many authors. Let us mention the work of Dahlberg [D2] and
Dahlberg-Jerison-Kenig [DJK], see also Stein [St2] for an interesting account on the history of the
notion of the area/square function. In these papers the authors prove the comparability of 𝐿𝑝 norms of
the area function and the nontangential maximal function under certain conditions. The nontangential
maximal function plays a role similar to the role of Hardy-Littlewood maximal function in classical
analysis. The area/square function has been investigated by many authors, see e.g. [St1], [FS]. It
arises naturally in a lot of estimates regarding e.g. harmonic functions and that is why doing research
pertaining to it is useful in harmonic analysis. These notions provide useful tools in harmonic analysis
and related fields. It actually turns out that the comparability of their norms is equivalent to a uniform
rectifiability of a boundary of the domain, see e.g. [HMM1], [HMM2]. Hence, it gives a connection
between analysis and geometry.
Definition 2.5.1 (Area function). Let 𝑓 ∶ Ω → [0,∞] be a measurable function. The area function
associated to the density 𝑓 is defined by

(𝐴𝛼𝑓 )(𝑥) =
(

∫Γ𝛼(𝑥)
𝑓 (𝑧, 𝑦)(𝑦 − 𝜙(𝑥))1−𝑛d𝑧d𝑦

)
1
2

, 𝑥 ∈ ℝ𝑛.

Similarly, we define the truncated version of the area function 𝐴𝛼,𝑠,𝑡𝑓 with respect to cones Γ𝛼,𝑠,𝑡.In what follows we are mostly interested in the case 𝑓 = |∇𝑢|2 for a function 𝑢 ∈ 𝐶2(Ω). Then we
write

(𝐴𝛼,𝑠,𝑡𝑢)(𝑥) ∶= (𝐴𝛼,𝑠,𝑡|∇𝑢|2)(𝑥) =

(

∫Γ𝛼,𝑠,𝑡(𝑥)
|∇𝑢(𝑧, 𝑦)|2(𝑦 − 𝜙(𝑥))1−𝑛d𝑧d𝑦

)
1
2

.
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Definition 2.5.2 (Nontangential maximal function). Let 𝑓 ∶ Ω → [0,∞] be a continuous function.
The nontangential maximal function function of 𝑢 is defined as follows

(𝑁𝛼𝑓 )(𝑥) = sup
Γ𝛼(𝑥)

|𝑓 (𝑦)|, 𝑥 ∈ ℝ𝑛.

As above, the truncated nontangential maximal function of 𝑢, denoted by 𝑁𝛼,𝑠,𝑡𝑢 is defined analo-
gously with respect to cones Γ𝛼,𝑠,𝑡.

2.6 Carleson measures
The following notion will be employed in Chapters 3.2, 4.3.
Definition 2.6.1 (Carleson measure in ℝ𝑛+1). Let Ω be an open set in ℝ𝑛+1. We say that a (positive)
Borel measure 𝜇 on Ω is an 𝛼-Carleson measure on Ω, if there exists a constant 𝐶 > 0 such that

𝜇(Ω ∩ 𝐵(𝑥, 𝑟)) ≤ 𝐶𝑟𝑛, for all 𝑥 ∈ 𝜕Ω and 𝑟 > 0.

The Carleson measure constant of 𝜇 is defined as the infimum of constants 𝐶 above.
Carleson measures were introduced by Carleson in [Car1] to deal with interpolating by bounded

analytic functions and the famous corona problem. Carleson measures are also used in the definition
of 𝜀-approximability. Namely, the gradient of an approximation gives rise to a Carleson measure.
As already mentioned, it may happen that a gradient of even a harmonic function is not a Carleson
measure. Therefore, it is necessary to have an object such as a Carleson measure to obtain Quantitative
Fatou Property. Since Carleson defined these measures, they have been used by many authors. Garnett
used this notion in [G] to prove 𝜀-approximability of harmonic functions in upper half-plane. They
were used by Dahlberg in [D1], to prove 𝜀-approximability in Lipschitz domains. It was used in other
works concerning harmonic analysis such as [KKPT], [HMM1], [BH] and many more.

It is a useful tool that allows to obtain estimates of certain integrals by the measure of the boundary
of a set.

For the definition of the Carleson measures in Heisenberg groups, see Definition 5.1.8 in Chapter
5.1.4.

2.7 Cavalieri’s principle
The following well-known representation of an integral of the superlevel sets will frequently be used
in Chapter 3. Let Ω ⊂ ℝ𝑛, 𝜇 be a measure on Ω and 𝑓 ∶ Ω → ℝ+ be measurable. then for every
monotone Φ ∈ 𝐶1, Φ ∶ ℝ+ → ℝ+, with Φ(0) = 0, we have

∫Ω
Φ(𝑓 (𝑥))d𝜇 = ∫

∞

0
Φ′(𝜆)𝜇({𝑥 ∈ Ω ∶ 𝑓 (𝑥) > 𝜆})d𝜆.
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2.8 Ahlfors-David regularity
The following definitions will be employed in Chapters 4.3, 4.4, 5.2.
Definition 2.8.1. Let (𝑋, 𝑑, 𝜇) be a metric measure space. We say that 𝑋 is 𝑛-Ahlfors-David regular
(𝑛-ADR), if there exists a constant 𝐶 < 0 such that

1
𝐶
𝑟𝑛−1 ≤ 𝜇(𝐵(𝑝, 𝑟) ∩ 𝐸) ≤ 𝐶𝑟𝑛−1, for all 𝑝 ∈ 𝐸 and 0 < 𝑟 < diam(𝐸).

In particular, if 𝑀 is an 𝑛-dimensional Riemannian manifold and (𝑛− 1)-dimensional 𝐸 ⊂ 𝑀 we
can take (𝐸, 𝑑𝑀 ,𝑛−1) as a metric measure space and obtain:
Definition 2.8.2. We say that set 𝐸 ⊂ 𝑀 is Ahlfors-David regular, of Hausdorff dimension 𝑛 − 1, if
it is closed and there exists a constant 𝐶 < 0 such that

1
𝐶
𝑟𝑛−1 ≤ 𝜎(𝐵(𝑝, 𝑟) ∩ 𝐸) ≤ 𝐶𝑟𝑛−1, for all 𝑝 ∈ 𝐸 and 0 < 𝑟 < diam(𝐸),

where 𝜎 = 𝑛−1
|

𝐸
denotes a surface measure on 𝐸.

Among examples of (𝑛 − 1)-Ahlfors-David regular spaces let us mention boundaries of smooth,
𝐶𝑘 or Lipschitz domains in ℝ𝑛 or Riemannian manifolds of dimension 𝑛. Furthermore, examples of
Ahlfors-David regular sets with 𝑛 being noninteger enclose a boundary of Koch snowflake or Cantor
set.

If 𝑋 = ℍ𝑛 and Ω ⊂ ℍ𝑛 is a non-empty open connected set, we get the following definition.
Definition 2.8.3. We say that Ω has 𝑠-regular boundary for some 𝑠 > 0, if there exists a constant
𝐶 ≥ 1 such that

1
𝐶
𝑟𝑠 ≤ 𝑠(𝐵(𝑥, 𝑟) ∩ 𝜕Ω) ≤ 𝐶 𝑟𝑠, for all 𝑥 ∈ 𝜕Ω and 0 < 𝑟 < diam(𝜕Ω).

2.9 Nontangentially accessible domains
We now recall one of the fundamental notions of the dissertation, used in Chapters 4.3, 5.2, 5.4, 5.5.
Let (𝑋, 𝑑) be a metric space.
Definition 2.9.1 (Interior corkscrew condition). Let Ω ⊂ 𝑋 be an open set. We say that it satisfies
interior corkscrew condition if there exists a constant 𝑐 such that for every set𝐵(𝑝, 𝑟)∩𝜕Ω with 𝑝 ∈ 𝜕Ω
and 0 < 𝑟 < diam(𝜕Ω) there is a ball𝐵(𝑥, 𝑐𝑟) ⊂ 𝐵(𝑝, 𝑟)∩Ω. We say that Ω satisfies exterior corkscrew
condition if 𝑋 ⧵Ω satisfies interior corkscrew condition.
Definition 2.9.2 (Exterior corkscrew condition). Let Ω ⊂ 𝑋 be an open set. We say that it satisfies
exterior corkscrew condition if its exterior Ω𝑒𝑥𝑡 = 𝑋 ⧵Ω satisfies interior corkscrew condition.

See Figures 2.3 and 2.4 for the illustration of the above definitions. Let us add that the corkscrew
conditions play a role in studies of the solvability of the Dirichlet problem, see Chapter 15.4 in [GT].
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Ω

𝜕Ω

𝑝

𝐵(𝑝, 𝑟)

𝑥

𝐵(𝑥, 𝑐𝑟)

Figure 2.3: This figure shows interior corkscrew condition. Namely, for every point 𝑝 ∈ 𝜕Ω and 0 <
𝑟 < diam(Ω), there exist a constant 𝑐 > 0 and a point 𝑥 ∈ Ω∩𝐵(𝑝, 𝑟) such that 𝐵(𝑥, 𝑐𝑟) ⊂ Ω∩𝐵(𝑝, 𝑟).

Ω

Figure 2.4: This figure depicts an example of a domain which does not satisfy interior corkscrew
condition. The cusp is the reason why the condition is not met.

Definition 2.9.3 (Harnack chain condition). LetΩ ⊂ 𝑋 be an open set. We say thatΩ satisfies Harnack
chain condition, if for every 𝜀 > 0 and 𝑥, 𝑦 ∈ Ω such that 𝑑(𝑥, 𝜕Ω) > 𝜀, 𝑑(𝑦, 𝜕Ω) > 𝜀 and 𝑑(𝑥, 𝑦) < 𝐶𝜀
there exists a sequence of balls 𝐵1,… , 𝐵𝑝 with the following properties:

1. 𝑥 ∈ 𝐵1 and 𝑦 ∈ 𝐵𝑝,
2. 𝑟

𝑀
< 𝑑(𝐵𝑖(𝑥, 𝑟), 𝜕Ω) < 𝑀𝑟 for every 𝑖 = 1,… , 𝑝,

3. 𝐵𝑖 ∩ 𝐵𝑖+1 ≠ ∅ for 𝑖 = 1,… , 𝑝 − 1,
4. length of the chain 𝑝 depends on 𝐶 but not on 𝜀.
The Harnack chain condition appears in a variety of problems in geometric analysis, for instance

in working with John domains or uniform domains, see e.g. [TT].
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Definition 2.9.4 (Nontangentially accessible domains (NTA)). Let Ω ⊂ 𝑋 be an open set. We say
that it is a nontangentially accessible domain (NTA) if it satisfies both interior and exterior corkscrew
conditions and Harnack chain condition.

Examples of NTA domains enclose smooth, 𝐶𝑘 or Lipschitz domains in ℝ𝑛 or in a Riemannian
manifold. Furthermore, Zygmund domains are NTA as well as quasispheres are NTA, see [JK]. As an
example of one-sided NTA, i.e. without exterior corkscrew condition, one can consider a ball in ℝ2

with a corner 1-dimensional Cantor set removed.
In Heisenberg group, NTA sets are, for example, Karányi-Reimann balls, but not balls in Carnot-

Carathéodory distance, or upper half space, ℍ𝑛
+ = {(𝑧1,… , 𝑧𝑛, 𝑡) ∈ ℍ𝑛 ∶ 𝑡 > 0}. Let us mention that

ℍ𝑛
+ is not even a Lipschitz set in ℍ𝑛, see [CG]. Therefore, in the setting of Carnot-Carathéodory groups

the class of NTA domains in a sense is the smallest class for which it is possible to do a reasonable
analysis. It is the case, because even sets that would seem to be "nice", such as half-space, are not
regular in any traditional sense.

2.10 BV functions
The following definition will largely be used in Chapters 3, 4.3, 5.4, see also the next definition of
𝜀-approximability.
Definition 2.10.1 (Local BV functions). Let Ω be an open set in ℝ𝑛+1. We say that an 𝐿1

𝑙𝑜𝑐-function
𝑓 has locally bounded variation in Ω, and denote it by 𝑓 ∈ 𝐵𝑉𝑙𝑜𝑐(Ω), if for any open set Ω′ ⋐ Ω the
total variation of 𝑓 over Ω′ is finite:

sup
Ψ∈𝐶1

0 (Ω
′,ℝ𝑛+1), ‖Ψ‖𝐿∞≤1∫Ω′

𝑓 (𝑥) divΨ(𝑥) d𝑥 <∞.

BV functions are a natural class of functions to use for our research. We require that a norm of a
gradient of 𝜀-approximation gives rise to a Carleson measure (see the definition below). Gradients of
BV functions are Radon measures. Hence, the class of BV functions is exactly what is needed.

According to our best knowledge BV functions were first introduced by Jordan in [J], to deal with
convergence of Fourier series. After him the notion was vastly developed and used for various appli-
cations in e.g. geometric measure theory, calculus of variations or partial differential equations.

Let us now generalize the definition of BV functions to the setting of Riemannian manifolds.
Definition 2.10.2. Let Ω ⊂ 𝑀 be an open set and 𝑢 ∈ 𝐿1(Ω). We say that 𝑢 has bounded variation in
Ω and denote it by 𝑢 ∈ 𝐵𝑉 (Ω) if

sup
{

∫Ω
𝑢 div(𝜙𝑋) ∶ 𝑋 ∈ Γ(Ω), 𝜙 ∈ 𝐶∞

𝑐 (Ω,ℝ), |𝜙| ≤ 1
}

<∞,

where
Γ(Ω) is a family is of smooth vector fields on Ω such that 𝑔(𝑋(𝑥), 𝑋(𝑥)) ≤ 1 for every 𝑥 ∈ Ω,

where 𝑔 denotes the metric on 𝑀 . The above supremum is called a variation of 𝑢.
If Ω ⊂ 𝑀 = ℝ𝑛, then we retrieve the definition of functions of bounded variation in Ω in Definition

2.10.1.
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2.11 𝜀-Approximability
Definition 2.11.1 (𝜀-approximability). Let 𝜀 > 0 and Ω ⊂ ℝ𝑛+1

+ satisfy (1.2). We say that a function
𝑢 ∶ Ω → ℝ is 𝜀-approximable, if there exists a function 𝜑 ∈ 𝐵𝑉𝑙𝑜𝑐(Ω) such that

1. ‖𝑢 − 𝜑‖𝐿∞(Ω) < 𝜀,
2. |∇𝜑| defines a Carleson measure on Ω, i.e. for every 𝑥 ∈ 𝜕Ω

sup
𝑟∈(0,diamΩ)

1
𝑟𝑛 ∫Ω∩𝐵(𝑥,𝑟)

|∇𝜑(𝑦)|dL 𝑛+1(𝑦) ≤ 𝐶𝜀. (2.2)

However, to our best knowledge so far, it has only been used in Euclidean setting. Therefore, we
give the definition in the setting of Riemannian manifolds.
Definition 2.11.2. Let Ω ⊂ 𝑀 be a Lipschitz domain on a Riemannian manifold 𝑀 . Let 𝑢 ∶ Ω → ℝ
be a harmonic function with ‖𝑢‖∞ ≤ 1. We will say that function 𝑢 is 𝜀-approximable for some 𝜀 > 0
if there exists a function 𝜙 ∈ 𝐵𝑉 (Ω) such that

1. ‖𝑢 − 𝜙‖𝐿∞(Ω) < 𝜀,
2. |∇𝜙| defines a Carleson measure on Ω, i.e. for every 𝑥 ∈ 𝜕Ω

sup
𝑟∈(0,diamΩ)

1
𝑟𝑛−1 ∫𝐵(𝑝,𝑟)∩Ω

|∇𝜙|d𝑋 ≤ 𝐶𝜀.

Notice that these definitions are basically the same. The only difference is the measure with respect
to which we integrate the norm of the gradient of 𝜙.

It is worth noting that the notion of 𝜀-approximability is essential in proving the results that we are
interested in. Let us repeat that it turns out, as indicated by Exc. 9 Ch. VI in [G], that for a harmonic
function 𝑢 it may happen that |∇𝑢| does not give rise to a Carleson measure. What is more, one cannot
assume that 𝜙 may be taken as another harmonic function as indicated by Exc. 12 Ch. VIII in [G].
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Chapter 3

𝜀-Approximability and Quantitative Fatou
Property for non-harmonic functions

This chapter is based on the manuscript [AGG] written jointly with Tomasz Adamowicz and Maria J.
González. Recall that a Lipschitz-graph domain is in the form of

Ω = {(𝑥, 𝑦) ∈ ℝ𝑛+1
+ ∶ 𝑦 > 𝜙(𝑥)}, (3.1)

where 𝜙 ∶ ℝ𝑛 → ℝ is an 𝐿-Lipschitz function.
The main goal of this chapter is to prove the following result:

Theorem. 1.3.1 Let Ω ⊂ ℝ𝑛+1
+ be the Lipschitz-graph domain as in (1.2) and let further 𝑢 ∶ Ω → ℝ

be bounded and satisfy condition (#). Then for every 𝜀 > 0 function 𝑢 is 𝜀-approximable in Ω.

The result generalizes the existing ones (see e.g. [G], [D1], [KKPT], [HMM1]), as it is to best
of our knowledge, first 𝜀-approximability result for functions that need not be solutions of PDEs of
divergence form. Moreover, we would like to emphasize that condition (#) can be obsolete for some
classes of functions and (∗) instead suffices, as illustrated by nonnegative subharmonic functions,
see Proposition 3.3.1 in Chapter 3.3. This observation follows from a brief analysis of the proofs of
Theorem 1.1 and Lemmas 4.3 and 4.5 in [GKLN], which we present in Chapter 3.3.

The key consequence of Theorem 1.3.1 is the following Quantitative Fatou Theorem (see Defini-
tion 2.4.1 of the counting function).
Corollary. 1.3.2 (Quantitative Fatou Theorem) Let Ω ⊂ ℝ𝑛+1

+ be the Lipschitz-graph domain as in
(3.1) and let further 𝑢 ∶ Ω → ℝ satisfy condition (#) and be bounded with ‖𝑢‖𝐿∞(Ω) ≤ 1. Then for
every point 𝜔 ∈ 𝜕Ω

sup
0<𝑟<𝑟0

1
𝑟𝑛 ∫𝜕Ω∩𝐵(𝜔,𝑟)

𝑁(𝑟, 𝜀, 𝛽)(𝑧)𝑑𝜎(𝑧) ≤ 𝐶(𝜀, 𝛼, 𝛽, 𝑛,Ω),

where 𝜀, 𝛼, 𝛽 are constants in the definition of the counting function 𝑁 . In particular, constant 𝐶 is a
independent of 𝑢.

The proof of the corollary is a direct repetition of the proof of Lemma 2.9 in [KKPT] and, therefore,
we only briefly sketch it at the end of Chapter 3.2.
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Lemma (Lemma 2.9 in [KKPT]). Suppose 𝑢 is 𝜀
4
-approximable in Ω ⊂ ℝ𝑛. Then

∫𝜕Ω∩𝐵𝑟(𝑄)
𝑁(𝑟, 𝜀, 𝛽)(𝑧)d𝜎(𝑧) ≤ 𝐶𝑟𝑛−1,

where 𝐶 depends on 𝜀, 𝛼, 𝛽, 𝑛 and the Lipschitz constant of Ω.

Let us recall, that the notion of the counting function is known in the literature, see for instance
[G, KKPT, BH]. However, the definition varies depending on the authors. Nevertheless, the essential
purpose of introducing the counting function always remains the same. It provides a way to estimate
how much a function oscillates while approaching the boundary.

3.1 Preliminaries and notation
In this chapter we use | ⋅ | to denote the norm of a vector or an 𝑛-Hausdorff measure of a set, depending
on the context. Symbol L 𝑛+1 denotes the (𝑛 + 1)-Lebesgue measure.

In what follows we will use the notions of cones, see Definition 2.3.1 in Chapter 2.3, also the
counting function (Def. 2.4.1), area function (Def. 2.5.1), nontangential maximal function (Def.
2.5.2). Moreover, recall the definition of a Carleson measure (Def. 2.6.1).

Next, we introduce some geometric constructions used in the proof of our main result.
Curved cubes and associated centers. Fix 𝜀 > 0 and denote by 𝑄0 the unit cube in ℝ𝑛. We

denote by {𝑄𝑚
𝑗1,…,𝑗𝑛

} the family of dyadic cubes in the dyadic decomposition of 𝑄0:
𝑄𝑚
𝑗1,…,𝑗𝑛

= {(𝑥1,… , 𝑥𝑛) ∈ ℝ𝑛 ∶ 𝑗𝑖2−𝑚 ≤ 𝑥𝑖 ≤ (𝑗𝑖+1)2−𝑚}, for 𝑚 ∈ ℕ and 𝑗1,… , 𝑗𝑛 ∈ {0,… , 2𝑚−1}.

In the case parameters 𝑚 and 𝑗1,… , 𝑗𝑛 are fixed or their exact values are not important for the discus-
sion, we will write 𝑄 to denote a cube in the 𝑚-th generation for some 𝑚. For the sake of notation, in
what follows we will usually denote the side length of 𝑄 by 𝑙(𝑄) rather than 2−𝑚.

Let further
𝑄̂0 = {(𝑥, 𝑦) ∈ ℝ𝑛+1 ∶ 𝑥 ∈ 𝑄0, 𝜙(𝑥) ≤ 𝑦 ≤ 1 + 𝜙(𝑥)}

be an associated curved unit cube in ℝ𝑛+1, where 𝜙 ∶ 𝑄0 → ℝ is a Lipschitz function. Similarly, for
a given cube 𝑄, we define the curved cube

𝑄̂ = {(𝑥, 𝑦) ∈ ℝ𝑛+1 ∶ 𝑥 ∈ 𝑄,𝜙(𝑥) ≤ 𝑦 ≤ 𝜙(𝑥) + 𝑙(𝑄)}.

In what follows we will often omit the word curved when discussing sets 𝑄̂ and instead simply write
cube.

Let 𝑥𝑄̂ denote a center of a (curved) cube 𝑄̂, i.e. 𝑥𝑄̂ ∶= (𝑥𝑄, 𝜙(𝑥𝑄) + 2−𝑚−1), where 𝑥𝑄 is a center
of 𝑄. Note that since by (1.2) it holds that 𝜙 is 𝐿-Lipschitz, we have the following inclusions:

𝐵
(

𝑥𝑄̂,
1

√

1 + 𝐿2

𝑙(𝑄)
2

)

⊂ 𝑄̂ ⊂ 𝐵
(

𝑥𝑄̂, 𝐶(𝐿)𝑙(𝑄)
)

, 𝐶(𝐿) ∶= 1
2

√

𝐿2 + 2𝐿 + 2. (3.2)

Let us prove the above inclusions.
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Proof of (3.2). We begin with the left inclusion. Without loss of generality, we may assume that
𝑥𝑄 = 0 and 𝜙(0) = 0. The bottom face of 𝑄̂ is given by the graph of 𝜙 and the top one by the graph of
𝜙+ 𝑙(𝑄). Since 𝜙 is a Lipschitz function, it holds that its graph lies in a region bounded by a cone such
that its generatrix is given by a line with the slant𝐿. It follows that we can restrict ourselves to the case
when dimension is equal to 1, as we are only interested in the distance of a point 𝑥𝑄̂ to the surface of
that cone. Therefore, we can project (𝑛 + 1)-dimensional space to its 2-dimensional subspace, which
corresponds with the case 𝑛 = 1. And so the constant 𝐶(𝐿) does not depend on 𝑛.

To prove the inclusion, we need to know that the distance of 𝑥𝑄̂ to the boundary of 𝑄̂ is no bigger
than 1

√

1+𝐿2

𝑙(𝑄)
2

.
Obviously, the distance to the vertical sides of 𝑄̂ is equal to 𝑙(𝑄)

2
. It remains to calculate the distances

to the top and bottom sides.
To bound the distance to the bottom side, it suffices to calculate the distance to the cone which

bounds the graph of 𝜙. In the case of 𝑛 = 1 the cone is given by two lines with equations: 𝐿1 ∶ 𝑦 = 𝐿𝑥
and 𝐿2 ∶ 𝑦 = −𝐿𝑥. We directly calculate that:

𝑑(𝑥𝑄̂, 𝐿1) = 𝑑(𝑥𝑄̂, 𝐿2) = 𝑑
((

0,
𝑙(𝑄)
2

)

,
(

𝐿
1 + 𝐿2

𝑙(𝑄)
2
, 𝐿2

1 + 𝐿2

𝑙(𝑄)
2

))

= 1
√

1 + 𝐿2

𝑙(𝑄)
2
.

One can similarly calculate the distance to the top side of 𝑄̂. Therefore, we get𝐵(𝑥𝑄̂, 1
√

1+𝐿2

𝑙(𝑄)
2

)

⊂ 𝑄̂.
Let us now prove the second inclusion. In order to obtain it we need to estimate the distance of 𝑥𝑄̂

to the boundary of 𝑄̂, but this time we need to estimate from above. Let us estimate it for any 𝑥 such
that |𝑥| ≤ 𝑙(𝑄)

2
:

𝑑2(𝑥𝑄̂, (𝑥, 𝜙(𝑥))) = |𝑥|2 +
(

𝑙(𝑄)
2

− 𝜙(𝑥)
)2

≤ 𝑙(𝑄)2

4
+
𝑙(𝑄)2

4
+ 𝐿

𝑙(𝑄)2

2
+ 𝐿2 𝑙(𝑄)2

4

=
𝑙(𝑄)2

4
(

𝐿2 + 2𝐿 + 2
)

,

where the inequality is a consequence of 𝜙 being 𝐿-Lipschitz. Thus, the proof of the second inclusion
is concluded.

Next, we define the associated center of 𝑄̂ as follows:

𝑥𝑙
𝑄̂
= 𝑥𝑄̂ + 𝑒𝑛+1𝑙(𝑄) = (𝑥𝑄, 𝜙(𝑥𝑄) + 2−𝑚−1 + 𝑙(𝑄)) =

(

𝑥𝑄, 𝜙(𝑥𝑄) +
3
2
2−𝑚

)

. (3.3)

The name of this point is justified by the fact that 𝑥𝑙
𝑄̂

does not lie inside 𝑄̂, and is the center of the
curved cube lying directly above cube 𝑄̂ and obtained by shifting up 𝑄̂ in 𝑙(𝑄), see Figure 1.

We will now describe the stopping time procedure, which is one of the key underlying technique
used in the proof of Theorem 1.3.1. This kind of technique is commonly used in Harmonic Analysis,
see e.g. [G], [D1], [HMM1], [BH].
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𝑥𝑄̂

𝑥𝑄

𝑥𝑙
𝑄̂

ℝ𝑛

Figure 3.1: The center 𝑥𝑄̂ of a cube
𝑄̂ and its associated center 𝑥𝑙

𝑄̂
.

𝑥𝑙
𝑄̂

ℝ𝑛

𝑄̂

𝑇 (𝑄̂)

Figure 3.2: The set 𝑇 (𝑄̂) (brown set) with
respect to the set 𝑄̂ (set bounded by black
line).

𝑄̂1

𝑄̂2𝑄̂3

𝑅(𝑄̂)

Figure 3.3: An example of how a set 𝑅(𝑄̂) may look like. Cubes 𝑄̂1, 𝑄̂2, 𝑄̂3 are removed from cube 𝑄̂ to
obtain 𝑅(𝑄̂). In general there may be infinitely many sets that are removed from 𝑄̂.

Stopping time conditions.
Set

𝐺0 ∶= {𝑄̂0} and denote by
𝐺1 ∶= a family of maximal curved cubes 𝑄̂ ⊂ 𝑄̂0 such that |𝑢(𝑥𝑄̂0

) − 𝑢(𝑥𝑙
𝑄̂
)| > 𝜀.

Next, define
𝐺2 =

⋃

𝑄̂∈𝐺1

𝐺1(𝑄̂),

where𝐺1(𝑄̂) is defined the same way as𝐺1 with 𝑄̂0 replaced with 𝑄̂. Then define inductively families
of sets 𝐺𝑘, for 𝑘 = 2,…. Denote by

𝐺 =
⋃

𝑘=0
𝐺𝑘. (3.4)

Domains 𝑅(𝑄̂). Let us introduce a domain which roughly can be understood as follows: given
any curved cube 𝑄̂ ∈ 𝐺 consider its subset constructed by removing those maximal curved cubes 𝑄̂𝑖,
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where the jump of the values of 𝑢 at associated centers is big: |𝑢(𝑥𝑄̂) − 𝑢(𝑥𝑙𝑄̂𝑖)| > 𝜀, i.e. we define

𝑅(𝑄̂) ∶= 𝑄̂ ⧵
⋃

𝑄̂𝑖∈𝐺1(𝑄̂)

𝑄̂𝑖, for any 𝑄̂ ∈ 𝐺.

Thus, set 𝑅(𝑄̂) consists of all curved subcubes in 𝑄̂ with small oscillations of 𝑢, see Figure 3. We
remark that this construction is similar to the one in Garnett’s book, see the proof of Theorem 6.1
in [G, Section 6 in Ch. VIII].

Notice that given two different sets 𝑄̂,𝑊 ∈ 𝐺, the corresponding domains 𝑅(𝑄̂) and 𝑅(𝑊 ) can
only intersect piecewise along boundaries, but their interiors are pairwise disjoint.

Blue and red sets. Finally, we define blue and red sets, which are essential in our construction.
Denote by 𝑇 (𝑄̂) the set 𝑄̂ translated vertically by 1

2
𝑙(𝑄):

𝑇 (𝑄̂) = {(𝑥, 𝑦) ∈ ℝ𝑛+1 ∶ 𝑥 ∈ 𝑄,𝜙(𝑥) + 1
2
𝑙(𝑄) ≤ 𝑦 ≤ 𝜙(𝑥) + 3

2
𝑙(𝑄)}. (3.5)

The key feature of sets 𝑇 (𝑄̂), to which we appeal several times below, is that they are separated from
the graph of the Lipschitz function 𝜙, i.e. from the boundary of Ω. Moreover, an important feature of
sets 𝑇 (𝑄̂) is that the associated center of 𝑄̂ is the center of an upper side of 𝑇 (𝑄̂), see Figure 2.

Sets 𝑇 (𝑄̂) are not disjoint. However, for a given set 𝑄̂ a set 𝑇 (𝑄̂) intersects only finitely many
other sets of form 𝑇 (𝑄̂𝑗). Moreover, the cardinality of a family of sets #{𝑗 ∶ 𝑇 (𝑄̂) ∩ 𝑇 (𝑄̂𝑗) ≠ ∅} is
uniformly bounded for all choices of 𝑄̂. When dealing with set 𝑄̂0, we set 𝑇 (𝑄̂0) ∶= {(𝑥, 𝑦) ∈ ℝ𝑛+1 ∶
𝑥 ∈ 𝑄0, 𝜙(𝑥) +

1
2
𝑙(𝑄0) ≤ 𝑦 ≤ 𝜙(𝑥) + 𝑙(𝑄0)}, i.e. its upper half.

Let 𝑘 > 0. We say that 𝑇 (𝑄̂) is blue, if
osc𝑇 (𝑄̂)𝑢 ≤ 𝑘𝜀.

Otherwise, we say that 𝑇 (𝑄̂) is red.

3.2 Proof of Theorem 1.3.1
Let us briefly describe our approach to the proof of the main result. First, we construct function 𝜑1,the first approximation of 𝜑, see (3.6) and show in Proposition 3.2.1 that 𝜑1 gives rise to the Carleson
measure. The proof of Proposition 3.2.1 relies on two auxiliary observations, namely Lemmas 3.2.2
and 3.2.3. The first one gives a lower bound estimate for area function and is applied in the proof of
Lemma 3.2.3 to control the sum of volumes of cubes obtained by the stopping procedure. Then, we
construct the function 𝜑, see (3.18) and show that it 𝜀-approximates function 𝑢 in the 𝐿∞-norm. In
order to show condition (2.2) in Definition 2.11.1, we study the decomposition of the gradient of 𝜑,
see (3.19), and show that each of its terms leads to the Carleson condition, see estimates (Car1) and
(Car2). An important auxiliary result, perhaps of the independent interest, is presented in Proposi-
tion 3.2.6 and proved in the Appendix. It gives the 𝐿2 bounds for the area function on cubes. The
above approach has been inspired by the discussion in [G, Section 6, Ch. VIII]) and also by [HMM1].
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Proof of Theorem 1.3.1. First, we define an auxiliary function 𝜑1 ∶
⋃

𝑄̂𝑘∈𝐺
𝑅(𝑄̂𝑘) → ℝ, which later

on will be used to define the 𝜀-approximation of 𝑢, cf. (3.18)

𝜑1(𝑧) ∶=
∞
∑

𝑗=1

∑

𝑄̂𝑘∈𝐺𝑗

𝑢(𝑥𝑄̂𝑘)𝜒𝑅(𝑄̂𝑘)(𝑧). (3.6)

Notice that, 𝜑1 is in fact defined for all 𝑧 ∈ 𝑄̂ and, moreover, for any 𝑄̂ ∈ 𝐺 it holds that

∫𝑄̂
|∇𝜑1| dL 𝑛+1 ≤

∑

𝑄̂𝑗∈𝐺

|𝑄̂ ∩ 𝜕𝑅(𝑄̂𝑗)|, (3.7)

where | ⋅ | denotes the 𝑛-Hausdorff measure. Here, the expression |∇𝜑1| is understood only in the
distributional sense and the component functions of ∇𝜑1 are the signed measures supported on the
appropriate faces in 𝜕𝑅(𝑄̂𝑗), see the discussion for the upper-half space in ℝ2 on pg. 345 in [G,
Section 6, Ch. VIII]. Therefore, |𝜒𝑅(𝑄̂𝑘)| in (3.6) are the 𝑛-Hausdorff measures of 𝑄̂ ∩ 𝜕𝑅(𝑄̂𝑗) and the
above estimate is justified.

Our first step is to prove the following observation, which applied at (3.7) shows that |∇𝜑1| dL 𝑛+1

is a Carleson measure.
Proposition 3.2.1. For any 𝑄̂ it holds that

∑

𝑄̂𝑗∈𝐺
|𝑄̂ ∩ 𝜕𝑅(𝑄̂𝑗)| ≤ 𝐶𝜀−2𝑙(𝑄)𝑛.

Proof. We may assume, without loss of the generality, that 𝑄̂ ∈ 𝐺. For otherwise, we consider a
family 𝑀(𝑄̂) of cubes such that 𝑄̂1 ∈𝑀(𝑄̂) if 𝑄̂1 ⊂ 𝑄̂, 𝑄̂1 ∈ 𝐺 and 𝑄̂1 is maximal. Then it suffices
to prove the assertion for each of the cubes in 𝑀(𝑄̂). Hence, from now on we assume that 𝑄̂ ∈ 𝐺.
In order to show the assertion of Proposition 3.2.1 we consider two cases depending whether 𝑄̂𝑗 is
contained in 𝑄̂ or not and then prove two auxiliary observations in Lemmas 3.2.2 and 3.2.3.
CASE 1: 𝑄̂𝑗 is such that 𝑄̂ ∩ 𝜕𝑅(𝑄̂𝑗) ≠ ∅ and 𝑄̂𝑗 ⊄ 𝑄̂.
(1.1) Let 𝑙(𝑄𝑗) ≤ 𝑙(𝑄). Then, it holds that int𝑄̂ ∩ int𝑄̂𝑗 = ∅, but the boundaries of curved cubes 𝑄̂

and 𝑄̂𝑗 still intersect.
It holds that 𝑄̂∩𝜕𝑅(𝑄̂𝑗) is a subset of the vertical faces of 𝑄̂ (throughout this chapter, by vertical
faces we mean those different from the bottom and the top deck of a cube/curved cube). It is the
case, since: (1) 𝑄̂𝑗 has to touch 𝑄̂, as otherwise 𝑄̂ ∩ 𝜕𝑅(𝑄̂𝑗) = ∅ and such a curved cube does
not contribute to the sum ∑

𝑄̂𝑗∈𝐺
|𝑄̂ ∩ 𝜕𝑅(𝑄̂𝑗)|; (2) since 𝑙(𝑄𝑗) ≤ 𝑙(𝑄), only vertical sides can

touch.
For different curved cubes 𝑄̂𝑗 satisfying 𝑙(𝑄𝑗) ≤ 𝑙(𝑄), the corresponding sets 𝑄̂ ∩ 𝜕𝑅(𝑄̂𝑗) can
intersect along a set of positive (𝑛 − 1)-Hausdorff measure only, due to the definition of 𝐺 and
𝑅(𝑄̂𝑗). Indeed, let 𝑄̂𝑙 ≠ 𝑄̂𝑘 be such cubes. Then we have three cases:
(a) cubes 𝑄̂𝑙 and 𝑄̂𝑘 have no common face and int𝑄̂𝑙∩int𝑄̂𝑘 = ∅ in which case the corresponding
sets 𝑄̂∩ 𝜕𝑅(𝑄̂𝑘) and 𝑄̂∩ 𝜕𝑅(𝑄̂𝑙) can intersect along a set of positive (𝑛−1)-Hausdorff measure
only. See Figure 4.
(b) cubes 𝑄̂𝑙 and 𝑄̂𝑘 have a common face and int𝑄̂𝑙 ∩ int𝑄̂𝑘 = ∅. Then sets 𝑄̂ ∩ 𝜕𝑅(𝑄̂𝑘) and
𝑄̂ ∩ 𝜕𝑅(𝑄̂𝑙) are subsets of a common face of 𝑄̂, which can only intersect along an (𝑛 − 1)
dimensional set 𝜕𝑄̂ ∩ 𝜕𝑄̂𝑘 ∩ 𝜕𝑄̂𝑙.
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𝑄̂𝑄̂𝑘

𝑄̂𝑗

𝑄̂𝑙

c)

a)

Figure 3.4: This figure illustrates a) and c) in Case 1.1 in Proposition 3.2.1. Since b) may only be observed if
the dimension is greater than two, it is not shown as a figure. Red line is a set 𝜕𝑄̂ ∩ 𝜕𝑄̂𝑗 . A set 𝜕𝑅(𝑄̂𝑗) ∩ 𝑄̂ is a
subset of a red set, whereas a set 𝜕𝑅(𝑄̂𝑘) ∩ 𝑄̂ is contained in a yellow line above a red one. Therefore these sets
may only intersect along a set of dimension 𝑛 − 1.

(c) interiors of cubes 𝑄̂𝑗 and 𝑄̂𝑘 intersect, but this means that one of the cubes contains another,
for instance let 𝑄̂𝑗 ⊂ 𝑄̂𝑘. However, then 𝑄̂𝑗 ∩𝑅(𝑄̂𝑘) = ∅ and so the conclusion is as in case (a)
above.
Therefore, all such 𝑄̂𝑗 amount to at most 𝐶(𝑛)𝑙(𝑄)𝑛 in ∑

𝑄̂𝑗∈𝐺
|𝑄̂ ∩ 𝜕𝑅(𝑄̂𝑗)|, as they cover at

most all vertical faces of 𝑄̂.
(1.2) Let 𝑙(𝑄𝑗) > 𝑙(𝑄).

Then, there are at most 𝐶(𝑛) of such cubes 𝑄̂𝑗 . In order to see that this holds, let us consider two
cases. If 𝑄̂ ⊄ 𝑄̂𝑗 , then there cannot be more of such 𝑄̂𝑗 than faces of 𝑄̂. This is a consequence
of the following observations: (1) 𝑄̂ ∩ 𝜕𝑅(𝑄̂𝑗) ≠ ∅ by assumptions, and so 𝑄̂ and 𝑄̂𝑗 have to
touch; (2) since 𝑄̂𝑗 ∈ 𝐺 and 𝑙(𝑄𝑗) > 𝑙(𝑄), then for each face 𝐹 of 𝑄̂ there is at most one curved
cube in 𝐺 such that it touches 𝐹 with the face of side length bigger than 𝑙(𝑄) and, moreover,
𝑄̂ ∩ 𝜕𝑅(𝑄̂𝑗) ≠ ∅ (see also Figure 5).
Let now 𝑄̂ ⊂ 𝑄̂𝑗 , then there exists exactly one cube in family 𝐺 such that 𝑄̂ ∩ 𝜕𝑅(𝑄̂𝑗) ≠ ∅. To
prove it, note that for any bigger cube 𝑄̂𝑘 ∈ 𝐺 with 𝑄̂ ⊂ 𝑄̂𝑗 ⊂ 𝑄̂𝑘 it holds that 𝑄̂∩ 𝜕𝑅(𝑄̂𝑘) = ∅,
as for such 𝑄̂𝑘, the cube 𝑄̂𝑗 is not contained in𝑅(𝑄̂𝑘), as it had to be removed in the construction
of 𝑅(𝑄̂𝑘). Therefore, there is only one cube such that 𝑄̂ ⊂ 𝑄̂𝑗 and 𝑄̂ ∩ 𝜕𝑅(𝑄̂𝑗) ≠ ∅.
Thus, similarly to case (1.1), such cubes contribute at most 𝐶(𝑛)𝑙(𝑄)𝑛 to the sum ∑

𝑄̂𝑗∈𝐺
|𝑄̂ ∩

𝜕𝑅(𝑄̂𝑗)|.
In summary, the discussion in cases (1.1) and (1.2) gives that

∑

𝑄̂𝑗∈𝐺,𝑄̂𝑗⊄𝑄̂

|𝑄̂ ∩ 𝜕𝑅(𝑄̂𝑗)| ≤ 𝐶(𝑛)𝑙(𝑄)𝑛. (3.8)

CASE 2: 𝑄̂𝑗 is such that 𝑄̂ ∩ 𝜕𝑅(𝑄̂𝑗) ≠ ∅ and 𝑄̂𝑗 ⊂ 𝑄̂.
Then, trivially we have that

∑

𝑄̂𝑗∈𝐺,𝑄̂𝑗⊂𝑄̂

|𝑄̂ ∩ 𝜕𝑅(𝑄̂𝑗)| ≤ 𝐶(𝑛)
∑

𝑄̂𝑗∈𝐺,𝑄̂𝑗⊂𝑄̂

𝑙(𝑄𝑗)𝑛. (3.9)
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𝑄̂𝑗
𝑄̂𝑘

𝑄̂

Figure 3.5: This figure shows Case 1.2 in Proposition 3.2.1. The purple cube refers to the case 𝑄̂ ⊄ 𝑄̂𝑗 and
the green one refers to the case 𝑄̂ ⊂ 𝑄̂𝑗 .

To continue the proof of Proposition 3.2.1 let us prove the following observation.
Lemma 3.2.2. Let 𝑄̂ ∈ 𝐺, where 𝐺 is as in (3.4). It holds that

∑

𝑄̂𝑗∈𝐺1(𝑄̂)

𝑙(𝑄𝑗)𝑛 ≤ 𝐶𝜀−2 ∫𝑅(𝑄̂)
|∇𝑢(𝑥, 𝑦)|2(𝑦 − 𝜙(𝑥)) d𝑥d𝑦,

where 𝐶 = 𝐶(𝑛, 𝐿, 𝜃, 𝜂) and the set 𝑅(𝑄̂) is defined as follows:

𝑅(𝑄̂) ∶=
⋃

𝑄̂𝑗∈𝐺1(𝑄̂)

̃̂𝑄𝑗 where ̃̂𝑄𝑗 ∶=

{

𝑇 (𝑄̂𝑗), if 𝑇 (𝑄̂𝑗) is red
⋃

𝑋∈𝑈𝑄̂𝑗
Γ𝛼,0, 12 𝑙(𝑄𝑗 )(𝑋), if 𝑇 (𝑄̂𝑗) is blue.

(3.10)

By 𝑈𝑄̂𝑗 , we denote the upper deck of 𝑄̂𝑗 . (We refer to the discussion in the proof below, see (3.15),
where the set 𝑅(𝑄̂) is constructed and its meaning explained).

Proof. Let 𝑄̂𝑗 ∈ 𝐺1(𝑄̂).
CASE 1: The translated curved cube 𝑇 (𝑄̂𝑗) is red (cf. (3.5) for the definition of 𝑇 (𝑄̂𝑗)). Then, it follows
by (1.3) and (3.2) that

𝑘2𝜀2 ≤ (osc𝑇 (𝑄̂𝑗 )𝑢)
2 ≲𝑛,𝐿,𝜃,𝜂 𝑙(𝑄𝑗)1−𝑛 ∫𝑇 (𝑄̂𝑗 )

|∇𝑢|2,

for some 𝑘 > 0 whose exact value will be determined later in this proof. Hence, since 𝑇 (𝑄̂𝑗)∩𝜕Ω = ∅
we have that 𝑦 − 𝜙(𝑥) ≈𝑛,𝐿 𝑙(𝑄𝑗) for all (𝑥, 𝑦) ∈ 𝑇 (𝑄̂𝑗). Thus, we get

𝑘2𝑙(𝑄𝑗)𝑛 ≲𝑛,𝐿,𝜃,𝜂 𝜀−2 ∫𝑇 (𝑄̂𝑗 )
|∇𝑢(𝑥, 𝑦)|2(𝑦 − 𝜙(𝑥)) d𝑥d𝑦. (3.11)

CASE 2: Set 𝑇 (𝑄̂𝑗) is blue.
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Since 𝑄̂𝑗 ∈ 𝐺1(𝑄̂), we know that |𝑢(𝑥𝑙
𝑄̂𝑗
) − 𝑢(𝑥𝑄̂)| > 𝜀. Next, let us define the point

𝑥
1
2 𝑙

𝑄̂𝑗
∶= 𝑥𝑄̂𝑗 + 1

2
𝑙(𝑄𝑗)𝑒𝑛+1,

which has the same 𝑥 coordinate as the center of the curved cube 𝑥𝑄̂𝑗 but its 𝑦 coordinate equals
𝜙(𝑥)+ 𝑙(𝑄𝑗). Thus, one can think that such point is a vertical projection of the center of the cube 𝑄̂𝑗 on
the upper deck of 𝑄̂𝑗 , denoted by𝑈𝑄̂𝑗 . However, notice that 𝑥

1
2 𝑙

𝑄̂𝑗
does not lie in the boundary 𝜕Ω while

we would like to consider a cone with the vertex at that point. Therefore, we let Ω𝑗 = Ω + 𝑒𝑛+1𝑙(𝑄𝑗)

be a subdomain of Ω obtained by shifting Ω vertically up by 𝑙(𝑄𝑗). Now 𝑥
1
2 𝑙

𝑄̂𝑗
∈ 𝜕Ω𝑗 .

Therefore, we have
𝑁𝛼,0, 12 𝑙(𝑄𝑗 )

(𝑢 − 𝑢(𝑥𝑄̂))(𝑥
1
2 𝑙

𝑄̂𝑗
) > 𝜀, (3.12)

where the (truncated) nontangential maximal function 𝑁 is considered with respect to domain Ω𝑗 .
We now show that estimate (3.12) holds not only at 𝑥

1
2 𝑙

𝑄̂𝑗
, the center of the upper deck of 𝑄̂𝑗 , but in

fact at its all points 𝑋, i.e.
𝑁𝛼,0, 12 𝑙(𝑄𝑗 )

(𝑢 − 𝑢(𝑃𝑄̂))(𝑋) ≳ 𝜀.

Let us consider vertical shifts of points𝑋 ∈ 𝑈𝑄̂𝑗 so that they belong to 𝑇 (𝑄̂𝑗)⧵𝑄̂𝑗 , e.g. 𝑋+ 1
4
𝑒𝑛+1𝑙(𝑄𝑗)and notice that they satisfy

𝑋 + 1
4
𝑒𝑛+1𝑙(𝑄𝑗) ∈ Γ𝛼(𝑋) and 𝑋 + 1

4
𝑒𝑛+1𝑙(𝑄𝑗) ∈ 𝑇 (𝑄̂𝑗).

As a consequence we get, by the triangle inequality and since 𝑇 (𝑄̂𝑗) is blue, that
𝜀 < |𝑢(𝑥𝑙

𝑄̂
) − 𝑢(𝑥𝑄̂)| ≤ |𝑢(𝑥𝑙

𝑄̂
) − 𝑢(𝑋 + 1

4
𝑒𝑛+1𝑙(𝑄𝑗))| + |𝑢(𝑋 + 1

4
𝑒𝑛+1𝑙(𝑄𝑗)) − 𝑢(𝑥𝑄̂)|

≤ 𝑘𝜀 + |𝑢(𝑋 + 1
4
𝑒𝑛+1𝑙(𝑄𝑗)) − 𝑢(𝑥𝑄̂)|

and hence
|𝑢(𝑋 + 1

4
𝑒𝑛+1𝑙(𝑄𝑗)) − 𝑢(𝑥𝑄̂)| > (1 − 𝑘)𝜀. (3.13)

Therefore, for every 𝑋 ∈ 𝑈𝑄̂𝑗 , we obtain the following estimate
(1 − 𝑘)𝜀 ≤ 𝑁𝛼,0, 12 𝑙(𝑄𝑗 )

(𝑢 − 𝑢(𝑥𝑄̂))(𝑋).

Hence, for any 𝑋 ∈ 𝑈𝑄̂𝑗

(1 − 𝑘)2𝜀2𝑙(𝑄𝑗)𝑛 ≲𝑛,𝐿 (𝑁𝛼,0, 12 𝑙(𝑄𝑗 )
(𝑢 − 𝑢(𝑥𝑄̂)))2(𝑋)∫𝑈𝑄̂𝑗

dH 𝑛

≤ ∫𝑈𝑄̂𝑗
(𝑁𝛼,0, 12 𝑙(𝑄𝑗 )

(𝑢 − 𝑢(𝑥𝑄̂)))2(𝑋) dH 𝑛

≲ ∫𝑈𝑄̂𝑗 ∫Γ𝛼,0,1∕2𝑙(𝑄𝑗 )(𝑋)
|∇𝑢|2(𝑦 − 𝜙(𝑥) − 𝑙(𝑄𝑗))1−𝑛 d𝑥d𝑦 (𝑁 ≲ 𝐴)
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≲ ∫ ⋃

𝑋∈𝑈𝑄̂𝑗

Γ𝛼,0,1∕2𝑙(𝑄𝑗 )(𝑋)
|∇𝑢|2(𝑦 − 𝜙(𝑥) − 𝑙(𝑄𝑗)) d𝑥d𝑦 (Fubini’s Theorem)

≤ ∫ ⋃

𝑋∈𝑈𝑄̂𝑗

Γ𝛼,0,1∕2𝑙(𝑄𝑗 )(𝑋)
|∇𝑢|2(𝑦 − 𝜙(𝑥)) d𝑥d𝑦, (3.14)

where the third (𝑁 ≲ 𝐴) inequality follows by the fact that 𝑈𝑄̂𝑗 ⊂ 𝜕Ω𝑗 and by applying the local
version of Theorem 1.1 (b) for 𝑝 = 2 in [GKLN] allowing us the consider the truncated versions of
the 𝑁𝛼 and the 𝐴𝛼 functions, see the comment following the statement of Theorem 1.2 in [GKLN].

The inequalities (𝑁 ≲ 𝐴) and (𝐴 ≲ 𝑁) refer to inequalities between 𝐿𝑝 norms of nontangential
maximal function and area function. They were pioneered by Fefferman and Stein in [FS] for half-
space. Dahlberg proved similar results in [D2] for Lipschitz domains. One can find such results also
in [KKPT] for the 𝐿-harmonic functions. The result that we use comes from [GKLN] and we now
recall it, specialized to our setting of Condition (∗) and 𝜑(𝑡) ∶= 𝑐𝑡, cf. page 194 in [GKLN].
Theorem (1.1 [GKLN]). Let 𝑢 be a 𝐶2 function which satisfies (∗) in ℝ𝑛+1

+ . Fix 0 < 𝛼 < 𝛽 and assume
there exists 𝑥0 ∈ ℝ𝑛 such that (𝑁𝛼,0,∞𝑢)(𝑥0) <∞. Then,

(a) For a.e. 𝑥 ∈ {𝑥 ∈ ℝ𝑛 ∶ (𝑆𝛽𝑢)(𝑥) <∞}, the function 𝑢(𝑤, 𝑦) has finite limit when (𝑤, 𝑦) ∈ Γ𝛼(𝑥)
tends to 𝑥.

(b) Assume that lim 𝑢(𝑥, 𝑦) = 0 as ‖(𝑥, 𝑦)‖ → ∞. For 0 < 𝑝 < ∞, there exists a constant 𝐶
depending on 𝑝, 𝛼, 𝛽, 𝑛 such that

‖𝑁𝛼𝑢‖𝐿𝑝(ℝ𝑛) ≤ 𝐶‖𝑆𝛽𝑢‖𝐿𝑝(ℝ𝑛).

We continue the proof of Case (2) in Lemma 3.2.2 and notice that the set ⋃𝑋∈𝑈𝑄̂𝑗
Γ𝛼,0, 12 𝑙(𝑄𝑗 )(𝑋)

consists of the upper-half of 𝑇 (𝑄̂𝑗) and additional parts belonging to neighbouring curved cubes.
However, those parts may only be contained in cubes in the same generation (in the dyadic de-

composition), say generation 𝑚, as 𝑇 (𝑄̂𝑗) or in a previous generation 𝑚− 1 and intersect only finitely
many of such cubes whose number is estimated by a constant 𝐶(𝑛, 𝛼), see Figure 3.8. To be more spe-
cific, notice that the distance of a point in Γ𝛼,0, 12 𝑙(𝑄𝑗 )(𝑋) to the axis of the cone can be at most 1

2
𝛼𝑙(𝑄𝑗).

Hence, for cubes in the same generation as 𝑇 (𝑄̂𝑗), in each direction such a cone can only intersect at
most ⌈𝛼

2
⌉ other cubes. For cubes in the previous generation we have the same estimate as there are

fewer cubes in the previous generation. Therefore, for every direction there are at most 2⌈𝛼
2
⌉ cubes

that a cone can intersect. Moreover, as faces of 𝑄̂𝑗 are 𝑛-dimensional, a cone can overlap with up to
𝜔𝑛(2⌈

𝛼
2
⌉)𝑛 other cubes, where 𝜔𝑛 stands for the measure of 𝑛-dimensional unit ball. Therefore, upon

adding up in (3.14) over all cubes 𝑄̂𝑗 ∈ 𝐺1(𝑄̂), we increase the constant on the right-hand side only
by a factor of 𝐶(𝑛, 𝛼) + 1. Thus, also the discussion of case 2 is completed.

In order to estimate the sum in the assertion of the lemma we now combine cases 1 and 2. For this,
we also need to analyze how a red set 𝑇 (𝑄̂𝑗) may intersect other red sets. Notice that the case of cubes
in the same generation as a red 𝑇 (𝑄̂𝑗) is already taken care of above. However, it may happen that
𝑇 (𝑄̂𝑗) intersects with sets that belong to one generation below the one of 𝑇 (𝑄̂𝑗) or one above, i.e. to
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̃̂𝑄𝑘
̃̂𝑄𝑗

Figure 3.6: This figure shows how sets ̃̂𝑄𝑘 and
̃̂𝑄𝑗 look like for 𝑇 (𝑄̂𝑘) red and 𝑇 (𝑄̂𝑗) blue, respec-
tively. Notice that for a blue 𝑇 (𝑄̂𝑗) we drew a bit
more of a graph of 𝜙 as a blue set is a union of
truncated cones and the way in which the cone is
truncated depends on 𝜙.

𝑄̂

Figure 3.7: This figure shows how a domain
𝑅(𝑄̂) is constructed. It is a union of red and
blue sets of the form ̃̂𝑄𝑘.

(𝑚+1)-th or (𝑚−1)-th generation for 𝑇 (𝑄̂𝑗) belonging to the 𝑚-th generation, for some 𝑚, see Figure
3.8. However, since the number of such cubes is finite, 𝑇 (𝑄̂𝑗) can only intersect 𝐶(𝑛) of such cubes.

Finally, we combine estimates (3.11) and (3.14) to arrive at the assertion of Lemma 3.2.2:
∑

𝑄̂𝑗∈𝐺1(𝑄̂)

𝑙(𝑄𝑗)𝑛 ≤ 𝐶𝜀−2 ∫𝑅(𝑄̂)
|∇𝑢(𝑦)|2(𝑦 − 𝜙(𝑥)),

where 𝑅(𝑄̂) ∶= ⋃

𝑄̂𝑗∈𝐺1(𝑄̂)
̃̂𝑄𝑗 with

̃̂𝑄𝑗 =

{

𝑇 (𝑄̂𝑗), if 𝑇 (𝑄̂𝑗) is red
⋃

𝑋∈𝑈𝑄̂𝑗
Γ𝛼,0, 12 𝑙(𝑄𝑗 )(𝑋), if 𝑇 (𝑄̂𝑗) is blue. (3.15)

See Figures 3.6 and 3.7 illustrating the construction of the set 𝑅(𝑄̂).
Notice, that by (3.11) and (3.14), the assertion of the lemma holds with 𝐶 depending on

max{𝑘−2, (1 − 𝑘)−2} and, thus taking into account also (3.13), any 0 < 𝑘 < 1 is suitable.
Lemma 3.2.2 implies the following observation.

Lemma 3.2.3. Let 𝑄̂ ∈ 𝐺. Then,
∑

𝑄̂𝑗∈𝐺,𝑄̂𝑗⊂𝑄̂
𝑙(𝑄𝑗)𝑛 ≤ 𝐶𝜀−2𝑙(𝑄)𝑛.

Before we prove the lemma, let us recall the following notion of shadow of a point and show the
claim needed to complete the proof of Lemma 3.2.3.
Definition 3.2.4. Let 𝜔 ∈ ℝ𝑛 and 𝑧 ∈ Ω. The shadow of 𝑧, denoted by 𝑆(𝑧) ∶= 𝑆𝛼,𝑠,𝑡(𝑧), is a subset
of 𝜕Ω, defined in the following way:

(𝜔, 𝜙(𝜔)) ∈ 𝑆𝛼,𝑠,𝑡(𝑧) ⇔ 𝑧 ∈ Γ𝛼,𝑠,𝑡(𝜔).

29



Figure 3.8: This figure depicts the blue set ⋃𝑋∈𝑈𝑄̂𝑗
Γ𝛼,0, 12 𝑙(𝑄𝑗 )(𝑋) and how it can intersect sets of the

form 𝑇 (𝑄̂𝑗) which are drawn with red color. Additionally, on the left side of the figure dotted red sets
indicate how different red sets can intersect each other.

Claim 3.2.5. Let 𝑧 = (𝑥, 𝑦) ∈ 𝐶(𝑛, 𝛼)𝑄̂. Then

𝐵
(

(

𝑥, 𝜙(𝑥)
)

, 𝛼
1 + 𝐿𝛼

(

𝑦 − 𝜙(𝑥)
)

)

∩ 𝜕Ω ⊂ 𝑆𝛼,0,𝐶(𝑛,𝛼)𝑙(𝑄)(𝑧).

Proof. First, we may assume that 𝑧 = (0, 𝑡) and 𝜙(0) = 0. As we did in the proof of (3.2), we can
restrict ourselves to the case when 𝑛 = 1. First, we find 𝜂 ∈ ℝ𝑛 such that (𝜂, 𝜙(𝜂)) ∈ 𝑆𝛼,0,𝐶(𝑛,𝛼)𝑙(𝑄)(𝑧).
One of the sides of the cone Γ𝛼,0,𝐶(𝑛,𝛼)𝑙(𝑄)(0) is given by the equation 𝑦 = 1

𝛼
𝑥. Suppose that 𝜂 > 0.

Then, one of the sides of the cone Γ𝛼,𝑜,𝐶(𝑛,𝛼)𝑙(𝑄)(𝜂) is given by 𝑦 = − 1
𝛼
𝑥 + 1

𝛼
𝜂 + 𝜙(𝜂).

By Definition 3.2.4, point (𝜂, 𝜙(𝜂)) ∈ 𝑆𝛼,0,𝐶(𝑛,𝛼)𝑙(𝑄)(𝑧) if 𝑧 ∈ Γ𝛼,𝑜,𝐶(𝑛,𝛼)𝑙(𝑄)(𝜂), which happens if
𝑡 > 1

𝛼
𝜂 + 𝜙(𝜂). Therefore, we have

1
𝛼
𝜂 + 𝜙(𝜂) < 𝑡 < 𝐶(𝑛, 𝛼)𝑙(𝑄), and so 𝜂 < −𝛼𝜙(𝜂) + 𝛼𝐶(𝑛, 𝛼)𝑙(𝑄).

By the Lipschitzness of 𝜙 and since 𝜙(0) = 0, we get
−𝐿𝛼𝜂 < −𝛼𝜙(𝜂) < 𝐿𝛼𝜂.
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Hence, we obtain
𝜂 < −𝐿𝛼𝜂 + 𝛼𝐶(𝑛, 𝛼)𝑙(𝑄), and hence 𝜂 < 𝛼

1 + 𝐿𝛼
𝐶(𝑛, 𝛼)𝑙(𝑄).

Therefore for points (𝜂, 𝜙(𝜂)) with |𝜂| < 𝛼
1+𝐿𝛼

𝐶(𝑛, 𝛼)𝑙(𝑄) it holds that (𝜂, 𝜙(𝜂)) ∈ 𝑆𝛼,0,𝐶(𝑛,𝛼)𝑙(𝑄)(𝑧).Notice that by the definition of a cone we have 𝑡 < 𝐶(𝑛, 𝛼)𝑙(𝑄).
It follows that for 𝜂 < 𝛼

1+𝐿𝛼
𝑡, it holds that 𝜂 ∈ 𝑆𝛼,0,𝐶(𝑛,𝛼)𝑙(𝑄)(𝑧).Therefore,

𝐵
(

(0, 0), 𝛼
1 + 𝐿𝛼

𝑡
)

∩ 𝜕Ω ⊂ 𝑆𝛼,0,𝐶(𝑛,𝛼)𝑙(𝑄)(𝑧).

If we now let 𝑧 = (𝑥, 𝑦) we obtain

𝐵
(

(𝑥, 𝜙(𝑥)), 𝛼
1 + 𝐿𝛼

(𝑦 − 𝜙(𝑥))
)

∩ 𝜕Ω ⊂ 𝑆𝛼,0,𝐶(𝑛,𝛼)𝑙(𝑄)(𝑧),

which concludes the proof of the claim.
Proof of Lemma 3.2.3. It holds that

∑

𝑄̂𝑗∈𝐺,𝑄̂𝑗⊂𝑄̂

𝑙(𝑄𝑗)𝑛 =
∑

𝑘≥0

∑

𝑄̂𝑗∈𝐺𝑘(𝑄̂)

𝑙(𝑄𝑗)𝑛

= 𝑙(𝑄)𝑛 +
∑

𝑘≥1

∑

𝑄̂𝑗∈𝐺𝑘(𝑄̂)

𝑙(𝑄𝑗)𝑛

= 𝑙(𝑄)𝑛 +
∑

𝑘≥1

∑

𝑄̂′∈𝐺𝑘−1(𝑄̂)

∑

𝑄̂𝑗∈𝐺1(𝑄̂
′ )

𝑙(𝑄𝑗)𝑛

≲𝑛,𝐿,𝜃,𝜂 𝑙(𝑄)𝑛 + 𝜀−2
∑

𝑘≥1

∑

𝑄̂′∈𝐺𝑘−1(𝑄̂)
∫𝑅(𝑄̂′ )

|∇𝑢(𝑥, 𝑦)|2(𝑦 − 𝜙(𝑥)) d𝑥d𝑦

(Lemma 3.2.2)
≲𝑛,𝐿,𝜃,𝜂 𝑙(𝑄)𝑛 + 𝜀−2 ∫𝐶(𝑛,𝛼)𝑄̂

|∇𝑢(𝑥, 𝑦)|2(𝑦 − 𝜙(𝑥)) d𝑥d𝑦,

where the second inequality follows, by the discussion similar to the one at the end of the proof of
Lemma 3.2.2, from the fact that any cube may be counted at most finitely many times with the uniform
constant depending on 𝑛 and 𝛼. However, since sets 𝑅(𝑄̂′) may contain also unions of cones, we may
need to consider a cube bigger than 𝑄̂ so that ⋃𝑅(𝑄̂′) ⊂ 𝐶(𝑛, 𝛼)𝑄̂. We enlarge the cube because the
union of cones need not be contained in 𝑄̂. The proof of Lemma 3.2.3 will be completed once we
show that

∫𝐶(𝑛,𝛼)𝑄̂
|∇𝑢(𝑥, 𝑦)|2(𝑦 − 𝜙(𝑥)) d𝑥d𝑦 ≲𝑛,𝐿,𝜃,𝜂 𝑙(𝑄)𝑛. (3.16)

In order to prove this estimate, notice that for 𝑧 = (𝑥, 𝑦) ∈ 𝐶(𝑛, 𝛼)𝑄̂ it holds that 𝑦 − 𝜙(𝑥) ≲𝑛,𝛼
𝑑(𝑧, 𝜕Ω).
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Then Claim 3.2.5 together with the Fubini theorem allow us to obtain the following estimate

∫𝐶(𝑛,𝛼)𝑄̂
|∇𝑢(𝑥, 𝑦)|2(𝑦 − 𝜙(𝑥)) d𝑥d𝑦

≈ ∫𝐶(𝑛,𝛼)𝑄̂
|∇𝑢(𝑥, 𝑦)|2(𝑦 − 𝜙(𝑥))1−𝑛(𝑦 − 𝜙(𝑥))𝑛 d𝑥d𝑦 (3.17)

≈𝑛,𝐿,𝛼 ∫𝐶(𝑛,𝛼)𝑄̂
|∇𝑢(𝑥, 𝑦)|2(𝑦 − 𝜙(𝑥))1−𝑛

(

∫𝜕Ω
𝜒𝐵((𝑥,𝜙(𝑥)), 𝛼

1+𝐿𝛼 (𝑦−𝜙(𝑥))∩𝜕Ω
d𝜎

)

d𝑥d𝑦

≲𝑛,𝐿,𝛼 ∫𝐶(𝑛,𝛼)𝑄̂
|∇𝑢(𝑥, 𝑦)|2(𝑦 − 𝜙(𝑥))1−𝑛

(

∫𝜕Ω
𝜒𝑆𝛼,0,𝐶(𝑛,𝛼)𝑙(𝑄)(𝑧)d𝜎

)

d𝑥d𝑦 (by Claim 3.2.5)

= ∫𝐶(𝑛,𝛼)𝑄̂ ∫𝜕Ω
|∇𝑢(𝑥, 𝑦)|2(𝑦 − 𝜙(𝑥))1−𝑛𝜒𝑆𝛼,0,𝐶(𝑛,𝛼)𝑙(𝑄)(𝑧)d𝜎d𝑥d𝑦

= ∫𝜕Ω

(

∫𝐶(𝑛,𝛼)𝑄̂
∇𝑢(𝑥, 𝑦)|2(𝑦 − 𝜙(𝑥))1−𝑛𝜒Γ𝛼,0,𝐶(𝑛,𝛼)𝑙(𝑄)(𝑥)d𝑥d𝑦

)

d𝜎 (Fubini’s theorem)

≈𝑛,𝐿,𝛼 ∫𝑄

(

𝐴𝛼,0,𝐶(𝑛,𝛼)𝑙(𝑄)𝑢
)2 (𝑥) d𝑥 ≲ (𝐶(𝑛, 𝛼)𝑙(𝑄))𝑛.

The last inequality follows from the following observation, whose proof we present in the appendix.
Proposition 3.2.6. Let Ω ⊂ ℝ𝑛+1

+ be the Lipschitz-graph domain as in (1.2) and let further 𝑢 ∶ Ω → ℝ
be bounded and satisfy condition (#). Then for any dyadic cube 𝑄 ⊂ ℝ𝑛 it holds that

∫𝑄

(

𝐴𝛼,0,𝑙(𝑄)𝑢
)2 (𝑥) d𝑥 < 𝑐(𝑙(𝑄))𝑛,

where the constant 𝑐 depends only on 𝛼, 𝜃 as in (#), 𝑛 and the Lipschitz constant 𝐿 of 𝜙.

Therefore, the inequality (3.16) is proven and, hence the proof of Lemma 3.2.3 is completed.
Upon combining the discussion in (3.8) and (3.9) together with Lemma 3.2.2 we complete the

proof of Proposition 3.2.1.
CONTINUATION OF THE PROOF OF THEOREM 1.3.1:
Recall, that as already mentioned in the discussion following (3.6) and (3.7), Proposition 3.2.1

shows that |∇𝜑1|dL 𝑛+1 is a Carleson measure in Ω. Let us now define the following function 𝜑 ∶
Ω → ℝ:

𝜑(𝑧) =

{

𝑢(𝑧) if 𝑧 belongs to any red 𝑇 (𝑄̂),
𝜑1(𝑧) otherwise. (3.18)

Our goal is to prove that 𝜑 is an 𝜀-approximation of 𝑢 as in Definition 2.11.1. Denote by
RED the union of all red sets 𝑇 (𝑄̂) and by BLUE the union of all blue sets 𝑇 (𝑄̂), for 𝑄̂ ⊂ 𝑄̂0.
If 𝑧 ∈ RED, then 𝑢(𝑧)−𝜑(𝑧) = 0, whereas if 𝑧 ∈ BLUE, then 𝑧 ∈ 𝑅(𝑄̂) for some 𝑄̂ ∈ 𝐺. Suppose

that 𝑧 ∈ 𝑇 (𝑄̂1). Since, by the definition (3.5), the set 𝑇 (𝑄̂1) is a vertical translation of cube 𝑄̂1, its
upper half may be a subset of one 𝑅-set (i.e. 𝑅(𝑄̂) for some 𝑄̂ ∈ 𝐺), while its lower half may lie
in another 𝑅-set. Moreover, it can also happen that 𝑇 (𝑄̂1) is entirely contained in one 𝑅-set. This
discussion leads to the following two cases.
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𝑄̂

𝑇 (𝑄̂)

𝑃 𝑄̂

𝑇 (𝑃 𝑄̂)

𝑧

Figure 3.9: This figure shows the situation when 𝑧 belongs to the upper half of 𝑇 (𝑄̂1). A green cube is a cube
𝑄̂1, the cube bounded by a brown line is a parent of 𝑄̂1, i.e. 𝑃 𝑄̂1.

If 𝑇 (𝑄̂1) ⊂ 𝑅(𝑄̂), then
|𝑢(𝑧) − 𝜑(𝑧)| = |𝑢(𝑧) − 𝜑1(𝑧)|

= |𝑢(𝑧) − 𝑢(𝑥𝑄̂1
)𝜒𝑅(𝑄̂)(𝑧)| ≤ |𝑢(𝑧) − 𝑢(𝑥𝑙

𝑄̂1
)| + |𝑢(𝑥𝑙

𝑄̂1
) − 𝑢(𝑥𝑄̂)| ≤ 𝑘𝜀 + 𝜀,

where the first 𝑘𝜀 comes from the fact that 𝑇 (𝑄̂1) is blue and the second 𝜀 is obtained because 𝑄̂1 is
not entirely removed from 𝑅(𝑄̂).

If 𝑇 (𝑄̂1) ⊄ 𝑅(𝑄̂), then suppose first that 𝑧 belongs to the lower half of 𝑇 (𝑄̂1), i.e. 𝑧 ∈ 𝑇 (𝑄̂1)∩𝑄̂1.Then 𝑧 ∈ 𝑅(𝑄̂1) and since 𝑇 (𝑄̂1) is blue, we have that |𝑢(𝑧) − 𝜑(𝑧)| ≤ 𝑘𝜀.
If 𝑧 belongs to the upper half of 𝑇 (𝑄̂1), i.e. 𝑧 ∈ 𝑇 (𝑄̂1) ⧵ 𝑄̂1, then 𝑧 lies in 𝑇 (𝑃 𝑄̂1), where 𝑃 𝑄̂1denotes the parent of 𝑄̂1, meaning the smallest cube 𝑄̂ containing 𝑄̂1. Moreover, 𝑧 ∈ 𝑇 (𝑃 𝑄̂1)∩𝑃 𝑄̂1.If 𝑇 (𝑃 𝑄̂1) is blue, then |𝑢(𝑧)−𝜑(𝑧)| ≤ 𝑘𝜀 in a similar manner as before. Otherwise, if 𝑇 (𝑃 𝑄̂1) is red,

then this case has already been taken care of above (see also Figure 3.9).
This discussion shows that ‖𝑢 − 𝜑‖∞ ≤ (𝑘 + 1)𝜀.
Notice that

∇𝜑 = (∇𝜑1)𝜒𝑄̂0⧵𝑅𝐸𝐷 + (∇𝑢)𝜒𝑅𝐸𝐷 + 𝐽 , (3.19)
where 𝐽 denotes jumps along boundaries of RED. We already proved that |∇𝜑1|dL 𝑛+1 is a Carleson
measure. Therefore, by the definition of 𝜑 in (3.18), it remains to prove that on the set RED, the
measure |∇𝜑|dL 𝑛+1 = |∇𝑢|dL 𝑛+1 is a Carleson measure and that also 𝐽 gives a Carleson measure.
Since ‖𝑢‖∞ ≤ 1 and ‖𝑢 − 𝜑‖∞ ≲𝑘 𝜀 it follows that

|𝐽 | ≲ (1 + 𝜀)
∑

red 𝑇 (𝑄̂𝑗 )
𝑙(𝑄𝑗)𝑛.
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From those it will follow that |∇𝜑| defines a Carleson measure.
Our goal amounts to proving the two inequalities (Car1) and (Car2). The first one allows us to

handle the ∇𝑢 term in (3.19), while (Car2) takes care of the 𝐽 part.
∑

𝑇 (𝑄̂𝑗 ) red, 𝑄̂𝑗⊂𝑄̂
∫𝑇 (𝑄̂𝑗 )

|∇𝑢| ≲𝑛,𝐿,𝜂
1
𝜀
𝑙(𝑄)𝑛, (Car1)

∑

𝑇 (𝑄̂𝑗 ) red, 𝑄̂𝑗⊂𝑄̂
𝑙(𝑄𝑗)𝑛 ≲𝑛,𝐿,𝜂

1
𝜀2
𝑙(𝑄)𝑛. (Car2)

Let us begin with proving (Car2). Recall that we say that a ball 𝐵 is a hyperbolic ball if its radius is
comparable to its distance to the boundary 𝜕Ω and 𝐵 ⊂ Ω. Let us choose a finite cover by hyperbolic
balls centered at points of any given cube 𝑇 (𝑄̂𝑗). Since we are interested now in red cubes, we have
by (1.3) that for any such ball 𝐵𝑟 of radius 𝑟 from the covering of 𝑇 (𝑄̂𝑗) it holds

𝜀2 ≤ (osc𝐵𝑟𝑢)
2 ≲ 𝑟1−𝑛 ∫(1+𝜂)𝐵𝑟

|∇𝑢|2, for some fixed 𝜂 ∈ [0, 1). (3.20)

Notice that for any point 𝑧 ∈ 𝑇 (𝑄̂𝑗) it holds that the distance 𝛿𝑗(𝑧) of 𝑧 to the bottom face of 𝑄̂𝑗 ,
satisfies 1

2
𝑙(𝑄𝑗) ≤ 𝛿𝑗(𝑧) ≤ 𝑙(𝑄𝑗). Moreover, for any hyperbolic ball 𝐵𝑟 containing 𝑧 it holds, by the

definition of a hyperbolic ball, that 𝑟 ≤ 𝛿𝑗(𝑧) ≤ 𝐶𝑟, for some fixed numerical constant 𝐶 > 0. Thus,
we have that

𝑟 ≈ 𝛿𝑗(𝑧) ≈ 𝑙(𝑄𝑗).

Let us fix one ball 𝐵𝑟 from the covering of 𝑇 (𝑄̂𝑗), centered at the point 𝑥𝑄̂𝑗 + 𝑒𝑛+1 12 𝑙(𝑄𝑗) a center of
𝑇 (𝑄̂𝑗) and such that (1 + 𝜂)𝐵𝑟 ⋐ 𝑇 (𝑄̂𝑗). Such a ball can be obtained by similar reasoning as in (3.2)
and hence, there is a constant 𝐶(𝑛, 𝐿) > 0 such that 𝑟 ∶= 𝑙(𝑄𝑗 )

(1+𝜂)𝐶(𝑛,𝐿)
suffices.

Therefore, upon multiplying inequality (3.20) by 𝑙(𝑄𝑗)𝑛, we get

𝑙(𝑄𝑗)𝑛 ≤
1
𝜀2 ∫𝑇 (𝑄̂𝑗 )

|∇𝑢|2𝛿𝑗(𝑧), (3.21)

as the above constructed ball 𝐵𝑟 satisfies (1 + 𝜂)𝐵𝑟 ⊂ 𝑇 (𝑄̂𝑗). From this and the Hölder inequality
together with (3.2) we infer the following estimate
(

∫𝑇 (𝑄̂𝑗 )
|∇𝑢|

)2

≲𝑛,𝐿

(

∫𝑇 (𝑄̂𝑗 )
|∇𝑢|2

)

𝑙(𝑄𝑗)𝑛+1 ≈

(

∫𝑇 (𝑄̂𝑗 )
|∇𝑢|2𝛿𝑗

)

𝑙(𝑄𝑗)𝑛 ≲
1
𝜀2

(

∫𝑇 (𝑄̂𝑗 )
|∇𝑢|2𝛿𝑗

)2

,

which gives
∫𝑇 (𝑄̂𝑗 )

|∇𝑢| ≲𝑛,𝐿
1
𝜀 ∫𝑇 (𝑄̂𝑗 )

|∇𝑢|2𝛿𝑗 .

We now proceed with the first inequality (Car1), as it turns out that proving it, will also complete the
proof of (Car2).

∑

𝑇 (𝑄̂𝑗 ) red, 𝑄̂𝑗⊂𝑄̂
∫𝑇 (𝑄̂𝑗 )

|∇𝑢(𝑧)| ≲
∑

𝑇 (𝑄̂𝑗 ) red, 𝑄̂𝑗⊂𝑄̂

1
𝜀 ∫𝑇 (𝑄̂𝑗 )

|∇𝑢(𝑧)|2𝛿𝑗(𝑧) ≲𝑛,𝐿
1
𝜀 ∫𝑄̂

|∇𝑢(𝑧)|2𝛿(𝑧), (3.22)
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where in the last inequality, by 𝛿(𝑧)we denote the distance of point 𝑧 to the bottom face of 𝑄̂. Moreover,
the last inequality holds true, due to observation that although sets 𝑇 (𝑄̂𝑗) may, in general intersect, for
different 𝑄̂𝑗 , each point in 𝑄̂ belongs to at most two sets 𝑇 (𝑄̂𝑗). Thus, the integral on the right-hand
side of the last estimate in (3.22) may increase at most twice. Finally, similarly to the discussion of
estimate (3.16) in the proof of Lemma 3.2.3, we observe that for any point 𝜔 ∈ 𝑄̂ ∩ 𝜕Ω, i.e. in the
bottom face of cube 𝑄̂, it holds that

𝑧 = (𝑥, 𝑦) ∈ Γ𝛼,0,𝑙(𝑄)(𝜔) ⇔ (𝜔, 𝜙(𝜔)) ∈ 𝑆𝛼,0,𝑙(𝑄)(𝑧) ⊃ 𝐵
(

(𝑥, 𝜙(𝑥)), 𝛼
1 + 𝐿𝛼

(𝑦 − 𝜙(𝑥))
)

∩ 𝜕Ω.

Moreover, notice that for 𝑧 = (𝑥, 𝑦) ∈ 𝑄̂ it holds that 𝛿(𝑧) ≤ 𝑙(𝑄) ≈𝑛,𝐿 𝑦 − 𝜙(𝑥). These observations,
together with the analogous computations as in (3.17) and Proposition 3.2.6, imply that

1
𝜀 ∫𝑄̂

|∇𝑢(𝑧)|2𝛿(𝑧) d𝑧 ≈𝑛,𝐿
1
𝜀 ∫𝑄̂

|∇𝑢(𝑥, 𝑦)|2(𝑦 − 𝜙(𝑥))1−𝑛(𝑦 − 𝜙(𝑥))𝑛 d𝑥d𝑦

≈𝑛,𝐿,𝛼
1
𝜀 ∫𝑄

(

𝐴𝛼,0,𝑙(𝑄)𝑢
)2 (𝑥) d𝑥 ≲ 1

𝜀
(𝑙(𝑄))𝑛. (3.23)

This completes the argument for inequality (Car1) and the proof of (Car2) follows as well, upon com-
bining (3.21) with (3.22) and (3.23).

Hence, |∇𝜑|dL 𝑛+1 is a Carleson measure and, therefore, the proof of the 𝜀-approximability of 𝑢
in 𝑄̂0 is completed.

Notice that in the proof it is not important that we consider a unit cube. Hence, our reasoning gives
𝜀-approximation for any cube 𝑄̂ regardless of its side length. To obtain an 𝜀-approximation in set Ω,
we follow the approach in the end of the proof of Theorem 1.3 in [HMM1, Section 5]. Namely, let us
choose a point 𝑥0 in ℝ𝑛. Let 𝑄𝑘 be a family of cubes in ℝ𝑛 such that 𝑥0 is a center of each of those
cubes and 𝑙(𝑄𝑘) = 2𝑘. Denote by 𝜑𝑘 an 𝜀-approximation on set 𝑄̂𝑘. Define

𝜑 ∶= 𝜑0 +
∞
∑

𝑘=0
𝜑𝑘𝜒𝑄̂𝑘+1⧵𝑄̂𝑘 .

Let us verify that 𝜑 is an 𝜀-approximation in Ω. Obviously it holds that ‖𝑢 − 𝜑‖𝐿∞(Ω) < 𝜀. It remains
to check that |∇𝜑|dL 𝑛+1 gives rise to the Carleson measure. Take 𝑟 > 0 and 𝑥 ∈ 𝑄̂𝑙 ⧵ 𝑄̂𝑙−1 if 𝑙 ≥ 1
or 𝑥 ∈ 𝑄̂0 otherwise (then assume 𝑙 = 0) and consider a set 𝑆 = 𝐵(𝑥, 𝑟) ∩ Ω. We need to obtain

∫𝐵(𝑥,𝑟)∩Ω
|∇𝜑|dL 𝑛+1 ≤ 𝐶𝜀𝑟

𝑛.

Let 𝑘 ∈ ℕ be such that 2𝑘 < 𝑟 ≤ 2𝑘+1 if 𝑟 > 1. Then the integral of |∇𝜑| consists of the jump terms 𝐽
over the faces of 𝑄̂𝑘 ∩

(

𝐵(𝑥, 𝑟) ∩ Ω
)

and also the term ∫𝐵(𝑥,𝑟)∩Ω∩𝑄̂𝑘 |∇𝜑|dL
𝑛+1.

Let us begin with estimating the jump terms. If 𝑟 ≤ 1 then 𝑆 only lies in no more than three of the
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sets 𝑄̂𝑘. If 𝑟 > 1 then 𝑆 lies in no more than 𝑘 + 2 of sets 𝑄̂𝑘. In the latter case, we have
|𝐽 | ≲ 𝐶𝜀((1)𝑛 + (21)𝑛 +⋯ + (2𝑘+2)𝑛)

= 𝐶𝜀

(

2𝑛𝑘+2𝑛 − 1
2𝑛 − 1

)

≲𝑘,𝑛 𝐶𝜀

(

22𝑛𝑟𝑛 − 1
2𝑛 − 1

)

≲𝑘,𝑛 𝐶𝜀

(

2𝑛𝑟𝑛 − 1
2𝑛 − 1

)

≲𝑘,𝑛 𝐶𝜀,𝑛𝑟
𝑛. (3.24)

In case 𝑟 ≤ 1 we have
|𝐽 | ≤ 𝐶𝜀2𝑟𝑛.

Hence, the jump terms are taken care of. We now proceed to deal with the remaining terms. First
suppose that 𝑟 > 1, then

∫𝑆∩𝑄̂0

|∇𝜑|dL 𝑛+1 +
𝑖=𝑘+1
∑

𝑖=0
∫𝑆∩(𝑄̂𝑖+1⧵𝑄̂𝑖)

|∇𝜑|dL 𝑛+1 ≤ 𝐶𝜀

(

1𝑛 +
𝑖=𝑘+1
∑

𝑖=0
(2𝑖+1)𝑛

)

≤ 𝐶𝜀,𝑛𝑟
𝑛,

by the estimate in (3.24).
If 𝑟 ≤ 1, then we have

∫𝑆∩𝑄̂0

|∇𝜑|dL 𝑛+1 +
𝑖=𝑘+1
∑

𝑖=0
∫𝑆∩(𝑄̂𝑖+1⧵𝑄̂𝑖)

|∇𝜑|dL 𝑛+1 ≲ 𝐶𝜀3𝑟𝑛.

Therefore, |∇𝜑|dL 𝑛+1 gives rise to a Carleson measure. Thus, the proof of 𝜀-approximability of 𝑢 in
Ω is completed.
Remark 3.2.7. As observed in several works (e.g. [HMM1, G, HT]), the regularity of the 𝜀-approxima-
tion 𝜑 obtained in the proof above, can be improved to 𝐶∞. Indeed, this follows by Lemmas 3.2 (i)
3.6 and 3.8 in [HT] and by the standard mollification procedure, see e.g. [EG, Section 4.2].

Let us now prove Corollary 1.3.2. The proof is the repetition of the proof of Lemma 2.9 in [KKPT].
Recall that for a definition of a counting function we use cones from Def. 2.3.2, not from Def. 2.3.1.
The reason is that for dealing with QFP it is more convenient with cones truncated with hypersurfaces,
than cones truncated with graphs. Whereas for proving 𝜀-approximability it is more convenient to use
the latter.
Sketch of a proof of Corollary 1.3.2. Consider a family of truncated cones Γ̃𝛽,0,𝑠(𝑥) with 𝑥 ∈ ℝ𝑛 such
that Γ𝛼 ⊂ Γ𝛽 . Put

𝐴𝑠(𝜑)(𝑥) = ∫Γ̃𝛽,0,𝑠(𝑥)
|∇𝜑| d𝑧

|𝑧 − (𝑥, 𝜙(𝑥))|𝑛
.

Let us first state the claim and show how it implies assertion of Corollary 1.3.2.
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Claim 3.2.8. Suppose that 𝑁(𝛼, 𝑠, 𝜀, 𝜃)(𝑥) ≥ 𝑘 and 𝜑 is the 𝜀
4
-approximation of 𝑢. Then

𝐴𝑠(𝜑)(𝑥) ≥ 𝑘𝐶𝜀,𝜃.

Now notice that the Claim implies that

∫𝜕Ω∩𝐵(𝑥,𝑟)
𝐴𝑟(𝜑)(𝑞)d𝜎(𝑞) ≤ 𝐶 ∫Ω∩𝐵(𝑥,𝑟)

|∇𝜑(𝑧)|d𝑧,

and hence

∫𝜕Ω∩𝐵(𝑥,𝑟)
𝑁(𝛼, 𝑠, 𝜀, 𝜃)(𝑞)d𝜎(𝑞) ≤ ∫𝜕Ω∩𝐵(𝑥,𝑟)

𝐴𝑟(𝜑)(𝑞)d𝜎(𝑞) ≤ 𝐶 ∫Ω∩𝐵(𝑥,𝑟)
|∇𝜑(𝑧)|d𝑧 ≲ 𝑟𝑛.

The last estimate follows by Theorem 1.3.1, as 𝜑 is the 𝜀-approximation and defines the Carleson
measure on Ω.
Proof of the Claim. We follow closely the steps of the proof of Lemma 2.9 in [KKPT]. Assume that
𝑠 = 1, 𝑥 = 0, 𝜙(𝑥) = 0. Since the counting function 𝑁(𝛼, 1, 𝜀, 𝜃)(0) ≥ 𝑘, there is a sequence of
points 𝑍𝑗 = (𝑥𝑗 , 𝑡𝑗) with 𝑗 = 1,… , 𝑘 such that |𝑥𝑗| < 𝛼𝑡𝑗 and 0 ≤ 𝑡𝑘 ≤ ⋯ ≤ 𝑡1 ≤ 1 satisfying
|𝑢(𝑍𝑗) − 𝑢(𝑍𝑗−1)| ≥ 𝜀. Since 𝑢 is 𝐶2, and so, in particular, Hölder continuous and ‖𝑢‖∞ ≤ 1, there is
𝛿 depending on 𝜀 such that |𝑢(𝑍) − 𝑢(𝑍𝑗)| <

𝜀
8

for 𝑍 ∈ 𝐿𝑗 = {𝑍 = (𝑥, 𝑡) ∶ |𝑥 − 𝑥𝑗| < 𝛿𝑡𝑗 , 𝑡 = 𝑡𝑗}.
We get similar result for 𝑗 − 1. Hence, we get for any 𝑍 ∈ 𝐿𝑗 and 𝑌 ∈ 𝐿𝑗−1 that |𝑢(𝑍) − 𝑢(𝑌 )| ≥ 3𝜀

4
.

By taking 𝛿 small enough, we make sure that any 𝐿𝑗 is contained in the cone Γ̃𝛽,0,1.Let 𝜑 be a smooth 𝜀
4
-approximation of 𝑢 given by Theorem 1.3.1. For 𝑍 ∈ 𝐿𝑗 and 𝑌 ∈ 𝐿𝑗−1 we

get |𝜑(𝑍) − 𝜑(𝑌 )| ≥ 𝜀
4
. For 𝑍 = (𝑥, 𝑡𝑗) ∈ 𝐿𝑗 and 1 ≤ 𝑦 ≤ 𝑦𝑗 =

𝑡𝑗−1
𝑡𝑗

, set

𝑋𝑦 =
(

(𝑥 − 𝑥𝑗)𝑦 +
(

1 −
𝑦 − 1
𝑦𝑗 − 1

)

𝑥𝑗 +
𝑦 − 1
𝑦𝑗 − 1

𝑥𝑗−1, 𝑦𝑡𝑗

)

.

Then 𝑋𝑦 ∈ Γ𝛽 , at 𝑦 = 𝑦𝑗 we have 𝑋𝑦𝑗 ∈ 𝐿𝑗−1 and 𝑋1 ∈ 𝐿𝑗 . Hence, | ∫ 𝑦𝑗
1

𝜕
𝜕𝑦
𝜑(𝑋𝑦)d𝑦| ≥

𝜀
4
. Moreover,

𝜕
𝜕𝑦
𝑋𝑦 =

(

(𝑥 − 𝑥𝑗) −
1

𝑦𝑗 − 1
𝑥𝑗 +

1
𝑦𝑗 − 1

𝑥𝑗−1, 𝑡𝑗

)

=
(

(𝑥 − 𝑥𝑗) +
𝑥𝑗−1 − 𝑥𝑗
𝑦𝑗 − 1

, 𝑡𝑗

)

,

and therefore, | 𝜕
𝜕𝑦
𝑋𝑦| ≤ 𝛿𝑡𝑗 +

2𝛼𝑡𝑗−1
𝑦𝑗−1

+ 𝑦𝑗 ≤ 𝐶𝑡𝑗 , because 𝑡𝑗−1 − 𝑡𝑗 ≥ (1 − 𝜃)𝑡𝑗−1.
Let us now consider the change of variables (𝑥, 𝑦) ↦ 𝑋𝑦 = (𝑧, 𝑠), where |𝑥 − 𝑥𝑗| ≤ 𝛿𝑡𝑗 and

1 ≤ 𝑦 ≤ 𝑦𝑗 . This map is one to one and d𝑥d𝑦 =
𝑡𝑛−1𝑗

𝑠𝑛
d𝑧d𝑠 as the Jacobian is given by the inverse of

det

⎡

⎢

⎢

⎢

⎣

𝑦 (∗)
0 ⋱
⋮ 𝑦
0 … 0 𝑡𝑗

⎤

⎥

⎥

⎥

⎦

= 𝑦𝑛𝑡𝑗 = (𝑦𝑡𝑗)𝑛𝑡1−𝑛𝑗 = 𝑠𝑛𝑡1−𝑛𝑗 ,
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where (∗) stands for some coefficients that do not affect the determinant. Hence, for Γ𝛽,𝑗 = Γ𝛽∩{(𝑥, 𝑡) ∶
𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑗−1},

∫Γ𝛽,𝑗
|∇𝜑|d𝑧d𝑠

𝑠𝑛
≥ 𝐶𝛿

(

1
𝛿𝑡𝑛𝑗 ∫|𝑥−𝑥𝑗 |≤𝛿𝑡𝑗

∫

𝑦𝑗

1
|

𝜕𝜑
𝜕𝑦

(𝑋𝑦)|d𝑦d𝑥

)

≥ 𝐶𝛿
𝜀
4
.

Now we sum over 𝑗 with 𝑗 = 2,… , 𝑘 to obtain

𝐴𝑠(𝜑)(𝑥) = ∫Γ̃𝛽,0,𝑠
|∇𝜑|d𝑧d𝑠

𝑠𝑛
≥ (𝑘 − 1)𝐶𝛿

𝜀
4
.

3.3 Examples of functions satisfying Theorem 1.3.1 and the re-
lated PDEs

In this chapter we provide an example of the class of functions satisfying condition (∗) and, moreover,
that are also 𝜀-approximable. Furthermore, we also discuss some sufficient conditions giving (∗)
and (#). The importance of the latter condition comes from the fact that it implies (∗), see Chapter
1.3. Our examples illustrate that for some classes of functions, a condition (∗) more general than (#),
suffices for the 𝜀-approximability to hold.

Let us recall Proposition 5.2 in [GKLN]. It asserts that if 𝑢 is a 𝐶2-regular function defined in
a ball 𝐵 ⊂ ℝ𝑛+1 such that 𝑢2𝑘 is subharmonic in 𝐵 for some positive integer 𝑘 > 0, then 𝑢 satisfies
condition (∗) in 𝐵.

Let us recall lemmas 4.5 and 4.6 from [GKLN].
Lemma 4.5 in [GKLN]. Suppose 𝑢 ∈ 𝐶2(Ω) satisfies (#) for some 0 < 𝜃 < 1. Then, for each

(𝑥, 𝑦) ∈ Ω and any 0 < 𝜀 < 1
4
√

1+𝐿2
, one has

∫𝐵
|∇𝑢|2 ≤ 𝐶

𝑟2 ∫2𝐵
𝑢2,

where 𝑟 = 𝜀(𝑦 − 𝜙(𝑥)), 𝐵 = 𝐵((𝑥, 𝑦), 𝑟) and 𝐶 depends only on 𝑛 and 𝜃.

Lemma 4.6 in [GKLN]. Suppose 𝑢 ∈ 𝐶2(Ω) satisfies (#) for some 0 < 𝜃 < 1 and |𝑢| ≤ 1 in Ω.
Then for any cube 𝑄 ⊂ ℝ𝑛 of side length 𝑙,

∫𝑄
(𝐴2

𝛼,0,𝑙𝑢)(𝑥)d𝜔
∗(𝑥) ≤ 𝐶,

where 𝐶 depends on 𝐿, 𝑛, 𝛼 and 𝜃, the constant in (#).
These observations give us the following wide class of functions satisfying Theorem 1.3.1.

Proposition 3.3.1. Let 𝑢 ∈ 𝐶2 be nonnegative and subharmonic in an open set Ω ⊂ ℝ𝑛+1, i.e. Δ𝑢 ≥ 0.
Then 𝑢 satisfies (∗). Moreover, 𝑢 is 𝜀-approximable in domains Ω as in (1.2).
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The proof of the first assertion follows by direct computations showing that Δ𝑢2𝑘 ≥ 0 for any
positive integer 𝑘 > 0. Indeed, we have that:

Δ𝑢2𝑘 =
𝑖=𝑛+1
∑

𝑖=1

𝜕2

𝜕𝑥2𝑖
𝑢2𝑘 =

=
𝑖=𝑛+1
∑

𝑖=1

𝜕
𝜕𝑥𝑖

(

2𝑘𝑢2𝑘−1 𝜕
𝜕𝑥𝑖

𝑢
)

= 2𝑘
𝑖=𝑛+1
∑

𝑖=1
(2𝑘 − 1)𝑢2𝑘−2

(

𝜕
𝜕𝑥𝑖

𝑢
)2

+ 𝑢2𝑘−1 𝜕
2

𝜕𝑥2𝑖
𝑢

= 2𝑘𝑢2𝑘−2((2𝑘 − 1)|∇𝑢|2 + 𝑢Δ𝑢) ≥ 0.

Hence, 𝑢2𝑘 is subharmonic and by Proposition 5.2 in [GKLN] it satisfies (∗).
The second assertion follows immediately from Theorem 1.3.1, upon noticing that proofs of Lem-

mas 4.5 and 4.6 in [GKLN] hold as well for functions satisfying assumptions of the proposition. In-
deed, the scrutiny of the proofs of Lemmas 4.5 and 4.6 reveals that under assumptions of the proposi-
tion, it holds that Δ𝑢2 = 2(|∇𝑢|2+𝑢Δ𝑢) ≥ 2|∇𝑢|2 and Lemma 4.6 in [GKLN] follows, if 𝑢 satisfies (∗).
Proposition 3.3.2. Let Ω ⊂ ℝ𝑛+1 be an open set and 𝑢 ∈ 𝐶2(Ω) be nonnegative and such that

Δ|∇𝑢|𝛼 ≥ 0

for any 0 < 𝛼 ≤ 2. Then, conditions (∗) holds.

Proof. Since |∇𝑢|𝛼 is 𝐶2-regular subharmonic, it satisfies the submean value property on Euclidean
balls 𝐵 ⊂ Ω. Hence for any 𝑥, 𝑦 ∈ 𝐵 and some point 𝑧 ∈ 𝐵, lying on a line segment joining 𝑥 and 𝑦,
we have

|𝑢(𝑥) − 𝑢(𝑦)|𝛼 ≤ |∇𝑢(𝑧)|𝛼|𝑥 − 𝑦|𝛼

≤ 𝐶(𝑛, 𝜂)
(

∫(1+𝜂)𝐵
|∇𝑢|𝛼

)

𝑟𝛼

≤ 𝐶(𝑛, 𝜂)
(

1
𝑟𝑛+1−2 ∫(1+𝜂)𝐵

|∇𝑢|2
)

𝛼
2

≤ 𝐶(𝑛, 𝜂)

[

(

1
𝑟𝑛−1 ∫(1+𝜂)𝐵

|∇𝑢|2 + |𝑢Δ𝑢|
)

1
2
]𝛼

.

Therefore, we proved that (∗) holds with 𝜙(𝑡) = 𝐶𝑡 with C depending on 𝑛, 𝜂 and the diameter of
domain Ω.

Recall that a 𝐶2-function satisfies (#), if |𝑢Δ𝑢| ≤ 𝜃|∇𝑢|2 for some 0 < 𝜃 < 1.
Proposition 3.3.3. Let Ω ⊂ ℝ𝑛+1 be an open set and 𝑢 be a 𝐶2-function. If 𝑢Δ𝑢 ≥ 0 in Ω, then each of
the following conditions implies (∗): Δ ln 𝑢 ≤ 0, Δ𝑢−1 ≥ 0. Moreover, if Δ𝑢𝛼 ≤ 0 for some 0 < 𝛼 < 1,
then condition (#) holds with 𝜃 ∶= 1 − 𝛼, and hence, also (∗) holds.
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Proof. The proof of the first assertion is based on the same type of computations and therefore, we
will show only argument for the first of the two conditions. We have that, at points in Ω where 𝑢 ≠ 0,
it holds that

0 ≥ Δ ln 𝑢 = div
(1
𝑢
∇𝑢

)

=
𝑢Δ𝑢 − |∇𝑢|2

𝑢2
,

and so |𝑢Δ𝑢| ≤ |∇𝑢|2 holds in Ω (as, if 𝑢 = 0 at some point in Ω, then this inequality holds triv-
ially). Thus, by the comment following definition of (#) in Introduction, condition (∗) follows from
Proposition 5.1 in [GKLN], even though 𝜃 = 1. By analogy, the following direct calculations give us
condition (#) and show the second assertion:

0 ≥ Δ𝑢𝛼 = div
( 𝛼
𝑢1−𝛼

∇𝑢
)

= 𝛼
𝑢2−𝛼

(𝑢Δ𝑢 − (1 − 𝛼)|∇𝑢|2).

Appendix: the proof of Proposition 3.2.6
The reasoning relies on the presentation in [GKLN, Section 4] and on a variant of the observation
stated on page 261 in Garnett’s book [G, Exc. 4], see also [S]. Let us state Exc. 4:

Let 𝑓 (𝑥) be measurable on ℝ. Suppose there exist 𝛼 < 1
2

and 𝜆 > 0 such that for each interval 𝐼
there is some constant 𝑎𝐼 such that

|{𝑥 ∈ 𝐼 ∶ |𝑓 (𝑥) − 𝑎𝐼 | > 𝜆}| ≤ 𝛼|𝐼|.

Then 𝑓 ∈ 𝐵𝑀𝑂. Let us recall the definition of BMO functions:
Definition 3.3.4. Let 𝑓 ∈ 𝐿1

𝑙𝑜𝑐(Ω). For a ball 𝐵 ⊂⊂ Ω define a mean value of 𝑓 over 𝐵:

𝑓𝐵 = 1
|𝐵| ∫𝐵

𝑓 (𝑥)d𝑥.

We say that 𝑓 ∈ 𝐵𝑀𝑂(Ω) if
sup
𝐵

1
|𝐵| ∫𝐵

|𝑓 (𝑥) − 𝑓𝐵|d𝑥 <∞,

where sup is taken over all balls compactly contained in Ω.
It is worth noting that instead of balls in the above definition we could take cubes 𝑄.
According to our best knowledge there is no simple proof of this result for 𝑛 > 1 in the literature.

Therefore, we state our version of it and provide its proof.
First, we state the claim and show how it implies the assertion of Proposition 3.2.6. Then, we prove

the claim.
CLAIM. Let 𝑓 ∶ ℝ𝑛 → ℝ be a measurable function and let 𝑐 ∈ (0, 1

2
) and 𝜆 > 0. If for any cube

𝑄 ⊂ ℝ𝑛 there exists a constant 𝑎𝑄 such that

|

|

|

{

𝑥 ∈ 𝑄 ∶ |𝑓 (𝑥) − 𝑎𝑄| > 𝜆
}

|

|

|

< 𝑐|𝑄|,
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then it holds that
|

|

|

{

𝑥 ∈ 𝑄 ∶ |𝑓 (𝑥) − 𝑎𝑄| > 𝑡
}

|

|

|

< 𝑒−𝑐2𝑡|𝑄|,

where 𝑡 = 3𝑛𝜆, while 𝑐2 = (3𝜆)−1 ln(4∕3).
Suppose that the claim is proven. Then Lemma 4.2 (i) in [GKLN] asserts that 𝐴𝛼,0,𝑙(𝑓 ) < 𝐴𝛼′,0,𝑙′(𝑓𝐵𝜀),for some 𝛼′ > 𝛼, 𝑙′ > 𝑙, all 0 < 𝜀 < 𝜀0(𝛼, 𝐿) and a nonnegative measurable function 𝑓 . Here, 𝑓𝐵𝜀stands for the mean value integral of 𝑓 over a hyperbolic ball 𝐵𝜀 = 𝐵((𝑧, 𝑦), 𝜀(𝑦 − 𝜙(𝑧))). Namely:

𝑓𝐵𝜀 ∶= 𝑓𝐵𝜀(𝑧,𝑦) = ∫𝐵((𝑧,𝑦),𝜀(𝑦−𝜙(𝑧)))
𝑓, (𝑧, 𝑦) ∈ Ω.

Thus, Proposition 3.2.6 will be proven provided that we show that

∫𝑄

(

𝐴𝛼′,0,𝑙′|∇𝑢|2𝐵𝜀
)2

(𝑥) d𝑥 < 𝑐|𝑄| = 𝑐(𝑙(𝑄))𝑛.

However, we find that

∫𝑄

(

𝐴𝛼′,0,𝑙′|∇𝑢|2𝐵𝜀
)2

(𝑥) d𝑥

= ∫𝑄

(

𝐴𝛼′,0,∞|∇𝑢|2𝐵𝜀
)2

(𝑥) −
(

𝐴𝛼′,𝑙′,∞|∇𝑢|2𝐵𝜀
)2

(𝑥) d𝑥

≤ ∫𝑄

(

𝐴𝛼′,0,∞|∇𝑢|2𝐵𝜀
)2

(𝑥) −
(

𝐴𝛼′,𝑙′,∞|∇𝑢|2𝐵𝜀
)2

(𝑥𝑄) d𝑥 (3.25)

+ ∫𝑄

|

|

|

|

(

𝐴𝛼′,𝑙′,∞|∇𝑢|2𝐵𝜀
)2

(𝑥𝑄) −
(

𝐴𝛼′,𝑙′,∞|∇𝑢|2𝐵𝜀
)2

(𝑥)
|

|

|

|

d𝑥.

The second integral on the right-hand side is bounded above by 𝑐(𝛼, 𝑛, 𝐿)|𝑄| in a consequence of
applying Lemma 4.3 in [GKLN] with 𝑓 (𝑧) ∶= ∫𝐵𝜀(𝑧,𝑦) |∇𝑢|

2, provided that we know that

∫𝐵𝜀(𝑧,𝑦)
|∇𝑢|2 ≤ 𝑐

(𝑦 − 𝜙(𝑧))2
, for (𝑧, 𝑦) ∈ Ω.

However, this condition immediately follows from the Caccioppoli inequality, see Lemma 4.5 in [GKLN],
with the constant 𝑐 = 𝑐(𝑛, 𝜃)𝜀−2‖𝑢‖2𝐿∞ .

Lemma 4.3 in [GKLN]. Assume that 𝑓 ≥ 0 is measurable in Ω and satisfies the uniform estimate

𝑓 (𝑧, 𝑦) ≤ 𝐴
(𝑦 − 𝜙(𝑧))2

for some 𝐴 > 0 and any (𝑧, 𝑦) ∈ Ω. Then if 𝑄 ⊂ ℝ𝑛 is a cube of side length 𝑙, ) < 𝛼 < 1
𝑀

we have

|𝐴2
𝛼,𝑙,∞(𝑓 )(𝑥1) − 𝐴

2
𝛼,𝑙,∞(𝑓 )(𝑥2)| < 𝐶

for any 𝑥1, 𝑥2 ∈ 𝑄, where 𝐶 is a constant depending only on 𝐿, 𝛼, 𝐴, 𝑛.
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As for the integral (3.25) we estimate it by the Cavalieri’s formula, see Chapter 2.7, for Φ(𝑥) = 𝑥
as follows:

∫𝑄

(

𝐴𝛼′,0,∞|∇𝑢|2𝐵𝜀
)2

(𝑥) −
(

𝐴𝛼′,𝑙′,∞|∇𝑢|2𝐵𝜀
)2

(𝑥𝑄) d𝑥

= ∫

∞

0

|

|

|

{

𝑥 ∈ 𝑄 ∶ |

|

|

(

𝐴𝛼′,0,∞|∇𝑢|2𝐵𝜀
)2

(𝑥) − 𝑎𝑄
|

|

|

> 𝑡
}

|

|

|

d𝑡,

where 𝑎𝑄 ∶=
(

𝐴𝛼′,𝑙′,∞|∇𝑢|2𝐵𝜀
)2

(𝑥𝑄).
Let us employ reasoning analogous to the proof of Theorem 4.7 in [GKLN] and Corollary 4.8 in [GKLN].

Corollary 4.6 in [GKLN] states that

𝜔∗
(

{𝑥 ∈ 𝑄 ∶
(

𝐴𝛼′,0,𝑙′|∇𝑢|2𝐵𝜀
)2

(𝑥) > 𝑡)}
)

≤ 𝐶
𝜔∗(𝑄)
𝑡

.

Using the fact that harmonic measure and surface measure are mutually absolutely continuous by
Theorem 2.1 in [GKLN], we obtain:

|

|

|

|

{𝑥 ∈ 𝑄 ∶
(

𝐴𝛼′,0,𝑙′|∇𝑢|2𝐵𝜀
)2

(𝑥) > 𝑡)}
|

|

|

|

≤ 𝐶
|𝑄|
𝑡𝑏

for some 𝑏 > 0. Now, we apply Lemma 4.3 from [GKLN] to get:
|

|

|

|

(

𝐴𝛼′,0,𝑙′|∇𝑢|2𝐵𝜀
)2

(𝑥) −
(

𝐴𝛼′,0,𝑙′|∇𝑢|2𝐵𝜀
)2

(𝑦)
|

|

|

|

≤ 𝐶1

for any 𝑥, 𝑦 ∈ 𝑄. Hence, we have:
𝑡 <

|

|

|

|

(

𝐴𝛼′,0,∞|∇𝑢|2𝐵𝜀
)2

(𝑥) −
(

𝐴𝛼′,𝑙′,∞|∇𝑢|2𝐵𝜀
)2

(𝑥𝑄)
|

|

|

|

≤
|

|

|

|

(

𝐴𝛼′,𝑙′,∞|∇𝑢|2𝐵𝜀
)2

(𝑥𝑄) −
(

𝐴𝛼′,𝑙′,∞|∇𝑢|2𝐵𝜀
)2

(𝑥)
|

|

|

|

+
|

|

|

|

(

𝐴𝛼′,0,∞|∇𝑢|2𝐵𝜀
)2

(𝑥) −
(

𝐴𝛼′,𝑙′,∞|∇𝑢|2𝐵𝜀
)2

(𝑥)
|

|

|

|

=
|

|

|

|

(

𝐴𝛼′,𝑙′,∞|∇𝑢|2𝐵𝜀
)2

(𝑥𝑄) −
(

𝐴𝛼′,𝑙′,∞|∇𝑢|2𝐵𝜀
)2

(𝑥)
|

|

|

|

+
|

|

|

|

(

𝐴𝛼′,0,𝑙′|∇𝑢|2𝐵𝜀
)2

(𝑥)
|

|

|

|

≤ 𝐶1 +
|

|

|

|

(

𝐴𝛼′,0,𝑙′|∇𝑢|2𝐵𝜀
)2

(𝑥)
|

|

|

|

.

Thus, it follows that
|

|

|

|

{𝑥 ∈ 𝑄 ∶
|

|

|

|

(

𝐴𝛼′,0,∞|∇𝑢|2𝐵𝜀
)2

(𝑥) − 𝑎𝑄
|

|

|

|

> 𝑡}
|

|

|

|

≤ 𝐶|𝑄|
(𝑡 − 𝐶1)𝑏

.

We know that there exists 𝑡0 such that for all 𝑡 > 𝑡0 it holds that
|

|

|

|

|

{

𝑥 ∈ 𝑄 ∶ |

|

|

(

𝐴𝛼′,0,∞|∇𝑢|2𝐵𝜀
)2

(𝑥) − 𝑎𝑄
|

|

|

> 𝑡
}

|

|

|

|

|

≤ 1
4
|𝑄|,
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as by following the notation of [GKLN], see page 217, we may choose 𝑡0 such that 𝐶
(𝑡0−𝐶1)𝑏

= 1
4
. By the

claim applied to 𝑓 ∶=
(

𝐴𝛼′,0,∞|∇𝑢|2𝐵𝜀
)2, the latter estimate implies a corresponding one with 𝑒−𝑐𝑡|𝑄|,

which in turn gives us the assertion of Proposition 3.2.6.
It remains to show the above Claim. Without the loss of generality let 𝑐 = 1

4
for the constant 𝑐 as in

the assumptions of the claim.
First, let𝑄𝑗 ⊂ 𝑄 denote any cube in the dyadic decomposition of cube𝑄 and set 𝐺1 ∶=

⋃

𝑄𝑗 , the
union of all maximal cubes 𝑄𝑗 satisfying the following stopping time condition:

|{𝑥 ∈ 𝑄𝑗 ∶ |𝑓 (𝑥) − 𝑎𝑄| > 𝜆}| ≥
1
3
|𝑄|.

The family of cubes 𝐺1 has the following properties:
(i) 𝑄 ∉ 𝐺1, as 𝑐 = 1

4
.

(ii) If 𝑄𝑗 ∈ 𝐺1 and 𝑄̂𝑗 denotes a parent of 𝑄𝑗 , i.e. 𝑄̂𝑗 is the minimal cube containing 𝑄𝑗 , then as
𝑄̂𝑗 ∉ 𝐺1, we have that
1
3
|𝑄𝑗| ≤ |{𝑥 ∈ 𝑄𝑗 ∶ |𝑓 (𝑥) − 𝑎𝑄| > 𝜆}| ≤ |{𝑥 ∈ 𝑄̂𝑗 ∶ |𝑓 (𝑥) − 𝑎𝑄| > 𝜆}| <

1
3
|𝑄̂𝑗| =

2
3
|𝑄𝑗|.

(iii) If 𝑥 ∉ 𝐺1, then |𝑓 (𝑥) − 𝑎𝑄| ≤ 𝜆 a.e. in 𝑄. Indeed, if 𝑥 ∈ 𝑄𝑘 for a cube not satisfying the
stopping condition, then for a set 𝐸 ∶= {𝑥 ∈ 𝑄 ∶ |𝑓 (𝑥) − 𝑎𝑄| > 𝜆}, we have that

∫𝐸
1𝐸 =

|𝐸 ∩𝑄𝑘|

|𝑄𝑘|
< 1

3
, and hence 1𝐸(𝑥) = 0 and 𝑥 ∉ 𝐸.

The Lebesgue Differentiation Theorem applied to 1𝐸 , a characteristic function of set 𝐸, gives
the property (iii) to hold at a.e. point of 𝑄.

(iv) ∑

𝑄𝑗∈𝐺1
|𝑄𝑗| ≤ 3

4
|𝑄|. Indeed, since by the stopping condition |𝑄𝑗| ≤ |𝑄| ≤ 3|{𝑥 ∈ 𝑄𝑗 ∶

|𝑓 (𝑥) − 𝑎𝑄| > 𝜆}|, we get
∑

𝑄𝑗∈𝐺1

|𝑄𝑗| ≤
∑

𝑄𝑗∈𝐺1

3|{𝑥 ∈ 𝑄𝑗 ∶ |𝑓 (𝑥) − 𝑎𝑄| > 𝜆}| ≤ 3|{𝑥 ∈ 𝑄 ∶ |𝑓 (𝑥) − 𝑎𝑄| > 𝜆}| <
3
4
|𝑄|.

Next, we construct a family of cubes 𝐺2 ∶=
⋃

𝑄𝑘, consisting of maximal subcubes of cubes in 𝐺1satisfying the following stopping time condition:

|{𝑥 ∈ 𝑄𝑘 ∶ |𝑓 (𝑥) − 𝑎𝑄𝑗 | > 𝜆}| ≥
1
3
|𝑄𝑗|, for some 𝑄𝑗 ∈ 𝐺1.

By property (iv) we get that
∑

𝑄𝑘∈𝐺2

|𝑄𝑘| ≤
∑

𝑄𝑗∈𝐺1

(

∑

𝑄𝑘⊂𝑄𝑗 ,𝑄𝑘∈𝐺2

|𝑄𝑘|

)

≤
∑

𝑄𝑗∈𝐺1

3
4
|𝑄𝑗| ≤

(

3
4

)2

|𝑄|. (3.26)
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Furthermore, for a.e. point 𝑥 ∉ 𝐺2 it holds that
|𝑓 (𝑥) − 𝑎𝑄| ≤ 3𝜆. (3.27)

In order to show (3.27), note that if 𝑥 ∉ 𝐺2, then we consider two cases: either (1) 𝑥 ∉ 𝐺1, or (2)
𝑥 ∈ 𝑄𝑗 for some 𝑄𝑗 ∈ 𝐺1. In the first case, we have |𝑓 (𝑥) − 𝑎𝑄| ≤ 𝜆 by property (ii). In the second
case, an argument similar to the one giving property (iii) shows that |𝑓 (𝑥) − 𝑎𝑄𝑗 | < 𝜆 for a.e 𝑥 ∉ 𝐺2.Next, we show that |𝑎𝑄 − 𝑎𝑄𝑗 | < 2𝜆. Define sets

𝐸1 ∶= {𝑦 ∈ 𝑄𝑗 ∶ |𝑓 (𝑦) − 𝑎𝑄| > 𝜆}, 𝐸2 ∶= {𝑦 ∈ 𝑄𝑗 ∶ |𝑓 (𝑦) − 𝑎𝑄𝑗 | > 𝜆}.

Then, by property (ii) it holds that |𝐸1| <
2
3
|𝑄𝑗| and, moreover, by the hypotheses of the claim (recall

that we fixed 𝑐 = 1
4
) we have |𝐸2| <

1
4
|𝑄𝑗|. Furthermore, (𝑄𝑗 ⧵ 𝐸1) ∩ (𝑄𝑗 ⧵ 𝐸2) ≠ ∅, as otherwise

|𝑄𝑗| ≥ |𝑄𝑗 ⧵ 𝐸1| + |𝑄𝑗 ⧵ 𝐸2| > (1 − 2
3
)|𝑄𝑗| + (1 − 1

4
)|𝑄𝑗| > |𝑄𝑗|.

Therefore, there exists 𝑦 ∈ 𝑄𝑗 such that |𝑓 (𝑦) − 𝑎𝑄| ≤ 𝜆 and |𝑓 (𝑦) − 𝑎𝑄𝑗 | ≤ 𝜆. This immediately
results in the desired estimate

|𝑎𝑄 − 𝑎𝑄𝑗 | ≤ |𝑓 (𝑦) − 𝑎𝑄| + |𝑓 (𝑦) − 𝑎𝑄𝑗 | ≤ 2𝜆.

Hence, (3.27) follows, as
|𝑓 (𝑥) − 𝑎𝑄| ≤ |𝑓 (𝑥) − 𝑎𝑄𝑗 | + |𝑎𝑄 − 𝑎𝑄𝑗 | ≤ 3𝜆.

We iterate the above stopping time procedure and after 𝑛 steps obtain the family of cubes 𝐺𝑛 with the
following properties, cf. property (iv) and (3.26), (3.27) and :

(1)
∑

𝑄𝑙∈𝐺𝑛

|𝑄𝑙| ≤
(3
4

)𝑛
|𝑄|, (2) |𝑓 (𝑥) − 𝑎𝑄| < 3𝑛𝜆 for a.e. 𝑥 ∉ 𝐺𝑛.

In a consequence, we get that | {𝑥 ∈ 𝑄 ∶ |𝑓 (𝑥) − 𝑎𝑄| > 3𝑛𝜆
}

| ≤
(

3
4

)𝑛
|𝑄|. The latter implies, upon

setting 𝑡 ∶= 3𝑛𝜆, the assertion of Claim, as (3∕4)𝑛 = 𝑒−(ln 4∕3)(3𝜆)−1𝑡. This completes the proof of Claim
and the proof of Proposition 3.2.6 is completed as well.

44



Chapter 4

𝜀-Approximability and Quantitative Fatou
Theorem on Riemannian manifolds

This chapter is based on the paper [Gr].
We deal with 𝜀-approximability and Quantitative Fatou Property on Riemannian manifolds. We

first prove 𝜀-approximability. In order to obtain that goal we construct the covering of the domain with
desired properties. Then we take 𝜀-approximant on each of the sets from that covering. To this end we
apply Theorem 1.3 from [HMM1], which states that there is an 𝜀-approximant in the Euclidean space.
Finally, we glue these approximations together to get 𝜀-approximation on a domain in a Riemannian
manifold.

Having 𝜀-approximation in our hands we may proceed to proving Quantitative Fatou Property. We
follow the approach from Lemma 2.9 in [KKPT]. Since we are in the Riemannian setting, not the
Euclidean one, we have to prove all the necessary claims in this broader setting and also develop some
of them.

The following are the key results of this chapter:
Theorem. 1.4.2 Let 𝑀 be an 𝑛-dimensional complete Riemannian manifold and Ω ⊂ 𝑀 be an
open bounded connected Lipschitz set. Let 𝑢 be a harmonic bounded function in Ω. Then 𝑢 is 𝜀-
approximable for every 𝜀 > 0.

Theorem. 1.4.1 Let 𝑀 be a complete Riemannian manifold and let further Ω ⊂ 𝑀𝑛 be a Lipschitz
domain. Furthermore, let 𝑢 ∶ Ω → ℝ be a harmonic bounded function with ‖𝑢‖∞ ≤ 1. Then for every
point 𝑝 ∈ 𝜕Ω

sup
0<𝑟<rinj

1
𝑟𝑛−1 ∫𝜕Ω∩𝐵(𝑝,𝑟)

𝑁(𝑟, 𝜀, 𝜃)(𝑞)𝑑𝜎(𝑞) ≤ 𝐶(𝜀, 𝛼, 𝜃, 𝑛,Ω),

where 𝜀, 𝛼, 𝜃 are constants in the definition of the counting function. In particular, constant 𝐶 is
independent of 𝑢.

Even though we state our theorems for harmonic functions, we are actually able to prove these
results for 𝐴-harmonic functions on Riemannian manifolds, see Definition 4.1.9.
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4.1 Preliminaries
In what follows we will investigate the setting of Riemannian manifolds and, therefore, we recall some
of the basic properties and definitions.
Definition 4.1.1. Let 𝑀𝑛 be a smooth 𝑛-dimensional manifold. We will say that 𝑀𝑛 is a Riemannian
manifold if it is equipped with a scalar product 𝑔𝑥 ∶ 𝑇𝑥𝑀𝑛 × 𝑇𝑥𝑀𝑛 → ℝ depending smoothly on
the point 𝑥 ∈ 𝑀 . Usually 𝑔 is represented by a matrix which is also denoted by 𝑔. Its determinant
is denoted by det 𝑔 and its coefficients are written with lower indices as 𝑔𝑖𝑗 for 𝑖, 𝑗 = 1,… , 𝑛. The
inverse matrix, which exists at every point since 𝑔 is invertible as scalar product, is denoted by 𝑔−1
and its coefficients are written with upper indices 𝑔𝑖𝑗 for 𝑖, 𝑗 = 1,… , 𝑛. In what follows we will write
𝑀 ∶=𝑀𝑛 to denote the Riemannian manifold when the dimension 𝑛 is fixed.

Recall that on a Riemannian manifold there exists a canonical measure defined by a Riemannian
metric given by a volume form. Throughout this chapter we simply write d𝑋 when dealing with any
integral. But it always means integrating with respect to this canonical measure.

When working with manifold one often uses local coordinates. In our case a certain choice of
coordinates is convenient.
Definition 4.1.2. Let 𝑀 be a Riemannian manifold. For any point 𝑝 ∈ 𝑀 and any neighbourhood
of 𝑝 we introduce normal coordinates in a following way. Let exp𝑝 ∶ 𝑇𝑝𝑀 → 𝑀 be a map such
that exp𝑝(𝑣) = 𝛾𝑝(1), where 𝛾𝑝 is a unique geodesic satisfying 𝛾𝑝(0) = 𝑝 and 𝛾̇𝑝(0) = 𝑣. It is known
that one can find such a neighbourhood of point 𝑝 that exp𝑝 is a diffeomorphism, call it 𝑈𝑝. Since the
tangent space 𝑇𝑝𝑀 can be identified with space ℝ𝑛, say by isomorphism 𝑇 ∶ 𝑇𝑝𝑀 → ℝ𝑛, the map
𝑇 ◦ exp−1𝑝 ∶ 𝑀 ⊃ 𝑈𝑝 → ℝ𝑛 defines a local coordinate chart which we will call normal coordinates.
In the sequel with an abuse of notation we will omit the isomorphism between a tangent space and
Euclidean space and use only exp𝑝 or exp−1𝑝 .

Notice that if one takes 𝑉 ⊂⊂ 𝑈𝑝, then exp𝑝 is also a Lipschitz map.
Definition 4.1.3 (Injectivity radius). Let 𝑀 be a Riemannian manifold. For a point 𝑥 ∈𝑀 we define
injectivity radius rinj(𝑥) at 𝑥 as the supremum of the set of all numbers 𝑟 > 0 such that on a ball
𝐵(0, 𝑟) ⊂ 𝑇𝑥𝑀 the exponential map exp𝑥 ∶ 𝑇𝑥𝑀 → 𝑀 is a diffeomorphism. Then, the injectivity
radius of a set Ω ⊂ 𝑀 is defined by:

rinjΩ = inf
𝑥∈Ω

rinj(𝑥).

Usually, we omit the lower case Ω if the set is fixed.
For more information on geometry of manifolds we refer e.g. to [H], [Li].
We will mostly deal with Lipschitz domains. Therefore, it is necessary to recall what we mean by

a Lipschitz set on a manifold 𝑀 .
Definition 4.1.4. Let Ω be an open connected subset of a manifold𝑀 and let 𝑝 ∈ 𝜕Ω. We say that Ω is
locally Lipschitz at 𝑝 if there exist a neighbourhood𝑈 of 𝑝 in𝑀 and a local chart 𝑓 ∶ 𝑈 → 𝑓 (𝑈 ) ⊂ ℝ𝑛

such that 𝑓 (𝑈 ∩Ω) is a Lipschitz set in ℝ𝑛. We say that Ω is a Lipschitz set if it is locally Lipschitz at
every point of its boundary 𝜕Ω.
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Definition 4.1.5 (Gradient). Let 𝑀 be a Riemannian manifold with metric 𝑔. In particular at point
𝑥 ∈𝑀 we have a scalar product 𝑔𝑥 defined on the tangent space 𝑇𝑥𝑀 at 𝑥. Let 𝑓 be a scalar function
on 𝑀 . The gradient ∇ is a vector field defined by the following property:

𝑔𝑥(∇𝑓 (𝑥), 𝑣𝑥) = 𝑑𝑓 (𝑥)(𝑣𝑥),

where 𝑣𝑥 ∈ 𝑇𝑥𝑀 and 𝑑 denotes differential.
In the local coordinates one obtains:

(∇𝑓 )𝑖 = 𝜕𝑖𝑓 =
∑

𝑗
𝑔𝑖𝑗𝜕𝑗𝑓,

where 𝑔𝑖𝑗 are coefficients of the inverse of 𝑔.
Definition 4.1.6 (Divergence). Let 𝑀 be an 𝑛-dimensional Riemannian manifold with metric 𝑔. Let
𝑋 be a vector field on 𝑀 . The divergence of 𝑋 denoted by div𝑋 is defined by:

dix𝑋 vol𝑛 = 𝐿𝑋 vol𝑛,

where in local coordinates vol𝑛 =
√

| det 𝑔|𝑑𝑥1 ∧⋯ ∧ 𝑑𝑥𝑛 denotes the volume form on 𝑀 and 𝐿𝑋 is
a Lie derivative along 𝑋.

In local coordinates we obtain:
div𝑋 = 1

√

| det 𝑔|

∑

𝑖
𝜕𝑖

(

√

| det 𝑔|𝑋𝑖
)

.

Definition 4.1.7 (Laplacian). Let𝑀 be a Riemannian manifold. The Laplace (or the Laplace-Beltrami)
operator is defined on functions 𝑢 defined on 𝑀 as follows

Δ𝑢 = div(∇𝑢).

In local coordinates we get:

Δ𝑢 = 1
√

| det 𝑔|

∑

𝑖
𝜕𝑖

(

√

| det 𝑔|
∑

𝑗
𝑔𝑖𝑗𝜕𝑗𝑓

)

.

Definition 4.1.8. We say that a Sobolev function 𝑢 on 𝑀 is harmonic if Δ𝑢 = 0.
The following generalizes Definition 2.4 in [BH] to the setting of Riemannian manifolds. We

retrieve that definition for 𝑀 = ℝ𝑛.
We call a class of functions satisfying the definition below 𝐴-harmonic. Some authors use the

name 𝐿-harmonic. This class of function is a natural generalization of harmonic functions. In [N] and
[DG] one can find the proof of continuity of 𝐿-harmonic functions. They have been studied for many
years. Moser proved Harnack inequality for such functions in [Mos], in [CFK] one can find discussion
about 𝐿-harmonic measures. In [CFMS] pertains to existence on nontangential limits of 𝐴-harmonic
functions at the boundary of the domain. The authors of [DJK] prove the comparability of 𝑝-norms of
nontangential maximal function and square/area function for 𝐴-harmonic functions. In [HMM1] one
can find the proof of 𝜀-approximability of such functions and in [BH] there is a proof of Quantitative
Fatou Property of such functions.

For an overview of some properties of 𝐴-harmonic functions on Riemannian manifold, see [CM].
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Definition 4.1.9. We will say that a Sobolev function 𝑢 ∶ Ω → ℝ is 𝐴-harmonic if it satisfies the
following equation

div(𝐴∇𝑢) = 0, (4.1)
understood in the weak sense, where 𝐴 ∶ 𝑇𝑀 → 𝑇𝑀 is such that for each point 𝑥 ∈ Ω we have
𝐴(𝑥) ∶ 𝑇𝑥𝑀 → 𝑇𝑥𝑀 is a linear map and for every fixed vector field𝑋 the map 𝐴(⋅, 𝑋) is measurable.
Furthermore, we assume that there is a constant 𝐶 > 1 such that

𝐶−1
|𝜉|2 ≤ 𝑔𝑥(𝐴(𝑥)𝜉, 𝜉), ‖𝐴‖∞ ≤ 𝐶,

for all 𝑥 ∈ Ω and 𝜉 ∈ 𝑇𝑥𝑀 . Moreover, we impose that operator 𝐴 has bounded coefficients and
satisfies the following conditions (&) and (&&) in [BH]

• the Carleson measure condition

sup
𝑥∈𝜕Ω,0<𝑟<diam(𝜕Ω)

1
𝑛−1(𝐵(𝑥, 𝑟) ∩ 𝜕Ω) ∫𝐵(𝑥,𝑟)∩Ω

|∇𝐴(𝑋)|d𝑋 ≤ 𝐶 <∞, (&)

• the pointwise gradient estimate

|∇𝐴(𝑋)| ≤ 𝐶
dist(𝑋, 𝜕Ω)

, for all 𝑋 ∈ Ω. (&&)

Condition (&) means that the norm of the gradient of 𝐴 gives rise to a Carleson measure. Since
we ultimately want to prove 𝜀-approximability, which requires that |∇𝜑|d𝑋 is a Carleson measure, it
is a natural condition. Notice that for𝐴 = 𝐼𝑑 this condition is satisfied. Condition (&&) means that𝐴
cannot change too rapidly as we approach the boundary. Again𝐴 = 𝐼𝑑 satisfies this condition. A case
𝐴 = 𝐼𝑑 is important, because it recovers the Laplace-Beltrami operator. Examples of operators which
satisfy conditions (&) and (&&) are for instance operators with constant coefficients or operators with
linear coefficients on bounded domains.
Remark 4.1.10. If in the above definition operator 𝐴 is such that for every 𝑥 ∈ Ω we have 𝐴(𝑥) ∶
𝑇𝑥𝑀 → 𝑇𝑥𝑀 is an identity transformation, then we obtain a Laplace-Beltrami operator. For more
information about harmonic functions on manifolds, see e.g. [Li].

Recall that in the Preliminaries we define the functions with bounded variation in the Euclidean
setting as well as in the setting of Riemannian manifolds. Below, we recall the generalized Definition
2.10.2 in the setting of Riemannian manifolds.
Definition 4.1.11. Let Ω ⊂ 𝑀 be an open set and 𝑢 ∈ 𝐿1(Ω). We say that 𝑢 has bounded variation in
Ω and denote it by 𝑢 ∈ 𝐵𝑉 (Ω) if

sup
{

∫Ω
𝑢 div(𝜙𝑋) ∶ 𝑋 ∈ Γ(Ω), 𝜙 ∈ 𝐶∞

𝑐 (Ω,ℝ), |𝜙| ≤ 1
}

<∞,

where
Γ(Ω) is a family is of smooth vector fields on Ω such that 𝑔(𝑋(𝑥), 𝑋(𝑥)) ≤ 1 for every 𝑥 ∈ Ω,

where 𝑔 denotes the metric on 𝑀 . The above supremum is called a variation of 𝑢.
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If Ω ⊂ 𝑀 = ℝ𝑛, then we retrieve the definition of functions of bounded variation in Ω in Definition
2.10.1.

The main advantage of BV functions is the fact that it is a class wider that 𝑊 1,1 functions and
in particular, it allows discontinuities along hypersurfaces. Therefore, it is well-suited for studying
geometric variation problems. Let us mention that the BV functions on manifolds have been studied
e.g. in [GuP], [MPPP], [CaM].

Let us now recall the definition of 𝜀-approximability. The discussion regarding that notion is con-
tained in the Preliminaries. It has often appeared in the literature for many years. However, to our best
knowledge so far, it has only been used in Euclidean setting. Therefore, we give the definition in the
setting of Riemannian manifolds.
Definition 4.1.12. Let Ω ⊂ 𝑀 be a Lipschitz domain on a Riemannian manifold 𝑀 . Let 𝑢 ∶ Ω → ℝ
be a harmonic function with ‖𝑢‖∞ ≤ 1. We will say that function 𝑢 is 𝜀-approximable for some 𝜀 > 0
if there exists a function 𝜙 ∈ 𝐵𝑉 (Ω) such that

1. ‖𝑢 − 𝜙‖𝐿∞(Ω) < 𝜀,
2. |∇𝜙| defines a Carleson measure on Ω, i.e. for every 𝑥 ∈ 𝜕Ω

sup
𝑟∈(0,diamΩ)

1
𝑟𝑛−1 ∫𝐵(𝑝,𝑟)∩Ω

|∇𝜙|d𝑋 ≤ 𝐶𝜀.

Now we will define a generalized cone, a notion that in the Euclidean setting corresponds to the
notion of the cone.
Definition 4.1.13. Let Ω be a connected, open subset of a Riemannian manifold 𝑀 and let 𝑝 ∈ 𝜕Ω.
Let 0 < 𝛼 <∞. The set

Γ(𝑝) ∶= Γ𝛼(𝑝) = {𝑞 ∈ Ω ∶ 𝑑(𝑝, 𝑞) ≤ (1 + 𝛼)𝑑(𝑞, 𝜕Ω)},

is called a generalized cone. Moreover, we also define a truncated generalized cone as follows
Γ𝑟(𝑝) ∶= Γ(𝑝) ∩ 𝐵(𝑝, 𝑟).

For the sake of simplicity we will use a name "cone" instead of generalized cone. In literature a
name nontangential approach region is also used, see [KKPT]. We call it a generalized cone because
in the case when 𝑀 = ℝ𝑛 and 𝜕Ω = ℝ𝑛−1 × {0} we obtain for 𝑝 ∈ 𝜕Ω as Γ(𝑝) the usual Euclidean
cone. Compare this Definition to Definition 2.3.1 in Preliminaries.

Similarly to Definition 4.1.14 we introduce the following notion.
Definition 4.1.14. Let Ω ⊂ 𝑀 be open, bounded, connected and 𝑝 ∈ 𝜕Ω. Let further Γ(𝑝) denote a
cone at 𝑝. We define a doubly truncated cone Γ𝑟1,𝑟2(𝑝) as follows

Γ𝑟1,𝑟2(𝑝) ∶= (Γ(𝑝) ∩ 𝐵(𝑝, 𝑟1)) ⧵ (Γ(𝑝) ∩ 𝐵(𝑝, 𝑟2)),

where 0 < 𝑟1, 𝑟2 <∞.
Let us state one of the key definitions used in this chapter.
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Definition 4.1.15 (Counting function). Let Γ𝑟(𝑝) be a cone for some point 𝑝 in the boundary of an
open set Ω ⊂ 𝑀𝑛. Let 𝑢 be a harmonic function defined on Ω. Denote by 𝑑 a Riemannian distance in
manifold 𝑀 . Fix 𝜀 > 0, 0 < 𝜃 < 1 and 0 < 𝑟 < 1. We say that a sequence of points (𝑄𝑛) such that
𝑄𝑛 ∈ Γ𝑟(𝑝) is (𝑟, 𝜀, 𝜃, 𝑝)-admissible for u if

|𝑢(𝑄𝑛) − 𝑢(𝑄𝑛−1)| ≥ 𝜀 and 𝑑(𝑄𝑛, 𝑝) < 𝜃𝑑(𝑄𝑛−1, 𝑝).

Set
𝑁(𝑟, 𝜀, 𝜃)(𝑝) = sup{𝑘 ∶ there exists an (𝑟, 𝜀, 𝜃, 𝑝)-admissible sequence of length 𝑘}.

We call 𝑁 a counting function.

4.2 A special case of 𝜀-approximability
Before presenting the general case of 𝑛-dimensional complete manifold, we would like to give the taste
of the 𝜀-approximability in the special, but important, case of 𝑀 = 𝕊2- the unit sphere in ℝ3. Since
then the maps can be found explicitly, the 𝜀-approximability can be proven directly.
Proposition 4.2.1. Let Ω ⊂ 𝕊2 be a Lipschitz domain in the 2-dimensional sphere such that the surface
measure 𝜎 of the set 𝕊2 ⧵Ω is positive. Let 𝑢 be a Laplace–Beltrami harmonic function in Ω such that
there exists a point 𝑝∗ ∈ Ω with 𝑢(𝑝∗) = 0. Then for every 𝜀 > 0 there is a BV function 𝜙 such that
|𝑢(𝑥) − 𝜙(𝑥)| < 𝜀 for every 𝑥 ∈ Ω and |∇𝜙| defines a Carleson measure i.e.

∫𝐵𝑦(𝑟)∩Ω
|∇𝜙|𝑑𝐴 ≤ 𝐶𝑟

for every point 𝑦 ∈ 𝜕Ω, 0 < 𝑟 < diam(Ω) and for some positive constant 𝐶 depending on Ω. Namely,
𝐶 depends on dist(Ω, 𝑒3), where 𝑒3 denotes unit vector (0, 0, 1) in ℝ3.

In the proof of the above proposition, we employ the following auxiliary observation.
Lemma 4.2.2. The stereographic projection 𝑓 ∶ ℝ3 ⊃ 𝕊2 → ℝ2 given by the formula

𝑓 (𝑥, 𝑦, 𝑧) =
( 𝑥
1 − 𝑧

,
𝑦

1 − 𝑧

)

is a Lipschitz map on any open set Ω ⊂ 𝕊2 such that 𝜎(𝕊2 ⧵ Ω) > 0. Moreover, there exists constant
𝐶 = 𝐶(dist(Ω, 𝑒3)) such that the Jacobian of 𝑓 satisfies

|𝐽𝑓 (𝑥, 𝑦, 𝑧)| ≈ 𝐶.

Here and in what follows by {𝑒𝑖}𝑛𝑖=1 we denote the standard orthonormal vector basis in ℝ𝑛.

Proof of Lemma 4.2.2. Let us first notice that, upon rotating the sphere, we may assume that the north
pole 𝑒3 ∈ 𝕊2 ⧵ Ω and the distance on a sphere of 𝑒3 to Ω is positive. Since rotation is an isometry,
it does not affect the harmonicity of function 𝑢. Moreover, as the Jacobian of rotation equals 1, the
Carleson measure estimates are not affected. Finally, recall that 𝑓 is a conformal diffeomorphism.
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Let us cover 𝕊2 with six sets open in the topology of the sphere 𝑈+
𝑥 , 𝑈−

𝑥 , 𝑈+
𝑦 , 𝑈−

𝑦 , 𝑈+
𝑧 , 𝑈−

𝑧 , where

𝑈+
𝑥 =

{

(𝑥, 𝑦, 𝑧) ∈ 𝕊2 ∶ 𝑥 > 1
10

}

, 𝑈−
𝑥 =

{

(𝑥, 𝑦, 𝑧) ∈ 𝕊2 ∶ 𝑥 < − 1
10

}

and similarly for the remaining of those sets. We choose 1
10

, because we want to be separated from
a circle {𝑥 = 0}. Analogously for sets with subindices 𝑦 or 𝑧 we want to be separated from circles
{𝑦 = 0}, {𝑧 = 0} respectively. We could choose any constant such that aforementioned sets cover
the sphere. Here we take 1

10
for convenience. Then on each of sets 𝑈 , the remaining two coordinates

form local coordinates on sphere, e.g. on 𝑈+
𝑥 coordinates are given by (𝑦, 𝑧). Next, we express 𝑓

on any of aforementioned sets with these new coordinates. In particular, on 𝑈+
𝑧 we have 𝑓 (𝑥, 𝑦) =

(

𝑥
1−

√

1−𝑥2−𝑦2
, 𝑦
1−

√

1−𝑥2−𝑦2

)

, and so by the direct computations we find that

𝐷𝑓 (𝑥, 𝑦) = 𝑎(𝑥, 𝑦)
(√

1−𝑥2−𝑦2−1+2𝑥2+𝑦2 𝑥𝑦
𝑥𝑦

√

1−𝑥2−𝑦2−1+𝑥2+2𝑦2

)

,

where 𝑎(𝑥, 𝑦) =
[

√

1 − 𝑥2 − 𝑦2 (1 −
√

1 − 𝑥2 − 𝑦2)2
]−1. Since (𝑥, 𝑦, 𝑧) ∈ 𝑈+

𝑧 , we know that 1
√

1−𝑥2−𝑦2
=

1
𝑧2
< 100. Moreover, upon setting 𝑑 ∶= 𝑑(Ω, 𝑒3) > 0, we infer that

1
(1 − 𝑧)2

= 1
(1 −

√

1 − 𝑥2 − 𝑦2)2
< 1

(1 − cos 𝑑)2
.

An elementary estimate gives us that |√1 − 𝑥2 − 𝑦2 − 1 + 2𝑥2 + 𝑦2| ≤ 5 for all (𝑥, 𝑦, 𝑧) ∈ 𝑈+
𝑧 and,

hence on Ω ∩ 𝑈+
𝑧 we have

‖𝐷𝑓‖𝐿∞ ≤ 500
(1 − cos 𝑑)2

.

The case of 𝑈−
𝑧 is handled by analogous computations. The cases of sets with indices 𝑥 and 𝑦 are

different, because in the formula for the stereographic projection we divide by 1 − 𝑧 and on these sets
𝑧 is one of coordinates. However, again by similar computations we see that whether it is set 𝑈+

𝑥 ,
𝑈−
𝑥 , 𝑈+

𝑦 or 𝑈−
𝑦 , the result is the same. Moreover, the formula for stereographic projection allows us to

handle sets 𝑈+
𝑦 and 𝑈−

𝑦 in a similar fashion. On 𝑈+
𝑥 we have 𝑓 (𝑦, 𝑧) =

(√

1−𝑦2−𝑧2

1−𝑧
, 𝑦
1−𝑧

)

and hence

𝐷𝑓 (𝑦, 𝑧) = 𝑏(𝑦, 𝑧)
(

−𝑦(1−𝑧) 1−𝑦2−𝑧
(1−𝑧)

√

1−𝑦2−𝑧2 𝑦
√

1−𝑦2−𝑧2

)

,

where 𝑏(𝑦, 𝑧) =
[

√

1 − 𝑦2 − 𝑧2(1 − 𝑧)2
]−1. The computations analogous to the above allow us to

estimate 𝐿∞-norm again by 500
(1−cos 𝑑)2

. The remaining three sets 𝑈−
𝑥 , 𝑈+

𝑦 , 𝑈−
𝑦 can be handled in the

same way, and therefore, ‖𝐷𝑓‖𝐿∞(Ω) is bounded. Hence 𝑓 is Lipschitz on Ω with Lipschitz constant
𝐿 = 500

(1−cos 𝑑)2
.

Finally, let us show the bounds for the Jacobian of 𝑓 . First, we compute directly that on𝑈+
𝑧 it holds

|𝐽𝑓 (𝑥, 𝑦)| = 1
𝑧2(1 − 𝑧)4

|𝑧||1 − 𝑧|2| − 2𝑧 − 1| = 2𝑧 + 1
𝑧(1 − 𝑧)2

,
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which combined with the fact that 1
10
< 𝑧 < cos 𝑑 gives us the following inequalities:

12
10

(10
9

)2 1
cos 𝑑

< |𝐽𝑓 (𝑥, 𝑦)| < 10 2 cos 𝑑 + 1
(1 − cos 𝑑)3

.

Similarly on 𝑈+
𝑥 we have

|𝐽𝑓 (𝑦, 𝑧)| = 1
𝑥(1 − 𝑧)2

which, in a consequence, results in the following bounds for |𝐽𝑓 |:

1 ⋅ 1

(1 + 3
√

11
10

)2
< |𝐽𝑓 (𝑦, 𝑧)| < 10 max

⎧

⎪

⎨

⎪

⎩

1
(1 − cos 𝑑)2

, 1

(1 − 3
√

11
10

)2

⎫

⎪

⎬

⎪

⎭

.

By analogous computations we find bounds for 𝐽𝑓 on other sets 𝑈 .
We are now in a position to show the proof of 𝜀-approximability on Lipschitz domains on 𝕊2.

Proof of Proposition 4.2.1. Let 𝑓 be the stereographic projection as in Lemma 4.2.2. Since 𝑢 is har-
monic, we get that 𝑢◦𝑓−1 is also harmonic on 𝑓 (Ω) due to conformal invariance of harmonicity in
dimension 2. Furthermore, by Lemma 4.2.2 it holds that 𝑓 (Ω) ⊂ ℝ2 is a Lipschitz domain. There-
fore, by Dahlberg’s result [D1, Theorem 1] for any 𝜀 > 0, we find a function 𝜙 which 𝜀-approximates
𝑢◦𝑓−1. Upon setting 𝜙 ∶= 𝜙◦𝑓 we immediately obtain that 𝜙 is a desired function in the first part of
the assertion of the theorem, that is 𝜙 𝜀-approximates 𝑢. Indeed,

|𝑢(𝑥) − 𝜙(𝑥)| = |𝑢◦𝑓−1(𝑓 (𝑥)) − 𝜙(𝑓 (𝑥))| < 𝜀
as 𝜙 approximates 𝑢◦𝑓−1 and 𝑓 is a bijection.

The proof that |∇𝜙| gives a Carleson measure requires slightly longer argument. Note that by
definition of 𝜙, Lipschitz bound on |𝐷𝑓 | and by the standard identity |𝐽𝑓 (𝑥)| |𝐽𝑓−1(𝑓 (𝑥))| = 1, we
have

∫𝐵𝑦(𝑟)∩Ω
|∇𝜙(𝑥)|d𝜎(𝑥) (4.2)

≤ ∫𝐵𝑦(𝑟)∩Ω
|∇𝜙(𝑓 (𝑥))| |𝐷𝑓 (𝑥)|d𝜎(𝑥)

≤ 𝐿∫𝐵𝑦(𝑟)∩Ω
|∇𝜙(𝑓 (𝑥))| |𝐽𝑓 (𝑥)| |𝐽𝑓−1(𝑓 (𝑥))|d𝜎(𝑥),

where 𝐿 is a Lipschitz constant, which depends also on 𝑑 = dist(Ω, 𝑒3), see the proof of Lemma 4.2.2
for details. Since 𝑓 (Ω) is bounded and 𝑓 is a diffeomorphism, it holds by the second part of assertion
in Lemma 4.2.2 that |𝐽𝑓−1(𝑓 (𝑥))| is bounded as well by 𝐶 = 𝐶(𝑑). Therefore,

∫𝐵𝑦(𝑟)∩Ω
|∇𝜙(𝑓 (𝑥))| |𝐽𝑓 (𝑥)| |𝐽𝑓−1(𝑓 (𝑥))|d𝜎(𝑥) (4.3)

≤ 𝐶 ∫𝐵𝑦(𝑟)∩Ω
|∇𝜙(𝑓 (𝑥))| |𝐽𝑓 (𝑥)|d𝜎(𝑥)

= 𝐶 ∫𝑓 (𝐵𝑦(𝑟)∩Ω)
|∇𝜙(𝑧)|d𝑧,
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where in the last step we use the change of variables formula. The set 𝑓 (𝐵𝑦(𝑟) ∩ Ω) need not be equal
to 𝑓 (Ω) ∩ 𝐵𝑓 (𝑦)(𝑟′) for some 𝑟′, but there is such 𝑟 = 𝑟(𝑦) that 𝑓 (𝐵𝑦(𝑟) ∩ Ω) ⊂ 𝑓 (Ω) ∩ 𝐵𝑓 (𝑦)(𝑟).

Since, by Dahlberg’s result, |∇𝜙| defines a Carleson measure on ℝ2, we trivially have that

∫𝑓 (Ω)∩𝐵𝑓 (𝑦)(𝑟)
|∇𝜙(𝑧)|d𝑧 ≤ 𝐶̃𝑟 ≤ 𝐶̃𝐾𝑟. (4.4)

The last inequality is a consequence of a fact that we can find a global constant 𝐾 such that for each
𝑦 ∈ 𝜕Ω it holds that 𝑟(𝑦) < 𝐾𝑟. For example, take 𝐾 = 𝐿 + 1.

By combining estimates (4.2)-(4.4) we obtain that |∇𝜙| defines a Carleson measure onΩ ⊂ 𝕊2.

4.3 Harmonic and A-harmonic 𝜀-approximability
The crucial part of the proof of Quantitative Fatou Theorem is the 𝜀-approximability. Definition 4.1.12
shows that the 𝜀-approximation function 𝜙 is close to harmonic function 𝑢, but has a property that its
gradient gives the Carleson measure, which may not necessarily by true for any harmonic function,
see the discussion in Chapter 1.2. This is the essential part of estimates needed to obtain Quantitative
Fatou Theorem.
Theorem. 1.4.2 Let 𝑀 be an 𝑛-dimensional complete Riemannian manifold and Ω ⊂ 𝑀 be an
open bounded connected Lipschitz set. Let 𝑢 be a bounded harmonic function in Ω. Then 𝑢 is 𝜀-
approximable for every 𝜀 > 0.

In the proof of Theorem 1.4.2 we use the following deep result, see [BH, Theorem 2.15]. For the
reader’s convenience let us recall this theorem:
Theorem. Suppose Ω ⊂ ℝ𝑛+1 is an open set satisfying the (interior) corkscrew condition such that 𝜕Ω
is uniformly rectifiable and  is an 𝐴-harmonic elliptic operator with coefficients satisfying equations
(&) and (&&). Then all bounded solutions to 𝑢 = 0 in Ω are 𝜀-approximable for all 𝜀 ∈ (0, 1) with
constant 𝐶𝜀 depending on equations (&), (&&), 𝜀, 𝑛, and the UR character of 𝜕Ω.

Therefore, in the case when 𝑀 is the Euclidean space and Ω is a Lipschitz domain and operator
 is given by Laplace-Beltrami operator in local coordinates, all the assertions of this theorem are
satisfied and we are allowed to use it.

Our strategy is as follows: we cover set Ω with finitely many open sets such that on each we are
able to use normal coordinates. The properties of these coordinates and the fact that Ω is Lipschitz
enable us to prove existence of 𝜀-approximation on each of the sets in the covering. Finally we glue
these approximations and show that it is an 𝜀-approximation on Ω. We need normal coordinates on
a manifold in order to express the Laplace equation on the manifold in these coordinates as an A-
harmonic equation. We prove that a Lipschitz set satisfies interior corkscrew condition, which is an
essential property of a set Ω. Due to Lipschitzness, the boundary 𝜕Ω satisfies the Ahlfors-David
regularity condition, which is necessary for our theorem to hold.

Before proving Theorem 1.4.2 let us discuss two auxiliary results. First we establish a relation
between BV functions on manifolds and in ℝ𝑛. Lemma 4.3.1 enables us to produce a BV function on
a manifold 𝑀 if we have a BV function defined on a subset of ℝ𝑛. Lemma 4.3.2 allows us says that
bounded Lipschitz sets in ℝ𝑛 satisfy interior corkscrew condition. This property is necessary in the
proof of Theorem 1.4.2.
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Lemma 4.3.1. Let 𝑀 be a Riemannian manifold. Furthermore, let 𝜙 ∶ 𝑈 → ℝ be a BV function
defined on a set 𝑈 ⊂ 𝑉 ⊂ ℝ𝑛, where 𝑉 is such a set that exp𝑝 is a diffeomorphism on 𝑉 into 𝑀 for
some point 𝑝 ∈ 𝑉 . Then, the composition 𝜙◦ exp−1𝑝 is a BV function on exp𝑝(𝑈 ) ⊂ 𝑀 .

Proof. By the definition, a function 𝜙 ∈ 𝐵𝑉 (𝑈 ) if

sup∫𝑈
𝜙 div𝑣 <∞,

where the supremum is taken over the set of all 𝑣 ∈ 𝐶∞
𝑐 (𝑈,ℝ𝑛) with |𝑣| ≤ 1. We would like to find

uniform estimate for the integral ∫exp𝑝(𝑈 )(𝜙◦ exp
−1
𝑝 )div𝑣, where 𝑣 ∈ 𝐶∞

𝑐 (exp𝑝(𝑈 ),ℝ𝑛). By the change
of variables formula we obtain

∫exp𝑝(𝑈 )
(𝜙◦ exp−1𝑝 ) div𝑣 = ∫𝑈

(

(𝜙◦ exp−1𝑝 )◦ exp𝑝
)

div(𝑣◦ exp𝑝)|𝐽 exp𝑝 | ≲ ∫𝑈
𝜙 div(𝑣◦ exp𝑝).

The approximate inequality is the consequence of the fact that Jacobian of exp𝑝 is bounded on 𝑈 by a
constant depending on 𝑈 and 𝑀 , since set 𝑈 ⊂ 𝑉 and so, by assumptions, exp𝑝 is a diffeomorphism
on 𝑈 . In the last integral, instead of 𝑣, we now have 𝑣◦ exp𝑝, which may a priori change the set of
functions over which supremum is taken. However, it turns out that any function 𝑤 ∈ 𝐶∞

𝑐 (𝑈,ℝ𝑛),
|𝑤| ≤ 1 can be written as 𝑣◦ exp𝑝 for some function 𝑣 ∈ 𝐶∞

𝑐 (exp𝑝(𝑈 ),ℝ𝑛), |𝑣| ≤ 1. Indeed, this
follows from writing 𝑤 = (𝑤◦ exp−1𝑝 )◦ exp𝑝 and setting 𝑣 = 𝑤◦ exp−1𝑝 . This completes the proof of
the lemma.

We now state as a lemma the well-known result. Its proof is contained in the Appendix to this
chapter. It seems to us that this fact is the mathematical folklore in geometric analysis. However, we
were not able to find any written proof of it and hence we decided to include ours.
Lemma 4.3.2. A bounded Lipschitz set in the Euclidean space satisfies interior corkscrew condition.

We are now in a position to prove one of the main results of this chapter (the second being Quan-
titative Fatou Property).
Proof of Theorem 1.4.2. Before we start the proof, let us outline the main steps.

Step 1. Construct a covering of Ω. Each set in the covering is diffeomorphic to a subset of ℝ𝑛 and
partial derivatives of diffeomorphisms are uniformly bounded and each set is Lipschitz.

Step 2. Use Theorem 1.3 in [HMM1] to obtain 𝜀-approximation on each of the sets of the covering.
Step 3. Glue together all 𝜀-approximations to get an 𝜀-approximation on Ω.
Step 1.
We begin with covering domain Ω with appropriately constructed Lipschitz sets, such that each of

these sets is diffeomorphic to a subset of ℝ𝑛 and all the partial derivatives of such diffeomorphisms
are uniformly bounded in Ω. Let us describe how it can be achieved.

Let us cover Ω̄ with sets 𝑉𝑝 for 𝑝 ∈ Ω, such that each 𝑉𝑝 is a neighbourhood of 𝑝 with the prop-
erty that exp𝑝 is a diffeomorphism on exp−1𝑝 (𝑉𝑝). Since Ω̄ is closed and bounded, it holds that Ω̄ is
compact by completeness of 𝑀 . Therefore, there exists a finite cover of Ω̄ by sets denoted by 𝑉𝑙 with
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𝑙 ∈ {1, 2,… , 𝑚}, where 𝑚 is a number of sets in the cover. Moreover, by 𝑝𝑙 we denote points 𝑝 corre-
sponding to sets 𝑉𝑙.
Claim: Sets 𝑉𝑙 can be chosen to be Lipschitz.
In order to prove the claim, take any ball 𝐵(𝑝𝑙, 𝑅𝑙) ⊂ 𝑀 , where 𝑅𝑙 = rinj(𝑝𝑙) is injectivity radius at
𝑝𝑙 ∈ Ω, for 𝑙 = 1,… , 𝑚. Due to the fact that Ω̄ is compact, it holds that

inf
𝑝∈Ω

rinj(𝑝) = min
𝑝∈Ω

rinj(p) ∶= rinj > 0.

Next, consider balls 𝐵(𝑝𝑙, 𝑅𝑙 − 𝛿) with 𝛿 > 0 small enough, say 𝛿 = 1
10
rinj. If it turns out that such

smaller balls do not cover Ω, then increase 𝑚 so that the new larger family of balls covers Ω. Since
𝐵(𝑝𝑙, 𝑅𝑙 − 𝛿) ⊂⊂ 𝐵(𝑝𝑙, 𝑅𝑙) and the map exp−1𝑝𝑙 is a diffeomorphism on 𝐵(𝑝𝑙, 𝑅𝑙), we have that the
derivative of exp𝑝𝑙 is bounded on each of 𝐵(𝑝𝑙, 𝑅𝑙 − 𝛿). Moreover, balls 𝐵(𝑝𝑙, 𝑅𝑙 − 𝛿) are Lipschitz
because they are images of balls 𝐵(0, 𝑅𝑙 − 𝛿) in Euclidean space under exp𝑝𝑙 . This holds since the
latter balls are Lipschitz sets in ℝ𝑛 and exp𝑝 is a Lipschitz map.

Since in our setting function 𝑢 is defined only on Ω, we need to intersect balls 𝐵(𝑝𝑙, 𝑅𝑙 − 𝛿) with
Ω. Unfortunately, sets 𝑉 ′

𝑙 ∶= 𝐵(𝑝𝑙, 𝑅𝑙 − 𝛿) ∩ Ω need not be Lipschitz nor satisfy interior corkscrew
condition. Thus, it is necessary to augment our covering.

Notice, that as Ω is Lipschitz, sets 𝑉 ′
𝑙 have finitely many connected components. Since 𝑙 ≤ 𝑚, the

set of all connected components of these sets is finite as well. Hence we may further assume that sets
𝑉 ′
𝑙 are connected.

Each set 𝑉 ′
𝑙 is locally Lipschitz at almost every point of the boundary 𝜕𝑉 ′

𝑙 . In general, the intersec-
tion 𝑏𝑙 ∶= 𝜕Ω∩ 𝜕𝐵(𝑝𝑙, 𝑅𝑙 − 𝛿) may consist of several connected components and, moreover, different
components may have different dimensions. Some components may have dimension 𝑛 − 1 when a
piece of 𝜕𝐵(𝑝𝑙, 𝑅𝑙 − 𝛿) is also a piece of 𝜕Ω, i.e. when locally Ω and 𝐵(𝑝𝑙, 𝑅𝑙 − 𝛿) share a boundary.
However, these connected components of 𝑏𝑙 are Lipschitz because Ω is Lipschitz. Therefore, only
lower dimensional components of 𝑏𝑙 may form a set of points 𝑏′𝑙 such that 𝜕𝑉 ′

𝑙 is not locally Lipschitz
at points from 𝑏′𝑙. Hence, indeed 𝑉 ′

𝑙 is locally Lipschitz at almost every point of its boundary.
Take such 𝑛-dimensional neighbourhoods 𝐴𝑙 ⊃ 𝑏′𝑙 that sets 𝑉 ′

𝑙 ⧵ 𝐴𝑙 are Lipschitz. We can also
choose 𝐴𝑙 so that 𝑑(𝑉 ′

𝑙 ⧵𝐴𝑙, 𝑏′𝑙) <
rinj
2

. It can be done because each set 𝑉 ′
𝑙 is "almost Lipschitz". Let us

be more precise and clear what we mean by "almost Lipschitz". The boundary of 𝑉 ′
𝑙 consists of parts

that are subsets of 𝜕Ω and subsets of 𝜕𝐵(𝑝𝑙, 𝑅𝑙−𝛿). Both of these sets are Lipschitz. Hence, the subset
of the boundary of 𝑉 ′

𝑙 which may be an obstacle to 𝑉 ′
𝑙 being Lipschitz has measure zero. Therefore, we

only have to take 𝐴𝑙 small enough so that the part of its boundary inside 𝑉 ′
𝑙 is Lipschitz and does not

form cusps with 𝜕𝑉 ′
𝑙 . The latter means that 𝑉 ′

𝑙 ⧵𝐴𝑙 satisfies interior and exterior corkscrew conditions.
Hence, (𝜕𝐴𝑙 ∩𝑉 ′

𝑙 ) ∪ (𝜕𝑉 ′
𝑙 ⧵𝐴𝑙) is locally Lipschitz. Since there are finitely many sets 𝑉 ′

𝑙 the Lipschitz
constants of all sets are uniformly bounded. Put 𝑙 ∶= 𝐴𝑙 ∩ 𝑉 ′

𝑙 and set

𝑉 ′′

𝑙 ∶=

{

𝑉 ′

𝑙 if 𝑉 ′

𝑙 is Lipschitz
𝑉 ′

𝑙 ⧵ 𝑙 if 𝑉 ′

𝑙 is not Lipschitz.
Sets 𝑉 ′′

𝑙 are Lipschitz but they need not cover whole set Ω. Thus we need to deal with sets 𝑙.Divide sets 𝑙 into subsets 𝑙,𝑖 such that:
• #{𝑖 ∈ ℕ ∶ 𝑙,𝑖} ≲

Vol(𝑙)
rinj𝑛

≲ Vol(Ω)
rinj𝑛

for every 𝑙.
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• diam(𝑙,𝑖) ≤ rinj for every 𝑖 and every 𝑙,
• ⋃

𝑖𝑙,𝑖 = 𝑙 for every 𝑙.
To construct such a partition, it is sufficient to cover set 𝑙 with sets 𝐵(𝑝, rinj

2
)∩𝑙 for points 𝑝 ∈ 𝑙

and take a finite subcover. Let us denote the sets from this finite subcover by 𝑙,𝑖 ∶= 𝐵(𝑝𝑙,𝑖,
rinj
2
)∩𝑙. In

particular, we refer to the centers of the balls by 𝑝𝑙,𝑖. Let us mention that sets𝑙,𝑖 need not be connected.
However, again, they may have only finitely many connected components and hence we will assume
that 𝑙,𝑖 are connected.

Define sets 𝐶𝑙,𝑖 ∶= 𝐵(𝑝𝑙,𝑖, rinj − 𝛿) ∩ Ω. Let us again assume that 𝐶𝑙,𝑖 are connected. Notice that

𝑙,𝑖 ⊂ 𝐶𝑙,𝑖, 𝑙,𝑖 ⊂⊂ 𝐵(𝑝𝑙,𝑖, rinj − 𝛿), 𝑑(𝑙,𝑖, 𝜕𝐵(𝑝𝑙,𝑖, rinj − 𝛿)) >
rinj
4
.

Moreover, sets 𝐶𝑙,𝑖 need not be Lipschitz.
Now we improve a family of sets 𝐶𝑙,𝑖 to a family of sets 𝐶 ′

𝑙,𝑖 which are constructed as Lipschitz and
𝑖,𝑙 ⊂ 𝐶

′

𝑖,𝑙. That such 𝐶 ′

𝑙,𝑖 can be chosen in such a way follows from

𝑑
(

𝑙,𝑖, 𝜕𝐵(𝑝𝑙,𝑖, rinj − 𝛿)
)

>
rinj
4
.

Notice that this means that sets 𝑙,𝑖 and 𝜕𝐵(𝑝𝑙,𝑖, rinj − 𝛿) are separated from each other. Moreover,
sets 𝐶𝑙,𝑖 are already "almost Lipschitz" as their boundaries consist of pieces of 𝜕Ω and 𝜕𝐵(𝑝𝑙,𝑖, rinj).Therefore, one can find a set 𝐶 ′

𝑙,𝑖 such that it is Lipschitz and 𝑙,𝑖 ⊂ 𝐶 ′
𝑙,𝑖. Again, because there are

finitely many sets 𝐶𝑙,𝑖, 𝐶 ′

𝑙,𝑖 all their Lipschitz constants are uniformly bounded. Hence we obtained
that all 𝑙 ⊂

⋃

𝑖 𝐶
′

𝑙,𝑖. Therefore, we covered our "bad" sets 𝑙 with Lipschitz sets.
Altogether sets 𝑉 ′′

𝑙 and 𝐶 ′

𝑙,𝑖 provide the covering of Ω with Lipschitz sets. Let us rename and
renumber the constructed collection of sets to obtain the covering {𝑉𝑙} of Ω with Lipschitz sets.

Therefore, we can assume that sets 𝑉𝑙 are Lipschitz and the claim is proven.
The estimate for 𝑚, the number of sets 𝑉𝑙 in the constructed covering.
Observe that, since the image of a ball centered at the origin under exp is a ball with the same

radius and in the proof of the Claim we set 𝛿 = 1
10
rinj, we have that diam(𝑉 ′′

𝑙 ) ≈ rinj. Next, notice that
since the radius of any geodesic ball in Ω does not exceed rinj, each such a ball has volume comparable
to

(

9
10
rinj

)𝑛 and the same holds for sets 𝐶 ′

𝑖,𝑙. Therefore, the number 𝑚 of sets 𝑉𝑙 required to cover Ω is

𝑚 ≲Ω

(

Vol(Ω)
rinj𝑛

)2

.

The square in the above estimate is the result of the fact that the number of sets 𝑉 ′
𝑙 is comparable to

Vol(Ω)
rinj𝑛

and for each set 𝑉 ′′
𝑙 the number of sets 𝐶 ′

𝑙,𝑖 is, again, comparable to Vol(Ω)
rinj𝑛

. The implicit constant
depends only on the geometry of Ω, as the volume of a ball (with a small enough radius) can be
bounded by the 𝑛-th power of radius multiplied by a function depending on dimension and curvature.
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Due to our construction, on each set 𝑉𝑙 we have normal coordinates. This allows us to write the
Laplace-Beltrami equation Δ𝑀𝑢 = 0 in local coordinates as follows:

1
√

det 𝑔

𝑛
∑

𝑖=1

𝜕
𝜕𝑥𝑖

(

𝑛
∑

𝑗=1

√

det 𝑔𝑔𝑖𝑗 𝜕𝑢
𝜕𝑥𝑗

)

= 0, (4.5)

where 𝑔 denotes a metric tensor on M.
From this representation we infer that on every 𝑉𝑙 ⊂ 𝑀 the equation Δ𝑀𝑢 = 0 corresponds to

div(𝐴∇𝑢) = 0 on exp−1𝑝𝑙 (𝑉𝑙) ⊂ ℝ𝑛, where the square matrix 𝐴 ∈𝑀𝑛×𝑛 depends on a point on 𝑀 and

𝐴 =
√

det 𝑔(𝑔𝑖𝑗). (4.6)
Let us notice that any set exp−1(𝑉𝑙) is Lipschitz, because the derivative |𝐷 exp𝑝𝑙 | is bounded on each
𝑉𝑙. Moreover, since there are finitely many sets 𝑉𝑙, the derivatives 𝐷 exp𝑝𝑙 are uniformly bounded
on Ω̄. Therefore, in maps our harmonic equation locally reduces to an 𝐴-harmonic one on Lipschitz
domains in ℝ𝑛.

Step 2.
At this point we would like to apply [BH, Theorem 2.15], see also [HMM1, Theorem 1.3], which

provides conditions on an underlying domain and a bounded 𝐴-harmonic function implying its 𝜀-
approximability. Namely, the domain has to satisfy the interior corkscrew condition and its boundary
must be uniformly rectifiable. Here, we study domains

𝑊𝑙 ∶= exp−1𝑝𝑙 (𝑉𝑙) ⊂ 𝐵(0, 𝑅𝑙 − 𝛿) ⊂ 𝑇𝑝𝑙𝑀 = ℝ𝑛, 𝑙 = 1,… , 𝑚. (4.7)
Notice that, by Lemma 4.3.2, 𝑉𝑙, and hence also 𝑊𝑙 satisfy the interior corkscrew condition. Fur-
thermore, since all 𝑉𝑙, and hence also all 𝑊𝑙 by the above discussion, are Lipschitz, the uniform rec-
tifiability condition holds because every Lipschitz set is in particular uniformly rectifiable, by direct
verification of Definition 2.7 in [BH] with 𝜃 and 𝑀0 depending on Lipschitz constant of Ω and curva-
ture of Ω. Indeed,for the reader’s convenience, let us recall that definition.
Definition 4.3.3 (2.7 [BH]). An 𝑛-dimensional ADR set 𝐸 ⊂ ℝ𝑛+1 is uniformly rectifiable if and only
if it contains "Big Pieces of Lipschitz Images" of ℝ𝑛, see e.g. [BH], [M, Section 6]. This means that
there are positive constants 𝜃 and 𝑀0, such that for each 𝑥 ∈ 𝐸 and each 𝑟 ∈ (0, diam(𝐸)), there is a
Lipschitz mapping 𝜌 = 𝜌𝑥,𝑟 ∶ ℝ𝑛 → ℝ𝑛+1, with Lipschitz constant no larger than 𝑀0, such that

𝑛(𝐸 ∩ 𝐵(𝑥, 𝑟) ∩ 𝜌 ({𝑧 ∈ ℝ𝑛 ∶ |𝑧 < 𝑟|})
)

≥ 𝜃𝑟𝑛.

As for the assumptions on the 𝐴-harmonic function 𝑢, the matrix 𝐴 in [BH, Theorem 2.15] has
bounded coefficients and defines an elliptic operator (cf. Definition 2.4 in [BH]). This is the case of
matrix in (4.6), since 𝑊𝑙 are bounded, metric 𝑔 is smooth and positive definite. Moreover, as in [BH]
coefficients of an 𝐴-harmonic operator are locally Lipschitz, again by the smoothness of 𝑔. What
remains to be checked are conditions (&) and (&&) in Definition 4.1.9.

57



In order to check (&&) we compute the gradient of 𝐴, cf. (4.6). For 𝑖, 𝑗, 𝑘 = 1,… , 𝑛 it holds that
𝜕𝑎𝑖𝑗
𝜕𝑥𝑘

= 𝜕
𝜕𝑥𝑘

(

√

det 𝑔𝑔𝑖𝑗
)

= 1
2
√

det 𝑔

𝜕 det 𝑔
𝜕𝑥𝑘

𝑔𝑖𝑗 +
√

det 𝑔 𝜕
𝑥𝑘
𝑔𝑖𝑗

= 1
2
√

det 𝑔
det 𝑔 tr

(

𝑔−1 𝜕
𝜕𝑥𝑘

𝑔
)

𝑔𝑖𝑗 +
√

det 𝑔 𝜕
𝜕𝑥𝑘

𝑔𝑖𝑗 (4.8)

=
√

det 𝑔

[

1
2

(

∑

𝑎,𝑏
𝑔𝑎𝑏 𝜕
𝜕𝑥𝑘

𝑔𝑏𝑎

)

𝑔𝑖𝑗 + 𝜕
𝜕𝑥𝑘

𝑔𝑖𝑗
]

,

where in (4.8) we use the following Jacobi’s formula for derivatives of a matrix determinant.
𝑑
𝑑𝑡

det 𝐴(𝑡) = tr
(

adj
(

𝐴(𝑡)
)𝑑𝐴(𝑡)
𝑑𝑡

)

=
(

det 𝐴(𝑡)
)

⋅ tr
(

𝐴(𝑡)−1 ⋅
𝑑𝐴(𝑡)
𝑑𝑡

)

.

By compactness of 𝑊̄𝑙 and continuity of 𝑔, 𝑔𝑖𝑗 , 𝑔𝑖𝑗 and their derivatives we have that

𝐶𝑙 ∶= sup
𝑥∈𝑊̄𝑙

{

|𝑔(𝑥)|, |𝑔𝑖𝑗(𝑥)|, |𝑔𝑖𝑗(𝑥)|,
|

|

|

|

𝜕
𝜕𝑥𝑘

𝑔𝑖𝑗(𝑥)
|

|

|

|

,
|

|

|

|

𝜕
𝜕𝑥𝑘

𝑔𝑖𝑗(𝑥)
|

|

|

|

}

<∞. (4.9)

Let further
𝑑𝑙 ∶= sup

𝑥∈𝑊̄𝑙

dist(𝑥, 𝜕𝑊𝑙). (4.10)

Then for all 𝑖, 𝑗, 𝑘 = 1,… , 𝑛 it holds that
|

|

|

|

|

𝜕𝑎𝑖𝑗
𝜕𝑥𝑘

(𝑥)
|

|

|

|

|

≤
√

𝑛!𝐶𝑛
𝑙

(1
2
𝑛2𝐶3

𝑙 + 𝐶𝑙
)

≤
𝐶(𝑛, 𝐶𝑙)
𝑑𝑙

≤ 𝐶
dist(𝑥, 𝜕𝑊𝑙)

. (4.11)

Therefore, (&&) holds and it remains to prove (&). First, since 𝑊𝑙 are Lipschitz, then 𝜕𝑊𝑙 satisfy
the Ahlfors–David regularity condition (see Definition 2.8.1). This observation, together with the
above estimates of partial derivatives of 𝑎𝑖𝑗 imply the following inequality for 𝑥 ∈ 𝜕𝑊𝑙 and 0 < 𝑟 <
diam(𝜕𝑊𝑙)

1
𝑛−1(𝐵(𝑥, 𝑟)∩𝜕𝑊𝑙) ∫𝐵(𝑥,𝑟)∩𝑊𝑙

|∇𝐴(𝑋)|d𝑋 ≲𝑛,𝐶𝑙
1
𝑟𝑛−1 ∫𝐵(𝑥,𝑟)∩𝑊𝑙

1
𝑑𝑙
d𝑋

≲𝑛,𝐶𝑙
1
𝑟𝑛−1 ∫𝐵(𝑥,𝑟)∩𝑊𝑙

1
𝑟
d𝑋

= 1
𝑟𝑛 ∫𝐵(𝑥,𝑟)∩𝑊𝑙

d𝑋 ≤ 𝑛(𝐵(𝑥, 𝑟))
𝑟𝑛

≤ 𝐶(𝑛).

Upon taking the supremum over 𝑥 ∈ 𝜕𝑊𝑙 we arrive at (&&). In consequence, Theorem 2.15 in [BH]
gives us the 𝜀-approximation of 𝑢 by BV functions on sets exp−1𝑝𝑙 (𝑉𝑙) for 𝑙 = 1,… , 𝑚.
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Step 3.
In the last step of the proof, we glue together the BV functions constructed above, to obtain one

BV function approximating 𝑢 on Ω.
For each 𝑉𝑙, for 𝑙 = 1,… , 𝑚, denote by 𝜙𝑙 a BV function approximating 𝑢 on 𝑉𝑙. Let 𝜎 be a

permutation of indices 𝑙 = 1,… , 𝑚 satisfying following conditions: The value of permutation 𝜎(1), is
any number from 1 to 𝑚. The value of 𝜎(2) is any index 𝑙 such that 𝑉𝜎(1) ∩𝑉𝜎(2) ≠ ∅. Then 𝜎(3) is such
an index that 𝑉𝜎(3) ∩ (𝑉𝜎(1) ∪ 𝑉𝜎(2)) ≠ ∅ and so on. Let us denote by 𝜙𝜎(𝑗) a BV function approximating
𝑢 on 𝑉𝜎(𝑗). On a set 𝑉𝜎(2) ⧵ 𝑉𝜎(1) take a function 𝜙𝜎(2)||

|𝑉𝜎(2)⧵𝑉𝜎(1)

. Let function 𝜙1 ∶ 𝑉𝜎(1) ∪ 𝑉𝜎(2) → ℝ be
defined as follows

𝜙1 =

{

𝜙𝜎(1) on 𝑉𝜎(1)
𝜙𝜎(2) on 𝑉𝜎(2) ⧵ 𝑉𝜎(1).

Next choose any set𝑉𝜎(3) that has a nonempty intersection with𝑉𝜎(1)∪𝑉𝜎(2) and a function 𝜙𝜎(3)||
|𝑉𝜎(3)⧵(𝑉𝜎(1)∪𝑉𝜎(2))

.
Similarly as above, we define function 𝜙2 as follows:

𝜙2 =

⎧

⎪

⎨

⎪

⎩

𝜙𝜎(1) on 𝑉𝜎(1)
𝜙𝜎(2) on 𝑉𝜎(2) ⧵ 𝑉𝜎(1)
𝜙𝜎(3) on 𝑉𝜎(3) ⧵ (𝑉𝜎(1) ∪ 𝑉𝜎(2)).

After finitely many steps we construct a function 𝜙 ∶= 𝜙𝑚−1 defined on Ω. Such a function has
bounded variation as a consequence of the following reasoning. Firstly, each 𝜙𝑙 has bounded varia-
tion. Secondly, on sets 𝜕𝑉𝑙 ∩ 𝑉𝑘 where the function 𝜙 may have additional jumps, the norm of the
derivative of 𝜙 is bounded by (1 + 𝜀) times surface measure of these boundaries. Since all sets 𝑉𝑖are bounded Lipschitz and there are finitely many of them, the variation of 𝜙 remains finite. Finally,
the fact that |∇𝜙| gives rise to the Carleson measure follows from the fact that |∇𝜙𝑖| all give rise to
Carleson measures and the surface measures generated by jumps mentioned above are already Car-
leson measures. Indeed, |∇𝜙𝑖|d𝑋 are Carleson measures because they were obtain by Theorem 1.3 in
[HMM1]. The surface measures are Carleson measures because the measure of any ball is equal to the
measure of its intersection with the boundary which is (𝑛−1)-dimensional. The proof of Theorem 1.4.2
is therefore completed.

Let us illustrate the above theorem with the example of the Laplace-Beltrami harmonic equation
on the 𝑛-dimensional sphere 𝕊𝑛.
Example 4.3.4. Let us consider an n-dimensional sphere𝕊𝑛 equipped with the coordinates 𝑡 = (𝑡1,… , 𝑡𝑛)and |𝑡|2 =

∑

𝑡2𝑖 which come from stereographic projection. Take a stereographic projection and denote
by (𝑥1,… , 𝑥𝑛+1) the standard coordinates in ℝ𝑛+1. Then we have:

𝑥𝑖 =
2𝑡𝑖

|𝑡|2 + 1
for 𝑖 = 1,… , 𝑛,

𝑥𝑛+1 =
|𝑡|2 − 1
|𝑡|2 + 1

.
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Therefore, the metric induced on a sphere has a form
𝑔 = 4

(|𝑡|2 + 1)2
𝐼,

where 𝐼 is an 𝑛 × 𝑛 identity matrix. Hence, we get det 𝑔 =
( 4
(|𝑡|2+1)2

)𝑛. Notice also that

𝑔−1 =
(|𝑡|2 + 1)2

4
𝐼.

Let us now use Definition 4.1.7. Then the Laplace-Beltrami operator Δ𝕊𝑛𝑢 reads

Δ𝕊𝑛𝑢(𝑡1,… , 𝑡𝑛) =
(

|𝑡|2 + 1
2

)𝑛 𝑛
∑

𝑖=1

𝜕
𝜕𝑡𝑖

((

2
|𝑡|2 + 1

)𝑛−2
𝜕𝑢
𝜕𝑡𝑖

)

=

⎧

⎪

⎨

⎪

⎩

− (|𝑡|2+1)(𝑛−2)
2

∑𝑛
𝑖=1 𝑡𝑖

𝜕𝑢
𝜕𝑡𝑖

+ (|𝑡|2+1)2

4

∑𝑛
𝑖=1

𝜕2𝑢
𝜕𝑡2𝑖

for 𝑛 ≥ 3,
(|𝑡|2+1)2

4

∑𝑛
𝑖=1

𝜕2𝑢
𝜕𝑡2𝑖

for 𝑛 = 2.

Hence, if 𝑢 is harmonic i.e. Δ𝕊𝑛𝑢 = 0, then the associated matrix 𝐴 from Definition 4.1.9 is diagonal
and takes form 𝐴 = diag

(

(

2
𝑡2+1

)𝑛−2
)

. Let Ω ⊂ 𝕊𝑛 be a Lipschitz domain as in Theorem 1.4.2. Set
𝑑Ω ∶= sup𝑥∈Ω dist𝕊𝑛(𝑥, 𝜕Ω) ≤ diam(𝜕Ω) and since Ω is bounded we have |𝑡𝑖| ≤ 𝐾Ω for some constant
𝐾Ω > 0. By direct computations, we obtain that:

𝜕𝑎𝑖𝑖
𝜕𝑡𝑘

= (𝑛 − 2)
( 2
1 + 𝑡2

)𝑛−1
𝑡𝑘, 𝑖, 𝑘 = 1,… , 𝑛

|∇𝐴| = (𝑛 − 2)
√

𝑛
( 2
𝑡2 + 1

)𝑛−1
𝑡 ≤ (𝑛 − 2)

√

𝑛
(

2𝑛−1
√

𝑛𝐾Ω

)

=
2𝑛−1𝑛(𝑛 − 2)𝐾Ω𝑑Ω

𝑑Ω
=
𝐶Ω

𝑑Ω
≤

𝐶Ω

dist(𝑥, 𝜕Ω)
,

where 𝐶Ω = 2𝑛−1𝑛(𝑛 − 2)𝐾Ω. Therefore, condition (&&) holds for matrix 𝐴.
Moreover, for 𝑥 ∈ 𝜕Ω also condition (&) in Definition 4.1.9 can be verified directly:

1
𝑟𝑛−1 ∫𝐵(𝑥,𝑟)∩Ω

|∇𝐴|d𝑋 ≤ 1
𝑟𝑛−1 ∫𝐵(𝑥,𝑟)∩Ω

𝐶Ω

𝑑Ω
d𝑋 ≲𝐶Ω

1
𝑟𝑛−1 ∫𝐵(𝑥,𝑟)∩Ω

1
𝑟
d𝑋 ≈ 1

𝑟𝑛
𝑟𝑛 = 1.

Remark 4.3.5. Notice that everything that was proved so far in this chapter applies as much to 𝐴-
harmonic functions on an open set Ω ⊂ 𝑀 . Indeed, in local coordinates equation (4.1) takes the
form

1
√det𝑔

∑

𝑖

𝜕
𝜕𝑥𝑖

(

∑

𝑙

∑

𝑡

√det𝑔𝑎𝑖𝑙(𝑥)𝑔𝑙𝑡 𝜕𝑢𝜕𝑥𝑡
)

= 0.

Equivalently, it can be written as
1

√det𝑔div(𝐵(𝑥)∇𝑢) = 0, (4.12)
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where for any 𝑥 ∈ Ω, the matrix 𝐵(𝑥) has coefficients 𝑏𝑖𝑗(𝑥) =
∑𝑛

𝑙=1

√det𝑔(𝑥)(𝑎𝑖𝑙(𝑥)𝑔𝑙𝑗(𝑥)),
𝑗 = 1,… , 𝑛.

Hence, Theorem 1.4.2 holds for A-harmonic functions on Lipschitz domains on manifolds. In
order to show this, it is enough to prove that 𝐵(𝑥) satisfies (&) and (&&). In order to prove (&&) we
directly compute that for all 𝑖, 𝑗, 𝑘 = 1,… , 𝑛 it holds that

𝜕𝑏𝑖𝑗
𝜕𝑥𝑘

= 𝜕
𝜕𝑥𝑘

(

𝑛
∑

𝑠=1

√

det 𝑔𝑎𝑖𝑠(𝑥)𝑔𝑠𝑗
)

=
𝑛
∑

𝑠=1

(

( 𝜕
𝜕𝑥𝑘

√det𝑔
)

𝑎𝑖𝑠(𝑥)𝑔𝑠𝑗 +
√det𝑔𝜕𝑎𝑖𝑠(𝑥)

𝜕𝑥𝑘
𝑔𝑠𝑗 +

√det𝑔𝑎𝑖𝑠(𝑥)𝜕𝑔
𝑠𝑗

𝜕𝑥𝑘

)

=
𝑛
∑

𝑠=1

(

1
2
√

det 𝑔
det 𝑔 tr

(

𝑔−1
𝜕𝑔
𝜕𝑥𝑘

)

𝑎𝑖𝑠(𝑥)𝑔𝑠𝑗 +
√

det 𝑔
𝜕𝑎𝑖𝑠(𝑥)
𝜕𝑥𝑘

𝑔𝑠𝑗 +
√

det 𝑔𝑎𝑖𝑠(𝑥)
𝜕𝑔𝑠𝑗

𝑥𝑘

)

=
√

det 𝑔
𝑛
∑

𝑠=1

[

1
2

(

∑

𝑎,𝑏=1,…,𝑛

𝑔𝑎𝑏
𝜕𝑔𝑏𝑎
𝜕𝑥𝑘

)

𝑎𝑖𝑠(𝑥)𝑔𝑠𝑗 +
𝜕𝑎𝑖𝑠(𝑥)
𝜕𝑥𝑘

𝑔𝑠𝑗 + 𝑎𝑖𝑠(𝑥)
𝜕𝑔𝑠𝑗

𝑥𝑘

]

.

Denote by 𝑀∶= ‖𝐴‖𝐿∞(Ω) and let constants 𝐶𝑙 be as in (4.9). Then we have

|

|

|

|

|

𝜕𝑏𝑖𝑗
𝜕𝑥𝑘

|

|

|

|

|

≤
√

𝑛!𝐶𝑛
𝑙

𝑛
∑

𝑠=1

|

|

|

|

1
2
𝑛2𝐶3

𝑙 𝑎𝑖𝑠(𝑥) +
𝜕𝑎𝑖𝑠(𝑥)
𝜕𝑥𝑘

𝐶𝑙 + 𝑎𝑖𝑠(𝑥)𝐶𝑙
|

|

|

|

≤
√

𝑛!𝐶𝑛
𝑙 𝑛

(1
2
𝑛2𝐶3

𝑙𝑀 + |∇𝐴|𝐶𝑙 +𝑀𝐶𝑙
)

≤
√

𝑛!𝐶𝑛
𝑙 𝑛

(1
2
𝑛2𝐶3

𝑙𝑀 +𝑀𝐶𝑙
)

+
√

𝑛!𝐶𝑛
𝑙 𝑛𝐶𝑙|∇𝐴|

≲𝑛,𝐶𝑙
𝑀
𝑑𝑙

+ 1
dist(𝑥, 𝜕𝑊𝑙)

by (4.7), (4.10) and (4.11) (4.13)

≲ 1
dist(𝑥, 𝜕𝑊𝑙)

.

Let us now proceed to proving (&). We have for each 𝑙 = 1,… , 𝑛

1
𝑛−1(𝐵(𝑥, 𝑟)∩𝜕𝑊𝑙) ∫𝐵(𝑥,𝑟)∩𝑊𝑙

|∇𝐵(𝑋)|𝑑𝑋

≲𝑀,𝐶𝑙
1
𝑟𝑛−1 ∫𝐵(𝑥,𝑟)∩𝑊𝑙

1
diam𝑊𝑙

+
√

𝑛!𝐶𝑛
𝑙 𝑛𝐶𝑙|∇𝐴|𝑑𝑋 (4.14)

≲ 1
𝑟𝑛−1 ∫𝐵(𝑥,𝑟)∩𝑊𝑙

1
𝑟
+
√

𝑛!𝐶𝑛
𝑙 𝑛𝐶𝑙|∇𝐴|𝑑𝑋 (4.15)

≲𝑛,𝑀 𝐶, (4.16)
where in the inequality (4.14) we use the fact that 𝑑𝑙 ≈ diam𝑊𝑙 and inequality (4.13). In the

inequality (4.15) we notice that 𝑟 < diam𝑊𝑙. Lastly, in the inequality (4.16) we use property (&) for
matrix 𝐴.

Therefore, upon repeating the gluing argument (Step 3) above, Theorem 1.4.2 extends to the setting
of A-harmonic functions with 𝐴 = 𝐴(𝑥) as in Definition 4.1.9.
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4.4 Quantitative Fatou Property
The goal of this chapter is to apply the 𝜀-approximability to prove the Quantitative Fatou Property on
Lipschitz domains in Riemannian manifolds.

Since the choice of good maps and their properties will be important in what follows, let us briefly
recall some necessary facts.

If 𝑀 is a Riemannian manifold, then we always have a chart preserving the Lipschitzness of a set,
namely exp−1𝑝 taken on such set𝑈 ⊂ 𝑀 that exp−1𝑝 is a diffeomorphism,see the proof of Theorem 1.4.2
above.

However, the stronger result is available. Namely, we can take charts that preserve bounded Lip-
schitz sets. Indeed, Lemma 4.4.2 shows that any chart would do as long as Lipschitz domains are
1-connected at the boundary and the image is bounded. Therefore, we do not need to necessarily use
exponential maps. Nevertheless, we use them because they are convenient and handy to work with,
but any chart with similar properties would be sufficient. By similar properties we mean that:

• we can take such sets 𝑈𝑖 as charts, that each 𝑈𝑖 contains a ball with radius uniformly bounded
from below,

• the Lipschitz constants of maps are uniformly bounded from above.
The only difference between the above choice of Lipschitz maps and the exponential map is that now
different charts will have different Lipschitz constants. However, it only affects the constants in the
estimates, which yields that all results are still true.

In the next definition we recall topological notion that plays a crucial role in the studies of the
extension of mappings, including the continuous and homeomorphic extensions, see e.g. theorem in
[V, Chapter 2, Section 17]. Moreover, see [A], where the notion of prime ends is used to determine
the existence of extension.
Definition 4.4.1. Let𝑋 be a metric space. We will say that a set𝑈 ⊂ 𝑋 is 1-connected at the boundary
if for every point 𝑥 ∈ 𝜕𝑈 there exists its arbitrarily small neighbourhood 𝑈𝑥 such that 𝑈 ∩ 𝑈𝑥 is
connected.

An example of a set that is not 1-connected is a slit disc. It is a disc 𝐵(𝑝, 𝑟) ⊂ ℝ2 with a removed
line segment joining the center 𝑝 with a boundary, say at point 𝑥. Then at point 𝑥 any small enough
neighbourhood 𝑈𝑥 has a property that 𝐵(𝑝, 𝑟) ∩ 𝑈𝑥 has two connected components.
Lemma 4.4.2. Let 𝑈 ⊂ (𝑋, 𝑑) be an open, connected, precompact and 1-connected at the boundary
set. Let further ℎ ∶ 𝑈 → ℎ(𝑈 ) be a homeomorphism such that ℎ(𝑈 ) is bounded in (𝑌 , 𝑑). Then for
any bounded Lipschitz subset 𝑈 ′ ⊂ 𝑈 it holds that ℎ(𝑈 ′) is also bounded Lipschitz in ℎ(𝑈 ).

The proof of the lemma is in the Appendix of this chapter.
Remark 4.4.3. One can approach defining the counting function 𝑁 either independently of maps
or in maps. In what follows we take the first approach as it is more natural in the manifold setting.
Nevertheless we would like to briefly comment on the approach via maps. Namely, at every boundary
point we can choose the local coordinates and in those coordinates define locally the 𝑁 function.
Then we cover 𝜕Ω with balls of radius 𝑅 << rinj, e.g. 𝑅 = 1

20
rinj centered at some points 𝑝𝑖 ∈
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𝜕Ω. Define counting function in the set 𝐵(𝑝1, 𝑅) ∩ 𝜕Ω by using a chart that preserves Lipschitzness
on that set, e.g. exp−1𝑝1 . Then proceed inductively. Namely, define a counting function on the set
(𝐵(𝑝2, 𝑅)⧵𝐵(𝑝1, 𝑅)) ∩ 𝜕Ω by using a chart on that set, and continue until all boundary is covered. For
different choices of charts we obtain different counting functions, but the Quantitative Fatou Property
holds for all of them with different constants. Now, since we already know that a harmonic function
defined on Ω is 𝜀-approximable for every 𝜀 (Chapter 4.3) we may apply Lemma 2.9 in [KKPT] and
get the Quantitative Fatou Property for Lipschitz domains in complete Riemannian manifolds on balls
with radii 𝑟 < 𝑐 < rinj.

Recall Definition 4.1.15 and observe that the counting function 𝑁 defined in such a way does not
depend on a chosen chart. We would like to prove the Quantitative Fatou Property for such𝑁 , since it
would be desirable that the QFP is independent of charts and relies only on the Riemannian structure
of the manifold.

Recall Definition 4.1.13 of the (generalized) cone. In what follows, we apply this definition to
𝑟1 and 𝑟2 the distances of 𝑝 to the consecutive points in an (𝑟, 𝜀, 𝜃, 𝑝)-admissible sequence, cf. Def.
4.1.15. Moreover, if point 𝑝 is fixed , then we skip writing it and denote Γ𝑟1,𝑟2 ∶= Γ𝑟1,𝑟2(𝑝).
Lemma 4.4.4. Let Ω ⊂ 𝑀 be a Lipschitz domain and Γ𝑟1,𝑟2 , the doubly truncated cone with the
aperture 𝛼, be connected. Let further 𝑥1 ∈ Γ𝑟1,𝑟2 ∩ 𝑆(𝑝, 𝑟1), 𝑥2 ∈ Γ𝑟1,𝑟2 ∩ 𝑆(𝑝, 𝑟2) be elements of
the (𝑟, 𝜀, 𝜃, 𝑝)-admissible sequence corresponding to 𝑟1 and 𝑟2, respectively. Denote by Γ̃𝑟1,𝑟2(𝑝) a
doubly truncated cone with the aperture 𝛼 > 𝛼, so that Γ𝑟1,𝑟2 ⊂ Γ̃𝑟1,𝑟2 . Then there exists a curve
𝛾 ∶ [𝑟2, 𝑟1] → Γ̃𝑟1,𝑟2 with 𝛾(𝑟2) = 𝑥2 and 𝛾(𝑟1) = 𝑥1 and such that 𝛾(𝑟) ∈ Γ̃𝑟1,𝑟2 for all 𝑟 ∈ [𝑟2, 𝑟1], with
the following properties:

• the length 𝑙(𝛾) satisfies 𝑙(𝛾) ≤ 𝐾𝑑(𝑥1, 𝑥2) for some 𝐾 > 0,

• |

|

|

𝜕𝛾
𝜕𝑟
|

|

|

≤ 𝐶𝛼,𝜃 for some constant 𝐶𝛼,𝜃 depending only on 𝛼 and 𝜃,

• 𝛾 intersects every sphere 𝑆(𝑝, 𝑟) for 𝑟1 < 𝑟 < 𝑟2 exactly once.

The set Γ𝑟1,𝑟2 may fail to be Lipschitz, because at the points of intersection of a cone Γ𝑟 and a sphere
𝑆(𝑝, 𝑟2) the regularity of the boundary of Γ𝑟1,𝑟2 may worsen, for instance be only Hölder as some cusps
may occur. That is why we take a bigger set Γ̃𝑟1,𝑟2 .
Proof. First, by using the exponential map we can reduce the discussion to the ambient space ℝ𝑛.
Notice also that the Lipschitzness of Ω implies that by taking Γ𝑅 with𝑅 small enough, we may ensure
that Γ𝑟1,𝑟2 is connected for every pair 𝑟1, 𝑟2. It is enough to consider such 𝑅 that for every point 𝑥 ∈
𝐵(𝑝, 𝑅) the distance 𝑑(𝑥, 𝜕Ω) is achieved at some point 𝑦 ∈ 𝜕Ω ∩ 𝐵(𝑝, 𝑅). Such 𝑅 exists because 𝜕Ω
is compact and it is Lipschitz. Moreover, such 𝑅 depends on Lipschitz constant of 𝜕Ω and Ω.

Note that for small enough 𝑅, the boundary 𝜕Γ𝑅 does not "turn". By turn we mean the following
property. Take a tangent space to 𝜕Ω at 𝑝, denoted by 𝑇𝑝(𝜕Ω). Such a space exists at almost every point
𝑝 ∈ 𝜕Ω, because 𝜕Ω is a Lipschitz set. Moreover, that space is an (𝑛 − 1)-dimensional subspace of
𝑛-dimensional tangent space 𝑇𝑝(𝑀). Then any line perpendicular to 𝑇𝑝(𝜕Ω) intersects 𝜕Γ𝑅 as long as
that line is close enough to point 𝑝. Furthermore, such a line intersects 𝜕Γ𝑅 at least twice: once when
it intersects the surface, where 𝑑(𝑞, 𝑝) = (1+𝛼)𝑑(𝑞, 𝜕Ω) and the second time when it intersects sphere
𝑆(𝑝, 𝑅). However, it can occur that the surface defined by the equation 𝑑(𝑞, 𝑝) = (1 + 𝛼)𝑑(𝑞, 𝜕Ω) is
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intersected more than once. If it happens, then we say that that 𝜕Γ𝑅 turns, whereas if there are only
two points of intersection we will say that 𝜕Γ𝑅 does not turn. Again, due to compactness and Lipschitz
property of 𝜕Ω we can ensure that for 𝑅 small enough 𝜕Γ𝑅 does not turn. Moreover, compactness of
Ω allows us to choose 𝑅 small enough satisfying all the aforementioned properties at every point of
boundary 𝜕Ω i.e. sets Γ𝑟1,𝑟2(𝑝) are connected for all 𝑝 ∈ 𝜕Ω and all 0 < 𝑟1 < 𝑟2 ≤ 𝑅 and Γ𝑅(𝑝) does
not turn.

Next, let us prove the following observation.
Claim 4.4.5. There exists a constant 𝛿𝛼 > 0 such that for every point 𝑥 ∈ 𝜕Γ𝑟1,𝑟2 a ball𝐵(𝑥, 𝛿𝛼𝑑(𝑥, 𝑝)) ⊂
Γ̃(1+𝛿𝛼)𝑟1,(1−𝛿𝛼)𝑟2 .

Proof. Let 𝑥 ∈ 𝐵(𝑥, 𝛿𝛼𝑑(𝑥, 𝑝)). Denote by 𝑞 and 𝑞 points on 𝜕Ω such that 𝑑(𝑥, 𝜕Ω) and 𝑑(𝑥, 𝜕Ω) are
attained, i.e. 𝑑(𝑞, 𝑥) = 𝑑(𝑥, 𝜕Ω) and 𝑑(𝑞, 𝑥) = 𝑑(𝑞, 𝜕Ω), respectively. Then

𝑑(𝑥, 𝜕Ω) ≤ 𝑑(𝑥, 𝑞) ≤ 𝑑(𝑥, 𝜕Ω) + 𝑑(𝑥, 𝑥)
≤ 𝑑(𝑥, 𝜕Ω) + 𝛿𝛼𝑑(𝑥, 𝑝)
= 𝑑(𝑥, 𝜕Ω) + 𝛿𝛼(1 + 𝛼)𝑑(𝑥, 𝜕Ω),

where the equality is the consequence of 𝑥 ∈ 𝜕Γ𝑟1,𝑟2 and so, in particular 𝑥 satisfies the equation
of the boundary of Γ(𝑝), cf. Definition 4.1.13.

Hence
(1 − 𝛿𝛼(1 + 𝛼))𝑑(𝑥, 𝜕Ω) ≤ 𝑑(𝑥, 𝜕Ω). (4.17)

Note, that for this inequality to make sense, 𝛿𝛼 < 1
1+𝛼

. Now we can estimate the distance of 𝑥 to
vertex 𝑝:

𝑑(𝑥, 𝑝) ≤ 𝑑(𝑥, 𝑝) + 𝑑(𝑥, 𝑥) ≤ (1 + 𝛿𝛼)𝑑(𝑥, 𝑝)
= (1 + 𝛿𝛼)(1 + 𝛼)𝑑(𝑥, 𝜕Ω)

≤
(1 + 𝛿𝛼)(1 + 𝛼)
1 − 𝛿𝛼(1 + 𝛼)

𝑑(𝑥, 𝜕Ω) (by (4.17))

=
(

1 +
𝛼 + 2𝛿𝛼(1 + 𝛼)
1 − 𝛿𝛼(1 + 𝛼)

)

𝑑(𝑥, 𝜕Ω).

Therefore, in order to make sure that ball 𝐵(𝑥, 𝛿𝛼𝑟) ⊂ Γ̃𝑟1,𝑟2 we need to find 𝛿𝛼 such that
𝛼 + 2𝛿𝛼(1 + 𝛼)
1 − 𝛿𝛼(1 + 𝛼)

≤ 𝛼

which gives

𝛿𝛼 ≤
𝛼 − 𝛼

(1 + 𝛼)(2 + 𝛼)
< 1

1 + 𝛼

and completes the proof of the claim.
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We now show that there exist certain two-dimensional quasirectangles contained in Γ̃𝑟1,𝑟2 which
enable to choose curve 𝛾 in such a way that ||

|

𝜕𝛾
𝜕𝑟
|

|

|

is uniformly bounded in Γ̃𝑟1,𝑟2 . Recall that by as-
sumption 𝑥1 and 𝑥2 are given points such that 𝑥1 ∈ Γ𝑟1,𝑟2 ∩ 𝑆(𝑝, 𝑟1), 𝑥2 ∈ Γ𝑟1,𝑟2 ∩ 𝑆(𝑝, 𝑟2). Let 𝑙1 and
𝑙2 denote line segments beginning at 𝑝 and crossing 𝑥1 and 𝑥2 respectively. Let further 𝐿12 denote a
two-dimensional cone spanned between 𝑙1 and 𝑙2. Set 𝑟̂ = (1 − 𝛿𝛼)𝑟1. We would like to show now that
a quasirectangle 𝐾𝑟1,𝑟̂ ∶= 𝐿12 ∩ (𝐵(𝑝, 𝑟1) ⧵ 𝐵(𝑝, 𝑟̂)) ⊂ Γ̃𝑟1,𝑟2 .

First we need to know that 𝑟̂ > 𝑟2. Since 𝑟2 ≤ 𝜃𝑟1 it is enough to take 𝛿𝛼 < 1 − 𝜃. We slightly
abuse the notation and let

𝛿𝛼,𝜃 ∶= min{𝛿𝛼, 1 − 𝜃}. (4.18)
Then we change 𝑟̂, if necessary, and let 𝑟̂ ∶= (1 − 𝛿𝛼,𝜃)𝑟1. For every point in 𝐾𝑟1,𝑟̂ there exists a
line segment 𝑙𝑥 joining point 𝑝 with some point 𝑥 ∈ 𝜕Γ𝑟̂ such that this point lies on 𝑙𝑥. Denote by
𝑟̃ ∶= 𝑑(𝑥, 𝑝). Since by the previous step of the proof we know that a ball 𝐵(𝑥, 𝛿𝛼,𝜃 𝑟̃) ⊂ Γ̃𝑟1,𝑟2 it suffices
to observe that 𝑙𝑥 ⊂ 𝐵(𝑥, 𝛿𝛼,𝜃 𝑟̃). Indeed, since 𝑑(𝑝,𝐾𝑟1,𝑟̂) > 𝑟̂, it is therefore enough to show that

𝑟̃ − 𝑟̂ = 𝑟̃ − (1 − 𝛿𝛼,𝜃)𝑟1 < 𝛿𝛼,𝜃 𝑟̃.

Moreover, the latter is trivially equivalent to 𝑟̃ < 𝑟1 which is always true.
Let us now construct a curve 𝛾 as in the assertion of the lemma. It consists of two subcurves. First

one, denoted by 𝛾1, is contained in a line segment starting at 𝑝 and containing 𝑥2 and the second one,
denoted by 𝛾2, is contained in a quasirectangle 𝐾𝑟1,(1−𝛿𝛼,𝜃)𝑟1 between 𝑟1 and (1 − 𝛿𝛼,𝜃)𝑟1. Moreover, we
can choose 𝛾2 in such a way that its derivative is bounded. Indeed, on 𝛾1 it holds that | 𝜕𝛾1

𝜕𝑟
| = 1, while

on 𝛾2 we can estimate that
|

|

|

|

𝜕𝛾2
𝜕𝑟

|

|

|

|

≤ 1 + 𝛼
𝛿𝛼,𝜃

.

To see the above estimate take as 𝛾2 a quasidiagonal of quasirectangle. By this, we mean a curve
that in polar coordinates in the plane 𝐿12 with point 𝑝 corresponding to 0 is given by

𝛾(𝑟) =
(

𝑟, 𝜙2 +
𝜙1 − 𝜙2

𝛿𝛼,𝜃𝑟1

(

𝑟 − (1 − 𝛿𝛼,𝜃)𝑟1
)

)

with 𝑟 ∈ [(1 − 𝛿𝛼,𝜃)𝑟1, 𝑟1], where 𝑥1 = (𝑟1, 𝜙1) and 𝑥2 = (𝑟2, 𝜙2). This curve starts at the endpoint of
𝛾1 and ends at 𝑥1. One gets that 𝜕𝛾2

𝜕𝑟
=
(

1, 𝜙1−𝜙2

𝛿𝛼,𝜃𝑟1

). Hence,

|

|

|

|

𝜕𝛾2
𝜕𝑟

|

|

|

|

=

√

1 + 𝑟2
(

𝜙1 − 𝜙2

𝛿𝛼,𝜃𝑟1

)2

≤
√

1 + 𝛼2

𝛿2𝛼,𝜃
≤ 1 + 𝛼

𝛿𝛼,𝜃
.

Thus, the derivative with respect to 𝑟 is bounded on both curves. Furthermore, we can choose 𝛾2such that its length with respect to Euclidean distance 𝑙(𝛾2) < 2𝜋𝑟1, since any two points on different
concentric spheres can be connected by a curve of length smaller than perimeter of a bigger of those
two spheres and quasidiagonal is such a curve. Quasidiagonal also intersects every sphere centered at
𝑝 with radius between 𝑟2 and 𝑟1 exactly once.
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Finally we estimate the Euclidean length of 𝛾:
𝑙(𝛾) = 𝑙(𝛾1) + 𝑙(𝛾2) ≤ ((1 − 𝛿𝛼,𝜃)𝑟1 − 𝑟2) + 2𝜋𝑟1

≤ (𝑟1 − 𝑟2) + 2𝜋𝑟1 ≤ (𝑟1 − 𝑟2) +
2𝜋

1 − 𝜃
(𝑟1 − 𝑟2) (4.19)

≤
(

1 + 2𝜋
1 − 𝜃

)

𝑑(𝑥1, 𝑥2),

where in (4.19) we use that 𝑥1 and 𝑥2 belong to the (𝑟, 𝜀, 𝜃, 𝑝)-admissible sequence and so 𝑟2 < 𝜃𝑟1.Let us notice that constants in all estimates depend only on 𝛼, 𝛼, 𝜃 and the Lipschitz constant of the
exponential map, but there is no dependence on 𝑟1 and 𝑟2.
Remark 4.4.6. In order to apply Lemma 4.4.4 we need radius 𝑟 to be sufficiently small. Fortunately
for the Quantitative Fatou Property it is necessary to know only the behaviour of harmonic function 𝑢
close to boundary 𝜕Ω. Therefore, it is not a problem that we need to restrict possible 𝑟, as long as we
can find uniformly some radius 𝑟 for all boundary points such that every Γ𝑟 satisfies all our assumptions
at every point 𝑝 of 𝜕Ω. Since Ω is compact, it can be achieved.

If 𝑟 is small enough, i.e. 𝑟 < 𝑟inj, then Γ𝑟(𝑝) is contained in a ball centered at 𝑝 such that there
are local coordinates due to the exponential map which is a bounded diffeomorphism on that ball.
Therefore, for sufficiently small 𝑟 we can always assume that the ambient space is Euclidean.

The following lemma is the key auxiliary observation needed in the proof of the Quantitative Fatou
Property, see Theorem 4.4.8 below. Moreover, the lemma is a Riemannian counterpart of the main
claim in the proof of Lemma 2.9 in [KKPT].
Lemma 4.4.7. Let Ω ⊂ 𝑀 be a Lipschitz domain and 𝑢 ∶ Ω → ℝ be a bounded harmonic function
with ‖𝑢‖∞ ≤ 1. Suppose that 𝜀 > 0 and 𝜙 is an 𝜀

4
-approximation of 𝑢. If the counting function

𝑁(𝑟, 𝜀, 𝜃)(𝑝) ≥ 𝑘 for some 𝑘 ∈ ℕ, then the following holds

∫Γ𝑟(𝑝)

|∇𝜙(𝑥)|
𝑑(𝑥, 𝑝)𝑛−1

d𝑥 ≥ 𝑘𝐶𝑛,𝜀,𝜃,𝛼, (4.20)

where 𝐶𝑛,𝜀,𝜃,𝛼 > 0 is a constant depending only on 𝑛, 𝜀, 𝜃, 𝛼.

Proof. Without loss of generality we may assume that Ω ⊂ ℝ𝑛, see Remark 4.4.6. Let us also assume
that 𝑝 = 0. Since, by assumptions 𝑁(𝑟, 𝜀, 𝜃)(𝑝) ≥ 𝑘, there is a finite sequence of points 𝑥1,… , 𝑥𝑘 ∈
Γ𝑟(0) such that

0 < |𝑥𝑘| <⋯ < |𝑥1| < 𝑟, |𝑥𝑗+1| ≤ 𝜃|𝑥𝑗| for 𝑗 = 1,… , 𝑘 − 1

and
|𝑢(𝑥𝑗) − 𝑢(𝑥𝑗+1)| ≥ 𝜀.

Since 𝑢 after composing with exponential map is Lipschitz, it is in particular Hölder continuous and
bounded. Thus, there exists 𝛿 = 𝛿(𝜀) > 0 such that

|𝑢(𝑥) − 𝑢(𝑥𝑗)| <
𝜀
8

for 𝑥 ∈ 𝑙𝑗 ∶=
{

𝑦 ∈ Γ𝑟(0) ∩ 𝑆(0, |𝑥𝑗|) ∶ 𝑑𝑆𝑗 (𝑦, 𝑥𝑗) < 𝛿|𝑥𝑗|
}

, (4.21)
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where 𝑑𝑆𝑗 denotes a distance on a sphere 𝑆(0, |𝑥𝑗|). Therefore, for all 𝑥 ∈ 𝑙𝑗 and 𝑦 ∈ 𝑙𝑗+1 it holds that:
|𝑢(𝑥) − 𝑢(𝑦)| ≥ 3𝜀

4
. Moreover, we have |𝜙(𝑥) − 𝜙(𝑦)| ≥ 𝜀

4
.

Let 𝑈𝑗 be a doubly truncated Euclidean cone such that its angle is 2𝛿, its vertex is 0 and for every
𝑧 ∈ 𝑈𝑗 the following holds: 𝑟𝑗 ≤ |𝑧| ≤ 𝑟𝑗−1. Let 𝛾𝑗 ⊂ 𝑈𝑗 be a curve given by the assertion of Lemma
4.4.4. Consider the transformation 𝐹𝑗 ∶ 𝑈𝑗 → ℝ𝑛 with the following properties:

1. the image of a symmetry axis of 𝑈𝑗 , denoted by 𝑙𝑈𝑗 is 𝛾𝑗 , i.e. 𝐹𝑗(𝑙𝑈𝑗 ) = 𝛾𝑗 , 𝐹𝑗(𝑥) = 𝛾𝑗(|𝑥|) for
every 𝑥 ∈ 𝑙𝑈𝑗 .

2. for every 𝑟 it holds that𝐹𝑗|𝑈𝑗∩𝑆(0,𝑟) is a rotation such that a point on a symmetry axis is transformed
into 𝛾𝑗(𝑟).

Such 𝐹𝑗 is piecewise smooth, because 𝛾𝑗 is piecewise smooth. Furthermore, 𝐹𝑗 does not change the
volume of a set 𝑈𝑗 , and hence the absolute value of its Jacobi determinant equals 1. To see this claim
let 𝑈 ⊂ 𝑈𝑗 be measurable and compute that

Vol(𝐹𝑗(𝑈 )) ∶= ∫𝐹𝑗 (𝑈 )
1d𝑥 = ∫

𝑟𝑗−1

𝑟𝑗
∫𝐹𝑗 (𝑈 )∩𝑆(0,𝑟)

1d𝑛−1d𝑟.

Here we apply the coarea formula with function 𝑓 (𝑥) = |𝑥|, see [EG, Chapter 3.4]. Moreover, the
Jacobian of 𝑓 equals 1, see [EG, Chapter 3.2] for the definition of the Jacobian of a real-valued function.
Since the (𝑛 − 1)-Hausdorff measure on a sphere is rotation invariant we get

∫

𝑟𝑗−1

𝑟𝑗
∫𝐹𝑗 (𝑈 )∩𝑆(0,𝑟)

1d𝑛−1d𝑟 = ∫

𝑟𝑗−1

𝑟𝑗
∫𝑈∩𝑆(0,𝑟)

1d𝑛−1d𝑟 = ∫𝑈
1d𝑥,

where the latter equality follows again from the coarea formula. Hence for every measurable set 𝑈 ⊂
𝑈𝑗 we have

Vol(𝐹𝑗(𝑈 )) = Vol(𝑈 )

and the claim is proven.
Notice that 𝐹𝑗(𝑈𝑗 ∩ 𝑆(0, 𝑟𝑗)) = 𝑙𝑗 and 𝐹𝑗(𝑈𝑗 ∩ 𝑆(0, 𝑟𝑗+1)) = 𝑙𝑗+1. It follows that

|

|

|

|

|

∫

𝑟𝑗−1

𝑟𝑗

𝜕
𝜕𝑟
𝜙(𝐹𝑗)d𝑟

|

|

|

|

|

≥ 𝜀
4
. (4.22)

Since 𝐹𝑗 is given by a rotation, its partial derivative with respect to 𝑟 is solely determined by 𝜕𝛾
𝜕𝑟

.
However, due to Lemma 4.4.4 we know that ||

|

𝜕𝛾
𝜕𝑟
|

|

|

≤ 1 + 𝛼
𝛿𝛼,𝜃

and hence |

|

|

𝜕
𝜕𝑟
𝐹𝑗
|

|

|

≤ 1 + 𝛼
𝛿𝛼,𝜃

. We are now
in a position to show assertion (4.20). It holds that:

∫Γ𝑟𝑗 ,𝑟𝑗+1

|∇𝜙(𝑥)|
|𝑥|𝑛−1

d𝑥 ≥ ∫𝐹𝑗 (𝑈𝑗 )
|∇𝜙(𝑥)|
|𝑥|𝑛−1

d𝑥 = ∫𝑈𝑗

|∇𝜙(𝐹𝑗(𝑥))|
|𝑥|𝑛−1

d𝑥,

as 𝐹𝑗(𝑈𝑗) ⊂ Γ𝑟𝑗 ,𝑟𝑗+1 and by the change of variables formula.
Let us notice that by the chain rule we have

∇(𝜙◦𝐹𝑗)(𝑥) = (ad𝐷𝐹𝑗)(𝑥)∇𝜙(𝐹𝑗(𝑥)),
67



where by (ad𝐷𝐹𝑗)(𝑥) we mean the adjoint operator of 𝐷𝐹𝑗(𝑥) defined via the scalar product given by
the Riemannian metric 𝑔:

𝑔(𝐷𝐹𝑗(𝑥)𝑋, 𝑌 ) = 𝑔(𝑋, (ad𝐷𝐹𝑗)(𝑥)𝑌 ) (4.23)
for all 𝑋, 𝑌 ∈ 𝑇𝑥𝑀𝑛. Therefore, in the spherical coordinates (𝑟, 𝜙1,… , 𝜙𝑛−1) on Ω it holds that

𝜕
𝜕𝑟

(𝜙◦𝐹𝑗)(𝑥) = ⟨𝑟1((ad𝐷𝐹𝑗)(𝑥)),∇𝜙(𝐹𝑗(𝑥))⟩,
where 𝑟1((ad𝐷𝐹𝑗)(𝑥)) stands for the first row of matrix (ad𝐷𝐹𝑗)(𝑥) and ⟨⋅, ⋅⟩ denotes the Euclidean
scalar product. Hence we get

|∇𝜙(𝐹𝑗(𝑥))| ≥
|

|

|

𝜕
𝜕𝑟
(𝜙◦𝐹𝑗)(𝑥)

|

|

|

|𝑟1((ad𝐷𝐹𝑗)(𝑥))| . (4.24)

Let us now explain how to obtain metric 𝑔 in spherical coordinates. Set 𝑓 to be a parametrization:
𝑥1 = 𝑟 cos(𝜙1),

𝑥𝑠 = 𝑟 cos(𝜙𝑠)
𝑠−1
∏

𝑚=1
sin(𝜙𝑚) for 𝑠 = 2,… , 𝑛 − 1,

𝑥𝑛 = 𝑟
𝑛−1
∏

𝑚=1
sin(𝜙𝑚).

In the standard coordinates 𝑥𝑖 the metric has a form 𝑔𝑖𝑗 = 𝛿𝑖𝑗 , where 𝛿𝑖𝑗 denotes the Kronecker delta.
The pullback metric 𝑔′𝑎𝑏 = (𝑓 ∗𝑔)𝑎𝑏. We get the following equation

𝑔′𝑎𝑏 =
𝑛
∑

𝑖,𝑗=1
𝑔𝑖𝑗
𝜕𝑥𝑖
𝜕𝑎

𝜕𝑥𝑗
𝜕𝑏

=
𝑛
∑

𝑖=1

𝜕𝑥𝑖
𝜕𝑎

𝜕𝑥𝑖
𝜕𝑏
, (4.25)

where 𝜕𝑎, 𝜕𝑏 denote derivatives with respect to either 𝑟 or one of 𝜙𝑚 and we have a convention that
𝑎 = 1 corresponds to coordinate 𝑟 and 𝑎 > 1 corresponds to 𝜙𝑎−1.Notice that if 𝑎 ≠ 𝑏 the sum (4.25) becomes zero. When 𝑎 = 𝑏 we get

𝑔′11 = 1,
𝑔′22 = 𝑟2,

𝑔′𝑎𝑎 = 𝑟2
𝑎−2
∏

𝑚=1
sin2(𝜙𝑚) for 𝑎 = 3,… , 𝑛.

Therefore, metric 𝑔′ in spherical coordinates is given by the following matrix (we change the name 𝑔′
back to 𝑔):

𝑔 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
𝑟2

𝑟2 sin2(𝜙1)
⋱

𝑟2 sin2(𝜙1) ⋅… ⋅ sin2(𝜙𝑛−2)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,
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where 𝑟 stands for |𝑥|.
We are now in the position to compute 𝑟1((ad𝐷𝐹𝑗)(𝑥)). Let us denote tangent vectors𝑋, 𝑌 ∈ 𝑇𝑥𝑀by 𝑋 = (𝑋1,… , 𝑋𝑛), 𝑌 = (𝑌1,… , 𝑌𝑛) and recall that they are arbitrary. Let us also denote by

(𝑧1, 𝑧2,… , 𝑧𝑛) ∶= (𝑟, 𝜙1,… , 𝜙𝑛−1). For brevity we skip writing 𝑥. By using (4.23), we get:

𝑌1
∑ 𝜕𝐹𝑗,1

𝜕𝑧𝑖
𝑋𝑖 + 𝑌2𝑟2

∑ 𝜕𝐹𝑗,2
𝜕𝑧𝑖

𝑋𝑖 +⋯ + 𝑌𝑛𝑟2 sin
2(𝜙1) ⋅ ⋯ ⋅ sin2(𝜙𝑛−2)

∑ 𝜕𝐹𝑗,𝑛
𝜕𝑧𝑖

𝑋𝑖

= 𝑋1

∑

(ad𝐷𝐹𝑗)1,𝑖𝑌𝑖 +𝑋2𝑟
2
∑

(ad𝐷𝐹𝑗)2,𝑖𝑌𝑖 +⋯ +𝑋𝑛𝑟
2 sin2(𝜙1) ⋅ ⋯ ⋅ sin2(𝜙𝑛−2)

∑

(ad𝐷𝐹𝑗)𝑛,𝑖𝑌𝑖.

We now continue the computations to obtain that
𝑋1

∑

(ad𝐷𝐹𝑗)1,𝑖𝑌𝑖 +𝑋2𝑟
2
∑

(ad𝐷𝐹𝑗)2,𝑖𝑌𝑖 +⋯ +𝑋𝑛𝑟
2 sin2(𝜙1) ⋅ ⋯ ⋅ sin2(𝜙𝑛−2)

∑

(ad𝐷𝐹𝑗)𝑛,𝑖𝑌𝑖
= 𝑌1(𝑋1(ad𝐷𝐹𝑗)1,1 +𝑋2𝑟

2(ad𝐷𝐹𝑗)2,1 +⋯ +𝑋𝑛𝑟
2 sin2(𝜙1) ⋅ ⋯ ⋅ sin2(𝜙𝑛−2)(ad𝐷𝐹𝑗)𝑛,1)

+ 𝑌2(𝑋1(ad𝐷𝐹𝑗)1,2 +𝑋2𝑟
2(ad𝐷𝐹𝑗)2,2 +⋯ +𝑋𝑛𝑟

2 sin2(𝜙1) ⋅ ⋯ ⋅ sin2(𝜙𝑛−2)(ad𝐷𝐹𝑗)𝑛,2) +…
+ 𝑌𝑛(𝑋1(ad𝐷𝐹𝑗)1,𝑛 +𝑋2𝑟

2(ad𝐷𝐹𝑗)2,𝑛 +⋯ +𝑋𝑛𝑟
2 sin2(𝜙1) ⋅ ⋯ ⋅ sin2(𝜙𝑛−2)(ad𝐷𝐹𝑗)𝑛,𝑛).

Since𝑋, 𝑌 are arbitrary we may think about above expressions as polynomials in𝑋1,… , 𝑋𝑛, 𝑌1,… , 𝑌𝑛.Moreover, since we are interested in the first row of the adjoint operator 𝑟1((ad𝐷𝐹𝑗)(𝑥)) we need to
obtain ((ad𝐷𝐹𝑗)(𝑥))1,𝑖 for 𝑖 = 1,… , 𝑛. Hence, we need to compare the appropriate coefficients in these
polynomials.

We get

(ad𝐷𝐹𝑗)1,1 =
𝜕𝐹𝑗,1
𝜕𝑧1

=
𝜕𝐹𝑗,1
𝜕𝑟

for 𝑌1𝑋1,

(ad𝐷𝐹𝑗)1,2 = 𝑟2
𝜕𝐹𝑗,2
𝜕𝑧1

= 𝑟2
𝜕𝐹𝑗,2
𝜕𝑟

for 𝑌2𝑋1,

⋮

(ad𝐷𝐹𝑗)1,𝑛 = 𝑟2 sin2(𝜙1) ⋅ ⋯ ⋅ sin2(𝜙𝑛−2)
𝜕𝐹𝑗,𝑛
𝜕𝑧1

= 𝑟2 sin2(𝜙1) ⋅ ⋯ ⋅ sin2(𝜙𝑛−2)
𝜕𝐹𝑗,𝑛
𝜕𝑟

for 𝑌𝑛𝑋1.

Finally, we have
𝑟1((ad𝐷𝐹𝑗)(𝑥)) =

( 𝜕
𝜕𝑟
𝐹𝑗,1, 𝑟

2 𝜕
𝜕𝑟
𝐹𝑗,2, 𝑟

2 sin2(𝜙1)
𝜕
𝜕𝑟
𝐹𝑗,3,… , 𝑟2 sin2(𝜙1) ⋅… ⋅ sin2(𝜙𝑛−2)

𝜕
𝜕𝑟
𝐹𝑗,𝑛

)

.

Furthermore, we can now find the following estimate needed to complete (4.24):
|𝑟1((ad𝐷𝐹𝑗)(𝑥))|2

=
(

𝜕
𝜕𝑟
𝐹𝑗,1

)2

+ 𝑟2
(

𝑟2 𝜕
𝜕𝑟
𝐹𝑗,2

)2

+…

+ 𝑟2 sin2(𝜙1) ⋅… ⋅ sin2(𝜙𝑛−2)
(

𝑟2 sin2(𝜙1) ⋅… ⋅ sin2(𝜙𝑛−2)
𝜕
𝜕𝑟
𝐹𝑗,𝑛

)2

≤
(

𝜕
𝜕𝑟
𝐹𝑗,1

)2

+ 𝑟4
(

𝑟2
(

𝜕
𝜕𝑟
𝐹𝑗,2

)2

+⋯ + 𝑟2 sin2(𝜙1) ⋅… ⋅ sin2(𝜙𝑛−2)
(

𝜕
𝜕𝑟
𝐹𝑗,𝑛

)2)

69



≤

(

(

𝜕
𝜕𝑟
𝐹𝑗,1

)2

+ 𝑟2
(

𝜕
𝜕𝑟
𝐹𝑗,2

)2

+⋯ + 𝑟2 sin2(𝜙1) ⋅… ⋅ sin2(𝜙𝑛−2)
(

𝜕
𝜕𝑟
𝐹𝑗,𝑛

)2
)

⋅
(

1 + (𝑛 − 1)2𝑟4
)

=
|

|

|

|

𝜕
𝜕𝑟
𝐹𝑗(𝑥)

|

|

|

|

2 (

1 + (𝑛 − 1)2𝑟4
)

≲ 2(𝑛 − 1)2
|

|

|

|

𝜕
𝜕𝑟
𝐹𝑗(𝑥)

|

|

|

|

2

,

where | ⋅ | stands for the length of a vector with respect to the scalar product 𝑔 also in the first
inequality we use that sin is bounded by 1. We employ the above estimate in(4.24) and get the following
inequality:

∫𝑈𝑗

|∇𝜙(𝐹𝑗(𝑥))|
|𝑥|𝑛−1

d𝑥 ≥ ∫𝑈𝑗
1

|𝑟1((ad𝐷𝐹𝑗)(𝑥))|
|

|

|

𝜕
𝜕𝑟
(𝜙◦𝐹𝑗)(𝑥)

|

|

|

|𝑥|𝑛−1
d𝑥

≳ 1
√

2(𝑛 − 1) ∫𝑈𝑗
1

|

|

|

𝜕
𝜕𝑟
𝐷𝐹𝑗(𝑥)

|

|

|

|

|

|

𝜕
𝜕𝑟
(𝜙◦𝐹𝑗)(𝑥)

|

|

|

|𝑥|𝑛−1
d𝑥. (4.26)

Hence, due to Lemma 4.4.4 we obtain

∫𝑈𝑗
1

|

|

|

𝜕
𝜕𝑟
𝐹𝑗(𝑥)

|

|

|

|

|

|

𝜕
𝜕𝑟
(𝜙◦𝐹𝑗)(𝑥)

|

|

|

|𝑥|𝑛−1
d𝑥 ≳

𝛿𝛼,𝜃
𝛿𝛼,𝜃 + 𝛼 ∫𝑈𝑗

|

|

|

𝜕
𝜕𝑟
(𝜙◦𝐹𝑗)(𝑥)

|

|

|

|𝑥|𝑛−1
d𝑥, (4.27)

where 𝛿𝛼,𝜃 stands for the constant in the proof of Lemma 4.4.4, see (4.18).
Since 𝑈𝑗 is measurable and the integral on the right-hand side of (4.27) exists, we may apply the

coarea formula with the Lipschitz function 𝑓 ∶ ℝ𝑛 → ℝ given by 𝑓 (𝑥) = |𝑥| = 𝑡, see [EG, Chapter
3]. Therefore,

∫𝑈𝑗

|

|

|

𝜕
𝜕𝑟
(𝜙◦𝐹𝑗)(𝑥)

|

|

|

|𝑥|𝑛−1
d𝑥 = ∫

𝑟𝑗−1

𝑟𝑗
∫𝑈𝑗∩𝑆(0,𝑟)

|

|

|

𝜕
𝜕𝑟
(𝜙◦𝐹𝑗)(𝜔𝑟)

|

|

|

𝑟𝑛−1
d𝑛−1(𝜔𝑟)d𝑟,

where 𝜔𝑟 stands for a point in set 𝑈𝑗 ∩ 𝑆(0, 𝑟). By the change of variables 𝜔𝑟 ↦ 𝜔𝑟
𝑟
= 𝜔, we scale

every sphere to the unit sphere 𝑆(0, 1) and obtain

∫

𝑟𝑗−1

𝑟𝑗
∫𝑈𝑗∩𝑆(0,𝑟)

|

|

|

𝜕
𝜕𝑟
(𝜙◦𝐹𝑗)(𝜔𝑟)

|

|

|

𝑟𝑛−1
d𝑛−1(𝜔𝑟)d𝑟 = ∫

𝑟𝑗−1

𝑟𝑗
∫𝐴

|

|

|

𝜕
𝜕𝑟
(𝜙◦𝐹𝑗)(𝑟𝜔)

|

|

|

𝑟𝑛−1
𝑟𝑛−1d𝑛−1(𝜔)d𝑟,

where 𝐴 = {𝑥 ∈ 𝑆(0, 1) ∶ 𝑑𝑆(0,1)(𝑦, 𝑥) < 𝛿} for some 𝑦 ∈ 𝑆(0, 1), also see (4.21) to recall how we
define 𝛿 = 𝛿(𝜀). In order to understand the geometry of set 𝐴, recall that 𝑈𝑗 is a doubly truncated
cone. Since 𝑛−1-measure of 𝐴 is independent of choice of 𝑦, it holds that 𝐴 is just a radial projection
of 𝑈𝑗 on a sphere with radius 1 while point 𝑦 only denotes the projection of the axis of 𝑈𝑗 onto that
sphere. Now we can use the Fubini theorem to change the order of integration and get

∫

𝑟𝑗−1

𝑟𝑗
∫𝐴

|

|

|

𝜕
𝜕𝑟
(𝜙◦𝐹𝑗)(𝑟𝜔)

|

|

|

𝑟𝑛−1
𝑟𝑛−1d𝑛−1(𝜔)d𝑟 = ∫𝐴 ∫

𝑟𝑗−1

𝑟𝑗

|

|

|

|

𝜕
𝜕𝑟

(𝜙◦𝐹𝑗)(𝑟𝜔)
|

|

|

|

d𝑟 d𝑛−1(𝜔).
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This together with (4.26), (4.27) and (4.22) imply the following

∫𝑈𝑗

|∇𝜙(𝐹𝑗(𝑥))|
|𝑥|𝑛−1

d𝑥 ≥
𝛿𝛼,𝜃

𝛿𝛼,𝜃 + 𝛼 ∫𝐴 ∫

𝑟𝑗−1

𝑟𝑗

|

|

|

|

𝜕
𝜕𝑟

(𝜙◦𝐹𝑗)(𝑡𝜔)
|

|

|

|

d𝑡 d𝑛−1(𝜔)

≥
𝛿𝛼,𝜃

𝛿𝛼,𝜃 + 𝛼 ∫𝐴
𝜀
4
d𝑛−1 ≈ 𝐶(𝑛, 𝜀, 𝛼, 𝜃).

Finally, recall, by the discussion at the beginning of this proof that in fact 𝛿 = 𝛿(𝜀). Thus, it is enough
to sum over 𝑗 = 2,… , 𝑘 to get the assertion of a Lemma.

Recall that rinj(Ω) denotes the infimum of injectivity radii taken over set Ω. When Ω is fixed, we
will write rinj ∶= rinj(Ω) for the sake of simplicity of the notation. We are now ready to prove one
of the key results of our work, namely the Quantitative Fatou Theorem for harmonic functions on
Riemannian manifolds.
Theorem 4.4.8. Let 𝑀 be a complete Riemannian manifold and let further Ω ⊂ 𝑀𝑛 be a Lipschitz
domain. Furthermore, let 𝑢 ∶ Ω → ℝ be a bounded harmonic function with ‖𝑢‖∞ ≤ 1. Then, for
every point 𝑝 ∈ 𝜕Ω

sup
0<𝑟<𝑟𝑖𝑛𝑗

1
𝑟𝑛−1 ∫𝜕Ω∩𝐵(𝑝,𝑟)

𝑁(𝑟, 𝜀, 𝜃)(𝑞)𝑑𝜎(𝑞) ≤ 𝐶(𝜀, 𝛼, 𝜃, 𝑛,Ω),

where 𝜀, 𝛼, 𝜃 are constants in the definition of the counting function. In particular, constant 𝐶 is
independent of 𝑢.

Proof. Recall that a shadow of a point 𝑥 ∈ Ω, denoted by 𝑆(𝑥), is defined as follows, cf. Defini-
tion 3.2.4

𝑆(𝑥) ∶= {𝑞 ∈ 𝜕Ω ∶ 𝑥 ∈ Γ̃(𝑞)}.
Furthermore, the shadow and the cone are related as follows:

𝑥 ∈ Γ̃(𝑞) ⇔ 𝑞 ∈ 𝑆(𝑥). (4.28)
Let us first estimate the following integral

∫𝜕Ω∩𝐵(𝑝,𝑟) ∫Γ̃𝑟(𝑞)
|∇𝜙(𝑥)|𝑑(𝑥, 𝑞)1−𝑛d𝑥d𝜎(𝑞)

= ∫𝜕Ω∩𝐵(𝑝,𝑟) ∫Ω∩𝐵(𝑝,2𝑟)
|∇𝜙(𝑥)|𝑑(𝑥, 𝑞)1−𝑛𝜒Γ̃𝑟(𝑞)(𝑥)d𝑥d𝜎(𝑞).

Here, the integration over Γ̃𝑟(𝑞) can be replaced with the integration over Ω∩𝐵(𝑝, 2𝑟) with character-
istic function of Γ̃𝑟(𝑞), as every truncated cone Γ̃𝑟 is contained in a ball with radius 2𝑟.

Now we use the Fubini theorem to change the order of integration:

∫𝜕Ω∩𝐵(𝑝,𝑟) ∫Ω∩𝐵(𝑝,2𝑟)
|∇𝜙(𝑥)|𝑑(𝑥, 𝑞)1−𝑛𝜒Γ̃𝑟(𝑞)(𝑥)d𝑥d𝜎(𝑞)

= ∫Ω∩𝐵(𝑝,2𝑟)
|∇𝜙(𝑥)|∫𝜕Ω∩𝐵(𝑝,𝑟)

𝑑(𝑥, 𝑞)1−𝑛𝜒Γ̃𝑟(𝑞)(𝑥)d𝜎(𝑞)d𝑥

≤ ∫Ω∩𝐵(𝑝,2𝑟)
|∇𝜙(𝑥)|∫𝜕Ω∩𝐵(𝑝,𝑟)

𝑑(𝑥, 𝑞)1−𝑛𝜒𝑆(𝑥)(𝑞)d𝜎(𝑞)d𝑥,
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where in the last inequality we use (4.28) and the fact that Γ̃𝑟(𝑞) ⊂ Γ̃(𝑞). Furthermore, since 𝑑(𝑥, 𝑞) ≥
𝑑(𝑥, 𝜕Ω) we have the following estimate:

∫Ω∩𝐵(𝑝,2𝑟)
|∇𝜙(𝑥)|∫𝜕Ω∩𝐵(𝑝,𝑟)

𝑑(𝑥, 𝑞)1−𝑛𝜒𝑆(𝑥)(𝑞)d𝜎(𝑞)d𝑥

≤ ∫Ω∩𝐵(𝑝,2𝑟)
|∇𝜙(𝑥)|𝑑(𝑥, 𝜕Ω)1−𝑛 ∫𝜕Ω∩𝐵(𝑝,𝑟)

𝜒𝑆(𝑥)(𝑞)d𝜎(𝑞)d𝑥.

Next, we need the following observation. For every 𝑥 ∈ Ω, it holds that
𝑆(𝑥) ⊂ 𝜕Ω ∩ 𝐵(𝑞𝑥, (2 + 𝛼)𝑑(𝑥, 𝜕Ω)),

where 𝑞𝑥 denotes a point in Ω where 𝑑(𝑥, 𝜕Ω) is attained. Indeed, let 𝑦 ∈ 𝑆(𝑥). Then
𝑑(𝑦, 𝑞𝑥) ≤ 𝑑(𝑥, 𝑞𝑥) + 𝑑(𝑥, 𝑦) = 𝑑(𝑥, 𝜕Ω) + 𝑑(𝑥, 𝑦) ≤ (2 + 𝛼)𝑑(𝑥, 𝜕Ω).

Therefore,

∫Ω∩𝐵(𝑝,2𝑟)
|∇𝜙(𝑥)|𝑑(𝑥, 𝜕Ω)1−𝑛 ∫𝜕Ω∩𝐵(𝑝,𝑟)

𝜒𝑆(𝑥)(𝑞)d𝜎(𝑞)d𝑥

≤ ∫Ω∩𝐵(𝑝,2𝑟)
|∇𝜙(𝑥)|𝑑(𝑥, 𝜕Ω)1−𝑛 ∫𝜕Ω∩𝐵(𝑝,𝑟)

𝜒𝜕Ω∩𝐵(𝑞𝑥,(2+𝛼)𝑑(𝑥,𝜕Ω))(𝑞)d𝜎(𝑞)d𝑥

≲𝛼 ∫Ω∩𝐵(𝑝,2𝑟)
|∇𝜙(𝑥)|𝑑(𝑥, 𝜕Ω)1−𝑛𝑑(𝑥, 𝜕Ω)𝑛−1d𝑥

= ∫Ω∩𝐵(𝑝,2𝑟)
|∇𝜙(𝑥)|d𝑥 ≤ 𝐶(Ω)(2𝑟)𝑛−1, (4.29)

where in the second inequality we appeal to the Ahlfors-David regularity of 𝜕Ω which results in the
estimate

𝜎
(

𝜕Ω ∩ 𝐵
(

𝑞𝑥, (2 + 𝛼)𝑑(𝑥, 𝜕Ω)
)

)

≲ (2 + 𝛼)𝑛−1(𝑑(𝑥, 𝜕Ω))𝑛−1,

while in the last inequality in (4.29) we use the fact that 𝜙 is 𝜀-approximation of 𝑢. Finally, by Lemma
4.4.7 and (4.29) we get the assertion of the theorem

𝐶𝜀,𝜃 ∫𝜕Ω∩𝐵(𝑝,𝑟)
𝑁(𝑟, 𝜀, 𝜃)(𝑞)d𝜎(𝑞) ≤ ∫𝜕Ω∩𝐵(𝑝,𝑟) ∫Γ̃𝑟(𝑞)

|∇𝜙(𝑥)|𝑑(𝑥, 𝑞)1−𝑛d𝑥d𝜎(𝑞)

≤ 𝐶(Ω)(2𝑟)𝑛−1 ≲ 𝐶(𝜀, 𝛼, 𝜃, 𝑛,Ω)𝑟𝑛−1,

which proves the theorem.

Appendix
The following result is a mathematical folklore. However, since our argument is elementary and direct,
we decided to include it in the dissertation.
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Lipschitz sets in ℝ𝑛 satisfy the interior corkscrew condition
Proof of Lemma 4.3.2. Let Ω be any bounded Lipschitz set in ℝ𝑛. By definition of the Lipschitz set,
for each 𝑧 ∈ 𝜕Ω there are a hyperplane 𝐻 such that 𝑧 ∈ 𝐻 and numbers 𝑟, ℎ with a cylinder 𝐶 =
{𝑥 + 𝑦𝐧 ∶ 𝑥 ∈ 𝐵(𝑧, 𝑟) ∩𝐻,−ℎ < 𝑦 < ℎ} and a Lipschitz function 𝑔 ∶ 𝐻 → ℝ such that

1. Ω ∩ 𝐶 = {𝑥 + 𝑦𝐧 ∶ 𝑥 ∈ 𝐵(𝑧, 𝑟) ∩𝐻,−ℎ < 𝑦 < 𝑔(𝑥)},

2. 𝜕Ω ∩ 𝐶 = {𝑥 + 𝑦𝐧 ∶ 𝑥 ∈ 𝐵(𝑧, 𝑟) ∩𝐻, 𝑦 = 𝑔(𝑥)},

where 𝐧 is a unit vector normal to𝐻 that is outer with respect to Ω. If at point 𝑧 ∈ 𝜕Ω the boundary is
of class 𝐶1, then we take as a hyperplane 𝐻 a tangent plane at 𝑧. Otherwise, we take any hyperplane
that satisfies the aforementioned above conditions. In other words, there is a cone contained in Ω with
vertex at 𝑧, an angle 𝛼 such that tan 𝛼 = − 2𝐿

1−𝐿2 , where 𝐿 denotes the Lipschitz constant of 𝑔, and
height ℎ. Since 𝜕Ω is compact there exist minimal ℎ, denoted by 𝐻̃ , minimal 𝑟, denoted by 𝑅̃, and
maximal Lipschitz constant, denoted by 𝐿̃, such that any cone with vertex in 𝜕Ω and parameters given
by 𝐻̃, 𝑅̃ and 𝐿̃ is contained in Ω. Let us denote a cone with such parameters and vertex at 𝑧 by 𝐾(𝑧).
We would like to show that the interior corkscrew condition holds, i.e. that there exists a constant
𝑐 > 0 such that for each 𝑧 ∈ 𝜕Ω and each 0 < 𝑟 < diam(Ω) there exists a point 𝑧̃ ∈ Ω ∩ 𝐵(𝑧, 𝑟) with
the property that 𝐵(𝑧̃, 𝑐𝑟) ⊂ Ω∩𝐵(𝑧, 𝑟). For a point 𝑧 ∈ 𝜕Ω set 𝑧̃ = 𝑧− 1

2
min(𝐻̃, 𝑟)𝐧. We notice that

the distance from 𝑧̃ to the lateral surface of a cone 𝐾(𝑧) is given by min(𝐻̃,𝑟)

2
√

1+𝐿̃2
and the distance between

𝑧̃ and the base of a cone 𝐾(𝑧) is given by 𝐻̃ − 1
2
min(𝐻̃, 𝑟). We need to find a constant 𝐹 such that

the ball 𝐵(𝑧̃, 𝐹 𝑟) is contained in both ball 𝐵(𝑧, 𝑟) and cone 𝐾(𝑧). To ensure that a ball with radius 𝐹𝑟
is contained in a cone 𝐾(𝑧) the following inequalities have to be satisfied:

𝐹𝑟 < 𝑑 =
min(𝑟, 𝐻̃)

2
√

1 + 𝐿̃2
and 𝐹𝑟 < 𝐻̃ − 1

2
min(𝑟, 𝐻̃). (4.30)

The condition needed for ball with radius 𝐹𝑟 to be contained in 𝐵(𝑧, 𝑟) reads:
𝐹𝑟 + 1

2
min(𝑟, 𝐻̃) < 𝑟. (4.31)

Upon choosing
𝐹 ∶= 1

2
1

2
√

1 + 𝐿̃2

𝐻̃
diam(Ω)

we now directly check that such 𝐹 satisfies all the necessary conditions.
After inserting 𝐹 , the first inequality in (4.30) becomes

𝐻̃𝑟
2 diam(Ω))

< min(𝑟, 𝐻̃).

If 𝐻̃ ≤ 𝑟 we get 𝑟
2 diam(Ω)

< 1, which holds, as 𝑟 < diam(Ω). Otherwise, 𝑟 < 𝐻̃ and we have
𝐻̃

2 diam(Ω)
< 1, which holds as 𝐻̃ < diam(Ω).

Similarly, the second inequality in (4.30) becomes
1
2

1

2
√

1 + 𝐿̃2

𝐻̃𝑟
diam(Ω)

< 𝐻̃ − 1
2
min(𝑟, 𝐻̃).
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Again, there are two cases to be considered. If 𝐻̃ ≤ 𝑟 we get
1
2

1

2
√

1 + 𝐿̃2

𝑟
diam(Ω)

< 1
2
,

which holds as 𝑟 < diam(Ω). Otherwise, 𝑟 < 𝐻̃ and we get
1
2

1

2
√

1 + 𝐿̃2

𝐻̃𝑟
diam(Ω)

< 𝐻̃ − 1
2
𝑟.

Notice that 𝐻̃ − 1
2
𝑟 > 1

2
𝐻̃ , and hence it is enough to prove

1
2

1

2
√

1 + 𝐿̃2

𝐻̃𝑟
diam(Ω)

< 1
2
𝐻̃,

which reduces the discussion to the first case.
Finally, the inequality in (4.31) becomes

1

2
√

1 + 𝐿̃2

𝐻̃
diam(Ω)

+
min(𝑟, 𝐻̃)

𝑟
< 2,

which holds as 𝐻̃
diam(Ω)

< 1 and min(𝑟,𝐻̃)
𝑟

≤ 1.
Thus, it holds that a ball 𝐵(𝑧̃, 𝐹 𝑟) is contained both in a cone 𝐾(𝑧) and in a ball 𝐵(𝑧, 𝑟). Hence

𝐵(𝑧̃, 𝐹 𝑟) ⊂ Ω ∩ 𝐵(𝑧, 𝑟).

Proof of Lemma 4.4.2
Proof. Recall that 𝑈 ⊂ (𝑋, 𝑑) is an open, connected, precompact and 1-connected at the boundary
set and ℎ ∶ 𝑈 → ℎ(𝑈 ) is a homeomorphism such that ℎ(𝑈 ) is bounded in (𝑌 , 𝑑).

First we prove that ℎ can be extended to 𝑈 . Let 𝑥 ∈ 𝜕𝑈 and let further (𝑥𝑛) be any sequence of
points 𝑥𝑛 ∈ 𝑈 such that (𝑥𝑛) converges to 𝑥. We define ℎ̃ ∶ 𝑈 → ℎ(𝑈 ) by the following formula:

ℎ̃(𝑥) ∶=

{

ℎ(𝑥), 𝑥 ∈ 𝑈,
lim𝑛→∞ ℎ(𝑥𝑛), 𝑥 ∈ 𝜕𝑈.

We have to check whether ℎ(𝑥𝑛) converges. Since ℎ(𝑈 ) is bounded, we may take a convergent sub-
sequence (

ℎ(𝑥𝑛𝑘)
) and denote its limit as 𝑦. Notice that 𝑦 ∈ ℎ(𝑈 ). Suppose that there is another

convergent subsequence (

ℎ(𝑥𝑛𝑙)
) and it has a different limit 𝑦̃. Since 𝑦 and 𝑦̃ are distinct we can find

their disjoint neighbourhoods 𝑉 and 𝑉 such that almost all of ℎ(𝑥𝑛𝑘) and ℎ(𝑥𝑛𝑙) are in 𝑉 and 𝑉 , re-
spectively. Now we consider 𝑉 ∩ ℎ(𝑈 ) and 𝑉 ∩ ℎ(𝑈 ) and notice that their preimages under ℎ are also
disjoint subsets in 𝑈 . However, these preimages contain subsequences (𝑥𝑛𝑘) and (𝑥𝑛𝑙), respectively.
There are two cases to be considered. In the first case, we find subsequences of (𝑥𝑛) which converge to
different limits, which leads to contradiction with convergence of (𝑥𝑛). In the second case, both (𝑥𝑛𝑘)and (𝑥𝑛𝑙) converge to 𝑥 and ℎ−1(𝑉 ) and ℎ−1(𝑉 ) are disjoint while 𝑥 belongs to both of their boundaries.
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However, since there is a connected neighbourhood of 𝑥 in 𝑈 , denoted by 𝑈 ∩𝑈𝑥, and by convergence
almost all 𝑥𝑛 are in that neighbourhood, it holds that ℎ(𝑈 ∩ 𝑈𝑥) is connected and almost all ℎ(𝑥𝑛) be-
long to this image. On the other hand, we may choose 𝑈𝑥 with arbitrarily small diameter. Therefore,
(

ℎ(𝑥𝑛𝑘)
) and (

ℎ(𝑥𝑛𝑙)
) have to converge to the same limit, and hence 𝑦 = 𝑦̃.

For our extension mapping ℎ̃ to be properly defined, we need to prove that if (𝑧𝑛) is a different
sequence converging to 𝑥, then (

ℎ(𝑧𝑛)
) also converges to 𝑦. If we assume that (ℎ(𝑧𝑛)

) converges to
𝑧 ≠ 𝑦, we can take disjoint neighbourhoods 𝑉𝑧, 𝑉𝑦 of 𝑧 and 𝑦, respectively, and intersect them with
ℎ(𝑈 ) to obtain sets 𝑊𝑧,𝑊𝑦. Both of these disjoint sets contain almost all points ℎ(𝑧𝑛) and ℎ(𝑥𝑛),respectively, and hence their preimages under ℎ, i.e. ℎ−1(𝑊𝑧), ℎ−1(𝑊𝑦), contain almost all points
(𝑧𝑛) and (𝑥𝑛), respectively. However, (𝑥𝑛) and (𝑧𝑛) both converge to 𝑥, so 𝑥 belongs to both of their
boundaries 𝜕(ℎ−1(𝑊𝑧)) and 𝜕(ℎ−1(𝑊𝑦)). Again, by using existence of a connected neighbourhood of
𝑥, we can prove that 𝑧 = 𝑦. To summarize, we have proved that the extension ℎ̃ is well defined and
due to the construction, it is continuous.

Next, we prove that ℎ̃ is actually a homeomorphism. Suppose that there is 𝑦 ∈ 𝜕ℎ(𝑈 ) that is not the
image of a point from 𝜕𝑈 . Then ℎ̃(𝑈 ) ≠ ℎ(𝑈 ). However, as 𝑈 is precompact, then 𝑈 is compact and
therefore ℎ̃(𝑈 ) is compact. Moreover, ℎ̃(𝑈 ) contains ℎ(𝑈 ) and by the definition, ℎ(𝑈 ) is the smallest
closed set containing ℎ(𝑈 ). Hence, ℎ(𝑈 ) ⊂ ℎ̃(𝑈 ). The inverse inclusion is assured because of the
definition of ℎ̃. Therefore, we proved that ℎ̃ is onto.

We would like to know that a point 𝑥 ∈ 𝜕𝑈 is mapped to a point in 𝜕ℎ(𝑈 ). Suppose that there is
𝑦 ∈ ℎ(𝑈 ) such that 𝑥 ∈ ℎ̃−1(𝑦). We also know that there is some 𝑥̃ ∈ 𝑈 that is also a preimage of 𝑦.
We can find disjoint neighbourhoods of 𝑥 and 𝑥̃. However, by assumptions ℎ is the homeomorphism
on𝑈 , so the images of these neighbourhoods would also have to be disjoint, but we assumed they have
a common point 𝑦. This contradiction gives us that a point in 𝜕𝑈 is mapped to a point in 𝜕ℎ(𝑈 ).

Take 𝑥, 𝑥̃ ∈ 𝜕𝑈 and suppose ℎ̃(𝑥) = ℎ̃(𝑥̃). Let sequences (𝑥𝑛) and (𝑥𝑛) be converging to 𝑥 and
𝑥̃, respectively. We may find disjoint neighbourhoods 𝑉 of 𝑥 and 𝑉 of 𝑥̃ such that almost all 𝑥𝑛 and
𝑥𝑛 are elements of 𝑉 and 𝑉 , respectively. Since ℎ is a homeomorphism the images of intersections
𝑉 ∩ 𝑈 and 𝑉 ∩ 𝑈 are also disjoint, which means that ℎ̃(𝑥) ≠ ℎ̃(𝑥̃). Hence, ℎ̃ is one-to-one.

We know that ℎ̃ is a continuous bijection, but𝑈 is compact and hence ℎ̃ is a homeomorphism. Since
𝑈 is compact, ℎ̃ is Lipschitz. Similarly ℎ̃−1 is Lipschitz. Therefore, ℎ̃ is bi-Lipschitz and preserves
bounded Lipschitz sets, and thus the same applies to ℎ.
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Chapter 5

Carleson measures on domains in Heisenberg
groups

This chapter is based on the manuscript [AdGr] written jointly with Tomasz Adamowicz. Main results
of this chapter include Theorems 1.5.1, 1.5.2, 1.5.3, 1.5.4, 1.5.5 presented in Chapter 1.5.

5.1 Preliminaries
In this chapter we recall key definitions employed in the chapter. Our presentation includes the Heisen-
berg group, various types of domains and their geometry, basic information on subelliptic harmonic
functions and Green functions in the sub-Riemannian setting, the Carleson measures, the nontangential
maximal function and the BMO spaces.

5.1.1 Heisenberg groups
There are number of approaches to define the Heisenberg groups and, more general, Carnot-Carathéo-
dory groups, see [BLU], [CDPT], [Gro], [Mon]. One approach is based on introducing the Lie algebra
which defines a connected and simply connected Lie group. However, in what follows, we choose a
different, although equivalent, approach to define the Heisenberg groups.

The 𝑛-th Heisenberg group ℍ𝑛 as a set is ℝ2𝑛 ×ℝ ≃ ℂ𝑛 ×ℝ with the group law given by

(𝑧1,… , 𝑧𝑛, 𝑡) ⋅ (𝑧
′

1,… , 𝑧′

𝑛, 𝑡
′) =

(

𝑧1 + 𝑧
′

1,… , 𝑧𝑛 + 𝑧
′

𝑛, 𝑡 + 𝑡
′ + 2Im

(

𝑛
∑

𝑖=1
𝑧𝑖𝑧

′

𝑖

))

,

where (𝑧1,… , 𝑧𝑛, 𝑡) = (𝑥1, 𝑦1,… , 𝑥𝑛, 𝑦𝑛, 𝑡). Furthermore, we define the following left-invariant vector
fields

𝑋𝑖(𝑝) =
𝜕
𝜕𝑥𝑖

+ 2𝑦𝑖
𝜕
𝜕𝑡
, 𝑌𝑖(𝑝) =

𝜕
𝜕𝑦𝑖

− 2𝑥𝑖
𝜕
𝜕𝑡
, 𝑇 = 𝜕

𝜕𝑡

for which the only nontrivial brackets are
[𝑋𝑖, 𝑌𝑖] ∶= 𝑋𝑖𝑌𝑖 − 𝑌𝑖𝑋𝑖 = −4𝑇 𝑖 = 1,… , 𝑛.
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It is worth noting that the above commutator relations are a reason for the name of the Heisenberg
groups. They work exactly the same as position and momentum operator in quantum physics. Namely,
if 𝑥̂ denotes a position operator, 𝑝̂ denotes momentum operator and 𝐼 is identity operator, we get:

[𝑥̂, 𝑝̂] = 𝑖ℏ𝐼, [𝑥̂, 𝑖ℏ𝐼] = 0, [𝑝̂, 𝑖ℏ𝐼] = 0.

Due to the similarity with quantum mechanics, the Heisenberg group got it name alluding to one of
the founders of that branch of physics. Let us mention that Heisenberg was working using matrices
and the Heisenberg group may also be defined as a group of matrices.

The horizontal space at 𝑝 ∈ ℍ𝑛 is given pointwise by
H𝑝ℍ𝑛 = span{𝑋1(𝑝), 𝑌1(𝑝),… , 𝑋𝑛(𝑝), 𝑌𝑛(𝑝)}.

The horizontal space plays the role of the tangent space. In Riemannian geometry all curves on a
manifold have their derivatives in a tangent space. However, the Heisenberg group is a subriemannian
manifold. Hence, we only allow curves that have their derivatives in a subspace of a tangent space,
called horizontal space. Spaces which are subriemannian manifolds occur naturally whenever one
has to deal with a situation which a certain direction of movement is excluded. For example in the
first Heisenberg group ℍ1 at point 0 ∶= (0, 0, 0), the horizontal space H0ℍ𝑛 is a 2-dimensional space
spanned by 𝜕

𝜕𝑥
, 𝜕
𝜕𝑦

and hence we are only allowed to use curves whose derivatives lie in that space.
In particular, the direction along the 𝑧 axis is excluded. It follows that the shortest path from a point
(0, 0, 𝑧) to 0 is achieved along a spiral.

Let us also notice that the Heisenberg group is exceptional among subriemannian manifolds, be-
cause it is also a group. Therefore, it is a Carnot-Carathéodory group. A Carnot-Carathéodory group
of step 𝑘 is a connected, simply connected, finitely-dimensional Lie group such that its Lie algebra 𝔤
admits a step-𝑘 stratification, i.e.

𝔤 = 𝑉1 ⊕⋯⊕ 𝑉𝑘, [𝑉1, 𝑉𝑖] = 𝑉𝑖+1 for 𝑖 = 1,… , 𝑘 − 1 and [𝑉1, 𝑉𝑘] = 0.

For more information about Carnot-Carathéodory groups, see e.g. [BLU].
The fact that the Heisenberg groups have so many different structures such as being a subrieman-

nian manifold, a Carnot-Carathéodory group and also a contact manifold, makes it a great object to
study. The multitude of structures makes it a good starting point whenever one wants to work with
subriemannian manifolds or Carnot-Carathéodory groups. It is often the first object studied in these
settings as usually understanding any phenomenon in the Heisenberg groups gives an insight to what
may be happening in more general situations.

Let 𝛾 ∶ [0, 𝑆] → ℝ2𝑛+1 be an absolutely continuous curve. We will say that 𝛾 is horizontal if
𝛾̇(𝑠) ∈ H𝛾(𝑠)ℍ𝑛 for almost every 𝑠. Now, we equip H𝑝ℍ𝑛 with left invariant Riemannian metric such
that fields 𝑋𝑖, 𝑌𝑖 are orthonormal and so if 𝑣 =

∑𝑛
𝑖=1 𝑎𝑖𝑋𝑖(𝑝) + 𝑏𝑖𝑌𝑖(𝑝), then the following expression

defines a norm |𝑣|𝐻 =
√

∑𝑛
𝑖=1 𝑎

2
𝑖 + 𝑏

2
𝑖 . In a consequence, we define the Carnot-Carathéodory distance

in ℍ𝑛 as follows:
𝑑𝐶𝐶(𝑝, 𝑞) = inf

Γ𝑝,𝑞 ∫

𝑏

𝑎
|𝛾̇(𝑠)|𝐻d𝑠,

where Γ𝑝,𝑞 denotes a set of horizontal curves joining 𝑝 and 𝑞, such that 𝛾 joins points 𝑝 and 𝑞: 𝛾(𝑎) = 𝑝
and 𝛾(𝑏) = 𝑞.
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Equipped with the above structure, the Heisenberg group ℍ𝑛 becomes a subriemannian manifold and a
Carnot-Carathéodory group, in addition to being a metric space. Nevertheless, Carnot-Carathéodory
distance may be troublesome and, hence, we introduce the so-called Korányi-Reimann distance, de-
fined as follows:

𝑑ℍ𝑛(𝑝, 𝑞) = ‖𝑞−1 ⋅ 𝑝‖,

where the pseudonorm is given by

‖𝑝‖ ∶= ‖(𝑧, 𝑡)‖ =
(

|𝑧|4 + 𝑡2
)

1
4 .

The Korányi-Reimann distance is equivalent (comparable) to 𝑑𝐶𝐶 and hence both distances generate
the same topology, see e.g. [Be]. However, 𝑑ℍ𝑛 is easier in computations and therefore, throughout
this work we use Korányi-Reimann distance 𝑑ℍ𝑛 . In particular, all balls are defined using that distance,
i.e. 𝐵(𝑥, 𝑟) = {𝑦 ∈ ℍ𝑛 ∶ 𝑑ℍ𝑛(𝑥, 𝑦) < 𝑟}.

Finally, we recall that the left-invariant Haar measure on ℍ𝑛 is simply the (2𝑛 + 1)-dimensional
Lebesgue measure on ℍ𝑛 and it follows that ℍ𝑛 is𝑄-Ahlfors regular, with𝑄 = 2𝑛+2, i.e. there exists
a positive constant 𝑐 such that for all balls 𝐵 with radius 𝑟 > 0 we have

1
𝑐
𝑟𝑄 ≤ 𝑄(𝐵) ≤ 𝑐𝑟𝑄,

where 𝑄 stands for the 𝑄-dimensional Hausdorff measure induced by 𝑑ℍ𝑛 .

5.1.2 Geometry of domains
One of the fundamental types of domains studied in this chapter are the NTA domains and the ADP
domains, whose definitions and basic properties we now recall, cf. Chapter 2.9.

Below, we partially repeat the presentation from Chapter 2.9, but we here we also discuss the NTA
domains in more details, as they will play a key role in the results of this chapter.
Definition 5.1.1 (NTA domain, cf. Definition 5.11 in [CGN]). We say thatΩ ⊂ ℍ𝑛 is a nontangentially
accessible domain (NTA, for short) if there exist constants 𝑀 , 𝑟0 > 0 such that:

(1) (Interior corkscrew condition). For any 𝑥 ∈ 𝜕Ω and 𝑟 ≤ 𝑟0 there exists 𝐴𝑟(𝑥) ∈ Ω such that
𝑟
𝑀

< 𝑑(𝐴𝑟(𝑥), 𝑥) ≤ 𝑟 and 𝑑(𝐴𝑟(𝑥), 𝜕Ω) >
𝑟
𝑀
.

(2) (Exterior corkscrew condition). The complement Ω𝑐 ∶= ℍ𝑛 ⧵ Ω satisfies interior corkscrew
condition.

(3) (Harnack chain condition). For every 𝜀 > 0 and 𝑥, 𝑦 ∈ Ω such that 𝑑(𝑥, 𝜕Ω) > 𝜀, 𝑑(𝑦, 𝜕Ω) > 𝜀
and 𝑑(𝑥, 𝑦) < 𝐶𝜀 there exists a sequence of balls 𝐵1,… , 𝐵𝑝 with the following properties:

(a) 𝑥 ∈ 𝐵1 and 𝑦 ∈ 𝐵𝑝,
(b) 𝑟

𝑀
< 𝑑(𝐵𝑖(𝑥, 𝑟), 𝜕Ω) < 𝑀𝑟 for every 𝑖 = 1,… , 𝑝,

(c) 𝐵𝑖 ∩ 𝐵𝑖+1 ≠ ∅ for 𝑖 = 1,… , 𝑝 − 1,
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(d) length of the chain 𝑝 depends on 𝐶 but not on 𝜀.

Ω

𝑥

𝑦

Figure 5.1: This figure depicts a Harnack chain of balls between points 𝑥 and 𝑦.

Ω

Figure 5.2: This figure shows an example of a domain which does not satisfy Harnack chain condition.
Due to the presence of a slit one can take pairs of points on the opposite sides of a slit which are
arbitrarily close to each other. However, then there is no bound on the length of a chain of balls
joining them.

In the corresponding Definition 1 in [CG] the analogous notion of the 𝑋-NTA domains is consid-
ered. There, one lets 𝑋 = {𝑋1,… , 𝑋𝑚} be a family of smooth vector fields satisfying the Hörmander
rank condition, and so 𝑑𝐶𝐶 denotes the Carnot-Carathéodory distance related to 𝑋. For example, in
the Heisenberg group ℍ𝑛 our family of vector fields is 𝑋 ∶= {𝑋1, 𝑌1,… , 𝑋𝑛, 𝑌𝑛}, see Chapter 5.1.1.

The notion of the NTA domain originates from a work of Jerison-Kenig, see [JK, Section 3]. Notice
that the above definition makes sense also in the setting of metric space, in which case, the distance
need not be induced by a family of vector fields.

Examples of NTA domains in ℝ𝑛 encompass:
- Lipschitz domains, see Proposition 3.6 in [JK],
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- Zygmund domains, see Proposition 3.6 in [JK],
- quasispheres (snow-flake domains), see Section 2 in [GO], [Jon].

Another example of NTA domain is domain Ω, defined as a complement of a planar Cantor set in
a large enough ball in ℝ𝑛. It turns out that Ω satisfies our definition, even though such a Cantor set
is not rectifiable as a part of the 1-dimensional boundary of Ω. Intuitively speaking, one can think
that conditions (1) and (2) exclude both interior and exterior cusps, while condition (3) eliminates a
possibility of slits within a domain or narrowings that are infinitely thin. Examples of NTA domains
in ℍ𝑛, or in more general Carnot groups, include:

- bounded 𝐶1,1 sets with cylindrical symmetry (Theorem 5 in [CG]),
- level sets of fundamental solutions of the real part of the sub-Laplacian (Corollary 2 in [CG]),
- balls in the metric 𝑑ℍ𝑛 , see Corollary 4 and Proposition 1 in [CG],
- an image of an NTA domain ℍ𝑛 under the global quasiconformal map 𝑓 ∶ ℍ𝑛 → ℍ𝑛 is an NTA

domain, see [CT].
We refer to Section 5 in [CG] for further examples of NTA domains. However, it turns out that balls
in 𝑑𝐶𝐶 are not NTA domains. This partially motivates that from the point of view of our studies, the
𝑑ℍ𝑛 distance has an advantage over Carnot-Carathéodory distance.

From now on, unless specified differently, let us denote by 𝑑 ∶= 𝑑ℍ𝑛 .Basing on the notion of the NTA domains we now recall one of the second fundamental types of
domains considered in this chapter, namely the so-called domains admissible for the Dirichlet problem,
ADP in short, see [CGN]. Such a class is defined by combining the above notion of NTA domains
with the existence of a uniform outer ball. As observed in [CGN], it can be viewed as the closest
nonabelian counterpart of the class of 𝐶1,1 domains from Euclidean analysis.
Definition 5.1.2 (cf. Definition 2.1 in [CGN]). We say that a bounded domain Ω ⊂ ℍ1 is admissible
for the Dirichlet problem, denoted by ADP, if Ω is NTA and satisfies the uniform outer ball condition
with respect to the metric 𝑑.

Examples of the ADP domains include:
- Korányi-Reimann ball, see result of Theorem 2.13 in [CGN],
- level sets of some entire solutions to Yamabe type equations, see Section 1 in [CGN],
- 𝐶1,1 domains which are convex (at the level of Lie algebra) and which have partial symmetry

near their characteristic sets, see Theorem 2.13 in [CGN],
- 𝐶2 convex domains with strongly isolated characteristic points, see Theorem 2.16 in [CGN].
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5.1.3 Subelliptic harmonic functions and Green functions
Below we collect some of the basic definitions and potential theoretic results for the theory of subel-
liptic functions in Heisenberg groups ℍ𝑛.

Let Ω ⊂ ℍ𝑛 be an open set in the Heisenberg group ℍ𝑛. We say that a function 𝑢 ∶ Ω → ℝ belongs
to the horizontal Sobolev space 𝐻𝑊 1,2(Ω), if 𝑢 ∈ 𝐿2(Ω) and the horizontal derivatives 𝑋𝑖𝑢, 𝑌𝑖𝑢 for
𝑖 = 1,… , 𝑛 exist in the distributional sense and belong to 𝐿2(Ω). Similarly, we define the local
horizontal Sobolev space 𝐻𝑊 1,2

𝑙𝑜𝑐 (Ω).The horizontal gradient ∇𝐻𝑢 is given by the following equation:

∇𝐻𝑢 =
𝑛
∑

𝑖=1
(𝑋𝑖𝑢)𝑋𝑖 + (𝑌𝑖𝑢)𝑌𝑖.

Next, we define the sub-Laplace operator of 𝑢:

Δ𝐻𝑢 =
𝑛
∑

𝑖=1
(𝑋𝑖)2𝑢 + (𝑌𝑖)2𝑢

and say that 𝑢 ∈ 𝐻𝑊 1,2
𝑙𝑜𝑐 (Ω) is subelliptic harmonic in Ω, if Δ𝐻𝑢 = 0 in the weak sense. In what

follows, for the sake of simplicity, we will omit the word subelliptic and write harmonic functions,
instead.

Recall that functions in ℍ𝑛 are smooth (in fact analytic) and satisfy the weak maximum principle
and the Harnack inequality, see Chapters 8 and 5 in [BLU], respectively.

Let 𝐺(𝑥, 𝑦) = 𝐺(𝑦, 𝑥) = 𝐺Ω(𝑥, 𝑦) denote the Green function for the sub-Laplacian and for the
domain Ω ⊂ ℍ𝑛. We refer to [CG] and to Chapter 9 in [BLU] for definitions and basic properties of
Green functions.

For the reader’s convenience, we recall a definition of a Green function.
Definition 5.1.3 (cf. Definition 9.2.1 in [BLU]). Let Ω ⊂ ℍ𝑛 be an open set and 𝑥 ∈ Ω. The function
𝑦 ↦ Γ(𝑥−1◦𝑦) is superharmonic and nonnegative in Ω, where Γ denotes a fundamental solution for
Δ𝐻 . Then it has the greatest harmonic minorant in Ω. Let us denote it by ℎ𝑥. The function

Ω × Ω ∋ (𝑥, 𝑦) ↦ 𝐺Ω(𝑥, 𝑦) ∶= Γ(𝑥−1◦𝑦) − ℎ𝑥(𝑦) ∈ (0,∞)

is the Green function for Ω.
We write 𝐺 instead of 𝐺Ω whenever it is clear what Ω is. Let us remark that 𝐺(𝑥, ⋅) is harmonic in

Ω ⧵ {𝑥}. By symmetry of 𝐺 also 𝐺(⋅, 𝑦) is a harmonic function in Ω ⧵ {𝑦}.
Moreover, in the Appendix we provide a proof of one of the standard properties of Green functions

needed in Example 5.4.4. The result is likely a mathematical folklore in ℍ𝑛, but since we did not find
it explicitly in the literature for Carnot groups, we provide the full argument.

The following observations from [CG] will frequently be used, especially in Chapter 5.4 devoted
to proofs of Theorem 1.5.3 and Theorem 1.5.4. Here, we formulate them for the gauge balls rather
then for the metric balls. This is justified by the equivalence of both metrics in ℍ𝑛.

Let
Δ(𝑥, 𝑟) ∶= 𝐵(𝑥, 𝑟) ∩ 𝜕Ω (5.1)

denote the surface ball at 𝑥 ∈ 𝜕Ω with radius 𝑟 > 0.
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Theorem 5.1.4 (Dahlberg-type estimate, cf. Theorem 1 [CG]). Let Ω ⊂ ℍ𝑛 be an NTA domain with
parameters 𝑀, 𝑟0 > 0 and let further 𝑥0 ∈ 𝜕Ω and 𝑟 < 𝑟0

2
. Then, there exist 𝑎 > 1 and 𝐶 > 0,

depending on Δ𝐻 ,𝑀 and 𝑟0, such that for every 𝑥 ∈ Ω ⧵ 𝐵(𝑥0, 𝑎𝑟)

𝐶
|𝐵(𝑥, 𝑟)|
𝑟2

𝐺(𝑥,𝐴𝑟(𝑥0)) ≤ 𝜔𝑥(Δ(𝑥0, 𝑟)) ≤ 𝐶−1 |𝐵(𝑥, 𝑟)|
𝑟2

𝐺(𝑥,𝐴𝑟(𝑥0)),

where 𝐺 denotes a Green function of Ω.

Theorem 5.1.5 (The Carleson-type estimate, Lemma 1 in [CG]). Let 𝑥0 ∈ 𝜕Ω and 𝑟 ≤ 𝑟0. There exist
constants 𝐶, 𝛽 > 0, depending on Δ𝐻 ,𝑀 and 𝑟0 such that for any nonnegative subelliptic harmonic
function 𝑢 on Ω ∩ 𝐵(𝑥0, 2𝑟), vanishing continuously on Δ(𝑥0, 2𝑟), one has

𝑢(𝑥) ≤ 𝐶
(

𝑑(𝑥, 𝑥0)
𝑟

)𝛽

sup
Ω∩𝜕𝐵(𝑥0,𝑟)

𝑢

for any 𝑥 ∈ Ω ∩ 𝐵(𝑥0, 𝑟).

Theorem 5.1.6 (Local comparison theorem, cf. Theorem 3 [CG]). Let Ω ⊂ ℍ𝑛 be an NTA domain
with parameters 𝑀, 𝑟0 > 0 and let further 𝑥0 ∈ 𝜕Ω and 0 < 𝑟 < 𝑟0

𝑀
. If 𝑢, 𝑣 are harmonic functions in

Ω, that continuously vanish on Δ(𝑥0,𝑀𝑟), then for any 𝑥 ∈ 𝐵(𝑥0,
𝑟

2𝑀
) ∩ Ω one has

𝑢(𝑥)
𝑣(𝑥)

≤ 𝐶
𝑢(𝐴𝑟(𝑥0))
𝑣(𝐴𝑟(𝑥)0))

,

for some constant 𝐶 > 0 which depends only on Δ𝐻 ,𝑀 and 𝑟0.

Theorem 5.1.7 (Theorem 9 in [CG]). Let 𝑥0 ∈ 𝜕Ω, 𝑟 ≤ 𝑟0. There exists a positive constant 𝐶
depending on Δ𝐻 ,𝑀 and 𝑟0 such that for any nonnegative subelliptic harmonic function 𝑢 in Ω ∩
𝐵(𝑥0, 2𝑟), which vanishes continuously on Δ(𝑥0, 2𝑟), one has

𝑢(𝑥) ≤ 𝐶𝑢(𝐴𝑟(𝑥0))

for any 𝑥 ∈ Ω ∩ 𝐵(𝑥0, 𝑟).

5.1.4 Carleson measures and related notions in Harmonic analysis
Recall that the definition of regularity of a set, also known as Ahlfors-David regularity for metric
spaces was formulated in Definition 2.8.1.
Definition 5.1.8 (Carleson measure in ℍ𝑛). Let 1 ≤ 𝛼 < ∞ and 𝑠 > 0. We say that a positive Borel
measure 𝜇 on an open connected set Ω ⊂ ℍ𝑛 with non-empty 𝑠-regular boundary is an 𝛼-Carleson
measure on Ω, if there exists a constant 𝐶 > 0 such that

𝜇(Ω ∩ 𝐵(𝑥, 𝑟)) ≤ 𝐶𝑟𝛼𝑠, for all 𝑥 ∈ 𝜕Ω and 𝑟 > 0. (5.2)
The 𝛼-Carleson measure constant of 𝜇 is defined by

𝛾𝛼(𝜇) ∶= inf{𝐶 > 0 such that (5.2) holds for all 𝑥 ∈ 𝜕Ω and 𝑟 > 0}

We also call 1-Carleson measures simply Carleson measures.
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We define two objects that are essential for analyzing the behavior of harmonic functions. Both
of these objects were studied in the setting of Euclidean spaces, but now we give the definitions for
Heisenberg groups, cf. Chapter 2.5.
Definition 5.1.9. Let 𝑢 ∶ Ω → ℝ be a continuous function. We define the nontangential maximal
function 𝑁𝛼𝑢 ∶ 𝜕Ω → ℝ as follows:

(𝑁𝛼𝑢)(𝑥) = sup{|𝑢(𝑦)| ∶ 𝑦 ∈ Γ𝛼(𝑥)},

where Γ𝛼(𝑥) = {𝑦 ∈ Ω ∶ 𝑑(𝑦, 𝑥) < (1 + 𝛼)𝑑(𝑦, 𝜕Ω)} is a cone with vertex 𝑥 ∈ 𝜕Ω and aperture given
by 𝛼.

In the next definition we assume that the function is 𝐶1, but the Sobolev regularity 𝐻𝑊 1,2
𝑙𝑜𝑐 would

suffice as well, cf. [GMT] for the Euclidean setting. Since the definition below is applied only to
subelliptic harmonic functions on ℍ𝑛, which are analytic, our regularity assumption is enough.
Definition 5.1.10. Let 𝑢 ∶ Ω → ℝ be a 𝐶1(Ω) function. We define the square function (𝑆𝛼𝑢)2 ∶ 𝜕Ω →
ℝ as follows:

(𝑆𝛼𝑢)2(𝑥) = ∫Γ𝛼(𝑥)
|∇𝐻𝑢(𝑦)|2𝑑(𝑦, 𝜕Ω)2−𝑄d𝑦,

where 𝑄 = 2𝑛 + 2 is a homogeneous dimension of ℍ𝑛.
Another important notion of this thesis is one of the harmonic measure.

Definition 5.1.11. Let Ω ⊂ ℍ𝑛 be a domain. For a continuous function 𝑓 ∈ 𝐶(𝜕Ω) there exists a
unique solution to the following boundary value problem:

{

Δ𝐻𝑢 = 0 in Ω,
𝑢 = 𝑓 on 𝜕Ω.

Hence, for each 𝑥 ∈ Ω, owing to linearity of Δ𝐻 , we may define a linear functional
𝑓 ↦ 𝑢𝑓 (𝑥),

where 𝑢𝑓 is the unique subelliptic harmonic function with boundary data 𝑓 . Hence, by the Riesz
representation theorem, we get

𝑢𝑓 (𝑥) = ∫𝜕Ω
𝑓 (𝑧)d𝜔𝑧

for some Borel regular measure 𝜔𝑧, which we call the harmonic measure.
For a given domain Ω ⊂ ℍ𝑛 choose a point 𝑦 ∈ Ω and consider the harmonic measures 𝜔𝑦 on Ω.

Then for a given 𝑥 ∈ 𝜕Ω and 𝑟 > 0 we let Δ(𝑥, 𝑟) ∶= 𝐵(𝑥, 𝑟) ∩ 𝜕Ω and recall the mean-value of a
function 𝑓 ∶ 𝜕Ω → ℝ on Δ(𝑥, 𝑟):

𝑓Δ(𝑥,𝑟) ∶= ∫Δ(𝑥,𝑟)
𝑓 (𝑧) d𝜔𝑦(𝑧).

In Chapter 3.3 we recalled the definition of the BMO space for domains in ℝ𝑛, see Definition 3.3.4.
Below, we recall the definition of the boundary BMO space in ℍ𝑛, see Definition 8.4 in [JK].
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Definition 5.1.12 (Boundary BMO space). Let Ω ⊂ ℍ𝑛 be a domain. We say that a function 𝑓 ∶
𝜕Ω → ℝ belongs to the space 𝐵𝑀𝑂(𝜕Ω, d𝜔) with respect to the harmonic measure 𝜔 in Ω, if

sup
Δ(𝑥,𝑟)

1
𝜔(Δ(𝑥, 𝑟)) ∫Δ(𝑥,𝑟)

|𝑓 (𝑦) − 𝑓Δ(𝑥,𝑟)|d𝜔 <∞.

When discussing the NTA domains in ℍ𝑛 we may omit the reference point in the harmonic measure
d𝜔𝑧 and write 𝜔 for simplicity.

5.2 Characterizations of Carleson measures on ADP-domains
The purpose of this chapter is to show Theorem 1.5.1, which can be understood as the nonabelian
counterpart of the following well-known characterization of the Carleson measures in the upper-half
plane ℝ2

+.
Theorem (Lemma 5.5 in [G] Section 5, Ch. I). Let 𝜎 be a positive measure on 𝐻 = ℝ × ℝ+, and let
𝛼 > 0. Then 𝜎 is a Carleson measure with constant 𝛾𝜎 if and only if there exists 𝐴 = 𝐴(𝛼) such that

𝜎({|𝑢(𝑧)| > 𝜆}) ≤ 𝐴|{𝑡 ∶ 𝑁𝛼𝑢(𝑡) > 𝜆}|, 𝜆 > 0 (5.3)
for every harmonic function 𝑢 on 𝐻 . If 𝐴 is the least constant such that (5.3) holds, then 𝛾𝜎 ≈ 𝐴.

However, here we prove Theorem 1.5.1 only for bounded domains in ℍ1.
Theorem. 1.5.1 Let Ω ⊂ ℍ1 be a smooth 𝐴𝐷𝑃 domain with 3-regular boundary and 𝜇 be a positive
measure on Ω. Then 𝜇 is a Carleson measure on Ω if and only if there exists a constant 𝐶 = 𝐶(𝛼)
such that for every harmonic function 𝑢 on Ω and every 𝜆 > 0 it holds that

𝜇({𝑥 ∈ Ω ∶ |𝑢(𝑥)| > 𝜆}) ≤ 𝐶𝜎({𝜔 ∈ 𝜕Ω ∶ 𝑁𝛼𝑢(𝜔) > 𝜆}), (5.4)
where 𝜎 is the surface measure on 𝜕Ω, i.e. 𝜎 = 𝐻2

⌊𝜕Ω. Moreover, if 𝐶 is the least constant such that
(5.4) holds, then the Carleson constant of 𝜇 satisfies 𝛾𝜇 ≈𝛼 𝐶 .

Remark 5.2.1. Upon the necessary modifications, Theorem 1.5.1 can be as well formulated for the
smooth ADP domains in ℍ𝑛 for 𝑛 ≥ 1. However, for the sake of the simplicity of the presentation and
in order to emphasize the similarity to the corresponding result in [G], we restrict our discussion to ℍ1

only.
The proof of the sufficiency part relies on the corresponding one for Proposition 6.3 in [AF] and

in fact holds for Borel regular functions in general metric spaces.
In order to show the necessity part of the assertion we adapt the idea of the proof of Lemma 5.5

in [G, Section 5, Ch. I] for the Carleson measures on the upper half plane ℝ2
+ and the Euclidean

harmonic functions. There, by choosing the constant boundary data 4𝜆 with support contained in the
interval 𝐼 ⊂ ℝ and by defining the harmonic function 𝑢 as the convolution of the Poisson kernel in the
upper half plane ℝ2

+ with the function 4𝜆𝜒𝐼 , one shows that the superlevel set {𝑥 ∈ ℝ2
+ ∶ 𝑢(𝑥) > 𝜆}

contains the square𝑄 with base 𝐼 and so its measure satisfies: 𝜇(𝑄) ≤ 𝜇({𝑥 ∈ ℝ2
+ ∶ 𝑢(𝑥) > 𝜆}). This

combined with the weak-𝐿1 estimate for the Hardy–Littlewood maximal function gives the assertion
of the theorem.
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Our strategy of the proof relies on the following facts: first, existence of the Poisson kernel on𝐴𝐷𝑃
domains allows us to construct the appropriate harmonic function 𝑢. Then we invoke the harmonic
measure representation of 𝑢 together with the mutual absolute continuity of the harmonic measure with
respect to the surface measure. Finally, the subelliptic counterparts of the weak-𝐿1 estimates and the
estimates for the nontangential maximal function allow us to conclude the necessity part of the proof.
Definition 5.2.2. Let Ω ⊂ ℍ𝑛 be a domain. We say that a point 𝑥 ∈ 𝜕Ω is characteristic if the tangent
space to 𝜕Ω at 𝑥 is horizontal. The set of all such points in 𝜕Ω is denoted by ΣΩ.

For the reader’s convenience we will now recall results from [CGN] and [GP] that are essential for
the proof of the Theorem 1.5.1:

(A) (Theorem 1.1 [CGN]). Let Ω ⊂ ℍ𝑛 be a smooth ADP domain. Then, for any 𝑥 ∈ Ω the (subel-
liptic) harmonic measure d𝜔𝑥 and the surface measure d𝜎 are mutually absolutely continuous.
Moreover, for every 𝑝 > 1 it holds that 𝐿𝑝(𝜕Ω, d𝜎) ⊂ 𝐿1(𝜕Ω, d𝜔𝑥).

(B) (Theorem 5.5 [CGN]). Let Ω ⊂ ℍ𝑛 be an NTA domain. Fix 𝑥0 ∈ Ω and for a given 𝜙 ∈
𝐿1(𝜕Ω, d𝜔𝑥0) define the following function

𝑢(𝑥) ∶= ∫𝜕Ω
𝜙(𝑦)d𝜔𝑥(𝑦), 𝑥 ∈ 𝜕Ω.

Then 𝑢 is subelliptic harmonic in Ω and the following estimate holds for the nontangential max-
imum function of 𝑢 and the Hardy-Littlewood maximal operator:

(𝑁𝛼(𝑢))(𝑥) ≤ 𝐶𝑀𝜔(𝜙)(𝑥), 𝑥 ∈ 𝜕Ω.

Here,
𝑀𝜔(𝜙)(𝑥) ∶= sup

0<𝑟<diamΩ

1
𝜔(𝜕Ω ∩ 𝐵(𝑥, 𝑟)) ∫𝜕Ω∩𝐵(𝑥,𝑟)

|𝜙(𝑧)|d𝜔(𝑧), 𝑥 ∈ 𝜕Ω. (5.5)

(C) (Theorem 4.9 in [CGN]). Let Ω ⊂ ℍ𝑛 be a smooth domain, then 𝜎(ΣΩ) = 0.
(D) (Theorem 1.1 in [GP]) Let Ω ⊂ ℍ𝑛 be an ADP domain and let 𝑥0 ∈ 𝜕Ω, 0 < 𝑟 < 𝑅0

6
where

𝑅0 > 0 depends only on the ADP character of Ω. If 𝑢 is a nonnegative 𝑝-harmonic function in
Ω∩𝐵(𝑥0, 6𝑟) which vanishes continuously on 𝜕Ω∩𝐵(𝑥0, 6𝑟), then there exists 𝐶 = 𝐶(𝑛,Ω, 𝑝) >
0 such that for every 𝑥 ∈ Ω ∩ 𝐵(𝑥0, 𝑟) one has

𝑢(𝑥)
𝑢(𝐴𝑟(𝑥0))

≤ 𝐶
𝑑(𝑥, 𝜕Ω)

𝑟
.

(E) (Theorem 1.2 in [GP]) Let 𝑢 be a nonnegative 𝑝-harmonic function in a bounded (Euclidean)𝐶1,1

domain Ω ⊂ ℍ𝑛. then, there exists𝑀 > 1 depending only on Ω such that for every 𝑥0 ∈ 𝜕Ω⧵ΣΩ
and every 0 < 𝑟 < 𝑑(𝑥0,ΣΩ)

𝑀
one has for some constant 𝐶 = 𝐶(𝑛,Ω, 𝑝) > 0

𝑢(𝑥)
𝑢(𝐴𝑟(𝑥0))

≥ 𝑑(𝑥, 𝜕Ω)
𝑟

for every 𝑥 ∈ Ω ∩ 𝐵(𝑥0, 𝑟).
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Proof of Theorem 1.5.1. The sufficiency part of the proof follows from the discussion analogous to
the one in the proof of Proposition 6.3 in [AF]. In particular, formula (6.5) in [AF] for 𝛼 = 1 and 𝑠 = 2
gives assertion (5.4). For the sake of completeness of the presentation we now provide some key steps
of the reasoning in [AF]. Moreover, for the sufficiency part it is enough that function 𝑢 in (5.4) is a
continuous function.

Let 𝜇 be a Carleson measure on Ω. We define the following superlevel sets
𝐸(𝜆) ∶= {𝑥 ∈ Ω ∶ |𝑢(𝑥)| > 𝜆} and 𝑈 (𝜆) ∶= {𝜔 ∈ 𝜕Ω ∶ 𝑁𝛼𝑢(𝜔) > 𝜆}, 𝜆 > 0.

In this notation, assertion (5.4) reads
𝜇(𝐸(𝜆)) ≤ 𝐶2(𝑈 (𝜆)) for all 𝜆 > 0. (5.6)

As in [AF] we employ the Whitney-type decomposition of𝑈 (𝜆) based on the general result [HKST,
Proposition 4.1.15] applied to the metric space (𝜕Ω, 𝑑|𝜕Ω) and the open set 𝑈 (𝜆). It allows us to find
a countable collection 𝜆 = {𝐵(𝜔𝑖, 𝑟𝑖) ∶ 𝑖 = 1, 2,…} of balls with centers 𝜔𝑖 ∈ 𝑈 (𝜆) such that

𝑈 (𝜆) =
⋃

𝑖=1,2,…
𝐵(𝜔𝑖, 𝑟𝑖) ∩ 𝜕Ω, (5.7)

∑

𝑖
𝜒𝐵(𝜔𝑖,2𝑟𝑖)∩𝜕Ω ≤ 2𝑁5, (5.8)

where 𝑟𝑖 = (1∕8)𝑑(𝜔𝑖, 𝜕Ω ⧵ 𝑈 (𝜆)) and 𝑁 depends only on the 3-regularity constant of 𝜕Ω. Let 𝑥 be
an arbitrary point in 𝐸(𝜆), then

𝑁𝛼𝑢(𝜔) > 𝜆, for all 𝜔 ∈ 𝑆(𝑥) = 𝐵 (𝑥, (1 + 𝛼)𝑑(𝑥, 𝜕Ω)) ∩ 𝜕Ω,

where 𝑆(𝑥) stands for shadow of 𝑥, see Definition 3.2.4. Hence,

𝑆(𝑥) ⊂ 𝑈 (𝜆)
(5.7)
=

⋃

𝑖
𝐵(𝜔𝑖, 𝑟𝑖) ∩ 𝜕Ω, for all 𝑥 ∈ 𝐸(𝜆).

Next, for 𝑥 ∈ 𝐸(𝜆), let 𝜔𝑥 ∈ 𝜕𝐵 be such that 𝑑(𝑥, 𝜔𝑥) = 𝑑(𝑥, 𝜕Ω), due to compactness of 𝜕Ω. Thus
𝜔𝑥 ∈ 𝑆(𝑥) and, since 𝑆(𝑥) ⊂ 𝑈 (𝜆), we moreover know that 𝑑(𝜔𝑥, 𝜕Ω ⧵ 𝑈 (𝜆)) ≥ 𝑑(𝜔𝑥, 𝜕Ω ⧵ 𝑆(𝑥)).

Furthermore, there exists 𝑖𝑥 ∈ {1, 2, …} such that 𝜔𝑥 ∈ 𝐵(𝜔𝑖𝑥 , 𝑟𝑖𝑥). By repeating the reasoning
in [AF] we find that

𝑥 ∈ 𝐵
(

𝜔𝑖𝑥 ,
(

9
𝛼
+ 1

)

𝑟𝑖𝑥
)

, 𝑟𝑖𝑥 =
1
8
𝑑(𝜔𝑖𝑥 , 𝜕Ω ⧵ 𝑈 (𝜆)).

Since 𝑥was chosen arbitrarily from𝐸(𝜆), we have thus shown that𝐸(𝜆) is covered by the countable
family of balls 𝐵(𝜔𝑖, 𝐶𝑟𝑖), 𝑖 = 1, 2,…, where 𝐶 = 𝐶(𝛼) = 9

𝛼
+ 1. By using the assumption that 𝜇

is a Carleson measure, the fact that 2
|𝜕Ω is 2-regular, and that the multiplicity of Whitney balls is

controlled by (5.8), we deduce that

𝜇(𝐸(𝜆)) ≤
∑

𝑖
𝜇(𝐵(𝜔𝑖, 𝐶𝑟𝑖) ∩ Ω) ≤ 𝛾𝜇

(

9
𝛼
+ 1

)2 ∑

𝑖
𝑟2𝑖 ≲

∑

𝑖
2(𝐵(𝜔𝑖, 𝑟𝑖) ∩ 𝜕Ω)

(5.8)
≲ 2(𝑈 (𝜆)),
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as desired. This concludes the proof of the sufficiency part of Theorem 1.5.1.
Next, let us prove the necessity part of the assertion. First, we need the solvability of the subelliptic

harmonic Dirichlet problem for continuous boundary data. Such a result holds for bounded open sets
in ℍ1 satisfying the uniform outer ball condition, see Remark 3.4 in [LU] and references therein.
Therefore, since every gauge ball 𝐵 satisfies the uniform outer ball condition and, by assumptions, so
is Ω, it holds that also Ω ∩ 𝐵(𝑥0, 3𝑟) satisfies the condition, see Remark 3.5 in [LU] for convex open
sets. However, the set Ω∩𝐵(𝑥0, 3𝑟) does not have to be convex, but a ball is convex and hence satisfies
the uniform outer ball condition. Therefore, the intersection of two sets satisfying uniform outer ball
condition also satisfies it, as it suffices to take a smaller radius of those defining outer balls for Ω and
𝐵(𝑥0, 3𝑟).By the discussion at (4.1) in [LU] we define the Poisson kernel 𝑃 = 𝑃 (𝑥, 𝜔) related to Ω, for 𝑥 ∈ Ω
and 𝜔 ∈ 𝜕Ω ⧵ ΣΩ. Recall, that 𝜎(ΣΩ) = 0 by (C) in our presentation following Definition 5.2.2.

Let 𝜙 ∶ 𝜕Ω → ℝ be a continuous function such that 𝜙 ≡ 4𝜆 on the set 𝜕Ω ∩ 𝐵(𝑥0, 6𝑟), 𝜙 ≡ 0
outside the set 𝜕Ω ∩ 𝐵(𝑥0, 7𝑟) and 0 ≤ 𝜙 ≤ 4𝜆. Then a function 𝑢(𝑦) = ∫𝜕𝐷 𝑃 (𝑦, 𝜔)𝜙(𝜔)d𝜎(𝜔) is the
unique harmonic solution to the Dirichlet Problem in Ω for the Poisson kernel 𝑃 of domain Ω with
boundary data given by𝜙. Moreover, by the weak maximum principle in Theorem 8.2.19 (ii) in [BLU]
we obtain the weak minimum principle for 𝑢, so that 0 ≤ 𝑢 ≤ 4𝜆 in Ω. Let us consider a function
𝑤 ∶= 4𝜆− 𝑢. Such a function is harmonic in Ω, satisfies 0 ≤ 𝑤 ≤ 4𝜆 and it has zero boundary values
on 𝜕Ω ∩ 𝐵(𝑥0, 6𝑟). therefore, we can use Theorem 1.1 from [GP], see (D), to obtain

𝑤(𝑥)
𝑤(𝐴𝑟(𝑥0))

=
4𝜆 − 𝑢(𝑥)

4𝜆 − 𝑢(𝐴𝑟(𝑥0))
≤ 𝑐

𝑑(𝑥, 𝜕Ω)
𝑟

.

Then it follows that
𝑢(𝑥) ≥ 4𝜆

(

1 − 𝑐
𝑑(𝑥, 𝜕Ω)

𝑟

)

+ 𝑐𝑢(𝐴𝑟(𝑥0))
𝑑(𝑥, 𝜕Ω)

𝑟
for 𝑥 ∈ Ω ∩ 𝐵(𝑥0, 𝑟) and 𝑐 = 𝑐(𝑛,Ω).

If 𝑥 ∈ Ω ∩ 𝐵(𝑥0, 𝑟̃) with 𝑟̃ < 3
4𝑐
𝑟, then 1 − 𝑐 𝑑(𝑥,𝜕Ω)

𝑟
> 1

4
. In the consequence, we get

𝑢(𝑥) > 𝜆 + 𝑐𝑢(𝐴𝑟(𝑥0))
𝑑(𝑥, 𝜕Ω)

𝑟
> 𝜆.

In particular, 𝑢 > 𝜆 on Ω ∩ 𝐵(𝑥, 1
2𝑐
𝑟) and so it holds for any ball 𝐵(𝑥0, 𝑟) that

𝜇(𝐵(𝑥0, 𝑟) ∩ Ω) ≲ 𝜇(𝐵(𝑥0,
1
2𝑐
𝑟) ∩ Ω) ≤ 𝜇({𝑥 ∈ Ω ∶ 𝑢(𝑥) > 𝜆})

(5.4)
≤ 𝐶𝜎({𝜔 ∈ 𝜕Ω ∶ 𝑁𝛼𝑢(𝜔) > 𝜆}).

(5.9)
Since 𝜙 ∈ 𝐶(𝜕Ω), we have that 𝜙 ∈ 𝐿𝑝(𝜕Ω, d𝜎) for any 1 ≤ 𝑝 ≤ ∞. This holds, as 𝜎(𝜕Ω) < ∞,

due to the 3-regularity of 𝜕Ω and the boundedness of the diameter ofΩ. Hence, Theorem 1.1 in [CGN],
see (A), implies that 𝜙 ∈ 𝐿𝑝(𝜕Ω, d𝜔𝑦) for any given 𝑦 ∈ 𝐷. Moreover, it holds that d𝜔𝑦 = 𝑃 (𝑦, ⋅)d𝜎,
for a Poisson kernel. Therefore, Theorem 5.5 (i) in [CGN], see (B), implies that

{𝜔 ∈ 𝜕Ω ∶ 𝑁𝛼𝑢(𝜔) > 𝜆} ⊂
{

𝜔 ∈ 𝜕Ω ∶𝑀𝜔𝑦(𝜙)(𝜔) >
𝜆
𝐶

}

, (5.10)
where 𝑀𝜔𝑦(𝜙) stands for the Hardy–Littlewood maximal operator of function 𝜙 ∈ 𝐿1(𝜕Ω, d𝜔𝑦),
see (5.5)

𝑀𝜔𝑦(𝜙)(𝜔) ∶= sup
0<𝑟<diamΩ

1
𝜔𝑦(𝜕Ω ∩ 𝐵(𝜔, 𝑟)) ∫𝜕Ω∩𝐵(𝜔,𝑟)

|𝜙(𝑧)|d𝜔𝑦(𝑧), 𝜔 ∈ 𝜕Ω.
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Next, we appeal to the following relation between the maximal operator considered with respect to the
harmonic measure 𝜔𝑦 and the surface measure 𝜎, see (6.7) in [CGN]:

𝑀𝜔𝑦(𝜙)(𝜔) ≤ 𝐶
(

𝑀𝜎|𝜙|
𝛽)

1
𝛽 (𝜔), 𝜔 ∈ 𝜕Ω, any fixed 𝑦 ∈ Ω. (5.11)

The estimate holds for any 1 < 𝑝 ≤ ∞ and 1 < 𝛽 < 𝑝. Since 𝜙 ∈ 𝐿∞(𝜕Ω, d𝜔𝑦) we may choose 𝑝 = ∞.
By [CG], pg. 414 it holds that (𝜕Ω, d𝜔𝑥, 𝑑𝜕Ω) is the homogeneous space. Recall that a metric

measure space (𝑋, 𝑑, 𝜇) is the space of homogeneous type if (𝑋, 𝑑) is a quasimetric space and 𝜇 is a
doubling measure. Thus, by collecting estimates in (5.9)-(5.11) and by applying the weak-𝐿1 estimate
for doubling spaces in Theorem 3.5.6 in [HKST] and by the definition of 𝜙 we obtain the following
estimate

𝜇(𝐵(𝑥0, 𝑟) ∩ Ω) ≤ 𝐶𝜎
({

𝜔 ∈ 𝜕Ω ∶𝑀𝜔𝑦(𝜙)(𝜔) >
𝜆
𝐶

})

≤ 𝐶𝜎
({

𝜔 ∈ 𝜕Ω ∶𝑀𝜎|𝜙|
𝛽(𝜔) >

( 𝜆
𝐶

)𝛽})

≤ 𝐶𝛽

𝜆𝛽
‖𝜙‖𝛽𝐿𝛽 (𝜕Ω,d𝜎) ≲ 𝐶𝜎(𝜕(𝐵(𝑥0, 3𝑟) ∩ Ω)) ≲ 𝑟3. (5.12)

Since 𝑦 ∈ Ω is arbitrary and any two harmonic measures 𝜔𝑦 and 𝜔𝑦′ are comparable for any
𝑦, 𝑦′ ∈ Ω with the constant depending on the diameter diamΩ < ∞, it follows that 𝜇 is Carleson in
Ω, as the constants in (5.12) do not depend on the choice of 𝑟.

5.3 Carleson measures and Möbius-type transformations on the
unit gauge ball

The purpose of this chapter is to show Theorem 1.5.2, a counterpart of Lemma 3.3 in Section 3, Chapter
VI in [G] characterizing the Carleson measures on the unit disk 𝔻 in terms of the canonical Möbius
transformations on 𝔻. Namely, the lemma stays that a positive measure 𝜇 on 𝔻 is a Carleson measure
if and only if the following holds:

sup
𝑧0∈𝔻∫𝔻

1 − |𝑧0|2

|1 − 𝑧0𝑧|2
d𝜇(𝑧) =𝑀 <∞. (5.13)

Moreover, the constant 𝑀 is comparable to the Carleson constant, i.e. 𝑀 ≈ 𝛾𝜇 with absolute con-
stants. Notice that, for a given 𝑧0 ∈ 𝔻, the integrand in (5.13) satisfies the following

1 − |𝑧0|2

|1 − 𝑧0𝑧|2
=

1 − |

|

|

𝑧−𝑧0
1−𝑧0𝑧

|

|

|

2

1 − |𝑧|2
=

1 − |𝑇𝑧0(𝑧)|
2

1 − |𝑧|2
, (5.14)

where 𝑇𝑧0(𝑧) = 𝑒−𝑖𝜃0 𝑧−𝑧0
1−𝑧0𝑧

, for 𝑧0 = 𝑟0𝑒𝑖𝜃0 is the Möbius self-mapping of 𝔻 with the property 𝑇𝑧0(𝑧0) =
0. Such family of conformal mappings, and its 𝑛-dimensional counterpart, play an important role in the
studies of quasiconformal and quasiregular mappings and related Hardy spaces, see e.g. [AK, AG1,
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AG2] and [Ah] for basic properties of such mappings. The relation between expressions in (5.14) and
the Carleson condition becomes more apparent once we observe that for small enough radii 𝑟 > 0, any
𝜔 ∈ 𝜕𝔻 and 𝑧 ∈ 𝔻 ∩ 𝐵(𝜔, 𝑟) it holds that

1 − |𝑇𝑧0(𝑧)|
2

1 − |𝑧|2
≈

1 − |𝑇𝑧0(𝑧)|
1 − |𝑧|

≈ 1
𝑟
, (5.15)

see Lemma 2.2 in [AG2] and Formula (33) in Ch. II in [Ah]. Hence, (5.15) together with (5.13) imply
the Carleson condition for 𝜇:

𝜇(𝔻 ∩ 𝐵(𝜔, 𝑟)) = ∫𝔻∩𝐵(𝜔,𝑟)

𝑟
𝑟
d𝜇 ≲ 𝑀𝑟.

The class of the Möbius transformations 𝑇𝑧0 has no direct counterpart in the Heisenberg setting as a
class of the conformal maps from a unit Korányi–Reimann ball into itself due to lack of rotational
symmetry of Korányi-Reimann ball. Nevertheless, recently in [AF, Section 4.1] the notion of class
𝑇𝑧0 has been extended to the subriemannian setting in the following way.

Recall that the Korányi-Reimann unit ball in ℍ1 is defined as follows:
𝐵(0, 1) ∶= {𝑥 ∈ ℍ1 ∶ 𝑑ℍ𝑛(0, 𝑥) < 1}.

Recall the Korányi inversion in the Korányi unit sphere centered at the origin defined as follows:
𝐼(𝑦) = − 1

‖𝑦‖4

(

𝑦𝑧(|𝑦𝑧|2 + 𝑖𝑦𝑡), 𝑦𝑡
), where 𝑦 = (𝑦𝑧, 𝑦𝑡) ∈ ℍ1 ⧵ {0}. It is the restriction of a conformal

self-map of the compactification ℍ̂1, with 𝐼(0) = ∞ and 𝐼(∞) = 0. Moreover, if 𝑦 lies in the complex
plane (i.e. 𝑦𝑡 = 0), the inversion 𝐼 agrees with the well-known inversion in the unit circle.

Let us fix 𝑥 ∈ ℍ1, 𝑎 ∈ ℍ1 ⧵ {𝑥}, and 𝜌 > 0. Define the map 𝑇 ∶= 𝑇𝑥,𝑎,𝜌 ∶ ℍ̂1 → ℍ̂1 as follows

𝑇 (𝑦) ∶= 𝛿𝜌
(

[

𝐼(𝑎−1 ⋅ 𝑥)
]−1

⋅
[

𝐼(𝑎−1 ⋅ 𝑦)
]

)

, (5.16)

where 𝛿𝜌 denotes the Heisenberg dilation by 𝜌, i.e. 𝛿𝜌(𝑥) = 𝛿𝜌(𝑥1, 𝑥2, 𝑥3) ∶= (𝜌𝑥1, 𝜌𝑥2, 𝜌2𝑥3).Below we collect some properties of maps 𝑇𝑥,𝑎,𝜌 proven in Proposition 4.2, Corollaries 4.9 and 4.11
and Proposition 4.13 in [AF]:

(1) The mapping
𝑇 |ℍ1⧵{𝑎} ∶ ℍ1 ⧵ {𝑎} → ℍ1 ⧵ {𝛿𝜌

(

[𝐼(𝑎−1 ⋅ 𝑥)]−1
)

}

is 1-quasiconformal. Moreover, 𝑇 (𝑥) = 0, 𝑇 (𝑎) = ∞, 𝑇 (∞) = 𝛿𝜌
(

[𝐼(𝑎−1 ⋅ 𝑥)]−1
). Recall that

1-quasiconformal maps are conformal both in ℝ𝑛, see [V], [Geh], [IM], and in ℍ1, see [CC],
[CCLDO].

(2) For all 𝑦, 𝑦′ ∈ ℍ1 ⧵ {𝑎}, it holds that

𝑑(𝑇 (𝑦), 𝑇 (𝑦′)) = 𝜌
𝑑(𝑦, 𝑦′)

𝑑(𝑎, 𝑦)𝑑(𝑎, 𝑦′)
, ‖𝑇 (𝑦)‖ = 𝜌

𝑑(𝑥, 𝑦)
𝑑(𝑎, 𝑦)𝑑(𝑎, 𝑥)

, 𝐽𝑇 (𝑦) =
𝜌4

𝑑(𝑎, 𝑦)8
,

where 𝐽𝑇 denotes the Jacobian of map 𝑇 .
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(3) Let any 𝑥 ∈ 𝐵, 𝑎 ∈ ℍ1 ⧵ 𝐵 and 𝜌 > 0, be such that
𝜌 ≲ min{𝑑(𝑥, 𝜕𝐵), 𝑑(𝑎, 𝜕𝐵)} and 𝜌 ≈ 𝑑(𝑎, 𝑥). (5.17)

Then the map 𝑇 = 𝑇𝑥,𝑎,𝜌 satisfies
𝐵(0, 𝑚) ⊂ 𝑇 (𝐵) ⊂ 𝐵(0,𝑀). (5.18)

for radii 𝑚 and𝑀 depending on 𝑥, 𝑎, and 𝜌 only through the implicit multiplicative constants in
the inequalities in (5.17). This property is a reflection of the similar one for the Möbius self-maps
of a unit ball in ℝ𝑛, see e.g. Lemma 2.2 in [AG2]

(4) Let 𝜔 ∈ 𝜕𝐵, 𝑥 ∈ 𝐵, and 𝜌 > 0. Assume that 𝑎 ∈ ℍ1 ⧵ 𝐵 and 𝑟 > 0 are such that 𝑑(𝑎, 𝜔) ≲ 𝑟
and 𝑑(𝑎, 𝐵) ≥ 𝐶𝑟, for a constant 𝐶 > 1. Then, the map 𝑇 = 𝑇𝑥,𝑎,𝜌 satisfies

𝑑(𝑇 (𝑦), 𝜕𝑇 (𝐵))
𝑑(𝑦, 𝜕𝐵)

≈𝐶
𝜌

𝑑(𝑦, 𝑎)2
, for all 𝑦 ∈ 𝐵(𝜔, 𝑟) ∩ 𝐵. (5.19)

The similar property holds in ℝ𝑛, see Lemma 2.2 in [AG2].
After the above preparatory observations we are in a position to formulate and prove the main

result of this chapter. For the reader’s convenience we recall the statement of Theorem 1.5.2.
Theorem. 1.5.2 [cf. Lemma 3.3 in [G]] A measure 𝜇 on the Korányi-Reimann unit ball 𝐵 ∶=
𝐵(0, 1) ⊂ ℍ1 is a Carleson measure if and only if

∫𝐵

(𝑑(𝑇𝑥,𝑎,𝜌(𝑦), 𝜕𝑇𝑥,𝑎,𝜌(𝐵))
𝑑(𝑦, 𝜕𝐵)

)3

d𝜇(𝑦) =𝑀 <∞, (5.20)

for all 𝑥 ∈ 𝐵, 𝑎 ∈ ℍ1 ⧵ 𝐵, and 𝜌 > 0 such that 𝜌 ≲ min{𝑑(𝑥, 𝜕𝐵), 𝑑(𝑎, 𝜕𝐵)} and 𝜌 ≈ 𝑑(𝑎, 𝑥).

Basing on (5.15), one could expect that the corresponding hypotheses (5.20) of the above theo-
rem in ℍ1 should involve the Kóranyi norms of points in 𝑦 ∈ 𝐵 and their images 𝑇 (𝑦). Indeed, by
property (5.18) we have that

(𝑚 + 1
2

) 1 − ‖𝑇𝑥,𝑎,𝜌(𝑦)‖
1 − ‖𝑦‖

≤
1 − ‖𝑇𝑥,𝑎,𝜌(𝑦)‖2

1 − ‖𝑦‖2
≤ (𝑀 + 1)

1 − ‖𝑇𝑥,𝑎,𝜌(𝑦)‖
1 − ‖𝑦‖

.

However, due to the geometry of balls in ℍ1 it is more convenient to work with the distances to the
corresponding boundaries of 𝑦 and 𝑇 (𝑦), see the proof below.
Proof of Theorem 1.5.2. Set 𝑇 ∶= 𝑇𝑥,𝑎,𝜌 and observe that by (5.19) and by assumptions the following
holds for any 𝑦 ∈ 𝐵(𝜔, 𝑟) ∩ 𝐵:

𝑑(𝑇 (𝑦), 𝜕𝑇 (𝐵))
𝑑(𝑦, 𝜕𝐵)

≈𝐶
𝜌

𝑑(𝑦, 𝑎)2
≈
𝑑(𝑎, 𝑥)
𝑑(𝑦, 𝑎)2

. (5.21)
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Choose 𝑥 such that 𝑥 ∈ 𝐵(𝜔, 𝑟) ∩ 𝐵 and 𝑑(𝜔, 𝑥) = 𝑟
2
. Then, for 𝑎 choosen as in (5.19), it holds that

𝑟 ≤ 𝑑(𝑎, 𝑦) ≤ 𝑑(𝑎, 𝑥) + 𝑑(𝑥, 𝑦) ≈ 𝑑(𝑥, 𝜕𝐵) + 3
2
𝑟 ≈ 5

2
𝑟,

𝑑(𝑎, 𝑥) ≈ 𝑑(𝑥, 𝜕𝐵) ≈ 𝑑(𝑥, 𝜔) ≈ 𝑟.

Hence, by applying these estimates in (5.21) we obtain that
𝑑(𝑇 (𝑦), 𝜕𝑇 (𝐵))

𝑑(𝑦, 𝜕𝐵)
≈ 1
𝑟
≈ 1
𝑑(𝑥, 𝜕𝐵)

. (5.22)

In order to show the necessity part of the assertion, let us assume that (5.20) holds. Then, for any
𝜔 ∈ 𝜕𝐵 and 𝑟 > 0 we have

𝜇(𝐵(𝜔, 𝑟) ∩ 𝐵) = ∫𝐵(𝜔,𝑟)∩𝐵
𝑑(𝑥, 𝜕𝐵)3

𝑑(𝑥, 𝜕𝐵)3
d𝜇(𝑦)

≈ 𝑑(𝑥, 𝜕𝐵)3 ∫𝐵(𝜔,𝑟)∩𝐵

(

𝑑(𝑇 (𝑦), 𝜕𝑇 (𝐵))
𝑑(𝑦, 𝜕𝐵)

)3

d𝜇(𝑦)

≲ 𝑀𝑑(𝑥, 𝜕𝐵)3 ≈ 𝑟3.

In order to show the opposite implication in the assertion of the theorem let us consider two cases for
points 𝑥 ∈ 𝐵 in the definition of maps 𝑇 = 𝑇𝑥,𝑎,𝜌 : (1) 𝑑(𝑥, 𝜕𝐵) > 1

4
, and (2) 𝑑(𝑥, 𝜕𝐵) ≤ 1

4
. In the first

case by (5.22), we trivially have that

∫𝐵(𝜔,𝑟)∩𝐵

(

𝑑(𝑇 (𝑦), 𝜕𝑇 (𝐵))
𝑑(𝑦, 𝜕𝐵)

)3

d𝜇(𝑦) ≲𝐶 𝜇(𝐵) ≤ 𝐶𝛾𝜇 <∞.

Therefore, we may assume that points 𝑥 ∈ 𝐵 satisfy 𝑑(𝑥, 𝜕𝐵) ≤ 1
4

and mimic the approach in the proof
of Lemma 3.3 in [G, Section 3, Chapter VI]. However, we need to take into account the differences
between the Euclidean and the Heisenberg settings.

Recall that the Euclidean radial curves need not be horizontal in ℍ1 and hence may have an infinite
subriemannian length. However, by works [KR1] and [BT], see also the discussion in Section 2.1.2
in [AF], we have that the following formula describes the radial curves given by the horizontal curves
joining the origin with the point 𝜔 = (𝑧, 𝑡) belonging to the boundary 𝜕𝐵 ⧵ {𝑧 = 0}:

𝛾(𝑠, (𝑧, 𝑡)) =
(

𝑠𝑧𝑒−i
𝑡

|𝑧|2
log 𝑠, 𝑠2𝑡

)

, (𝑧, 𝑡) ∈ 𝜕𝐵 ⧵ {𝑧 = 0}. (5.23)
It is easy to compute that ‖𝛾(𝑠)‖ = 𝑠. Moreover, given 𝑥 ∈ 𝐵 we may find a point 𝜔 ∈ 𝜕𝐵 corre-
sponding to 𝑥 = (𝑥𝑧, 𝑥𝑡), in a sense that 𝑥 = 𝛾(𝑠, 𝜔) for some 0 < 𝑠 < 1, by solving (5.23) for 𝑧 and 𝑡.
Namely, we have that

𝑡 =
𝑥𝑡

‖𝑥‖2
, 𝑧 =

𝑥𝑧
‖𝑥‖

𝑒i
𝑥𝑡

|𝑥𝑧|2
log ‖𝑥‖.

We denote such point by 𝜔𝑥 and define the following family of subsets in 𝐵:
𝐸𝑛 ∶= {𝑦 ∈ 𝐵 ∶ 𝑑(𝑦, 𝜔𝑥) < 2𝑛𝑑(𝑥, 𝜕𝐵)} 𝑛 = 1, 2,… .
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Therefore, since 𝜇 is assumed to be a Carleson measure in 𝐵, we find that
𝜇(𝐸𝑛) = 𝜇

(

𝐵(𝜔𝑥, 2𝑛𝑑(𝑥, 𝜕𝐵)) ∩ 𝐵
)

≤ 𝛾𝜇23𝑛𝑑(𝑥, 𝜕𝐵)3, 𝑛 = 1, 2,… .

Hence, by appealing to (5.21), we obtain the following estimate

∫𝐵(𝜔,𝑟)∩𝐵

(

𝑑(𝑇 (𝑦), 𝜕𝑇 (𝐵))
𝑑(𝑦, 𝜕𝐵)

)3

d𝜇(𝑦)

≤ ∫𝐸1

(

𝑑(𝑇 (𝑦), 𝜕𝑇 (𝐵))
𝑑(𝑦, 𝜕𝐵)

)3

d𝜇(𝑦) +
∞
∑

𝑛=2
∫𝐸𝑛⧵𝐸𝑛−1

(

𝑑(𝑇 (𝑦), 𝜕𝑇 (𝐵))
𝑑(𝑦, 𝜕𝐵)

)3

d𝜇(𝑦). (5.24)

Since, by assumption 𝑑(𝑎, 𝑥) ≈ 𝑑(𝑥, 𝜕𝐵) and for 𝑦 ∈ 𝐸𝑛 ⧵ 𝐸𝑛−1 it holds that
2𝑛−1𝑑(𝑥, 𝜕𝐵) < 𝑑(𝑦, 𝜔𝑥) < 2𝑛𝑑(𝑥, 𝜕𝐵),

we have that
𝑑(𝑎, 𝑥)
𝑑(𝑦, 𝑎)2

≲
𝑑(𝑥, 𝜕𝐵)
𝑑(𝑦, 𝜔𝑥)2

≲ 1
22𝑛𝑑(𝑥, 𝜕𝐵)

,

as 𝑑(𝑦, 𝑎) > 𝑑(𝑦, 𝜔𝑥) due to the assumption that 𝑎 ∈ ℍ1 ⧵ 𝐵. We are in a position to complete the
above estimate (5.24) as follows (cf. (5.21)):

∫𝐸1

(

𝑑(𝑇 (𝑦), 𝜕𝑇 (𝐵))
𝑑(𝑦, 𝜕𝐵)

)3

d𝜇(𝑦) +
∞
∑

𝑛=2
∫𝐸𝑛⧵𝐸𝑛−1

(

𝑑(𝑇 (𝑦), 𝜕𝑇 (𝐵))
𝑑(𝑦, 𝜕𝐵)

)3

d𝜇(𝑦)

≤
𝜇(𝐸1)

26𝑑(𝑥, 𝜕𝐵)3
+

∞
∑

𝑛=2
∫𝐸𝑛⧵𝐸𝑛−1

1
26𝑛𝑑(𝑥, 𝜕𝐵)3

d𝜇(𝑦)

≲
∞
∑

𝑛=1

1
26𝑛𝑑(𝑥, 𝜕𝐵)3

𝜇(𝐸𝑛) ≲𝛾𝜇

∞
∑

𝑛=1

1
23𝑛

<∞.

This completes the sufficiency part of the proof and thus, the whole proof is completed as well.
Remark 5.3.1. We observe that since the Korányi inversion can be defined in groups ℍ𝑛, see e.g.
[KR2], so is the class of maps 𝑇𝑥,𝑎,𝜌. Moreover, the horizontal curves (5.23) exist not only in ℍ1,
but also in ℍ𝑛 (in fact, in polarizable groups, see Section 3 in [BT]). Therefore, Theorem 1.5.2 has
a counterpart in ℍ𝑛. However, for the sake of simplicity of the presentation and in order to avoid
repeating similar construction of maps 𝑇𝑥,𝑎,𝜌 presented in [AF, Section 4.1], we decided to state the
theorem only in the ℍ1 setting.

5.4 Square function and Carleson measures for 𝐿2 and BMO
boundary data

The purpose of this chapter is to prove main results of this chapter, namely Theorems 1.5.3 and 1.5.4,
which generalize, respectively, Theorem 9.1 and Theorem 9.6 in [JK]. Theorem 9.1 provides the bound
for the𝐿2-norm of the square function in terms of the𝐿2-norm of the boundary data on NTA domains.
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Theorem 9.6 gives a Carleson-measure estimate for a subelliptic harmonic function defined by the
integral of a BMO function with respect to harmonic measure on the NTA domain. Such estimates in
ℝ𝑛 are essential, for example, when proving the 𝜀-approximability for harmonic functions. We refer
to Chapters 3.2 and 4.3 of this thesis for proofs of 𝜀-approximability. Recall that in Chapter 3.2 we
proved 𝜀-approximability for a class of nonharmonic functions on Lipschitz-graph domains and in
Chapter 4.3 we proved 𝜀-approximability on Riemannian manifolds.

Recall Definition 5.1.10 of the square function (also known in the literature as the area function,
depending on the authors and the context)

𝑆𝛼𝑢(𝑥)2 ∶= ∫Γ𝛼(𝑥)
|∇𝐻𝑢(𝑦)|2𝑑(𝑦, 𝜕Ω)2−𝑄d𝑦.

For the reader’s convenience we recall our main results.
Theorem. 1.5.3(𝐿2-boundedness of the square function) Let Ω ⊂ ℍ𝑛 be a bounded NTA domain. Let
further 𝑓 ∈ 𝐿2(d𝜔) and 𝑢(𝑥) ∶= ∫𝜕Ω 𝑓 (𝑦)d𝜔

𝑥(𝑦). Then, the following estimate holds for the square
function 𝑆𝛼 of a subelliptic harmonic function 𝑢 in Ω

‖𝑆𝛼𝑢‖𝐿2(d𝜔) ≤ 𝐶‖𝑓‖𝐿2(d𝜔),

where the constant 𝐶 depends on 𝑛,𝑀 , constant from the Harnack inequality, 𝛼 and Ω.

The corresponding Euclidean result in [JK], cf. Theorem 9.1, is proven for any 1 < 𝑝 < ∞.
However, for us the case 𝑝 = 2 is the most interesting, as it is the one that we would like to use to
prove 𝜀-approximability for harmonic functions. According to our best knowledge, the result is new
in the subriemannian setting.
Theorem. 1.5.4 (Carleson measure estimate) Let Ω ⊂ ℍ𝑛 be a bounded NTA domain and 𝑢 be subel-
liptic harmonic in Ω such that 𝑢(𝑥) = ∫𝜕Ω 𝑓 (𝑦)d𝜔

𝑥(𝑦) for some 𝑓 ∈ 𝐵𝑀𝑂(𝜕Ω). Then, for any 𝐷 > 1
there exists a constant 𝐶 > 0 such that for any ball 𝐵(𝑥0, 𝑟) centered at 𝑥0 ∈ 𝜕Ω ⧵ ΣΩ with any
0 < 𝑟 < 𝑟0

𝐷𝑀
≤ 1

𝐷𝑀
min{1, 𝑑(𝑥0,ΣΩ)

𝑀
} it holds that

∫𝐵(𝑥0,𝑟)∩Ω
|∇𝐻𝑢|

2𝐺(𝑥,𝐴𝐷𝑀𝑟(𝑥0))d𝑥 ≤ 𝐶𝜔(𝐵(𝑥0, 𝑟) ∩ 𝜕Ω),

where constant 𝐶 depends on 𝐷, 𝑛,𝑀, 𝑟0 and ‖𝑓‖𝐵𝑀𝑂(𝜕Ω) and 𝐺 denotes the Green function of Ω.

Let us remark that the assertion of the theorem can be formulated equivalently in a way similar to
the bottom of page 3 in [HT], i.e. by using the supremum over radii and the averaged integral.

In the theorem, 𝜔 stands for a harmonic measure with respect to any but fixed point 𝑦 ∈ Ω ⧵
𝐵(𝑥0, 𝑎𝑟) and so 𝜔 ∶= 𝜔𝑦. However, for the sake of convenience of the presentation in what follows
we omit the reference points. The constant 𝑎 can be taken equal to 𝑀 , see [CGN, Section 5].

Upon strengthening the regularity assumptions of the boundary, the following consequence of
Theorem 1.5.4 holds, as the ADP condition allows us to compare the harmonic measure with the
surface measure, see (A) in the discussion following Definition 5.2.2.
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Corollary 5.4.1. Under the assumptions of Theorem 1.5.4 if we additionally assume that Ω is a smooth
ADP domain, then it holds that for any ball 𝐵(𝑥0, 𝑟) centered at 𝑥0 ∈ 𝜕Ω ⧵ ΣΩ with radius 0 < 𝑟 <
𝑟0
𝐷𝑀

≤ 1
𝐷𝑀

min{1, 𝑑(𝑥0,ΣΩ)
𝑀

} that

∫𝐵(𝑥0,𝑟)∩Ω
|∇𝐻𝑢|

2𝐺(𝑥,𝐴𝐷𝑀𝑟(𝑥0))d𝑥 ≤ 𝐶𝑟𝑄−1,

where 𝐶 depends on 𝐷, 𝑛,𝑀, 𝑟0 and ‖𝑓‖𝐵𝑀𝑂(𝜕Ω).

An important class of examples of NTA domains in ℍ𝑛 is the one of (Euclidean) 𝐶1,1 domains,
see [CG, GP]. Since the Green function 𝐺(⋅, 𝐴𝐷𝑀𝑟(𝑥0)) is nonnegative subelliptic harmonic in Ω ⧵
{𝐴𝐷𝑀𝑟(𝑥0)} we may use Theorem 1.2 in [GP] to get the following lower boundary Harnack-type esti-
mate for a (Euclidean) 𝐶1,1 domain Ω ⊂ ℍ𝑛, any 𝑥0 ∈ 𝜕Ω ⧵ ΣΩ and

0 < 𝑟′ < 1
𝐷𝑀

min{1, 𝑑(𝑥0,ΣΩ)∕𝐶, 𝑑(𝐴𝑟(𝑥0), 𝜕Ω)},

where 𝐶 is a constant from Theorem 1.2 in [GP], and for all 𝑥 ∈ 𝐵(𝑥0, 𝑟′) ∩ Ω:

𝐺(𝑥,𝐴𝑟(𝑥0)) ≥ 𝐶(𝑛,Ω)𝐺(𝐴𝑟′(𝑥0), 𝐴𝑟(𝑥0))
𝑑(𝑥, 𝜕Ω)

𝑟′
≳𝐶(𝑛,Ω) 𝐺(𝐴𝑟′(𝑥0), 𝐴𝑟(𝑥0))𝑑(𝑥, 𝜕Ω).

Moreover, notice that by building a chain of balls joining 𝐴𝑟′(𝑥0) with fixed, but any 𝑦 ∈ Ω such that
dist(𝑦, 𝜕Ω) > 𝑟0, for 𝑟0 as in the definition of the NTA domains, and by the standard iteration of the
Harnack inequality on metric balls (see e.g. [BLU, Corollary 5.7.3]), we obtain that

𝐺(𝐴𝑟′(𝑥0), 𝐴𝑟(𝑥0)) ≥ 𝐶𝑁𝐺(𝑦, 𝐴𝑟(𝑥0)),

where the length of the Harnack chain 𝑁 depends on diamΩ and 𝑟 and the constant C depends on the
distance 𝑑 and the geometric parameters of ℍ𝑛 and Δ𝐻 , cf. [BLU].

The above discussion and the Proposition 5.6 in [GP] implies the following Carleson-type estimate.
Corollary 5.4.2. Let Ω ⊂ ℍ𝑛 be a (Euclidean) 𝐶1,1 domain which also satisfies the uniform outer ball
condition. Then, under the assumptions of Theorem 1.5.4, it holds for any ball 𝐵(𝑥0, 𝑟) centered at
𝑥0 ∈ 𝜕Ω ⧵ ΣΩ with radius 0 < 𝑟 < 𝑟0

𝐷𝑀
≤ 1

𝐷𝑀
min{1, 𝑑(𝑥0,Σ𝑂𝑚)

𝑀
} that

∫𝐵(𝑥0,𝑟)∩Ω
|∇𝐻𝑢|

2𝐺(𝐴𝑟′(𝑥0), 𝐴𝐷𝑀𝑟(𝑥0))𝑑(𝑥, 𝜕Ω)d𝑥 ≤ 𝐶𝑟𝑄−1, (5.25)

where 𝐶 depends on 𝐷, 𝑛,𝑀, 𝑟0, diamΩ and ‖𝑓‖𝐵𝑀𝑂(𝜕Ω) and the radius 𝑟′ satisfies

0 < 𝑟′ < 1
𝐷𝑀

min{1, 𝑑(𝑥0,ΣΩ)∕𝐶, 𝑑(𝐴𝑟(𝑥0), 𝜕Ω)}.

Let us observe some further consequences of Theorem 1.5.4. First, we explain how it corresponds
to Garnett’s result, see [G, Theorem 3.4]. Then, in Example 5.4.4 we show how for the gauge unit
ball, a special but important case of the NTA domain in ℍ𝑛, the estimate in the theorem takes simpler
and convenient form.
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Remark 5.4.3. Theorem 1.5.4 generalizes part of the following characterization of the Carleson mea-
sures on the unit disc in the plane to the setting of NTA domains in ℍ𝑛, see Theorem 3.4 in [G]:

Let 𝜙 ∈ 𝐿1(𝕊1) and 𝑢 be a Poisson extension of 𝜙 to the unit disc in ℝ2. Let

d𝜆𝜙 ∶= |∇𝜙(𝑧)|2 ln 1
|𝑧|

d𝑥d𝑦.

Then 𝜙 ∈ 𝐵𝑀𝑂(𝕊1) if and only if 𝜆𝜙 is a Carleson measure. Moreover, the Carleson constant of 𝜆𝜙
is comparable to ‖𝜙‖2𝐵𝑀𝑂.

Recall that, up to the constant 1
2𝜋

, the function ln 1
|𝑧|

is the Green function of the planar unit disc
with a pole at 0; also that Euclidean balls are NTA domains. Moreover, the harmonic measure 𝜔 ≈ 𝜎,
where 𝜎 stands for the surface measure on 𝕊1, see Exc. 3, Ch. I in [G]. Therefore, the sufficiency part
of Remark 5.4.3 corresponds in ℝ2 to the assertion of Theorem 1.5.4.

The next consequence of Theorem 1.5.4 addresses the fact that for some NTA domains in ℍ𝑛 the
Green functions can be found explicitly and so the Carleson condition in Theorem 1.5.3 can be refined.
Example 5.4.4. Let Ω = 𝐵(0, 1) be a unit gauge ball in ℍ𝑛. By Corollary 4 in [CG] such balls are
NTA domains. Below, we show that on Ω it is possible to refine the estimate for 𝐺(𝐴𝑟′(𝑥0), 𝐴𝑟(𝑥0))and obtain the following more natural Carleson estimate.

Recall that for the unit gauge ball in ℍ𝑛 the set of characteristic points ΣΩ consists of the north and
south poles only.

Fix 𝛿 ∈ (0, 1) and let 𝑢 be as in Theorem 1.5.4, i.e. a subelliptic harmonic function on Ω with
the boundary data in BMO. Then, for all points 𝑥0 = (𝑧, 𝑡) ∈ 𝜕𝐵 ⧵ {𝑧 ∶ |𝑧| ≤ 𝛿} and all radii
0 < 𝑟 < 𝑟0 ≤ min{1, 𝑑(𝑥0,ΣΩ)

𝑀
} it holds

∫𝐵(𝑥0,𝑟)∩Ω
|∇𝐻𝑢|

2𝑑(𝑥, 𝜕Ω)d𝑥 ≤ 𝐶𝑟𝑄−1. (5.26)

Here, the constant 𝐶 is as in Corollary 5.4.2 and, additionally, depends on 𝛿.
In order to show this estimate, we appeal to the horizontal curves joining the origin with the point

𝑥0 = (𝑧, 𝑡) in the boundary 𝜕𝐵 ⧵{𝑧 = 0}, see (5.23). The proofs of Lemmas A.2 and A.4 in [AF] show
the following properties of curves 𝛾𝑥0:

𝑑(𝛾𝑥0(𝑠), 𝛾𝑥0(𝑠
′)) ≤ length(𝛾𝑥0(⋅)|[𝑠,𝑠′]) =

𝑠′ − 𝑠
|𝑧|

, 0 < 𝑠 < 𝑠′ ≤ 1,

𝑑(𝛾𝑥0(𝑠), 𝜕𝐵) ≳
1 − 𝑠
|𝑧|

, if 1 − 𝑠 ≤ |𝑧|.

These properties allow us to choose 𝑠 such that 1 − 𝑠 = 𝑟|𝑧| and obtain a point on 𝛾𝑥0 which
satisfies the definition of a corkscrew point 𝐴𝑟(𝑥0) in the interior corkscrew condition in Definition
5.1.1. Choose 𝑟′ close enough to 𝑟 (i.e. |𝑟 − 𝑟′| ≪ 1) and the corresponding 𝑠′ with 1 − 𝑠′ = 𝑟′|𝑧|.
Therefore, we get that

𝑑(𝐴𝑟(𝑥0), 𝐴𝑟′(𝑥0)) = 𝑑(𝛾𝑥0(𝑠), 𝛾𝑥0(𝑠
′)) ≤ |𝑠′ − 𝑠|

|𝑧|
≤ 1

2
𝑟′ ≲𝑀

1
2
𝑑(𝐴𝑟′(𝑥0), 𝜕𝐵),
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where 𝑀 stands for the NTA constant of a gauge ball in ℍ𝑛. In a consequence, we may estimate
function 𝐺 from below as follows:

𝐺(𝐴𝑟′(𝑥0), 𝐴𝑟(𝑥0)) ≳
1

𝑑(𝐴𝑟(𝑥0), 𝐴𝑟′(𝑥0))𝑄−2
≳
(

|𝑧|
|𝑠 − 𝑠′|

)𝑄−2

≳ |𝑧|𝑄−2,

and the proof of the first inequality follows by repeating the steps of the corresponding proof of Prop-
erty (1.9) in Theorem 1.1 in [GW], see Proposition A.1 in Appendix. From this, the estimate (5.26)
follows immediately, by applying Corollary 5.4.2 upon noticing that under our assumption on 𝑥0, it
holds that |𝑧|2−𝑄 remains bounded from above by 𝛿2−𝑄.

5.4.1 Proof of Theorem 1.5.3
Before proving Theorem 1.5.3 we need to show a counterpart of the Euclidean result in Theorem 5.14
in [JK], but in ℍ𝑛. Here we present it in a weaker form, i.e. only one implication, cf. [JK].
Proposition 5.4.5. Let Ω ⊂ ℍ𝑛 be an NTA domain. Let 𝑓 ∈ 𝐿2(𝜕Ω, d𝜔𝑧) for some 𝑧 ∈ Ω and such
that ∫𝜕Ω 𝑓d𝜔

𝑧 = 0. Then a function 𝑢(𝑥) ∶= ∫𝜕Ω 𝑓 (𝑦)d𝜔
𝑥(𝑦) satisfies the following identity

∫Ω
|∇𝐻𝑢|

2𝐺(𝑥, 𝑧)d𝑥 = 1
2 ∫𝜕Ω

𝑓 (𝑦)2d𝜔𝑧(𝑦) <∞. (5.27)

Proof. The proof closely follows the corresponding one in [JK] and, therefore, we discuss only the
main steps. The key tool used in [JK] is the Riesz representation theorem for subharmonic functions
in ℝ𝑛, whose subriemannian counterpart is given by Theorem 9.4.7 in [BLU], applied to −𝑢 in the
notation of [BLU]; see also Definitions 9.4.1 and 9.3.1 in [BLU]. Namely, the following holds.

Let 𝑣 be a subharmonic function in a domain Ω ⊂ ℍ𝑛. Then ∫Ω𝐺(𝑥, 𝑧)Δ𝐻𝑢(𝑥)d𝑥 < ∞ for some
𝑧 ∈ Ω if and only if 𝑣 has a harmonic majorant. Moreover, if ℎ denotes the least harmonic majorant
of 𝑣, then it holds

𝑣(𝑥) = ℎ(𝑥) − ∫Ω
𝐺(𝑥, 𝑦)Δ𝐻𝑣(𝑦)d𝑦. (5.28)

For the proof of Proposition 5.4.5 one defines a subharmonic function 𝑣 = 𝑢2, as Δ𝐻𝑣 = 2|∇𝐻𝑢|2 ≥ 0
and applies the above representation theorem. Moreover, 𝑣(𝑧) = 𝑢2(𝑧) = 0 by assumptions of the
proposition. Since Green’s function is zero at the boundary of Ω we have, by (5.28), that ℎ ≡ 𝑓 2 on
𝜕Ω, and so ℎ(𝑧) = ∫𝜕Ω 𝑓 (𝑦)

2d𝜔𝑧(𝑦). Upon collecting these observations we obtain (5.27). Then, as
in [JK], we assume that 𝑓 ∈ 𝐿2(𝜕Ω, d𝜔𝑧) with ∫𝜕Ω 𝑓d𝜔

𝑧 = 0 and approximate 𝑓 in the 𝐿2(𝜕Ω, d𝜔𝑧)-
norm by the sequence of continuous functions. We can approximate 𝐿2-functions with continuous
functions e.g. by Proposition 3.3.49 in [HKST]. Let 𝑓𝑗 ∈ 𝐶(𝜕Ω) be such that 𝑓𝑗 converges to 𝑓 in
𝐿2 norm. Denote by 𝑢 and 𝑢𝑗 harmonic extensions of 𝑓 and 𝑓𝑗 , respectively. Then ∇𝐻𝑢𝑗 approaches
∇𝐻𝑢 uniformly on compact subsets of Ω. Hence,

∫Ω
|∇𝐻𝑢|

2
|𝐺(𝑥, 𝑧)|d𝑥 ≤ sup

𝐾
lim
𝑗→∞∫𝐾

|∇𝐻𝑢𝑗|
2
|𝐺(𝑥, 𝑧)|d𝑥 ≤ sup

𝑗

1
2 ∫𝜕Ω

𝑓𝑗(𝑦)2d𝜔𝑧(𝑦) <∞.

A limit procedure implies assertion (5.27).
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Proof of Theorem 1.5.3. Since an 𝐿2(𝜕Ω, d𝜔) function can be approximated by 𝐶(𝜕Ω) functions we
may assume that 𝑓 ∈ 𝐶(𝜕Ω). Moreover, without the loss of generality, we may also assume that
𝑓 > 0, as otherwise we split 𝑓 into a positive and negative parts and consider two cases separately.

In what follows we will employ the Green function 𝐺 of domain Ω and so, in order to avoid
problems with the pole of 𝐺, we need to bring on stage the truncated square function, i.e. the operator
𝑆𝛼𝑢(𝑥) considered with respect to truncated cones Γℎ𝛼(𝑥) ∶= Γ𝛼(𝑥) ∩ 𝐵(𝑥, ℎ), for 𝑥 ∈ 𝜕Ω for ℎ small
enough, so that the pole of 𝐺 at 𝑧 ∈ Ω does not belong to any of such truncated cones. Thus, we split
𝑆𝛼𝑢(𝑥) as follows

𝑆𝛼𝑢(𝑥)2 = ∫Γℎ𝛼 (𝑥)
+ ∫Γ𝛼(𝑥)⧵Γℎ𝛼 (𝑥)

. (5.29)
The second integral can be handled by the gradient estimates for subelliptic harmonic function 𝑢 (see
[LU, Proposition 2.1]) and by the Harnack inequality as follows:

∫Γ𝛼(𝑥)⧵Γℎ𝛼 (𝑥)
|∇𝐻𝑢(𝑦)|2𝑑(𝑦, 𝜕Ω)2−𝑄d𝑦 ≤ 𝑐(𝑛)∫Γ𝛼(𝑥)⧵Γℎ𝛼 (𝑥)

1
𝑑(𝑦, 𝜕Ω)2

(

sup
𝐵(𝑦, 14𝑑(𝑦,𝜕Ω))

|𝑢|
)2
𝑑(𝑦, 𝜕Ω)2−𝑄 d𝑦

≲𝑛,𝑀,𝐶 𝑢
2(𝑧)∫Γ𝛼(𝑥)⧵Γℎ𝛼 (𝑥)

1
𝑑(𝑦, 𝜕Ω)𝑄

d𝑦 (5.30)

≲𝑛,𝑀,𝐶 𝑢
2(𝑧)

(

ℎ
1 + 𝛼

)−𝑄

|Ω|.

The Harnack inequality (see e.g. [BLU, Corollary 5.7.3]) is used in the second estimate: we choose
big enough compact subset of Ω containing points 𝑧 and 𝑦. Since they both are enough far away from
the boundary, there exists a Harnack chain of finite length, depending on𝑀 , joining 𝑧 and 𝑦. We iterate
the Harnack estimate along that chain and obtain (5.30) with constant 𝐶 coming from the constants in
the Harnack inequality.

Therefore, since 𝑢(𝑧) = ∫𝜕Ω 𝑓 (𝑦)d𝜔
𝑧(𝑦), we get the estimate

∫Γ𝛼(𝑥)⧵Γℎ𝛼 (𝑥)
|∇𝐻𝑢(𝑦)|2𝑑(𝑦, 𝜕Ω)2−𝑄d𝑦 ≲𝑛,𝑀,𝐶

(

ℎ
1 + 𝛼

)−𝑄

|Ω|‖𝑓‖2𝐿2(𝜔𝑧).

In order to get the 𝐿2(𝜕Ω)-norm estimate we integrate both sides of the above inequality and use the
fact that harmonic measure is a probability measure to obtain

∫𝜕Ω ∫Γ𝛼(𝑥)⧵Γℎ𝛼 (𝑥)
|∇𝐻𝑢(𝑦)|2𝑑(𝑦, 𝜕Ω)2−𝑄d𝑦d𝜔𝑧 ≲𝑛,𝑀,𝐶

(

ℎ
1 + 𝛼

)−𝑄

|Ω|‖𝑓‖2𝐿2(𝜔𝑧)

≲𝑛,𝑀,𝐶,𝛼,diamΩ,ℎ ‖𝑓‖𝐿2(𝜔𝑧). (5.31)
We now proceed to estimate the first integral in (5.29). For any point 𝑦 ∈ Ω let us denote by 𝑞𝑦a point at which the distance 𝑑(𝑦, 𝜕Ω) is attained. Next, observe that a point 𝑦 ∈ Γ𝛼(𝑥) if and only if

𝑥 ∈ 𝑆(𝑦) the shadow of point 𝑦, defined as 𝑆(𝑦) ∶= 𝜕Ω ∩ 𝐵(𝑦, (1 + 𝛼)𝑑(𝑦, 𝜕Ω)). For any 𝑧 ∈ 𝑆(𝑦) it
holds that

𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) ≤ 2(1 + 𝛼)𝑑(𝑦, 𝜕Ω).

Therefore, {𝑥 ∈ 𝜕Ω ∶ 𝑦 ∈ Γℎ𝛼(𝑥)
}

⊂ Δ(𝑞𝑦, 2(1 + 𝛼)𝑑(𝑦, 𝜕Ω)), see (5.1) for a definition of Δ(𝑞𝑦, 2(1 +
𝛼)𝑑(𝑦, 𝜕Ω)).
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We set Ωℎ ∶= {𝑦 ∈ Ω ∶ 𝑑(𝑦, 𝜕Ω) < ℎ}. An application of the Fubini theorem together with the
Dahlberg-type estimate, see Theorem 5.1.4, give us that

∫𝜕Ω ∫Γℎ𝛼 (𝑥)
|∇𝐻𝑢(𝑦)|2𝑑(𝑦, 𝜕Ω)2−𝑄d𝑦d𝜔𝑧(𝑥)

= ∫Ωℎ
|∇𝐻𝑢(𝑦)|2𝑑(𝑦, 𝜕Ω)2−𝑄𝜔𝑧

({

𝑥 ∈ 𝜕Ω ∶ 𝑦 ∈ Γℎ𝛼(𝑥)
})

d𝑦

≤ ∫Ωℎ
|∇𝐻𝑢(𝑦)|2𝑑(𝑦, 𝜕Ω)2−𝑄𝜔𝑧

(

Δ(𝑞𝑦, 2(1 + 𝛼)𝑑(𝑦, 𝜕Ω))
)

d𝑦 (5.32)

≤ ∫Ωℎ
|∇𝐻𝑢(𝑦)|2𝐺(𝑦, 𝑧) d𝑦. (5.33)

The last inequality follows by standard reasoning which, however, deserves some details.
Let 𝑧 ∈ Ω ⧵ 𝐵(𝑞𝑦, 2𝑀(1 + 𝛼)𝑑(𝑦, 𝜕Ω)). Then by Theorem 5.1.4 we have (see also Section 5 in

[CGN] to see why constant 𝑎 in Theorem 5.1.4 can be taken equal to 𝑀):

𝜔𝑧
(

Δ(𝑞𝑦, 2(1 + 𝛼)𝑑(𝑦, 𝜕Ω))
)

≈
|𝐵(𝑞𝑦, 2(1 + 𝛼)𝑑(𝑦, 𝜕Ω))|

(2(1 + 𝛼)𝑑(𝑦, 𝜕Ω))2
𝐺(𝑧, 𝐴2(1+𝛼)𝑑(𝑦,𝜕Ω)(𝑞𝑦))

≈𝛼 𝑑(𝑦, 𝜕Ω)𝑄−2𝐺(𝑧, 𝐴2(1+𝛼)𝑑(𝑦,𝜕Ω)(𝑞𝑦)). (5.34)
By taking ℎ small enough we ensure that 2(1 + 𝛼)𝑑(𝑦, 𝜕Ω) < 𝑟0 so that we can use Theorem 5.1.4.
Notice that since 𝐴2(1+𝛼)𝑑(𝑦,𝜕Ω)(𝑞𝑦) is a corkscrew point we know by ithe interior corkscrew condition,
see Definition 5.1.1 (1), that

𝑑
(

𝐴2(1+𝛼)𝑑(𝑦,𝜕Ω)(𝑞𝑦), 𝜕Ω
)

≥ 2(1 + 𝛼)𝑑(𝑦, 𝜕Ω)
𝑀

.

Moreover, 𝑑(𝐴2(1+𝛼)𝑑(𝑦,𝜕Ω)(𝑞𝑦), 𝑦) ≤ 4(1 + 𝛼)𝑑(𝑦, 𝜕Ω), as both 𝑦 and 𝐴2(1+𝛼)𝑑(𝑦,𝜕Ω)(𝑞𝑦) lie in a ball
𝐵(𝑞𝑦, 2(1 + 𝛼)𝑑(𝑦, 𝜕Ω)).

Set 𝜀 ∶= min{𝑑(𝑦, 𝜕Ω), 2(1+𝛼)𝑑(𝑦,𝜕Ω)
𝑀

} ≈ 𝑑(𝑦, 𝜕Ω). Then 𝑑(𝐴2(1+𝛼)𝑑(𝑦,𝜕Ω)(𝑞𝑦), 𝑦) ≤ 𝐶𝜀 with constant
𝐶 depending only on 𝛼 and 𝑀 and independent of 𝑦. Therefore, there is a Harnack chain joining 𝑦
and 𝐴2(1+𝛼)𝑑(𝑦,𝜕Ω)(𝑞𝑦) with length independent of 𝑦 and hence by the Harnack inequality

𝐺(𝑧, 𝐴2(1+𝛼)𝑑(𝑦,𝜕Ω)(𝑞𝑦)) ≈𝛼,𝑀,𝐶 𝐺(𝑧, 𝑦). (5.35)
Thus, by combining (5.34) and (5.35) and applying them at (5.32), we obtain (5.33), as desired.

Finally, we apply (5.27) to arrive at

∫𝜕Ω ∫Γℎ𝛼 (𝑥)
|∇𝐻𝑢(𝑦)|2𝑑(𝑦, 𝜕Ω)2−𝑄d𝑦d𝜔𝑧(𝑥) ≤

1
2 ∫𝜕Ω

|𝑓 (𝑦) − 𝑢(𝑧)|2d𝜔𝑧(𝑦) ≤ 2∫𝜕Ω
|𝑓 (𝑦)|2d𝜔𝑧(𝑦).

Adding up together this estimate and (5.31) we obtain the assertion of the theorem.

5.4.2 Proof of Theorem 1.5.4
The structure of the proof follows the corresponding one for the proof of Theorem 9.6 in [JK]. How-
ever, the subriemannian setting of ℍ𝑛 requires applying different tools.
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CLAIM 1. Let 𝑥0 ∈ 𝜕Ω, 𝑟 < 𝑟0 and 𝐴𝑟(𝑥0) ∈ Ω be an internal corkscrew point as in Definition
5.1.1 such that it satisfies 𝑟

𝑀
< 𝑑(𝐴𝑟(𝑥0), 𝑥0) ≤ 𝑟. Then it holds that

𝑣(𝐴𝑟(𝑥0)) ∶= ∫𝜕Ω⧵Δ1

|𝑓 (𝑥) − 𝑓Δ1
|d𝜔𝐴𝑟(𝑥0)(𝑥) ≤ 𝐶‖𝑓‖𝐵𝑀𝑂(𝜕Ω), (5.36)

where 𝐶 is independent of 𝑟 and 𝑓 and Δ1 ∶= 𝐵(𝑥0, 2𝑟) ∩ 𝜕Ω the surface ball.
In order to the prove the claim, we repeat the reasoning from the proof of Lemma 9.7 in [JK], see

also the proof of Lemma on pg. 35 in [FB].
Fix 𝑦 ∈ Ω and consider the harmonic measure 𝜔𝑦. Define Δ𝑗 ∶= 𝐵(𝑥0, 2𝑗𝑟) ∩ 𝜕Ω and the related

ring domains 𝑅𝑗 ∶= Δ𝑗 ⧵ Δ𝑗−1 for 𝑗 = 1, 2,…. Recall the notation 𝑓Δ𝑗 ∶= ∫Δ𝑗 𝑓d𝜔
𝑦.

Recall that similarly to the Euclidean case, also in the setting of Heisenberg groups one can define
a kernel function associated with the boundary point 𝑃0, 𝐾 ∶ Ω × 𝜕Ω → ℝ+ ∪ {∞}. Function 𝐾 is
normalized at 𝑦0 ∈ Ω, i.e. 𝐾(𝑦0, 𝑃0) = 1, and moreover, 𝐾(⋅, 𝑃0) is a solution to Δ𝐻𝑢 = 0 in Ω and
𝐾(⋅, 𝑃0) vanishes continuously on 𝜕Ω ⧵ {𝑃0}. We refer to Definition 2 in [CG] for details.

One of the key properties of such defined kernel function is that given a point 𝑦 ∈ Ω, there is
always a unique kernel function at 𝑃 ∈ 𝜕Ω, normalized at 𝑦, see Theorem 11 in [CG].

Therefore, we have that for a kernel 𝐾(𝐴𝑟(𝑥0), 𝑥) it holds

𝑣(𝐴𝑟(𝑥0)) ≤
∑

𝑗≥2
∫𝑅𝑗

|𝑓 (𝑥) − 𝑓Δ𝑗 |d𝜔
𝐴𝑟(𝑥0)(𝑥) +

∑

𝑗≥2
∫𝑅𝑗

|𝑓Δ1
− 𝑓Δ𝑗 |d𝜔

𝐴𝑟(𝑥0)(𝑥)

≤
∑

𝑗≥2
∫𝑅𝑗

|𝑓 (𝑥) − 𝑓Δ𝑗 |𝐾(𝐴𝑟(𝑥0), 𝑥)d𝜔𝑦(𝑥) +
∑

𝑗≥2
|𝑓Δ1

− 𝑓Δ𝑗 |∫𝑅𝑗
𝐾(𝐴𝑟(𝑥0), 𝑥)d𝜔𝑦(𝑥)

≤
∑

𝑗≥2

𝐶2−𝜅𝑗
𝜔𝑦(Δ𝑗) ∫Δ𝑗

|𝑓 (𝑥) − 𝑓Δ𝑗 |d𝜔
𝑦(𝑥) +

(

sup
𝑘≥1

|𝑓Δ𝑘 − 𝑓Δ𝑘−1|
)

∑

𝑗≥2
𝑗𝐶2−𝜅𝑗

𝜔𝑦(𝑅𝑗)
𝜔𝑦(Δ𝑗)

,

where in the last step we appeal also to the growth estimate for kernel functions, provided in Proposition
6 in [CG]. Namely, for 𝑥 ∈ 𝜕Ω, 0 < 𝑟 < 𝑟0, there exist constants 𝐶,𝐶𝑗 , 𝜅 > 0, with 𝐶𝑗 ≤ 𝐶2𝜅𝑗 , such
that

sup{𝐾(𝐴𝑟(𝑥0), 𝑥) ∶ 𝑥 ∈ 𝑅𝑗} ≤
𝐶𝑗

𝜔𝑦(Δ𝑗)
.

Finally, the standard argument involving mean value integrals gives us that
|

|

|

𝑓Δ𝑘 − 𝑓Δ𝑘−1
|

|

|

=
𝜔𝑦(Δ𝑘)
𝜔𝑦(Δ𝑘−1)

(

1
𝜔𝑦(Δ𝑘) ∫Δ𝑘

|𝑓 (𝑥) − 𝑓Δ𝑘|d𝜔
𝑦(𝑥)

)

≤ 𝐶
(

1
𝜔𝑦(Δ𝑘) ∫Δ𝑘

|𝑓 (𝑥) − 𝑓Δ𝑘|d𝜔
𝑦(𝑥)

)

.

Here we also appeal to the doubling property of 𝜔𝑦, see Theorem 2 in [CG]. We remark that Theorem
2 in [CG] is proven for 𝑘 and 𝑟 small enough so that radii 2𝑘𝑟 < 𝑟0. In order to obtain the doubling
property for large 𝑘we use the Harnack inequality and Corollary 3 in [CG], cf. the discussion following
Lemma 4.9 in [JK] and the proof of Lemma 4.2 therein.

Namely, there exists 𝑗 ∈ ℕ such that 2−𝑗−1𝑟 ≤ 𝑟0. The Harnack inequality allows us to change
the reference point of the harmonic measure. Therefore, using it we may change the corkscrew point
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𝐴𝑟(Δ(𝑥0, 𝑠)) for 𝑠 < 𝑟0 to any point 𝑦 ∈ Ω. We change it because in Corollary 3 in [CG] a reference
point is a corkscrew point. Hence, the Harnack inequality and the mentioned Corollary 3 give:

𝜔𝑦
(

Δ(𝑥0, 2𝑟)
)

𝜔𝑦
(

Δ(𝑥0, 𝑟)
) ≤

𝜔𝑦
(

Δ(𝑥0, 2𝑟)
)

𝜔𝑦
(

Δ(𝑥0, 2−𝑗𝑟)
) ≤ 1

𝐶
.

Hence, also for big 𝑟, the harmonic measure is doubling.
By applying the definition of the seminorm in 𝐵𝑀𝑂(𝜕Ω), cf. Definition 5.1.12, we obtain

𝑣(𝐴𝑟(𝑥0)) ≤ ‖𝑓‖𝐵𝑀𝑂(𝜕Ω)

(

𝐶 + 𝐶
∑

𝑗≥2
𝑗2−𝜅𝑗

)

≤ 𝐶‖𝑓‖𝐵𝑀𝑂(𝜕Ω)

and Claim 1 is proven.
CLAIM 2. Let 𝑥0 ∈ 𝜕Ω and 𝐴𝐷𝑀𝑟(𝑥0) ∈ Ω be an internal corkscrew point as in Definition 5.1.1

(1), with constant 𝐷 > 1. Denote by Δ(𝑥0, 𝑟) ∶= 𝐵(𝑥0, 𝑟) ∩ 𝜕Ω the surface ball. Then it holds that

𝑟2(𝑄−2)

(𝜔𝐴𝐷𝑀𝑟(𝑥0)(Δ(𝑥0, 𝑟)))3 ∫𝐵(𝑥0,𝑟)∩Ω
𝐺3(𝑥,𝐴𝐷𝑀𝑟(𝑥0))

𝑑(𝑥, 𝜕Ω)2
d𝑥 ≤ 𝐶, (5.37)

where 𝐶 depends only on 𝑛, the geometry of ℍ𝑛 and 𝑟0 and 𝑀 (the NTA parameters of Ω).
We again follow the corresponding proof of Lemma 9.8 in [JK], although observe that instead of

the dyadic Whitney cubes we need a different family of sets covering the set 𝐵(𝑥0, 𝑟) ∩ Ω. Such a
family can be constructed by the direct modification of the proof of Proposition 4.1.15 in [HKST] as
follows:

There exists a countable family of balls in 𝐵(𝑥0, 𝑟) ∩ Ω denoted by

 ∶=
{

𝐵(𝑥𝑖,
1
8
𝑑(𝑥𝑖, 𝜕Ω))

}

, 𝑥𝑖 ∈ Ω,

such that each ball 𝐵(𝑥𝑖) has a non-empty intersection with set 𝐵(𝑥0, 𝑟) ∩ Ω and, moreover,
∑

𝑖 𝜒2𝐵(𝑥𝑖) ≤ 2𝑁5, where 𝑁 stands for the doubling constant in ℍ𝑛.
We can find such a family because Heisenberg group ℍ𝑛 with a standard measure is a doubling

space. Then the existence of family  follows from the 5-covering lemma.
Let us define the following subfamily of  :

𝑘 ∶=
{

𝐵(𝑥𝑖) ∈  ∶ 2−𝑘 ≤ 1
8
𝑑(𝑥𝑖, 𝜕Ω) ≤ 2−𝑘+1

}

, 𝑘 = −⌈log2 𝑟0⌉ − 1,… , 0, 1, 2,… .

Notice that we do not need to take exponents bigger than ⌈log2 𝑟0⌉ + 1 because any 𝑥𝑖 has to satisfy

𝑑(𝑥𝑖, 𝜕Ω) ≤ 𝑑(𝑥𝑖, 𝑥0) ≤
8
7
𝑟 ≤ 8

7
𝑟0.

In order to prove the second inequality above let us set 𝑑(𝑥𝑖, 𝑥0) = (1 + 𝑡)𝑟, for some 𝑡 ∈ ℝ and notice
that 𝑑(𝑥𝑖, 𝑥0) ≤ 𝑟 + 1

8
𝑑(𝑥𝑖, 𝜕Ω).Thus, we have

(1 + 𝑡)𝑟 = 𝑑(𝑥𝑖, 𝑥0) ≤ 𝑟 + 1
8
𝑑(𝑥𝑖, 𝜕Ω) ≤ 𝑟 + 1

8
𝑑(𝑥𝑖, 𝑥0) = 𝑟 + 1

8
(1 + 𝑡)𝑟,
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and so 𝑡 ≤ 1
7
.

With the above introduced notation we may reduce the estimate in (5.37) to the estimate over the
balls in  :

∫𝐵(𝑥0,𝑟)∩Ω
𝐺3(𝑥,𝐴𝐷𝑀𝑟(𝑥0))

𝑑(𝑥, 𝜕Ω)2
d𝑥 ≤ 2𝑁5

∑

𝑘

∑

𝐵(𝑥𝑖)∈𝑘
∫𝐵(𝑥𝑖)

𝐺3(𝑥,𝐴𝐷𝑀𝑟(𝑥0))
𝑑(𝑥, 𝜕Ω)2

d𝑥. (5.38)

For a fixed 𝑘 and given ball 𝐵(𝑥𝑖) ∈ 𝑘 let 𝑥∗𝑖 ∈ 𝜕Ω denote a point such that 𝑑(𝑥𝑖, 𝑥∗𝑖 ) = 𝑑(𝑥𝑖, 𝜕Ω).
That such a point exists is a consequence of compactness of Ω, as Ω is a bounded domain.

Set
Δ𝑖 ∶= Δ(𝑥∗𝑖 , 2

−𝑘+1) = 𝐵(𝑥∗𝑖 , 2
−𝑘+1) ∩ 𝜕Ω a surface ball.

Notice that any point 𝐴𝐷𝑀𝑟(𝑥0) by the Definition 5.1.1 lies outside the set 𝐵(𝑥0, 𝑟) ∩ Ω and hence
the function 𝐺(⋅, 𝐴𝐷𝑀𝑟(𝑥0)) is harmonic in 𝐵(𝑥0, 𝑟) ∩ Ω. By the Harnack inequality for a harmonic
function𝐺(⋅, 𝐴𝐷𝑀𝑟(𝑥0)) applied on a ball𝐵(𝑥𝑖) we have that𝐺(𝑥,𝐴𝐷𝑀𝑟(𝑥0)) ≈𝐶 𝐺(𝑥𝑖, 𝐴𝐷𝑀𝑟(𝑥0)) and,
thus,

∫𝐵(𝑥𝑖)∈𝑘

𝐺3(𝑥,𝐴𝐷𝑀𝑟(𝑥0))
𝑑(𝑥, 𝜕Ω)2

d𝑥 ≈ 𝐺3(𝑥𝑖, 𝐴𝐷𝑀𝑟(𝑥0))22𝑘
(1
8
𝑑(𝑥𝑖, 𝜕Ω)

)𝑄
≈ 𝐺3(𝑥𝑖, 𝐴𝐷𝑀𝑟(𝑥0))2𝑘(2−𝑄).

(5.39)
Indeed, if 𝑥 ∈ 𝐵(𝑥𝑖) ∈ 𝑘, then 𝑑(𝑥𝑖, 𝜕Ω) ≲ 𝑑(𝑥, 𝜕Ω) ≤ 𝑑(𝑥𝑖, 𝜕Ω) + 𝑑(𝑥, 𝑥𝑖) ≤ 16 ⋅ 2−𝑘+1 and so
𝑑(𝑥, 𝜕Ω) ≈ 2−𝑘.

Next we show that we may consider points 𝑥𝑖 as the corkscrew points in Definition 5.1.1, so that
𝑥𝑖 ∶= 𝐴2−𝑘+4(𝑥∗𝑖 ). Since 𝐵(𝑥𝑖) ∈ 𝑘 we have

𝑑(𝑥𝑖, 𝑥∗𝑖 ) = 𝑑(𝑥𝑖, 𝜕Ω) ≤ 2−𝑘+4.

On the other hand
𝑑(𝑥𝑖, 𝑥∗𝑖 ) = 𝑑(𝑥𝑖, 𝜕Ω) ≥

2−𝑘+4
2

≥ 2−𝑘+4
𝑀

for any 𝑀 ≥ 2. However, in the definition of NTA domains we only have existence of some constant
𝑀 . If it happens that 𝑀 < 2, we can always make it larger without losing anything in the said
definition. Hence, without loss of generality, we can assume 𝑀 ≥ 2. This shows that indeed 𝑥𝑖 =
𝐴2−𝑘+4(𝑥∗𝑖 ). Now let us choose a point 𝑦0 ∈ Ω⧵𝐵(𝑥∗𝑖 , 𝑎2

−𝑘+4). In fact, one can take 𝑎 =𝑀 , see Section
5 Theorem 5.4 [CGN] and, moreover, assume that 𝑦0 ∶= 𝐴𝐶𝑟(𝑥∗𝑖 ) with 𝐶 = 𝐶(𝑀).

We apply Theorem 5.1.4 to obtain the following estimate
𝐺(𝑥𝑖, 𝐴𝐶𝑟(𝑥

∗
𝑖 )) = 𝐺(𝐴𝐶𝑟(𝑥

∗
𝑖 ), 𝐴2−𝑘+4(𝑥∗𝑖 ))

≈ 22(−𝑘+4)

|𝐵(𝐴𝐶𝑟(𝑥∗𝑖 ), 2−𝑘+4)|
𝜔𝐴𝐶𝑟(𝑥∗𝑖 )(Δ(𝑥∗𝑖 , 2

−𝑘+4))

≲ 2(−𝑘+4)(2−𝑄)𝜔𝐴𝐶𝑟(𝑥∗𝑖 )(Δ𝑖), (5.40)
where in the last inequality we use the doubling property of the harmonic measure. Furthermore,
observe that

𝐺(𝑥𝑖, 𝐴𝐶𝑟(𝑥
∗
𝑖 )) = 𝐺(𝐴𝐶𝑟(𝑥

∗
𝑖 ), 𝑥𝑖) ≈𝐶,𝑀,𝐷 𝐺(𝐴𝐷𝑀𝑟(𝑥0), 𝑥𝑖) = 𝐺(𝑥𝑖, 𝐴𝐷𝑀𝑟(𝑥0)), (5.41)
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and the change of point 𝐴𝐶𝑟(𝑥∗𝑖 ) to 𝐴𝐷𝑀𝑟(𝑥0) in the middle estimate requires explanation: Indeed,
choose 𝐴𝐶𝑟(𝑥∗𝑖 ) ∈ Ω ⧵ 𝐵(𝑥∗𝑖 , 𝑎2

−𝑘+4) and observe that, by the above discussion, we can consider the
same 𝑦0 = 𝐴𝐶𝑟(𝑥∗𝑖 ) for any point 𝑥∗𝑖 . We also recall that 𝑑(𝑦0, 𝜕Ω) ≥ 𝑟

𝑀
. Moreover, we can assume that

𝑑(𝐴𝐷𝑀𝑟(𝑥0), 𝐴𝐶𝑟(𝑥∗𝑖 )) ≤ 𝐶𝑟, where 𝐶 = 𝐶(𝑀,𝐷). Therefore, points 𝐴𝐷𝑀𝑟(𝑥0) and 𝐴𝐶𝑟(𝑥∗𝑖 ) can be
joined by a Harnack chain of length depending only on 𝐶(𝑀,𝐷). This observation together with the
Harnack inequality allow us to replace in (5.41) point 𝐴𝐶𝑟(𝑥∗𝑖 ) with 𝐴𝐷𝑀𝑟(𝑥0) by the price of possibly
increasing constants.

Upon applying estimates (5.40) and (5.41) in (5.39) we obtain the following:

∫𝐵(𝑥𝑖)∈𝑘

𝐺3(𝑥,𝐴𝐷𝑀𝑟(𝑥0))
𝑑(𝑥, 𝜕Ω)2

d𝑥 ≈ 𝐺2(𝑥𝑖, 𝐴𝐷𝑀𝑟(𝑥0))𝜔𝐴𝐶𝑟(𝑥
∗
𝑖 )(Δ𝑖). (5.42)

In order to estimate the expression on the right-hand side, we appeal to the Carleson-type estimate
Theorem 5.1.5. Recall that 𝐺 ≥ 0 in Ω and 𝐺(⋅, 𝐴𝐷𝑀𝑟(𝑥0)) ≡ 0 on 𝜕Ω, also that 𝐺(⋅, 𝐴𝐷𝑀𝑟(𝑥0)) is
subelliptic harmonic in Ω ⧵ {𝐴𝐷𝑀𝑟(𝑥0)}. Moreover, notice that Δ(𝑥0, 2𝑟) ⊂ Δ(𝑥∗𝑖 , 𝐶𝑟). Indeed, let
𝑦 ∈ Δ(𝑥0, 2𝑟). Then,

𝑑(𝑦, 𝑥∗𝑖 ) ≤ 𝑑(𝑦, 𝑥0) + 𝑑(𝑥0, 𝑥𝑖) + 𝑑(𝑥𝑖, 𝑥∗𝑖 ) ≤ 𝑟 + (𝑟 + 𝑟2−𝑘+1) + 2−𝑘+1 ≲ 𝐶𝑟.

The last step requires that 2−𝑘 ≤ 𝐶𝑟 and under our assumptions this restriction is sufficient. Since,
otherwise suppose that 2−𝑘 ≥ 𝑟. Then for any 𝑥𝑖 it holds that 𝑑(𝑥𝑖, 𝜕Ω) ≥ 8 ⋅ 2−𝑘 ≥ 8𝑟. On the other
hand,

𝑑(𝑥𝑖, 𝜕Ω) ≤ 𝑑(𝑥𝑖, 𝑥0) ≤ 𝑟 + 2𝑟𝑖 ≤ 𝑟 + 1
4
𝑑(𝑥𝑖, 𝜕Ω).

Hence 𝑑(𝑥𝑖, 𝜕Ω) ≤ 4
3
𝑟, giving the contradiction.

We apply Theorem 5.1.5 on 𝐵(𝑥∗𝑖 , 𝐶𝑟) to get that, for an exponent 𝛽 > 0 as in Theorem 5.1.5, the
following inequality holds

𝐺2(𝑥𝑖, 𝐴𝐷𝑀𝑟(𝑥0)) ≤ 𝐶(𝑀, 𝑟0)
(𝑑(𝑥𝑖, 𝑥∗𝑖 )

𝐶𝑟

)2𝛽
(

sup
𝑥∈𝜕𝐵(𝑥∗𝑖 ,𝐶𝑟)∩Ω

𝐺(𝑥,𝐴𝐷𝑀𝑟(𝑥0))

)2

. (5.43)

Denote by 𝑧 ∈ 𝜕𝐵(𝑥∗𝑖 , 𝐶𝑟) ∩ Ω a point, where the function 𝐺(⋅, 𝐴𝐷𝑀𝑟(𝑥0)) attains its maximum.
(Notice that this maximum cannot be obtained at a point in 𝐵(𝑥∗𝑖 , 𝐶𝑟) ∩ 𝜕Ω, as then it would be zero,
as𝐺(⋅, 𝐴𝐷𝑀𝑟(𝑥0)) ≡ 0 on 𝜕Ω and by the maximum principle𝐺 would be zero on whole 𝐵(𝑥∗𝑖 , 𝐶𝑟)∩Ω.
Therefore, the Carleson estimate in Theorem 5.1.7 gives us that

𝐺(𝑧, 𝐴𝐷𝑀𝑟(𝑥0)) ≲𝑀,𝑟0 𝐶𝐺(𝐴𝐶𝑟(𝑥∗𝑖 ), 𝐴𝐷𝑀𝑟(𝑥0))

for all 𝑧 ∈ Ω ∩ 𝐵(𝑥∗𝑖 , 𝐶𝑟).Here, in order to apply Theorem 5.1.7, we need to slightly increase constant 𝐶 on the right-hand
side of the estimate, so that point 𝑧 belongs to 𝐵(𝑥∗𝑖 , 𝐶𝑟) ∩ Ω. Moreover, in the case 𝐴𝐷𝑀𝑟(𝑥0) ∈
𝐵(𝑥∗𝑖 , 2𝐶𝑟) ∩ Ω one needs additional chaining argument, by the definition of NTA domains, to join
𝐴𝐷𝑀𝑟(𝑥0) with the point 𝐴𝐶𝑟(𝑥0) ∉ 𝐵(𝑥∗𝑖 , 2𝐶𝑟) ∩ Ω. This however, can be done by the price of
increasing again constant 𝐶 . From this discussion and (5.43) we infer, by the Dahlberg-type estimate
in Theorem 5.1.4, that

𝐺2(𝑥𝑖, 𝐴𝐷𝑀𝑟(𝑥0)) ≲𝐶

(

8 ⋅ 2−𝑘+1
𝐶𝑟

)2𝛽

𝑟2(2−𝑄)
(

𝜔𝐴𝐶𝑟(𝑥∗𝑖 )(Δ(𝑥0, 𝑟))
)2
.
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Then we apply the last estimate in (5.42) and in (5.38) to arrive at the following inequality

∫𝐵(𝑥0,𝑟)∩Ω
𝐺3(𝑥,𝐴𝐷𝑀𝑟(𝑥0))

𝑑(𝑥, 𝜕Ω)2
d𝑥 ≲𝐶 2𝑁5

∑

𝑘

(

2−𝑘
𝑟

)2𝛽

𝑟2(2−𝑄)
(

𝜔𝐴𝐶𝑟(𝑥∗𝑖 )(Δ(𝑥0, 𝑟))
)2
𝜔𝐴𝐶𝑟(𝑥∗𝑖 )(Δ𝑖).

Finally, recall that by the discussion following (5.41) we may join points 𝐴𝐶𝑟(𝑥∗𝑖 ) and 𝐴𝐷𝑀𝑟(𝑥0) by the
Harnack chain whose length depends only on 𝑀 and 𝐷. By applying this observation, we conclude
that

𝜔𝐴𝐷𝑀𝑟(𝑥0)(Δ(𝑥0, 𝑟)) ≈𝐶,𝑀,𝐷 𝜔
𝐴𝐶𝑟(𝑥∗𝑖 )(Δ(𝑥0, 𝑟)).

Hence, (5.38) becomes

∫𝐵(𝑥0,𝑟)∩Ω
𝐺3(𝑥,𝐴𝐷𝑀𝑟(𝑥0))

𝑑(𝑥, 𝜕Ω)2
d𝑥 ≤ 2𝑁5

∑

𝑘

(

2−𝑘
𝑟

)2𝛽

𝑟2(2−𝑄)(𝜔𝐴𝐷𝑀𝑟(𝑥0)(Δ(𝑥0, 𝑟)))3

and thus the proof of Claim 2 is completed.
CONTINUATION OF THE PROOF OF THEOREM 1.5.4.
We are now in a position to complete the proof of Theorem 1.5.4. Suppose that 𝑓 ∈ 𝐵𝑀𝑂(𝜕Ω, d𝜔)

and 𝑢 is the harmonic function in Ω such that 𝑢(𝑥) = ∫𝜕Ω 𝑓 (𝑦)d𝜔
𝑥(𝑦).

Let 𝐵(𝑥0, 𝑟) be a ball centered at 𝑥0 ∈ 𝜕Ω and a radius 𝑟 < min{1, 𝑟0} and denote by Δ1 = 2Δ ∶=
𝐵(𝑥0, 2𝑟) ∩ 𝜕Ω. We modify the boundary data as follows:

𝑓1 ∶= (𝑓 − 𝑓Δ1
)𝜒𝑐Δ1

, 𝑓2 ∶= (𝑓 − 𝑓Δ1
)𝜒𝜕Ω⧵𝑐Δ1

and, as in [JK] we let 𝑢1 and 𝑢2 be their harmonic extensions, respectively, i.e.

𝑢𝑖(𝑥) = ∫𝜕Ω
𝑓𝑖(𝑦)d𝜔𝑥(𝑦), 𝑖 = 1, 2.

By direct application of Proposition 5.4.5 to 𝑓1 and 𝑢1 we obtain that
1

𝜔𝐴𝐷𝑀𝑟(𝑥0)(Δ) ∫𝐵(𝑥0,𝑟)∩Ω
|∇𝐻𝑢1|

2𝐺(𝑥,𝐴𝐷𝑀𝑟(𝑥0))d𝑥

≤ 1
𝜔𝐴𝐷𝑀𝑟(𝑥0)(Δ) ∫Ω

|∇𝐻𝑢1|
2𝐺(𝑥,𝐴𝐷𝑀𝑟(𝑥0))d𝑥 (5.44)

= 1
2

1
𝜔𝐴𝐷𝑀𝑟(𝑥0)(Δ) ∫𝜕Ω

|(𝑓 (𝑦) − 𝑓Δ1
)𝜒𝑐Δ1

|

2d𝜔𝑧(𝑦) < ‖𝑓‖2𝐵𝑀𝑂(𝜕Ω,d𝜔), (5.45)

where in the last inequality we use the John–Nirenberg theorem to get the equivalent definition of
the BMO spaces in terms of the 𝐿2(𝜕Ω, d𝜔) functions with 𝐿2-integrable means, well-known in the
Euclidean setting. Indeed, such an equivalent definition holds, as by Theorem 2 in [CG], the harmonic
measure 𝜔𝑧 is doubling in Ω for 𝑧 enough away from the boundary of Ω and we may repeat the
appropriate part of the standard reasoning of Proposition 3.19 [BB], as long as the John-Nirenberg
lemma holds for the surface balls Δ. However, this follows by direct application of Theorem 5.2 in
[AKBY]:
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Let Δ = 𝐵(𝑥0, 𝑟) ∩ 𝜕Ω be a surface ball and 𝑓 ∈ 𝐵𝑀𝑂(𝜕Ω, d𝜔𝑧). Then for all 𝜆 > 0

𝜔𝑧({𝑧 ∈ Δ ∶ |𝑓 (𝑥) − 𝑓Δ| > 𝜆}) ≤ 2𝜔𝑧(Δ)𝑒
− 𝑐𝜆

‖𝑓‖𝐵𝑀𝑂(𝜕Ω,d𝜔𝑧) ,

where 𝑐 depends only on the doubling constant of 𝜔𝑧.
The proof of John-Nirenberg lemma in [AKBY] requires only that the measure is doubling. By

applying this result to the metric space (𝜕Ω, 𝑑|𝜕Ω, d𝜔𝑧), we conclude that indeed (5.45) holds.
By the gradient estimate for harmonic functions (see Proposition 2.2 in [LU]) and by the Harnack

inequality on 𝐵-balls, we have that for any 𝑥 ∈ Ω

|∇𝐻𝑢2(𝑥)| ≤
4𝑐(𝑛)

𝑑(𝑥, 𝜕Ω)
sup

𝐵(𝑥, 14𝑑(𝑥,𝜕Ω))
|𝑢2| ≤

𝐶
𝑑(𝑥, 𝜕Ω) ∫𝜕Ω⧵𝑐Δ1

|𝑓 − 𝑓Δ1
|d𝜔𝑥.

We denote by 𝑣(𝑥) the last integral on the right-hand side, i.e. 𝑣(𝑥) = ∫𝜕Ω⧵𝑐Δ1
|𝑓 − 𝑓Δ1

|d𝜔𝑥, and
note that 𝑣 is a positive part of 𝑢2. Next, we apply the (local) boundary Harnack inequality to 𝑢2 and
𝐺(⋅, 𝐴𝐷𝑀𝑟(𝑥0)), see Theorem 5.1.6, followed by the use of (5.36) in Claim 1 and the Dahlberg-type
estimate in Theorem 5.1.4, to arrive at the following estimate holding for 𝑥 ∈ 𝐵(𝑥0, 𝑟) ∩ Ω

𝑣(𝑥) ≲𝑛,𝑀,𝑟0

𝑣(𝐴2𝑀𝑟(𝑥0))
𝐺(𝐴2𝑀𝑟(𝑥0), 𝐴𝐷𝑀𝑟(𝑥0))

𝐺(𝑥,𝐴𝐷𝑀𝑟(𝑥0))

≲𝑛,𝑀,𝑟0 ‖𝑓‖𝐵𝑀𝑂(𝜕Ω,d𝜔)
𝑟𝑄−2

𝜔𝐴2𝑀𝑟(𝑥0)(Δ(𝑥0, 𝐷𝑀𝑟))
𝐺(𝑥,𝐴𝐷𝑀𝑟(𝑥0))

≲𝑛,𝑀,𝑟0 ‖𝑓‖𝐵𝑀𝑂(𝜕Ω,d𝜔)
𝑟𝑄−2

𝜔𝐴2𝑀𝑟(𝑥0)(Δ(𝑥0, 𝑟))
𝐺(𝑥,𝐴𝐷𝑀𝑟(𝑥0)).

Since Ω in an NTA domain, we may apply the Harnack chain condition to join points 𝐴𝐷𝑀𝑟(𝑥0) and
𝐴2𝑀𝑟(𝑥0) with the chain of at most 𝐶 balls and invoke the Harnack inequality to conclude that

𝜔𝐴2𝑀𝑟(𝑥0)(Δ(𝑥0, 𝑟)) ≈𝐶,𝑀,𝐷 𝜔
𝐴𝐷𝑀𝑟(𝑥0)(Δ(𝑥0, 𝑟)).

We apply this observation together with estimates for 𝑣 and |∇𝐻𝑢2| and apply (5.37) in Claim 2 to
obtain that

1
𝜔𝐴𝐷𝑀𝑟(𝑥0)(Δ) ∫𝐵(𝑥0,𝑟)∩Ω

|∇𝐻𝑢2|
2𝐺(𝑥,𝐴𝐷𝑀𝑟(𝑥0))d𝑥

≤ 𝐶‖𝑓‖2𝐵𝑀𝑂(𝜕Ω,d𝜔)
𝑟2(𝑄−2)

(𝜔𝐴𝐷𝑀𝑟(𝑥0)(Δ))3 ∫𝐵(𝑥0,𝑟)∩Ω
𝐺(𝑥,𝐴𝐷𝑀𝑟(𝑥0))3

𝑑(𝑥, 𝜕Ω)2
d𝑥

≤ 𝐶‖𝑓‖2𝐵𝑀𝑂(𝜕Ω,d𝜔).

Finally, we combine this estimate with the previous one for |∇𝐻𝑢1|, see (5.44), and note that ∇𝐻𝑢 =
∇𝐻𝑢1 + ∇𝐻𝑢2. From this the assertion of Theorem 1.5.4 follows. □

5.5 The Fatou theorem
The goal of this chapter is to prove a version of the harmonic Fatou theorem in the Heisenberg setting.
As mentioned in the Preliminaries, the studies of such theorems have led to several important notions

104



and results to which our manuscript appeals to, for instance, the NTA domains, the area function and
the nontangential maximal function, see e.g. [JK, Section 1]. Recall that the classical Fatou theorem
asserts that a bounded harmonic function defined on the half-space in ℝ𝑛 has nontangential limits at
almost every point of the boundary, see e.g. [S, Theorem 2, Ch. VII], see also [Car2] for the local
version. For the NTA domains in the Euclidean spaces, the Fatou theorem with respect to the harmonic
measure is due to [JK, theorem 6.4]. In the subriemannian setting the analogous results are proven in
[CG, Theorem 4] for bounded NTA domains.

We show a counterpart of the Fatou theorem for (𝜀, 𝛿)-domains and, thus, for more general domains
than the NTA ones, see the discussion below. Moreover, we are able to show the refinement of classical
results, namely that nontangential limits of a harmonic function u exist outside a set of p-capacity
zero, not only zero measure. This, however, is obtained under stronger assumption on the global 𝐿𝑝-
integrability of the gradient of harmonic function.

We will now recall necessary definitions.
Definition 5.5.1 (cf. Definition 2.7 [Nh1]). We say that a bounded domain Ω ⊂ ℍ𝑛 is an (𝜀, 𝛿)-domain
if for all 𝑥, 𝑦 ∈ Ω such that 𝑑(𝑥, 𝑦) < 𝛿 there exists a rectifiable curve 𝛾 ⊂ Ω joining 𝑥 and 𝑦 satisfying

𝑙(𝛾) ≤ 1
𝜀
𝑑(𝑥, 𝑦),

and
𝑑(𝑧, 𝜕Ω) ≥ 𝜀min{𝑑(𝑥, 𝑧), 𝑑(𝑦, 𝑧)} for all 𝑧 on 𝛾.

The definition of the (𝜀, 𝛿)-domains in the Euclidean setting was first given in [Jon] and a fact that
such domains are uniform and hence, John domains, is observed in Remark 4.2 in [V]. The above
definition has also a counterpart in more general Carnot groups, see Definition 4.1 in [Nh2], and leads
to an extension theorem applied in the proof of Theorem 6.1 below, see Theorem 1.1 in [Nh2]. It
is also known that a large class of NTA domains in ℍ𝑛 satisfies the definition of (𝜀, 𝛿)-domains, see
Theorem 1.2 in [Nh2] and the discussion following it. Moreover, bounded (𝜀, 𝛿)-domains are uniform,
see also [CT].

The results below employ the following notion of the Sobolev 𝑝-capacity.
Definition 5.5.2. Let 1 ≤ 𝑝 <∞. The Sobolev 𝑝-capacity of set 𝐸 ⊂ ℍ𝑛 is:

C𝑝(𝐸) = inf ∫ℍ𝑛

(

|𝑢|𝑝 + |∇𝐻𝑢|
𝑝)d𝑋,

where the infimum is taken over all functions 𝑢 ∈ 𝐻𝑊 1,𝑝(ℍ𝑛) such that 𝑢 ≥ 1 on 𝐸 outside a 𝑝-
exceptional set of measure zero.

The importance of this notion comes from the fact that 𝑝-capacity is more refined than a measure.
There exist sets of measure zero such that their capacity is not zero. However, every set that has
capacity equal to zero, has also measure equal to zero.

There is a vast literature on the topic of 𝑝-capacities in the Euclidean and metric measure spaces
settings, see e.g. [EG], [HKST], [BB].

For the definition and basic properties of p-Sobolev capacities we refer to [HKST, Chapter 7.2].

105



Theorem. 1.5.5 Let Ω ⊂ ℍ𝑛 be a bounded (𝜀, 𝛿)-domain and let further 𝑢 be subelliptic harmonic in
Ω. If ∫Ω |∇𝐻𝑢|𝑝 <∞ for some 1 < 𝑝 ≤ 2𝑛+2, then 𝑢 has nontangential limits on 𝜕Ω along horizontal
curves in Ω outside the set of 𝑝-Sobolev capacity zero.

The proof of the theorem employs among other results the following auxiliary observations. The
proof of the first one is new in the literature, due to applying results of [AW].
Lemma 5.5.3. Let 𝑢 be subelliptic harmonic function in Ω ⊂ ℍ𝑛. Then, for any Korányi–Reimann
ball 𝐵(𝑥, 𝑟) ⊂ 𝐵(𝑥, 2𝑟) ⊂ Ω and all 𝑐 ∈ ℝ we have that for any 𝑝 > 1

sup
𝐵(𝑥,𝑟)

|𝑢(𝑦) − 𝑐| ≤ 𝐶(𝑝, 𝑛)
(

∫𝐵(𝑥,2𝑟)
|𝑢(𝑦) − 𝑐|𝑝d𝑦

)
1
𝑝

.

The result is well-known in the Euclidean setting and for -harmonic functions, see Lemma 3.4
in [HKM].
Proof. We apply the mean-value theorem in ℍ𝑛, see Theorem 4.4 in [AW] (cf. Theorem 5.5.4 in
[BLU]). By Definition 5.5.1 in [BLU] and pg. 253 we know that |∇𝐻𝑑|2(𝑥) ≤ 1 for any 𝑥 ≠ 0 and
so, we have that for any point 𝑦 ∈ 𝐵(𝑥, 𝑟)

|𝑢(𝑦)| ≤ ∫𝐵(𝑦,𝑟)
|𝑢(𝑧)|d𝑧.

By the Hölder inequality and the fact that if 𝑢 is harmonic then so is 𝑢− 𝑐, for any constant 𝑐 ∈ ℝ, we
obtain that

|𝑢(𝑦) − 𝑐| ≤
(

∫𝐵(𝑦,𝑟)
|𝑢(𝑧) − 𝑐|𝑝d𝑧

)
1
𝑝

.

Since for any 𝑦 ∈ 𝐵(𝑥, 𝑟) it holds that 𝐵(𝑦, 𝑟) ⊂ 𝐵(𝑥, 2𝑟), the claim follows by the doubling property
of the Lebesgue measure.
Lemma 5.5.4. Let 𝑢 ∈ 𝐻𝑊 1,𝑝(ℍ𝑛,ℝ) for some 1 < 𝑝 < 2𝑛 + 2. Then

lim
𝑟→0 ∫𝐵𝐶𝐶 (𝑥,𝑟)

|𝑢(𝑥) − 𝑢(𝑦)|𝑝d𝑥 = 0,

for all points 𝑥 ∈ ℍ𝑛 except for a set 𝐸 ⊂ ℍ𝑛 of 𝑝-Sobolev capacity zero, where 𝐵𝐶𝐶 denotes a ball in
Carnot-Carathéodory distance.

The result is a counterpart of Lemma 3.2 in [KMV] and Theorem 3.10.2 in [Zr] proven for ℝ𝑛 and
the Bessel capacity. The proof follows from more general results for complete metric measure spaces
supporting the 𝑝-Poincaré inequality, see Theorem 4.5 in [KL] and also Theorem 9.2.8 in [HKST].
The metric space (ℍ𝑛, 𝑑𝐶𝐶 , d𝑥) satisfies the assumption of these theorems, see e.g the discussion on
pg. 400-403 in [HKST].

In the proof below we also need the following non-local version of the 𝑝-Poincaré inequality for a
John domain Ω ⊂ ℍ𝑛, see Theorem 2.31 in [Fr].

∫Ω
|𝑓 − 𝑓Ω|𝑞d𝑥 ≤ 𝐶Ω ∫Ω

|∇𝐻𝑓 |
𝑝d𝑥, (5.46)
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where 1 ≤ 𝑝 < 𝑄 for 𝑄 = 2𝑛 + 2, 𝑞 = 𝑝𝑄
𝑄−𝑝

= 2 + 2
𝑛

and 𝑓 is a Lipschitz function. Moreover, the
constant 𝐶Ω is independent of 𝑓 . Here, we specialize the statement in [Fr] to our setting. In particular,
observe that the balance condition in [Fr, Theorem 2.14] is with our 𝑝, 𝑞 and 𝑄 equivalent to the so-
called relative lower volume decay, cf. (9.1.14) in [HKST]. This in turn holds if an underlying measure
is doubling, which is the case for the Lebesgue measure in ℍ𝑛.
Proof of Theorem 1.5.5. In the proof we follow the steps of the corresponding Euclidean result, cf.
[KMV, Theorem 3.1]. Since ∫Ω |∇𝐻𝑢|𝑝 < ∞, it holds by the Poincaré inequality (5.46) that 𝑢 ∈
𝐻𝑊 1,𝑝(Ω), as 𝑢 is subelliptic harmonic in Ω and so analytic, in particular Lipschitz in a bounded
domain Ω.

We apply an extension result, see Theorem 1.1 in [Nh2] with 𝐺 = ℍ𝑛 and 1,𝑝 = 𝐻𝑊 1,𝑝 allowing
us to conclude that 𝑢 ∈ 𝐻𝑊 1,𝑝(ℍ𝑛) provided that Ω is an (𝜀, 𝛿)-domain. Notice that in the notation
of [Nh1], it holds that 0 < rad(Ω) < diamΩ, as Ω is connected and bounded, cf. Definition 4.2
in [Nh2] and also [Nh1].

Let us consider a cone Γ𝛼(𝑥0) at any 𝑥0 ∈ 𝜕Ω ⧵ 𝐸, where 𝐸 is the set in Lemma 5.5.4. Hence, for
any 𝑥 ∈ Γ𝛼(𝑥0) we have that

𝑑(𝑥, 𝑥0) ≤ (1 + 𝛼)𝑑(𝑥, 𝜕Ω).

Therefore, it holds that

𝐵𝐶𝐶

(

𝑥, 1
2
𝑑(𝑥, 𝜕Ω)

)

⊂ 𝐵𝐶𝐶

(

𝑥0,
(

1 + 𝛼 + 1
2
)

𝑑(𝑥, 𝜕Ω)
)

.

Recall that the Koranyi–Reimann distance and the subriemannian distance are equivalent in ℍ𝑛 with
a constant depending on 𝑛, see Chapter 5.1.1, and thus we have that

𝐵
(

𝑥, 𝑐1
2
𝑑(𝑥, 𝜕Ω)

)

⊂ 𝐵𝐶𝐶

(

𝑥, 1
2
𝑑(𝑥, 𝜕Ω)

)

⊂ 𝐵𝐶𝐶

(

𝑥0,
(

1+𝛼+1
2
)

𝑑(𝑥, 𝜕Ω)
)

⊂ 𝐵
(

𝑥0,
1
𝑐
(

1+𝛼+1
2
)

𝑑(𝑥, 𝜕Ω)
)

.

We apply Lemma 5.5.3 with 𝑎 = 𝑢(𝑥0) to get that

|𝑢(𝑥) − 𝑢(𝑥0)| ≤ 𝐶(𝑝, 𝑛)

(

∫𝐵
(

𝑥, 12𝑑(𝑥,𝜕Ω)
)
|𝑢(𝑦) − 𝑢(𝑥0)|𝑝d𝑦

)
1
𝑝

≤ 𝐶(𝑝, 𝑛, 𝑐)

(

∫𝐵
(

𝑥0,
1
𝑐 (1+𝛼+

1
2 )𝑑(𝑥,𝜕Ω)

)
|𝑢(𝑦) − 𝑢(𝑥0)|𝑝d𝑦

)
1
𝑝

,

where in the last step we also use a consequence of the doubling property (the relative lower volume
decay (9.1.14) in [HKST]):

|

|

|

𝐵
(

𝑥0,
1
𝑐
(1 + 𝛼 + 1

2
)𝑑(𝑥, 𝜕Ω)

)

|

|

|

|

|

|

𝐵
(

𝑥, 1
2
𝑑(𝑥, 𝜕Ω)

)

|

|

|

≲𝑛

(

2𝑑(𝑥, 𝜕Ω) + 1
𝑐

)2𝑛+2

.

The assertion of the theorem now follows from Lemma 5.5.4 by letting 𝑑(𝑥, 𝜕Ω) → 0.
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Appendix. The lower bound for a Green function
The following result, applied in Example 5.1, is of independent interest and to best of our knowledge
did not yet appear in the literature on Green functions in the subriemannian setting.
Proposition 5.5.5 (cf. (1.9) in Theorem (1.1), [GW]). Let Ω ⊂ ℍ𝑛 be a domain and 𝐺 ∶ Ω × Ω → ℝ
be a Green function of Ω associated with the Laplacian Δ𝐻 . Then, it holds

𝐺(𝑧, 𝑦) ≥ 𝑐(𝑛,Δ𝐻 )𝑑(𝑧, 𝑦)2−𝑄,

for all 𝑧, 𝑦 ∈ Ω satisfying 𝑑(𝑧, 𝑦) ≤ 1
2
𝑑(𝑦, 𝜕Ω).

Proof. We follow the steps of the corresponding proof in [GW]. Recall that 𝐺 ≥ 0, 𝐺(𝑥, ⋅) = 0 for
𝑥 ∈ 𝜕Ω, 𝐺(𝑥, 𝑦) = 𝐺(𝑦, 𝑥) and, moreover, for any fixed 𝑦 ∈ Ω, the following representation formula
holds: 𝐺(⋅, 𝑦) = Γ(⋅, 𝑦) − ℎ𝑦(⋅), where Γ is the fundamental solution Γ with the pole at 𝑦 ∈ Ω (in the
Perron-Brelot-Wiener sense, PWB for short). A function is a solution in PWB sense if it is the largest
subharmonic function with boundary values below the desired values. Thus, Δ𝑥

𝐻𝐺(𝑥, 𝑦) = −𝛿𝑦(𝑥)which in the weak sense reads:

∫Ω
⟨∇𝐻𝐺(𝑥, 𝑦),∇𝐻𝜙(𝑥)⟩d𝑥 = 𝜙(𝑦), for any 𝜙 ∈ 𝐶∞

0 (Ω). (5.47)

Let 𝑧, 𝑦 ∈ Ω satisfy the assumption 𝑑(𝑧, 𝑦) ≤ 1
2
𝑑(𝑦, 𝜕Ω) and set 𝑟 ∶= 𝑑(𝑧, 𝑦). Define the test function

𝜙 ∈ 𝐶∞
0 (Ω) such that:

0 ≤ 𝜙 ≤ 1 in Ω, 𝜙 ≡ 1|𝐵(𝑦, 𝑟2 ), 𝜙 ≡ 0|Ω⧵𝐵(𝑦,𝑟) and also |∇𝐻𝜙| ≤
𝐶
𝑟
.

Then by applying (5.47) with the above 𝜙, we obtain that

1 ≤ 𝐶
𝑟 ∫𝐵(𝑦,𝑟)⧵𝐵(𝑦, 𝑟2 )

|∇𝐻𝐺(𝑥, 𝑦)|d𝑥, (5.48)

for all 𝑥 ∈ 𝐵(𝑦, 𝑟
2
). Similarly, we consider another test function 𝜂(𝑥) ∶= 𝐺(𝑥, 𝑦)𝜓2(𝑥), where 𝜓 ∈

𝐶∞
0 (Ω) is such that

0 ≤ 𝜓 ≤ 1 in Ω, 𝜓 ≡ 1|𝐵(𝑦,𝑟)⧵𝐵(𝑦, 𝑟2 ),

𝜓 ≡ 0 on 𝐵(𝑦, 1
4
𝑟) and outside the ball 𝐵(𝑦, 3

2
𝑟),

also |∇𝐻𝜓| ≤
𝐶
𝑟
.

Since ∇𝐻𝜂(𝑥) = ∇𝐻𝐺(𝑥, 𝑦)𝜓2(𝑥) + 2𝐺(𝑥, 𝑦)𝜓(𝑥)∇𝐻𝜓(𝑥), upon substituting this expression into
(5.47), we obtain the following equation:

∫Ω
|∇𝐻𝐺(𝑥, 𝑦)|2𝜓2(𝑥)d𝑥 + 2∫Ω

⟨∇𝐻𝐺(𝑥, 𝑦),∇𝐻𝜓(𝑥)⟩𝐺(𝑥, 𝑦)𝜓(𝑥)d𝑥 = 0,
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as the support of 𝜓 does not contain 𝑦. Now, the standard inequality 2𝑎𝑏 ≤ 1
4
𝑎2 + 4𝑏2 for 𝑎, 𝑏 ∈ ℝ

together with the Hölder inequality imply that

(1 − 1
4
)∫𝐵(𝑦,𝑟)⧵𝐵(𝑦, 𝑟2 )

|∇𝐻𝐺(𝑥, 𝑦)|2d𝑥 ≲
𝐶2

𝑟2
sup

𝐵(𝑦, 3𝑟2 )⧵𝐵(𝑦,
𝑟
4 )
𝐺2(𝑥, 𝑦)𝑟𝑄.

We combine this estimate with (5.48) to arrive at the following inequality

1 ≤ 𝐶
𝑟

(

∫𝐵(𝑦,𝑟)⧵𝐵(𝑦, 𝑟2 )
|∇𝐻𝐺(𝑥, 𝑦)|2d𝑥

)
1
2

𝑟
𝑄
2

≤ 𝐶𝑟
𝑄
2 −1

(

𝐶2𝑟𝑄−2 sup
𝐵(𝑦, 3𝑟2 )⧵𝐵(𝑦,

𝑟
4 )
𝐺2(𝑥, 𝑦)

)
1
2

≲𝑛,Δ𝐻 𝐶
2𝑟𝑄−2𝐺(𝑧, 𝑦),

where in the last step we also appeal to the Harnack inequality for harmonic function 𝐺(⋅, 𝑦). Thus,
the proof is completed upon recalling that 𝑟 = 𝑑(𝑧, 𝑦).
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