
NONCOMMUTATIVE GEOMETRY AND PHYSICS

ALAIN CONNES

1. Introduction

The two existing theories which successfully encode our knowledge of space-time are :

• General Relativity
• The Standard Model

General relativity describes space-time as far as large scales are concerned (cf. Figure 1
and [2] for many more suggestive thoughts and pictures) and is based on the geometric
paradigm discovered by Riemann. It replaces the flat (pseudo) metric of Poincaré,
Einstein, and Minkowski,

ds2 = − dt2 + dx2 + dy2 + dz2

by a curved space-time metric whose components form the gravitational potential gµν

ds2 = gµνdxµ dxν

Figure 1. Suspected black hole in center of galaxy
1
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Figure 2. CERN collision ring

The basic Einstein-Hilbert action principle given by the action

SE[ gµν ] =
1

G

∫

M

r
√

g d4x

which holds in empty space with the possible addition of a cosmological term, is re-
placed in the presence of matter by the combination

(1) S = SE + SSM

where SSM is the standard model action which encapsulates our knowledge of space-
time at small scales as uncovered by the high energy experiments such as those per-
formed at CERN (Figure 2).

The transition
Classical → Quantum

is very simple to formulate in terms of the Feynman integral which affects each classical
field configuration with the probability amplitude

ei S
~

While this prescription works remarkably well for the quantization of the classical fields
involved in the standard model provided one uses the technique of renormalization,
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this latter perturbative technique fails dramatically when one tries to deal with the
gravitational field gµν .
In many ways this result is not surprising. Indeed many of the basic notions of the
traditional formalism of Quantum Field Theory (QFT), such as particles, scattering
matrices, etc... heavily rely on the flat geometry of Minkowski space and the related
Poincaré symmetry group. Treating the quantization of the gµν in the same way would
-if successful- produce a quantum field theory of the gµν on Minkowski space: a strange
result indeed when viewed from the geometric standpoint! The technical reason for
the notorious difficulty of quantizing the gµν in the traditional perturbative way is the
clash with either renormalizability or unitarity.
In some sense this clash contains a serious warning, namely that one should not try to
rush but rather meditate the lessons of both general relativity and QFT before even
starting to compute something. In this very short essay we shall describe a “spectral”
point of view on geometry which allows to start taking into account the lessons from
both sides. We shall first do that for renormalization and explain in rough outline the
content of our recent collaborations with Dirk Kreimer and Matilde Marcolli. As far
as general relativity is concerned, since the functional integral cannot be treated in the
traditional perturbative manner, it relies heavily as a “sum over geometries” on the
chosen paradigm of geometric space. This will give us the occasion to discuss, in the
light of noncommutative geometry, the issue of “observables” in gravity and our joint
work with Ali Chamseddine on the spectral action, with a first attempt to write down
a functional integral on the space of noncommutative geometries.
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Figure 3. Feynman Graph

2. Lessons from renormalization

In QFT the recipe of Dirac and Feynman gives the probability amplitude of a classical

field configuration A as

ei
S(A)
~

where the classical action is the integral of the Lagrangian density

S (A) =

∫
L (A) d4x

One implements this recipe using perturbation theory. The perturbative expansion
generates integrals U(Γ) labeled by Feynman graphs Γ. It was recognized very early
on (already by Oppenheimer around 1930 in trying to compute higher order effects in
the Dirac theory of spontaneous and induced atomic transitions) that, as a rule, these
integrals are divergent.

Around 1947 and in a close interplay between experimental results (such as the Lamb
shift) and theory (as developed by Schwinger, Feynman, Dyson) the technique of renor-
malization was successfully applied to overcome the difficulty created by the divergen-
cies. We refer to Schwinger’s book on quantum electrodynamics and its introduction
for a description of the legacy of difficulties that came from the point-like nature of the
electron.

Already in the nineteen’th century, around 1830, Green had shown that one needs to
modify Newton’s law F = ma when dealing with an object moving in a fluid. Thus for
instance for a spherical object moving in an incompressible fluid one needs to replace
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Figure 4. Hydrodynamics

its inertial mass m by the renormalized mass m → m + 1
2
M where M is the mass of

the fluid corresponding to the volume of the ball (as in Archimedes law). While in this
macroscopic case the correction 1

2
M is finite, the point-like nature of the electron entails

that the correction δm to its inertial mass due to the self-energy of the perturbation it
generates in the electromagnetic field is infinite. What saves the day then is that since
there is no way to extract the electron from the electromagnetic field, one only cares
about the sum m + δm so that the value of m (even if infinite) is irrelevant.
The explicit formulas which allow to concretely perform the renormalization procedure
were gradually obtained by Bogoliubov, Parasiuk, Hepp and Zimmermann. They pro-
vide an inductive procedure which is based on three steps. Given a graph Γ, one first
“prepares” Γ, by replacing the unrenormalized value U(Γ) by a sum involving suitably
defined (not necessarily connected) subgraphs γ ⊂ Γ and the contracted graphs Γ/γ
or cograph, obtained by collapsing each connected component of γ to a single vertex,

R(Γ) = U(Γ) +
∑
γ⊂Γ

C(γ)U(Γ/γ)

where the counterterms C(γ) are defined inductively by

C(Γ) = −T (R(Γ)) = −T

(
U(Γ) +

∑
γ⊂Γ

C(γ)U(Γ/γ)

)
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where T is the pole part in dimensional regularization. Finally the renormalized value
of the graph Γ is given by

R(Γ) = R(Γ) + C(Γ) = U(Γ) + C(Γ) +
∑
γ⊂Γ

C(γ)U(Γ/γ)

While this procedure is perfectly justified from the physics standpoint it took a long
time to uncover its precise meaning from the mathematical standpoint. This was
obtained in two key steps which are

(1) The Hopf algebra of Feynman graphs
(2) Renormalization as Birkhoff decomposition

The Hopf algebra structure hidden behind the combinatorics of Feynman graphs was
discovered by D. Kreimer who first formulated the hierarchical structure of subgraphs in
terms of rooted trees. In our joint work [16] we formulated the Hopf algebra directly in
terms of Feynman graphs. As an algebra, the Hopf algebra H is the free commutative
algebra generated by one particle irreducible (1PI) graphs. In order to define the
coproduct

∆ : H → H⊗H
it is enough to specify it on 1PI graphs. One sets

∆Γ = Γ⊗ 1 + 1⊗ Γ +
∑
γ⊂Γ

γ ⊗ Γ/γ

where the subgraphs γ ⊂ Γ and the cographs Γ/γ are the same as those involved in the
BPHZ preparation procedure. It is a quite remarkable fact that the obtained coproduct
is coassociative i.e. that it fulfills

(∆⊗ id) ∆ = (id⊗∆) ∆ .

By construction, a commutative Hopf algebra is the algebra of coordinates on a group,
and in the case of a graded connected Hopf algebra such as the Hopf algebra of graphs
the corresponding group is a projective limit of unipotent Lie groups. While this shows
that there are very interesting mathematical structures underlying the perturbative
expansion it left open the problem of giving a conceptual understanding of the BPHZ
formulas.

This problem was solved in our joint work [16]. This gives a precise unexpected re-
lation between renormalization and a basic geometric procedure called the Birkhoff
decomposition which originates in the problem of classifying holomorphic bundles on
the sphere. A complex vector bundle E of dimension n on the Riemann sphere is ob-
tained by clutching together two trivial bundles on the lower and upper hemispheres
C±, using a map γ(z) ∈ GL(n,C) defined on the common boundary C (Figure 5). The
Birkhoff decomposition of the map γ is the factorization

γ(z) = γ−(z)−1 λ(z) γ+(z) , z ∈ C
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Figure 5. Birkhoff decomposition

where γ± are holomorphic maps from C± to GL(n,C) while λ is a diagonal map of the
form,

λ(z) =




zk1

zk2

. . .

zkn




The original holomorphic vector bundle E is then isomorphic to the sum of the line
bundles of degree kj obtained by the simple clutching function λ. Thus the geometric
meaning of the Birkhoff decomposition is the Birkhoff-Grothendieck theorem asserting
that the holomorphic bundles on P1(C) are isomorphic to direct sums of holomorphic
line bundles.

When one replaces the group GL(n,C) by a prounipotent simply connected complex
Lie group G, the Birkhoff decomposition of a map γ(z) ∈ G defined on the common
boundary C, takes the simpler form

γ(z) = γ−(z)−1 γ+(z) , z ∈ C

Simplifying further one can let C be a circle of infinitesimal radius around a point
z0 = 0 ∈ P1(C). One can then use the Hopf algebra H of coordinates on G to encode
the map γ as a homomorphism φ : H → C{z}[z−1] to the field K = C{z}[z−1] of
convergent Laurent series. The maps γ : P1(C)\{z0} → G which are holomorphic on
C− = P1(C)\{z0} are encoded by homomorphisms such that φ(H) ⊂ C([z−1]). The
maps γ which take a finite value at z0 = 0 are encoded by homomorphisms such that
φ(H) ⊂ C{z} where C{z} ⊂ K is the subring of Laurent series which are regular at
z0 = 0.
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The conceptual meaning of the BPHZ combinatorial procedure, which is the main result
of our joint work [16], is given below, using the following notation for the coproduct in
a graded connected Hopf algebra H

∆(X) = X ⊗ 1 + 1⊗X +
∑

X ′ ⊗X ′′

Theorem 2.1. (1) Let H be a graded connected Hopf algebra and φ : H → K be an
algebra homomorphism. The Birkhoff decomposition of the corresponding loop
is obtained recursively from the equalities

φ−(X) = −T
(
φ(X) +

∑
φ−(X ′)φ(X ′′)

)

and

φ+(X) = φ(X) + φ−(X) +
∑

φ−(X ′)φ(X ′′).

(2) When H is the Hopf algebra of graphs and φ = U the homomorphism associated
to the unrenormalized value of graphs in dimensional regularization then φ−
gives the counterterms C and φ+ gives the renormalized value R.

Put in other words the combinatorial recipe given by the BPHZ procedure coincides
with the Birkhoff decomposition of the loop giving the unrenormalized value of the
theory. While this allows to understand in a really conceptual and simple way the pro-
cedure currently used by physicists in their computations it also ties up with a central
idea in mathematics, namely the Riemann-Hilbert correspondence. Loosely speaking
such a correspondence relates objects of a differential theoretic nature–such as differ-
ential systems–with finite dimensional representations of a “monodromy” group G. It
plays a central role in the Riemann-Hilbert problem for which the Birkhoff decompo-
sition was invented. In the simplest example of a system with regular singularities
the group G is indeed the monodromy group but the Riemann-Hilbert correspondence
makes sense in a much wider setting and allows to give meaning to a group which
plays the same role as the monodrmy in the irregular singular case ([24], [32]). The
Riemann-Hilbert correspondence underlying renormalization was unveiled in our joint
work with Matilde Marcolli ([20], [19]). Quite surprisingly the group U whose repre-
sentations classify the natural differential systems arising from renormalization turned
out to be essentially the Cosmic Galois Group which had been conjectured by Cartier
who wrote in [4]:

“La parenté de plus en plus manifeste entre le groupe de Grothendieck–
Teichmüller d’une part, et le groupe de renormalisation de la Théorie
Quantique des Champs n’est sans doute que la première manifestation
d’un groupe de symétrie des constantes fondamentales de la physique,
une espèce de groupe de Galois cosmique!”
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In fact the Lie algebra involved in the dream of Cartier is the free graded Lie algebra

Hc = U(F(3, 5, 7, · · · )•)∨
with generators of odd degrees while for the group U which appears in our work the
Lie algebra is the free graded Lie algebra

H = U(F(1, 2, 3, · · · )•)∨
with generators of all integer degree. The group U appears in our work from the
classification of equisingular flat connections and is the Universal Symmetry Group of
renormalizable theories. It acts on the coupling constants of any such theory and it
contains the usual renormalization group as a natural one parameter subgroup R ⊂ U .
In simple rather rough terms, what happens is that the role of the β function attached
to each coupling is now played by a single element of the Lie algebra of the group
G associated to Feynman graphs. This Lie algebra element β admits homogeneous
components βn in each power of the Planck constant ~, corresponding to the grading
of the Hopf algebra of graphs by their loop number, and the generators e−n of the
universal Lie algebra (of the group U) are mapped to βn, which gives the first vertical
arrow in the following diagram of group homomorphisms which allows for U to act at
the formal level on the coupling constants:

Cosmic Galois Group U
↓

Group G associated to Feynman graphs
↓

Group of formal diffeomorphisms of coupling constants

The Lie subalgebra generated under the graph Lie bracket by the components βn plays
the role of the Galois group of a given theory [22]. It is still a mystery to find a precise
relation of the group U with the (abstractly isomorphic) motivic Galois group (in the
sense of mixed Tate motives) of the scheme S4 of 4-cyclotomic integers

GMT
(O) , O = Z[i][

1

2
]

and to clarify the number theoretic flavor of the first vertical arrow in the above dia-
gram.
The geometric space which is the support of the equisingular connections is a two
dimensional complex space B. It is a principal bundle with structure group the complex
multiplicative group Gm = C∗. The base is an infinitesimal disk ∆ around 0 ∈ C. The
equisingular connections are singular on the fiber over 0 ∈ C. They are connections
on filtered vector bundles and we refer to [20], [19] for the precise definitions. At the
physics level the parameter z in the base ∆ is the same as the z in the dimensional
regularization procedure (Dim-Reg) used to get away from the singularity by replacing
the dimension D of space-time in the evaluation of Feynman graphs by D − z. The
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generic element in the fiber over z ∈ ∆ is of the form v = µz ~ where µ is a mass scale
and ~ is the Planck constant. The principal bundle action of the group Gm = C∗ is
by rescaling of ~ i.e. by ~ ∂

∂~ . The singularity of the connections coming from QFT
computations are governed by the following universal behavior of a flat section1:

(2) γU(z, v) = Te−
1
z

R v
0 uY(e) du

u ∈ U

which falls in the “irregular singular” case of the theory of differential equations. It
provides a universal formula for the counterterms when using the combination of Dim-
Reg with minimal substraction. There is a strong analogy between the role of the
exponential torus in the theory developed by Deligne, Ramis and Martinet ([24], [32])
for formal solutions of differential systems and the role of the cosmic Galois group in
the renormalization procedure. In both cases the groups appear from the Riemann-
Hilbert correspondence developed by Grothendieck as a natural generalization of the
ideas of Galois to the higher dimensional set-up. In both cases the basic intuition of
Galois of an underlying théorie de l’ambigüıté is present. In the case of renormalization
physicists have from the very start of the theory recognized that there is no way (except
experimental tests) to break the ambiguity which is inherent to the specific values of the
parameters in a renormalizable theory. Galois was well aware of a similar phenomenon
in the theory of equations including in the higher dimensional case as witnessed by his
last writing:

“Tu sais, mon cher Auguste, que ces sujets ne sont pas les seuls que
j’aie explorés. Mes principales méditations depuis quelque temps étaient
dirigées sur l’application à l’analyse transcendante de la théorie de l’ambigüıté.
Il s’agissait de voir a priori dans une relation entre des quantités ou
fonctions transcendantes quels échanges on pouvait faire, quelles quan-
tités on pouvait substituer aux quantités données sans que la relation
pût cesser d’avoir lieu. Cela fait reconnaitre tout de suite l’impossibilité
de beaucoup d’expressions que l’on pourrait chercher. Mais je n’ai pas le
temps et mes idées ne sont pas encore assez développées sur ce terrain
qui est immense”

A typical example (cf. [33]) of an “échange” which illustrates this type of ambiguity is
the substitution

e−
1
z → λ e−

1
z

which comes from the action of the exponential torus on the infinitely flat terms2

involved in a formal solution of a differential system.

1where Te denotes the time ordered exponential [1]
2i.e. all terms of the Taylor expansion vanish



NONCOMMUTATIVE GEOMETRY AND PHYSICS 11

Figure 6. Galois

The main lesson one learns from the above developments is that one should not consider
the divergences of QFT as unwanted nuisances but rather as the signature of subtle
symmetries of Galois type which prevent one from making simple predictions unless
they are carefully taken into account. It also shows that it is worthwhile to give a
precise geometric support to the dimensional regularization and to understand in a
more geometric manner the universal behavior of counterterms as dictated by (2). As
we shall briefly explain below this can be done within the new framework provided by
noncommutative geometry.

3. Noncommutative Geometry

We shall first give a brief introduction to noncommutative geometry from the physics
perspective. Our standpoint will be to view it as a very economical way of describing the
geometry of space-time at the effective level i.e. up to the length scales of the inverse
of a 100 GEV. We shall explain the spectral paradigm of NCG in close connection
with the issue of measuring distances and start by drawing the parallel between the
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transition from the riemannian gµν paradigm to the NCG spectral paradigm and the
evolution followed by the standard of length in the metric system.

3.1. Why noncommutative spaces ? The full action (1) of gravity coupled with
matter

S = SE + SSM

admits a huge natural group of symmetries. The group of gauge invariance for the
Einstein action SE is the group Diff(M) of diffeomorphisms of the manifold M and the
gauge invariance of the action is simply the manifestation of its geometric nature. The
full group U of invariance of the action (1) is however richer than the group Diff(M)
of diffeomorphisms of the manifold M since one needs to include the group G of gauge
transformations of the matter sector. By construction the group G is a group of maps
from M to the small gauge group G which as far as we know, i.e. up to energies of the
order of 100 GEV, is G = U(1) × SU(2) × SU(3). The group Diff(M) acts on G by
permutations and the full group U of symmetries of S is the semi-direct product

U = G oDiff(M)

and always contains the huge normal subgroup G. Rather than postponing the addi-
tion of the matter action SSM it is natural to try and find a space X whose group
of diffeomorphisms is simply U . This search is bound to fail if one looks for an or-
dinary manifold since by a mathematical result due to J. Mather and W. Thurston
the connected component of the identity in Diff(M) is always a simple group, exclud-
ing a semi-direct product structure as that of U . But noncommutative spaces of the
simplest kind readily give the answer, modulo a few subtle points. To understand
what happens note that for ordinary manifolds the algebraic object corresponding to
a diffeomorphism is just an automorphism α ∈ Aut(A) of the algebra of coordinates.
When an algebra is not commutative it admits “trivial” automorphisms, called inner
given by the formula

α(x) = ux u−1 , ∀x ∈ A
where u is an invertible element of A. When A is an involutive algebra the element u is
taken to be unitary (i.e. uu∗ = u∗ u = 1) so that α preserves the involution. Moreover
the inner automorphisms form a subgroup

Int(A) ⊂ Aut(A)

which is always a normal subgroup of Aut(A). Let us take the simplest example where
we take for A the algebra

A = C∞(M,Mn(C)) = C∞(M)⊗Mn(C)

of smooth maps from a manifold M to the algebra Mn(C) of n × n matrices. One
then shows that the group Int(A) in that case is locally isomorphic to the group G of
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Figure 7. Meridian

smooth maps from M to the small gauge group G = PSU(n) (quotient of SU(n) by
its center) and that the general exact sequence

1 → Int(A) → Aut(A) → Out(A) → 1

becomes identical to the exact sequence governing the structure of the group U , namely

1 → G → U → Diff(M) → 1

It is quite striking that the terminology coming from physics: internal symmetries
agrees so well with the mathematical one of inner automorphisms. In the general case
only automorphisms that are unitarily implemented in Hilbert space will be relevant
but modulo this subtlety one can see at once from the above example the advantage of
treating noncommutative spaces on the same footing as the ordinary ones. The next
step is to properly define the notion of metric for such spaces and we shall first indulge
in a short historical description of the evolution of the definition of the “unit of length”
in physics. This will prepare the ground for the introduction to the spectral paradigm
of NCG in the following section.

3.2. A brief history of the metric system. The notion of geometry is intimately
tied up with the measurement of length and it was never obvious how to reach some
agreement on a physical unit of length which would unify the numerous existing choices.
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Figure 8. The meridian from Barcelone to Dunkerque

Around the end of the 18th century France and England decided to try and find a unit
that would be invariable in time and acceptable by all nations. In 1790, Talleyrand
proposed to define the unit using the length of a pendulum beating the second at sea
level (as already proposed by Picard, in 1670) at 45◦ of latitude. But this solution
was quickly abandoned. One year later several scientists in France including Monge,
Lagrange and Laplace agreed on the definition of the unit of length in the metric system,
the “mètre”, as being 10−7 times the quarter of the meridian of the earth (Figure 7).
An expedition was sent out to measure the arc of the meridian from Barcelone to
Dunkerque (Figure 8) while the corresponding angle (∼ 9.5◦) was determined using
reference stars. A concrete realization of the “mètre”, called the “mètre-étalon” was
also realized in the form a platinum bar (Figure 9) which was deposited near Paris in
a specific place (from 1889 this place was the pavillon de Breteuil) and the inaccuracy
of the measurement of the meridian forced to redefine the “mètre” as the length of the
“mètre-étalon”. This definition held until 1960.

Already in 1927, at the seventh conference on the metric system, in order to take
into account the inevitable natural variations of the concrete “mètre-étalon”, the idea
emerged to compare it with a reference wave length (the red line of Cadmium). Around
1960 the reference to the “mètre-étalon” was finally abandoned and a new definition
of the “mètre” was adopted as 1650763, 73 times the wave length of the radiation cor-
responding to the transition between the levels 2p10 and 5d5 of the Krypton 86Kr. In
1967 the second was defined as the duration of 9192631770 periods of the radiation
corresponding to the transition between the two hyperfine levels of Caesium-133. Fi-
nally in 1983 the “mètre” was defined as the distance traveled by light in 1/299792458
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Figure 9. The “mètre-étalon”

second. In fact the speed of light is just a conversion factor3 and to define the “mètre”
one gives it the specific value of

c = 299792458 m/s

In other words the “mètre” is defined as a certain fraction 9192631770
299792458

∼ 30.6633... of the
wave length of the radiation coming from the transition between the above hyperfine
levels of the Caesium atom.
The advantages of the new standard of length are many. First by not being tied up
with any specific location it is in fact available anywhere where Caesium is. The choice
of Caesium as opposed to Helium or Hydrogen which are much more common in the
universe is of course still debatable.

While it would be difficult to communicate our standard of length with other extra
terrestrial civilizations if they had to make measurements of the earth (such as its
size) the spectral definition can easily be encoded in a probe and sent out. In fact
spectral patterns (Figure 10) provide a perfect “signature” of chemicals, and a universal
information available anywhere where these chemicals can be found.

3.3. Spectral Geometry. It is thus natural to wonder wether one can adapt the basic
paradigm of geometry to the new standard of length. The Riemannian paradigm is
based on the Taylor expansion in local coordinates xµ of the square of the line element,
in the form

(3) ds2 = gµ ν dxµ dxν

3In particular, since it is a mere convention, it could have been taken to be 300 000 000 m/s. It is
sad (cf. the excellent account http://kolmogorov.unex.es/∼navarro/res/notices.pdf) that while
Grothendieck was asking the right question: “what is the mètre” and rightly saying that the convention
c = 300 000 000 m/s would have been simpler, the standard reaction to his query was to see there the
clear symptom of a deranged mind.

http://kolmogorov.unex.es/~navarro/res/notices.pdf�
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Figure 10. Wave length of spectral lines

and the measurement of the distance d(x, y) between two points is given by the geodesic
formula

(4) d(A,B) = Inf

∫

γ

ds

where the infimum is taken over all paths from A to B.

In noncommutative geometry the first basic change of paradigm has to do with the
classical notion of a “real variable” which one would normally describe as a real valued
function f on a set X i.e. as a map f : X → R. In fact quantum mechanics provides
a very convenient substitute. It is given by a self-adjoint operator H in Hilbert space.
Note that the choice of Hilbert space H is irrelevant here since all separable infinite
dimensional Hilbert spaces are isomorphic. All the usual attributes of real variables
such as their range, the number of times a real number is reached as a value of the
variable etc... have a perfect analogue in the quantum mechanical setting. The range
is the spectrum of the operator H, and the spectral multiplicity n(λ) gives the number
of times a real number λ ∈ R is reached.

As in the classical framework, a space X is described by the corresponding algebra
A of coordinates which is now concretely represented as operators in a fixed Hilbert
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space H. What is surprising in the new set-up is that it gives a natural home for
“infinitesimals”. Indeed it is perfectly possible for an operator to be “smaller than
ε for any ε” without being zero. This happens when the norm of the restriction of
the operator to subspaces of finite codimension tends to zero when these subspaces
decrease (under the natural filtration by inclusion). The corresponding operators are
called “compact” and they share with naive infinitesimals all the expected algebraic
properties. Indeed they form a two-sided ideal K of the algebra of bounded operators
in H and the only property of the naive infinitesimal calculus that needs to be dropped
is the commutativity.

Space X Algebra A

Real variable Self-adjoint
xµ operator H

Infinitesimal Compact
dx operator ε

Integral of
∫
− ε = Coefficient of

infinitesimal log(Λ) in TrΛ(ε)

Line element ds = Fermion√
gµν dxµdxν propagator

It is important to explain what is gained in dropping such a useful rule as commutativ-
ity. We shall explain this point for a specific infinitesimal namely the “line element” ds
which defines the geometry through the measurement of distances. If an infinitesimal
commutes with a variable with connected range it follows that the corresponding vari-
able x affects a specific value. In particular with xµ the coordinates and assuming that
they commute with each other and with the line element, the latter is forced to be “lo-
calized” somewhere which is very inconvenient. When the hypothesis of commutativity
is dropped it is no longer the case that the line element ds needs to be localized and
in fact it is precisely the lack of commutation of ds with the coordinates that allows to
measure distances. Thus in noncommutative geometry the basic classical formula (4)
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is replaced by the following

(5) d(A,B) = Sup {|f(A)− f(B)| ; f ∈ A , ‖[D, f ]‖ ≤ 1 }
where D is the inverse of the line element ds. Note that one should not confuse the
“line element” ds with the unit of length. In the classical framework, the latter allows
one to give a numerical value to the distance between nearby points in the form (3).
Multiplying the unit of length by a scalar λ one divides the line element ds by λ since
ds is measured by its ratio with the unit of length.

A noncommutative geometry is given by a spectral triple (A,H, D) i.e. by an involutive
algebra A concretely represented as operators in Hilbert space H and the line element
ds = 1/D.

Geodesic

equation
dψ(t)

dt = i |D|ψ(t)

Geodesic Flow ei t |D|

Geodesic d(A,B) = Sup {|f(A)− f(B)|
distance f ∈ A , ‖[D, f ]‖ ≤ 1}

Volume form
∫− f |ds|n

Einstein action
∫− f |ds|n−2

The traditional notions of geometry all have natural analogues in the spectral frame-
work. Some of these analogues are summarized in the above table and we refer to [10]
for more details. The dimension of a noncommutative geometry is not a number but
a spectrum, the dimension spectrum (cf. [23]) which is the subset Π of the complex
plane C at which the spectral functions have singularities. Under the hypothesis that
the dimension spectrum is simple i.e. that the spectral functions have at most simple
poles, the residue at the pole defines a far reaching extension (cf. [23]) of the fundamen-
tal integral in noncommutative geometry given by the Dixmier trace (cf. [10]). This
extends the Wodzicki residue from pseudodifferential operators on a manifold to the
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general framework of spectral triples, and gives meaning to
∫−T in that context. It is

simply given by

(6)

∫
−T = Ress=0 Tr (T |D|−s) .

3.4. Inner fluctuations of the metric. Exactly as the inner automorphisms of a
noncommutative space correspond to the internal symmetries of physics (section 3.1),
the metric of a noncommutative space admits natural inner fluctuations, which generate
a natural foliation of the space of metrics, and correspond to the gauge bosons (other
than the graviton). These inner fluctuations appear through the simple issue of Morita
equivalence. Given an algebra A, a Morita equivalent algebra B is the algebra of
endomorphisms of a finite projective (right) module E over A

B = EndA(E)

If A acts in the Hilbert space H then B acts in a natural manner in the tensor product

H′ = E ⊗A H
which is a Hilbert space provided that E is hermitian. But to define the analogue D′ of
the operator D for (B,H′) requires the choice of a hermitian connection ∇ on E . The
point is that the formula

D′(ξ ⊗ η) = ξ ⊗Dη

is not compatible with the tensor product over A since in general the operator D does
not commute with elements of A. A connection is a linear map ∇ : E → E ⊗A Ω1

D

satisfying the Leibniz rule

∇(ξa) = (∇ξ)a + ξ ⊗ da , ∀ ξ ∈ E , a ∈ A,

where da = [D, a] and where

Ω1
D = {

∑
aj [D, bj] ; aj, bj ∈ A}

which is by construction a bimodule over A. One then lets

D′(ξ ⊗ η) = ξ ⊗Dη + (∇ξ) η

and this combination is well defined in H′ = E ⊗A H.

Any algebra A is Morita equivalent to itself (with E = A) and when one applies the
above construction in that special case one gets the inner deformations of the spectral
geometry. These replace the operator D by

(7) D → D + A

where A = A∗ is an arbitrary selfadjoint element of Ω1
D.
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The above discussion of the inner fluctuations of the metric adapts to the presence
of the additional structure given by the charge conjugation operator (real structure)
which is an antilinear isometry J : H → H, with the property that

(8) J2 = ε, JD = ε′DJ, and Jγ = ε′′γJ (even case).

The numbers ε, ε′, ε′′ ∈ {−1, 1} are a function of n mod 8 (cf. [12]) given by (−1, 1, 1)
for n = 4. Moreover, the action of A satisfies the commutation rule

(9) [a, b0] = 0 ∀ a, b ∈ A,

where

(10) b0 = Jb∗J−1 ∀b ∈ A,

defines a right A-module structure on H by

ξ b = b0 ξ , ∀ ξ ∈ H , b ∈ A
The operator D satisfies the “order one” condition,

(11) [[D, a], b0] = 0 ∀ a, b ∈ A .

The unitary group of the algebra A then acts by the “adjoint representation” in H in
the form

ξ ∈ H → u ξ u∗ , ∀ ξ ∈ H , u ∈ A , u u∗ = u∗ u = 1 ,

and the perturbation (7) gets replaced by

(12) D → D + A + J AJ−1

3.5. Dimensional regularization and spaces of dimension z. When expanded in
terms of the free generators e(−n) of the Lie algebra of the cosmic Galois group U , the
universal singular frame gives the following expression,

(13) γU(−z, v) =
∑
n≥0

∑

kj>0

e(−k1)e(−k2) · · · e(−kn)

k1 (k1 + k2) · · · (k1 + k2 + · · ·+ kn)
v
P

kj z−n

whose coefficients are strikingly similar to the coefficients which appear in the local
index formula in NCG ([23]). This index formula gives an analogue of the Pontrjagin
classes in the general NCG framework, and is expressed in terms of a cyclic cocycle
whose components are of the form

ϕn(a0, . . . , an) :=
∑

k

cn,k

∫
−γ a0[D, a1](k1) . . . [D, an](kn) |D|−n−2|k|, ∀aj ∈ A.

where T (ki) = ∇ki(T ) with ∇(T ) = D2T − TD2. The summation index k is a multi-
index with kj ≥ 0, |k| = k1 + . . . + kn, and the coefficients are

cn,k =
(−1)|k|

2
(k1! . . . kn!)−1 ((k1 + 1) . . . (k1 + k2 + . . . + kn + n))−1 Γ (|k|+ n/2) .
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Motivated by the similarity between the coefficients cn,k and those of the universal sin-
gular frame, we have shown in our joint work with Matilde Marcolli [21], how to develop
dimensional regularization (Dim-Reg) in a concrete explicit manner in the framework of
NCG. We construct noncommutative spaces Xz of dimension z ∈ C, Re(z) > 0, such
that the dimension spectrum of Xz is reduced to the complex number z and whose
inverse line element Dz fulfills

Trace(e−λD2
z) = πz/2 λ−z/2 , ∀λ ∈ R∗+ .

This allows to define Dim-Reg in NCG but we also show in [21] that it allows to
treat chiral anomalies in QFT and corresponds exactly to the t’Hooft-Veltman and
Breitenlohner-Maison prescription. This works inasmuch as one restricts attention to
those Feynman graphs with only fermionic internal lines. It corresponds to taking the
product of the standard geometry of (Euclidean) space-time by the space Xz. The
product of two spectral triples is obtained in general as follows

(14) H′′ = H⊗H′ , D′′ = D ⊗ 1 + γ5 ⊗D′ .

The evanescent gauge potentials [9] appear naturally from the inner fluctuations of this
product metric. The relation between chiral anomalies and the local index formula in
NCG will be discussed in full in [21]. From the physics standpoint the long range goal is
to model the universal formula for the counterterms (13) of renormalizable theories as
corresponding to a universal correction of the standard euclidean geometry obtained
from the products with the spaces Xz following the universal singular frame when
z → 0. Much more concrete work will be needed to implement this idea but as we shall
see shortly the “effective geometry” of space-time coming from the nuance between
QED and the standard model is also described as a product of the form (14) of the
standard euclidean geometry by a zero dimensional noncommutative space. Thus one
can then combine both corrections and get a suggestive form of the effective geometry
of space-time using noncommutative geometry.

Remark 3.1. As far as describing a good model of the effective geometry of space-
time it is worthwhile to note that the spectral framework of NCG allows to take into
account the dressing of the (euclidean) fermion propagator4 as quantum corrections
of the geometry. In the resulting noncommutative geometry (A,H, D(µ)) the inverse
line element D(µ) depends explicitly on the energy scale µ at which the measurements
are performed. The dimension (more precisely the dimension spectrum) is then also a
function of µ. It is tempting to investigate models in which the dependence in µ plays
a role not only at high energies (short distances) but also in the infrared domain.

4the same point applies to the Dirac Hamiltonian which has to do with the geometry of “space” as
opposed to space-time
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Figure 11. Dressed line element.

4. Observables in gravity and the spectral action

We shall give in this section a brief description of our joint work with Ali Chamseddine
on the spectral action principle [5], [6], [7], [8].

4.1. The spectral action principle. The starting point is the discussion of observ-
ables in gravity. By the principle of gauge invariance the only quantities which have a
chance to be observable in gravity are those which are invariant under the gauge group
i.e. the group of diffeomorphisms of the space-time M . Assuming first that we deal
with a classical manifold (and Wick rotate to euclidean signature for simplicity), one
can form a number of such invariants (under suitable convergence conditions) as the
integrals of the form

(15)

∫

M

F (K)
√

g d4x

where F (K) is a scalar invariant function5 of the Riemann curvature K. We refer to
[27] for other more complicated examples of such invariants, where those of the form
(15) appear as the single integral observables i.e. those which add up when evaluated
on the direct sum of geometric spaces. Now while in theory a quantity like (15) is
observable it is almost impossible to evaluate since it involves the knowledge of the
entire space-time and is in that way highly non localized. On the other hand, spectral
datas6 (Figure 10) are available in localized form anywhere, and are (asymptotically)
of the form (15) when they are of the additive form

(16) Trace (f(D/Λ)),

where D is the Dirac operator and f is a positive even function of the real variable
while the parameter Λ fixes the mass scale.
The spectral action principle asserts that the fundamental action functional S that
allows to compare different geometric spaces at the classical level and is used in the
functional integration to go to the quantum level, is itself of the form (16). The detailed
form of the even function f is largely irrelevant since, assuming7 that the dimension

5the scalar curvature is one example of such a function but there are many others
6the datas of Figure 10 are intimately related to the Dirac Hamiltonian, hence to the geometry of

“space”
7this hypothesis fails for conical singularities
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A

A

A

Figure 12. The triangle graph.

spectrum is simple, the spectral action (16) can be expanded in decreasing powers of
the scale Λ in the form

(17) Trace (f(D/Λ)) ∼
∑

k∈Π+

fk Λk

∫
− |D|−k + f(0) ζD(0) + o(1),

where the function f only appears through the scalars

(18) fk =

∫ ∞

0

f(v) vk−1 dv.

The term independent of the parameter Λ is the value at s = 0 (regularity at s = 0 is
assumed) of the zeta function,

(19) ζD(s) = Tr (|D|−s) .

The terms involving negative powers of Λ involve the full Taylor expansion of f at 0.

As explained above the gauge potentials make good sense in the framework of NCG
and come from the inner fluctuations of the metric. This gives meaning to the Feynman
graphs all of whose internal lines are fermionic lines such as the triangle graph of Figure
12. In [8] we analyze how the spectral action behaves under the inner fluctuations. The
main results are

• In dimension ≤ 4 the variation of the spectral action under inner fluctuations
gives the local counterterms for the fermionic graphs

ζD+A(0)− ζD(0) = −
∫
−AD−1 +

1

2

∫
− (AD−1)2 − 1

3

∫
− (AD−1)3 +

1

4

∫
− (AD−1)4,

• Assuming that the tadpole graph vanishes the above variation is the sum of a
Yang-Mills action and a Chern-Simons action relative to a cyclic 3-cocycle on
the algebra A.
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More precisely the variation under inner fluctuations of the scale independent terms of
the spectral action is given (cf. [8] for precise notations) in dimension 4 by

(20) ζD+A(0)− ζD(0) =
1

4

∫

τ0

(dA + A2)2 − 1

2

∫

ψ

(AdA +
2

3
A3).

Here τ0 is a Hochschild 4-cocycle and ψ a cyclic 3-cocycle both on the algebra A.
They are both computed as residues (cf. [8]) and under the above hypothesis, they
both vanish unless the dimension is ≥ 3 while the fluctuation (20) has a chance to be
positive for all A only in dimension 4.

The term in Λ2 in the spectral action (17) is proportional to
∫− ds2 which, in the usual 4-

dimensional Riemannian case by [30], gives the Einstein-Hilbert action functional with
the physical sign for the euclidean functional integral provided the moment f2 > 0
(which is the case if f is a positive function).

The term in Λ4 in the spectral action (17) is proportional to
∫− ds4 which, in the 4-

dimensional case, gives a cosmological term. As we shall see later the natural constraint
in the set-up of the functional integral will provide a homological meaning to this term
cf. equation (29) below.

4.2. Functional integral. The formulation of the Feynman integral for gravity is
highly dependent upon the chosen geometric set-up. Loosely speaking one should, in
the Euclidean framework, perform the functional integral on the space of all geometries
and the “no boundary proposal” ([29]) suggests to take all the 4-dimensional geome-
tries with a fixed three dimensional boundary. The standard Riemannian geometric
paradigm contains as basic ingredients a manifold M and the Riemannian metric given
in local coordinates by the gµν . It thus seems at first sight that since the functional
integral involves the sum over all geometries one would first need a good control of
the classification of four manifolds before being able to even get started. In our spec-
tral framework, it is the operator D that contains all the relevant spectral information
needed to evaluate the spectral action functional. But it is crucial to also include the
matter fields in order to take into account the full action S of gravity and matter (1)

S = SE + SSM

The key reason for dealing with noncommutative spaces is that a very simple modifi-
cation of the geometry of space-time obtained by making the product (in the sense of
(14)) of ordinary Euclidean space-time by a zero dimensional geometry gives ([6], [31])

• The group U of symmetries of gravity and matter (1) as the group of automor-
phisms (implementable in Hilbert space).

• The gauge bosons (including the Higgs) as the inner fluctuations (section (3.4))
of the metric.

• The action S = SE + SSM as the spectral action.
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In fact the spectral action contains additional terms such as a cosmological term, a term
in r H2 with r the scalar curvature and H the Higgs field, and a term in C2 with C the
Weyl curvature. Many of the free parameters of the standard model such as the Yukawa
masses and the Cabbibo-Kobayashi-Maskawa mixing matrix are simply encoded by the
zero dimensional geometry (Af ,Hf , Df ) where the letter f stands for “finite”. The
obtained values of the remaining couplings are physical in both their signs and size but
cannot have much significance until the renormalization group is brought into play. In
order to achieve this one needs to test the spectral action under the renormalization
group and the simplest way to proceed is to set up a functional integral using the
spectral action in the exponent. Since the latter is spectral it admits a huge group
of invariance, namely the group of unitary operators in Hilbert space. The difficulty
is to specify precisely the integration variable, which roughly speaking should be the
self-adjoint operator D corresponding to the most general noncommutative geometry
of the correct dimension, since there is no reason to restrict a priori the amount of
noncommutativity in the space-time coordinates. Since the inner fluctuations (section
3.4) act on D in a linear way it is natural to take D[D] as the formal integration
measure but one needs to write down the constraints fulfilled by D. We gave in [12]
(cf. [25]) abstract conditions on an operator D to be a Dirac operator on a given
smooth manifold M . We explained in [12] how to formulate these conditions in the
noncommutative case and expressed the hope that, in the commutative case, the stated
conditions single out not only the Dirac operators (cf. [12] and [25] for the proof) but
also the smooth manifolds among general compact spaces. This latter hope is still
unproved and in some sense things would be more interesting if one obtained in that
way a larger class of “pseudo-manifolds”.

The first observation we use to get started in setting up a functional integral on “all
four geometries” is that the following set of datas that come from a compact four
Riemannian spin manifold (M, g) are in fact independent (up to isomorphism) of the
choice of (M, g), they are8

• The Hilbert space H of L2-spinors
• The γ5 operator γ in H
• The charge conjugation operator J
• The decreasing filtration Hs ⊂ Hs′ , s > s′ of L2-spinors by Sobolev spaces

At the algebraic level (and as a consequence of working in dimension 4) the operators
γ and J fulfill the simple rules

γ2 = 1 , J2 = −1 , Jγ = γ J

with γ self-adjoint, while J is an antilinear isometry of H. The role of the decreasing
filtration by Sobolev spaces is to allow to define smoothness and not just the usual C0

set-up of C∗-algebras. Its origin lies in the notion of Rigged Hilbert space or Gelfand
triple ([26]).

8One can also fix the sign Sign(D) = F of the Dirac operator, cf. below.
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We can thus define a universal algebra C of “would be coordinates” as follows, it
consists of bounded operators a in H which together with their adjoints fulfill the
following conditions,

(21) [γ, a] = 0 , aHs ⊂ Hs , ∀s
which are certainly fulfilled by coordinates of a compact four Riemannian spin manifold.
So far the whole set-up is canonical and we now describe the two variables for the
functional integral which roughly correspond to

1) The manifold
2) The metric

1) The variable playing the role of the manifold is more precisely a “volume form” and
in specific terms is a Hochschild 4-cycle9

(22) c ∈ Z4(C, C)

which at the heuristic level gives a four dimensional projection of the noncommutative
space described by the universal algebra C.
2) The role of the “metric” is played by the operator D with

(23) D = D∗ , γ D = −D γ , J D = D J ,

which fulfills the linear condition

(24) DHs ⊂ Hs−1 , ∀s ,

so that in particular its domain is H1.

The main relation is the following polynomial equation which relates D, c and γ,

(25) 〈c,D(4)〉 = γ

where the pairing 〈c,D(4)〉 is defined as follows

(26) 〈c, D(4)〉 =
∑

a0(k)[D, a1(k)] . . . [D, a4(k)]

(In the case of an ordinary compact oriented spin manifold M , one obtains the cycle c as
follows, one lets Uk be an open cover of M by domains of local coordinates xj(k) (extended

9A general Hochschild n-cycle can be written in the form

c =
∑

a0(k)⊗ a1(k) ⊗ . . .⊗ an(k)

where the aj(k) ∈ C and the cycle condition is b c = 0 where the Hochschild boundary is

b(c) =
∑

(
n−1∑

0

(−1)j a0(k)⊗ . . .⊗ aj(k) aj+1(k) ⊗ . . .⊗ an(k)+(−1)n an(k)a0(k)⊗ . . . ⊗ . . .⊗ an−1(k))
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smoothly outside Uk) and x(k) be a smooth partition of unity subordinated to the covering.
Then up to normalization,

c =
∑

k,σ

ε(σ)
√

g x(k)⊗ xσ(1)(k) ⊗ . . .⊗ xσ(4)(k)

where the sum runs over all permutations σ of {1, . . . 4} and ε(σ) is the signature of the
permutation).
To obtain the algebra A of coordinates on the four dimensional projection associated
to the cycle c, one can start from the subalgebra of C generated by the components
aj(k) of the cycle c. These are easy to obtain linearly from c using the contraction

α(j)(c) = 〈 c , idj ⊗ α〉 ∈ C
where α ∈ C∗⊗ 4 is a linear form on the tensor power C⊗ 4 and the tensor c is contracted
except at the j-th factor. One then writes the basic commutation relations (9) and
(11) as follows

(27) [a, J b∗ J−1] = 0 , [[D, a], J b∗ J−1] = 0 , ∀ a = α(i)(c) , b = β(j)(c)

where both conditions are bilinear in c and the second is linear in D.

One can then begin to investigate a functional integral of the form

〈O 〉 = N
∫
O e−Tr(f(D))−<ψ̄, D ψ>−γ(c,D) D[ψ]D[ψ̄]D[D]D[c]

where the term γ(c,D) implements the constraints (25), (27), and O is a unitarily
invariant function O(ψ, ψ̄, c,D) of the variables of integration. A word of warning
before one gets started to say that this is just a “first shot” showing that there is a
way to formulate a functional integral involving the spectral action on the space of all
4-dimensional noncommutative geometries, but that many variants and refinements of
the basic idea are possible. Rather than using the undetermined observable O it is
preferable to add a source term in the exponent and experiment in trying to compute
the resulting effective action. One can also truncate the integral and work for instance
with a fixed value of the cycle c associated to a standard four geometry. One obtains in
that way a form of unimodular gravity on a fixed background manifold since c specifies
both the manifold and the volume form. In particular the cosmological term is canceled
by the overall normalization factor N and the term Tr(f(D)) is positive as long as the
function f is positive. It is natural to take f(x) = g(x2) with g decreasing so that it
makes ds2 = D−2 as small as possible. Note that by (24) the operator D cannot be
too big either.

The above functional admits a huge group of invariance, namely the subgroup U of the
unitary group of C determined by the condition

U = {U ∈ C ; U U∗ = U∗ U = 1 , U J U−1 = J}
It is of course necessary to treat the above functional integral as one treats gauge
theories i.e. developing the appropriate BRS formalism.
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In particular the unitary group G of the subalgebra A ⊂ C maps to the large symmetry
group U by the following “adjoint” representation,

u ∈ G → u JuJ−1 = uu∗0 , (uu∗0ξ = u ξ u∗ , ∀ξ ∈ H)

and this is the way the group of internal symmetries acts for the standard model [12].

Instead of fixing c and performing the integration over D one can go the other way and
fix D first, using the natural gauge fixing that makes this operator diagonal in a given
orthonormal basis of H and the theory of random (symplectic) matrices to express the
measure D[D] in terms of the eigenvalues. At fixed D one can bring in all the arsenal
of noncommutative geometry [10] to analyze the existence of cycles c fulfilling (25) and
hopefully to start integrating over such c. One can restrict to the following “regular”
subalgebra of C,

(28) C(D) = {a ∈ C ; t → Ft(a) , t → Ft([D, a]) ∈ C∞(R, C)}
where we use the notation

Ft(x) = eit|D|x e−it|D|

By [11] the map t ∈ R → Ft(x) plays the role of the geodesic flow. In dimension 4
the typical behavior of the eigenvalues10 λn of |D| is λn ∼ C n1/4 for some C > 0,
as follows from the H. Weyl theorem. Assuming this behavior one then has (by [10]
IV.2.γ, Theorem 8) the following homological interpretation of the cosmological term

f4 Λ4

∫
−D−4

in the spectral action (17): assuming (25) one has

(29)

∫
−D−4 = 〈c, φ〉

The right hand side is the pairing between cycles and cocycles in Hochschild cohomol-
ogy, and φ is the cyclic four cocycle φ which is given by (cf. [10] IV.1.α)

φ(a0, . . . , a4) = Tr′(γ a0[F, a1] . . . [F, a4]) , ∀aj ∈ C(D)

where Tr′(T ) = 1
2
Tr(F (FT + TF )) and the operator F is the sign of the operator D.

This operator Sign(D) = F fulfills

F 2 = 1 , F γ = −γ F , J F = F J

and the whole data (H,Hs, γ, J, F ) is in fact unique up to isomorphism. This is inti-
mately related to the higher dimensional form of the universal Grassmanian (cf. [34]).
In particular one sees that the Hochschild class of c is non-zero in H4(C(D), C(D)) if∫−D−4 6= 0 which is the case for the above behavior of the eigenvalues.

10in increasing size
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Remark 4.1. We have neglected in the above discussion of the constraints the quali-
tative one corresponding to (28) but the C1 condition should suffice, and means that

(30) [D, a]Hs ⊂ Hs , [D2, [D, a]]Hs ⊂ Hs−1 , ∀s , ∀ a = α(i)(c)

which is still polynomial in both c and D.

Remark 4.2. In the above set-up the cocycle c encodes both the algebra A i.e. the
manifold, as well as the volume form. To understand the simplest instance of the poly-
nomial relation (25) one can check that its simple one dimensional analogue specifies
the geometry of the circle M = S1 of length 2π by the equations

u−1 [D, u] = 1 , u u∗ = u∗ u = 1

which (taking the real structure J into account) admit only one irreducible represen-
tation in Hilbert space. Since (25) is linear in c, it is tempting to use the linear space
structure of the Hochschild cocycles to help in setting up the functional integral as
we did above. This allows in particular for a priori strange “superpositions” of actual
geometries (but the constraints (27) will no longer hold). One should remember how-
ever that this sets the same linearity on the “volume forms” dv =

√
gd4x and one might

need a Fadeev-Popov determinant to adjust to the correct choice in the transition from
unimodular gravity to the standard one.

Remark 4.3. It remains in particular to understand a good reason why the algebra
A should have a slight amount of noncommutativity, such as the one obtained for the
geometric realization of the standard model. This question motivated the results of
[18], [13], [14], [15] on the structure of “noncommutative spheres” characterized by the
following quantization of the Hochschild cycle c: one requires that

∃ e = e2 = e∗ ∈ Mq(A) , c = Ch2(e)

while the lower components Chj(e) (j = 0, 1) of the Chern character Ch(e) of the
projection e are all required to vanish. The algebra A is then generated by the matrix
components of e and it is quite remarkable that besides the usual sphere, this problem
singles out a large class of noncommutative manifolds. Both the computation (cf. [21])
of chiral anomalies [3] in the general framework of NCG, as well as the potential role of
quantum group extensions (at cubic root of 1) of the (euclidean form of the) Lorentz
group11 give directions for finer work to handle this question.

11while the Lorentz group is no longer a symmetry of space-time in the set-up of general relativity,
it still plays a crucial role at the infinitesimal local level as the structure group of the natural frame
bundle which encodes the principle of equivalence.
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