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Streszczenie

Rozprawa poświęcona jest wybranym problemom w analizie funkcjonalnej, których
rozwiązania opierają się na metodach teorii mnogości i topologii. Omawiamy cztery
tematy obejmujące zagadnienia takie jak niezmienniki przestrzeni Banacha, zbieżność
miar Radona oraz istnienie zanurzeń pewnych C*-algebr w algebrę Calkina.

W pierwszej części rozprawy badamy σ-ideały podzbiorów przestrzeni Banacha gen-
erowane przez hiperpłaszczyzny i analizujemy ich standardowe niezmienniki kardynalne:
addytywność, liczba pokryciowa, jednorodność i kofinalność. Obliczamy ich wartości dla
ośrodkowych przestrzeni Banacha oraz pokazujemy, że niesprzecznie zależą one tylko
od gęstości dla wszystkich przestrzeni Banacha. Pozostałe pytania sprowadzają się do
rozstrzygnięcia, czy dla każdej nieośrodkowej przestrzeni Banacha X następujące zdania
są dowodliwe w ZFC:

• X można pokryć przy pomocy ω1 hiperpłaszczyzn,
• wszystkie podzbiory X mocy mniejszej niż cf([dens(X)]ω) można pokryć przeliczal-

nie wieloma hiperpłaszyznami.

Pokazujemy także, że odpowiedzi na powyższe są twierdzące, jeśli ograniczymy się do jed-
nej z wielu dobrze zbadanych klas przestrzeni Banacha. Pierwsze pytanie związane jest z
problemem, czy każda zwarta przestrzeń Hausdorffa z małą przekątną jest metryzowalna,
a drugie z dużymi liczbami kardynalnymi.

Drugi temat dotyczy przestrzeni Banacha funkcji ciągłych na przestrzeniach zwartych.
Pokazujemy, że jeśli K jest ośrodkową i spójną przestrzenią zwartą, C(K) ma mało
operatorów (tzn. każdy ograniczony operator liniowy T : C(K) → C(K) jest postaci
T (f) = fg + S(f), gdzie S jest słabo zwarty oraz g ∈ C(K)) oraz przestrzeń C(K)
jest izomorficzna z przestrzenią C(L), to K i L są homeomorficzne z dokładnością do
skończenie wielu punktów. Następnie, dla każdej liczby naturalnej n > 0 konstruujemy,
przy założeniu zasady karo Jensena (♢), przestrzeń zwartą K mającą opisane powyżej
własności oraz wymiar pokryciowy równy n. Wnioskujemy, że jeśli L jest przestrzenią
zwartą taką, że C(K) i C(L) są izomorficzne, to dimL = n.

Trzeci temat dotyczy teorio-miarowych własności algebr Boole’a oraz powiązanych
z nimi przestrzeni Banacha. Definiujemy σ-scentrowane pojęcie forcingu, które forsuje
istnienie algebry Boole’a z własnością Grothendiecka i bez własności Nikodyma. W
szczególności dowodzimy, że istnienie takiej algebry jest niesprzeczne z negacją hipotezy
continuum. Skonstruowana przez nas algebra składa się z borelowskich podzbiorów
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zbioru Cantora oraz ma moc równą ω1. Pokazujemy też, jak usprawnić konstrukcję takiej
algebry otrzymanej przez Talagranda przy założeniu hipotezy continuum korzystając z
naszej metody.

Ostatnia część rozprawy poświęcona jest algebrze Calkina Q(ℓ2) tj. algebrze ogranic-
zonych operatorów na ℓ2 podzielonej przez ideał operatorów zwartych. Pokazujemy, że w
modelu Cohena nie istnieje *-zanurzenie algebry ℓ∞(Q(ℓ2))) w algebrę Q(ℓ2). Wniosku-
jemy z tego, że w modelu Cohena korona stabilizacji algebry Q(ℓ2) nie jest izomorficzna
z Q(ℓ2).

Słowa kluczowe: algebra Calkina, forcing, hiperpłaszczyzna, mało operatorów, mi-
ara Radona, przestrzeń Banacha, teoria mnogości, własność Grothendiecka, własność
Nikodyma, wymiar pokryciowy.



Abstract

The dissertation is devoted to selected problems in functional analysis whose solutions
rely on set-theoretic and topological methods. We discuss four topics involving issues
such as invariants of Banach spaces, convergence of Radon measures or the existence of
embeddings of various C*-algebras into the Calkin algebra.

In the first part we study the σ-ideals of subsets of Banach spaces generated by
hyperplanes and investigate their standard cardinal characteristics: the additivity, the
covering number, the uniformity and the cofinality. We determine their values for
separable Banach spaces, and we show that it is consistent that they depend only on the
density for all Banach spaces. The remaining questions can be reduced to deciding if
the following can be proved in ZFC for every nonseparable Banach space X:

• X can be covered by ω1-many of its hyperplanes,
• all subsets of X of cardinalities less than cf([dens(X)]ω) can be covered by countably

many hyperplanes.

We also answer these questions in the affirmative in many well-investigated classes of
Banach spaces. The first question is related to the problem whether every compact
Hausdorff space which has a small diagonal is metrizable and the second to large cardinals.

The second topic concerns Banach spaces of continuous functions on compact spaces.
We show that if K is a separable connected compact space, C(K) has few operators
(i.e. every bounded linear operator T : C(K) → C(K) is of the form T (f) = fg + S(f),
where S is weakly compact and g ∈ C(K)) and C(K) is isomorphic to C(L) for some
compact space L, then K and L are homeomorphic modulo finitely many points. Next,
for every natural number n > 0 we construct, assuming Jensen’s diamond principle
(♢), a compact space K that has the covering dimension equal to n and possesses the
above mentioned properties. We conclude that if L is a compact space such that C(L)
is isomorphic to C(K), then dimL = n.

The third topic concerns measure-theoretic properties of Boolean algebras and related
Banach spaces. We define a σ-centered notion of forcing that forces the existence of a
Boolean algebra with the Grothendieck property and without the Nikodym property. In
particular, we prove that the existence of such an algebra is consistent with the negation
of the continuum hypothesis. The algebra we construct consists of Borel subsets of the
Cantor set and has cardinality ω1. We also show how to apply our method to streamline
Talagrand’s construction of such an algebra under the continuum hypothesis.
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The last part of the dissertation is devoted to the Calkin algebra Q(ℓ2) i.e. the
C*-algebra of bounded operators on ℓ2 divided by the ideal of compact operators. We
show that in the Cohen model there is no *-embedding of ℓ∞-sum of Calkin algebras
into Q(ℓ2). We conclude that in the Cohen model the corona of the stabilization of Q(ℓ2)
is not isomorphic to Q(ℓ2).

Keywords: Banach space, Calkin algebra, covering dimension, few operators, forcing,
Grothendieck property, hyperplane, Nikodym property, Radon measure, set theory.
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Chapter 1

Introduction

1.1 Overview

The dissertation focuses on applications of set theory and general topology in functional
analysis. These include results on cardinal invariants of Banach spaces, constructions of
Banach spaces with special properties and the consistency of the non-existence of some
embeddings in the category of C*-algebras. Most of the results concern nonseparable
Banach spaces. Set-theoretic methods involve infinitary combinatorics, consistency
proofs by forcing and the use of additional axioms.

The history of applications of set theory and topology in the theory of Banach spaces
goes back to the foundations of functional analysis. It became clear from the very
beginning that even the most basic results strongly rely on the use of the axiom of
choice and basic topological principles such as the Baire category theorem or Tychonoff’s
theorem.

Along with the development of set theory it naturally turned out that many properties
of classical Banach spaces are closely related to combinatorial and topological structures.
For instance, the Banach space ℓ∞ of bounded sequences of real numbers is isometric to
the space C(βN) of continuous real-valued functions on the Čech-Stone compactification
of the natural numbers. Thus, the analysis of βN and the Boolean algebra of its clopen
subsets (which is isomorphic to P(N)) is a useful tool for investigating properties of ℓ∞
and related spaces (see e.g. [37, 64]).

More generally, the properties of Banach spaces of the form C(K) (where K is a
compact Hausdorff space) may be deduced from the topological properties of K. For
instance, K is metrizable if and only if C(K) is separable. If K is extremally disconnected
(which is equivalent to being projective in the category of compact Hausdorff spaces [54]),
then C(K) is an injective Banach space [76] (however, the problem if every injective
Banach space is isomorphic to C(K) for K extremally disconnected remains open).

Another advantage of Banach spaces of the form C(K) is the description of bounded
functionals as Radon measures on K coming from the Riesz representation theorem [119,
Theorem 18.4.1]. Moreover, if K is zero-dimensional, then Radon measures on K are
in the natural correspondence with finitely additive bounded measures on the Boolean
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2 1. Introduction

algebra Clop(K) consisting of clopen subsets of K. These facts will be crucial for many
of the results contained in the dissertation.

Among other examples of useful set-theoretic tools, we can mention almost disjoint
families i.e. uncountable families of subsets of N in which intersections of two distinct
members are finite. Such families are a source of interesting examples of Banach spaces.
For example, they were used in the construction of the famous Johnson-Lindenstrauss
space JL2, which is the first example of a Banach space that is not WCG, but whose
dual is WCG [70]. They also appear in the context of few operators and decompostions
[86]. Haydon used almost disjoint families to show that Banach spaces of continuous
functions on the Stone spaces of Boolean algebras with the Subsequential Completeness
Property have the Grothendieck property [67, Proposition 1B]. We use Haydon’s idea in
Chapter 3 in the proof of Theorem 3.4.8.

At the end of the last century it turned out that the answers for many natural
questions concerning nonseparable Banach spaces are independent of ZFC. Most known
examples include, among others, Kaplansky’s conjecture asking if there is a discontinuous
homomorphism from a Banach algebra of the form C(K) (with pointwise multiplication)
[24], the question whether every nonseparable Banach space admits an uncountable
biorthogonal system [65] or the question whether the ideal of compact operators on a
separable Hilbert space may be written as the sum of two properly smaller ideals [112].
There are also statements that are known to be consistent, but still open in ZFC. For
instance, Drewnowski and Roberts showed that the continuum hypothesis (CH) implies
that the Banach space ℓ∞/c0 is primary (i.e. for every decomposition ℓ∞/c0 = X ⊕ Y

at least one of the spaces X,Y is isomorphic to ℓ∞/c0) [37]. Many of our main results
consist of proofs of consistency or independence of ZFC involving the use of additional
axioms or the method of forcing (see e.g. Theorem 2.1.3, Theorem 3.4.9, Theorem
4.5.15).

Recently set-theoretic methods received a lot of attention also in the category of
C*-algebras. First examples come from the works of Akemann and Anderson [1, 2, 4–6].
Most of the results concern objects such as the algebra B(H) of bounded operators on
a separable Hilbert space H and the Calkin algebra Q(H) of bounded operators on H

modulo compact operators, which are treated as the non-commutative analogues of βN
and N∗ = βN\N (or ℓ∞ and ℓ∞/c0) respectively. For instance, due to works of Phillips,
Weaver and Farah [41, 106] the existence of outer automorphisms of the Calkin algebra
is independent of ZFC. Another issue is the universality in the category of C*-algebras.
It follows from CH that the Calkin algebra is universal in the class of C*-algberas of
density not bigger than c [46], while there are models of ZFC in which this statement is
false [133]. In Chapter 5 we discuss possible *-embeddings of ℓ∞-sums of Calkin algebras
into the Calkin algebra in the Cohen model.

The dissertation is divided into four independent parts, each presented in one of the
following chapters.
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Chapter 2: Coverings of Banach spaces and their subsets by hyperplanes

In this chapter we introduce and investigate some cardinal characteristics of σ-ideals
generated by hyperplanes in Banach spaces.

We say that a subspace of a Banach space X is a hyperplane of X if it is the kernel
of a non-zero bounded linear functional of X. For a Banach space X of dimension bigger
than 1 we consider the ideal I(X) consisting of all subsets of X that may be covered by
countably many hyperplanes and investigate its standard cardinal characteristics (which
are motivated by the characteristics of the ideal of Lebesgue measure zero sets and the
ideal of meager sets of the reals, cf. [14, p. 12]):

• add(X) = the minimal cardinality of a family of sets from I(X) whose union is
not in I(X),

• cov(X) = the minimal cardinality of a family of sets from I(X) whose union is
equal to X,

• non(X) = the minimal cardinality of a subset of X that is not in I(X),
• cof(X) = the minimal cardinality of a family of sets from I(X) such that each

member of I(X) is contained in some element of that family.

It turns out that the values of add and cof are trivial in the context of the considered
ideals. Namely, for any Banach space X of dimension bigger than 1 we have add(X) = ω1

and cof(X) = |X∗|, where X∗ is the dual space of X. Moreover, if X is separable, then
non(X) = ω1 and cov(X) = c (Theorem 2.1.1).

We determine the values of cov and non assuming additional axioms (the Generalized
Continuum Hypothesis GCH or Martin’s Maximum MM):

Theorem 2.1.3. Assume GCH or MM. Let X be a nonseparable Banach space. Then

(1) cov(X) = ω1,
(2) non(X) = dens(X) if cf(dens(X)) > ω,
(3) non(X) = dens(X)+ if cf(dens(X)) = ω.

Moreover, the same is consistent with any possible size of the continuum c. If violations of
the above equalities concerning non are consistent, then so is the existence of a measurable
cardinal.

We also calculate cov and non and for many classes of nonseparable Banach spaces
in ZFC (Theorem 2.1.6 and Theorem 2.1.7).

Surprisingly, in all cases we know the considered characteristics depend only on the
density of the corresponding Banach spaces. We conjecture that this holds in ZFC for
all Banach spaces.

Another interesting issues are the connections between the covering number and
an open problem concerning small diagonals in non-metrizable compact spaces (see
Proposition 2.4.10), and the problem of the existence of overcomplete sets in nonseparable
Banach spaces (Theorem 2.1.3).

This chapter covers the content of the paper [56] (joint work with Piotr Koszmider).
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Chapter 3: A Banach space C(K) reading the dimension of K

This chapter is devoted to the question whether the dimension of a compact space K
may be an isomorphic invariant of the Banach space C(K) of continuous functions on
K.

The classical theorem of Miljutin says that if K and L are uncountable compact
metric spaces, then the Banach spaces C(K) and C(L) are isomorphic. In particular,
C([0, 1]n) and C([0, 1]m) are isomorphic for any n,m > 0, so in general the dimension of
the underlying compact space is not an invariant of given Banach space of continuous
functions. Koszmider constructed an example of a compact space K such that C(K)
is not isomorphic to any C(L) for L zero-dimensional [80]. We show that under the
assumption of Jensen’s diamond principle (♢) this result may be improved. Namely, we
show the following:

Theorem 3.4.9. Assume ♢. Then for every k ∈ ω ∪ {∞} there is a compact Hausdorff
space K such that dim(K) = k and whenever C(K) ∼ C(L), dim(L) = k.

The proof of this theorem consists of two parts. First, we show that if K is a perfect
separable compact Hausdorff space such that C(K) has few operators (i.e. every bounded
operator T : C(K) → C(K) is of the form T (f) = gf + S(f), where S : C(K) → C(K)
is weakly compact), then every L such that C(K) ∼ C(L) differs from K only on a finite
set (Theorem 3.2.19). More precisely: there are open subsets U ⊆ K,V ⊆ L and finite
sets E ⊆ K,F ⊆ L such that U, V are homeomorphic and K = U ∪ E,L = V ∪ F . It
follows that if C(L) ∼ C(K), then dimK = dimL.

Then using ♢ for every k ∈ ω ∪ {∞} we construct a compact Hausdorff space of
dimension k with the above mentioned properties (see Theorem 3.4.8).

This chapter covers the content of the paper [55].

Chapter 4: Grothendieck vs Nikodym

This chapter focuses on a longstanding open problem concerning the existence of a
Boolean algebra with the Grothendieck property, but without the Nikodym property.

We say that a Boolean algebra B has the Grothendieck property if the Banach space
C(St(B)) of continuous real-valued functions on the Stone space of B has the Grothendieck
property (i.e. the weak*-convergence of sequences in C(St(B))∗ is equivalent to the weak
convergence). We say that B has the Nikodym property if every pointwise convergent
(here by points we mean elements of B) sequence of finitely additive bounded measures
on B is bounded in norm.

In 1984 Talagrand constructed assuming CH an example of a Boolean algebra with the
Grothendieck property and without the Nikodym property. His algebra consists of Borel
subsets of the Cantor set with certain symmetry property (we call such sets balanced).
We modify Talagrand’s approach, which allows us to obtain a consistent example of
such Boolean algebra in a model satisfying ¬CH (Theorem 4.5.15). More precisely, we
define a σ-centered notion of forcing P that forces the existence of a Boolean algebra



1.1. Overview 5

of cardinality ω1 with the Grothendieck property and without the Nikodym property.
In the model obtained from P we have p = s = cov(M) = ω1 (Corollary 4.5.14). We
also show how to construct a balanced Boolean algebra with the Grothendieck property
under CH using our modification of Talagrand’s method (Theorem 4.4.8)

This chapter covers the content of the paper [57] (joint work with Agnieszka Widz).

Chapter 5: The Calkin algebra in the Cohen model

In this chapter we discuss the problem of the existence of *-embeddings of some C*-
algebras of density c into the Calkin algebra i.e. the quotient algebra Q(ℓ2) = B(ℓ2)/K(ℓ2)
of bounded operators on ℓ2 modulo compact operators.

Recently, the algebra Q(ℓ2) has received a lot of attention in the context of applications
of set theory, since it shares some important properties with P(N)/F in. For instance,
CH implies that Q(ℓ2) is universal in the class of C*-algebras of the density continuum
[46]. Inspired by a result of [20] which says, that in the Cohen model ℓ∞(ℓ∞/c0) does
not embed into ℓ∞/c0 as a Banach space, we show:

Theorem 5.3.3. In the Cohen model there is no *-embedding of ℓ∞(c0(ω2)) into Q(ℓ2).
In particular, there is no *-embedding of ℓ∞(Q(ℓ2)) into Q(ℓ2).

As a consequence we get that Q(ℓ2) is not isomorphic to the corona of the stabilization
of the Calkin algebra.

Theorem 5.3.8. In the Cohen model there is no *-embedding of Q(Q(ℓ2) ⊗ K(ℓ2)) into
Q(ℓ2).
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1.2 Notation and terminology

Most of the notation that we use should be standard. For unexplained terminology check
[38, 39, 69].

Set theory

For the purpose of the thesis we denote by N the set of positive integers and we put
ω = N ∪ {0}. The symbols Q and R denote the rationals and the reals respectively. The
cardinality of a set A is denoted by |A|. For n ∈ N, ωn stands for the n-th uncountable
cardinal, ωω is the smallest cardinal which is greater than ωn for each n ∈ N. The
cardinality of R is denoted by c and is called the continuum. If α is an ordinal number,
then cf(α) denotes its cofinality. Lim stands for the class of all limit ordinals. Odd
and Even stand for the classes of odd and even ordinals respectively. A subset S ⊆ ω1

is called stationary, if it has non-empty intersection with every closed and unbounded
subset of ω1.

The symbol [A]<ω denotes the family of all finite subsets of A, [A]ω is the family
of countable subsets of A, cf([A]ω) denotes the cofinality of [A]ω considered as the set
partially ordered by inclusion, that is the minimal cardinality of a family of countable
subsets of A such that any countable subset of A is included in an element of the family.

By f ↾ A we mean the restriction of a function f to a set A. If f is a partial function,
then f ↾ A = f ↾ (dom(f) ∩A), where dom(f) is the domain of f . The symbol

∑
n∈ω fn

will always denote the pointwise sum of functions fn (if the sum exists).

Axioms

ZFC denotes Zermelo-Fraenkel set theory with the axiom of choice. We say that a
sentence φ is relatively consistent with a set of axioms if its negation ¬φ cannot be
proven from those axioms unless assuming ZFC leads to a contradiction. We usually skip
the word “relatively”. A sentence φ is independent of ZFC if both φ,¬φ are consistent
with ZFC. The continuum hypothesis CH means ‘c = ω1’. The generalized continuum
hypothesis GCH means 2κ = κ+ for every cardinal κ. MM stands for Martin’s Maximum
and PFA for Proper Forcing Axiom. It is known that MM implies PFA and PFA implies
c = ω2 (for the definitions of MM and PFA and proofs of mentioned facts check [69]).
Jensen’s diamond principle (♢) stands for the following sentence (for other equivalent
formulations see [28]): there is a sequence of sets A ⊆ α for α < ω1 such that for any
subset A ⊆ ω1 the set {α : A∩ α = Aα} is stationary in ω1. It is a well-known fact, that
♢ implies CH.

General topology

All topological spaces we consider are Hausdorff. We denote the closure of A by A.
For a topological space X the set ∆(X) = {(x, x) : x ∈ X} is called the diagonal of
X. The covering dimension (also known as Lebesgue covering dimension or topological
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dimension, [38, Definition 1.6.7]) of X is denoted by dimX. The set X ′ is the subset of
X consisting of non-isolated points in X. A sequence (xn)n∈ω is said to be non-trivial, if
it is not eventually constant. We say that a topological space X is c.c.c. if every family
of pairwise disjoint open subsets of X is countable. We say that X is scattered if there
every subset Y ⊆ X contains an isolated point in Y . By basic open subset of [0, 1]ω1

we mean the product
∏

α<ω1 Uα where each Uα ⊆ [0, 1] is a relatively open interval with
rational endpoints and Uα = [0, 1] for all but finitely many α’s.

The Cantor set

For a sequence s, its m-th term will be denoted by sm. By the Cantor set we mean
the set C = {−1, 1}N of the sequences with values in {−1, 1} with the usual product
topology. The set {−1, 1}n consists of all sequences of length n with values in {−1, 1}.

For s ∈ {−1, 1}n we put

⟨s⟩ = {x ∈ C : x ↾ n = s},

where x ↾ n is the sequence of first n elements of x. The family of all Borel subsets of C
will be denoted by Bor(C). For a set Z ⊆ C the symbol χZ stands for the characteristic
function of Z.

The symbol λ will denote the normalized Haar measure on C (considered as a group
with coordinate-wise multiplication). In particular, λ(⟨s⟩) = 1/2n for s ∈ {−1, 1}n.

Boolean algebras.

For the basic terminology concerning Boolean algebras see [25, 53, 78]. We will focus on
Boolean algebras consisting of Borel subsets of the Cantor set endowed with the standard
operations ∪,∩, \. The symmetric difference of setsA andB will be denoted byA△B. For
n ∈ N, An is the finite subalgebra of Bor(C) generated by {⟨s⟩ : s ∈ {−1, 1}n}. The family
of all clopen subsets of C will be denoted by Clop(C). Note that Clop(C) =

⋃
n∈NAn.

For a Boolean algebra A we denote by at(A) the set of its atoms. In particular,
at(An) = {⟨s⟩ : s ∈ {−1, 1}n}. The Stone space of A will be denoted by St(A). For
A ∈ A we denote by [A] the corresponding clopen subset of St(A). A family {Hn}n∈N ⊆ A
is called an antichain, if Hn ∩Hm = ∅ for n ̸= m. For a Boolean algebra B and a subset
B ⊆ C we put

F(B, B) = {A ∩B,A\B : A ∈ B}.

Banach spaces

We will use one symbol ∥ · ∥ to denote norms in all considered Banach spaces - this
should not lead to misunderstandings. For a Banach space X, its density dens(X) is
the minimal cardinality of a dense subset in X (in the norm topology). X∗ stands
for the Banach space of bounded linear functionals on X (with the operator norm).
For S ⊆ X by span(S) we denote the smallest linear subspace of X containing S and
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span(S) stands for its closure. The symbol ker(x∗) denotes the kernel of a functional
x∗ ∈ X∗. If xi ∈ X,x∗

i ∈ X∗ for i ∈ I are such that x∗
i (xj) = δi,j , then (xi, x

∗
i )i∈I is

called a biorthogonal system. If moreover X = span{xi : i ∈ I}, then such a system is
called fundamental. For the definition and various characterizations of WLD spaces see
[60].

For a compact space K we denote by C(K) the Banach space of real-valued continuous
functions on K with the standard supremum norm. If x ∈ K, then δx ∈ C(K)∗ is defined
by δx(f) = f(x). CI(K) denotes the subset of C(K) of functions with the range included
in the interval [0, 1]. For Banach spaces X and Y , a bounded linear operator T : X → Y

is said to be weakly compact if the closure of T [BX ] is compact in the weak topology in
Y (here BX stands for the unit ball in X). The symbol X ∼ Y means that X and Y

are isomorphic as Banach spaces. B(X) denotes the algebra of all bounded operators
on a Banach space X (with the operator norm). An operator T : C(K) → C(L) is
multiplicative, if T (fg) = T (f)T (g).

For any set A by c0(A) we denote the Banach space of functions f : A → R such that
for each ε > 0 there is finitely many a ∈ A with |f(a)| > ε with the supremum norm.
For 1 ≤ p < ∞ by ℓp(A) we denote the Banach space of functions f : A → R such that
∥f∥p =

∑
a∈A |f(a)|p < ∞. By ℓ∞(A) we mean the Banach space of bounded functions

f : A → R with the supremum norm. The symbol ℓc∞(A) denotes the subspace of ℓ∞(A)
consisting of functions with countable supports (where the support of f ∈ ℓ∞(A) is the
set {a ∈ A : f(a) ̸= 0}). We also write c0(N) = c0, ℓp(N) = ℓp and ℓ∞(N) = ℓ∞. We will
denote by L2(C) the real Hilbert space of square-integrable (with respect to λ) functions
on C with the inner product

⟨f, g⟩ =
∫

C
fgdλ.

Radon measures on compact spaces

For a compact space K we will identify the space of bounded linear functionals on C(K)
with the space M(K) of Radon measures on K (the identification is given by the Riesz
representation theorem). For every α < ω1 we have an embedding Eα : C([0, 1]α) →
C([0, 1]ω1) given by Eα(f) = f ◦πα, where πα : [0, 1]ω1 → [0, 1]α is the natural projection.
For a Radon measure µ on [0, 1]ω1 we will denote by µ ↾ C([0, 1]α) the restriction of
µ treated as a functional on C([0, 1]ω1) to the subspace Eα[C([0, 1]α)]. Equivalently,
µ ↾ C([0, 1]α) is a measure on [0, 1]α given by

µ ↾ C([0, 1]α)(A) = µ(π−1
α (A)).

For any measure µ we denote by |µ| its variation.
We say that a sequence (µn)n∈N ⊆ M(K) converges weakly, if it is convergent in

the weak topology of the Banach space M(K). We say that (µn)n∈N ⊆ M(K) is weak*-
convergent, if it converges in the weak* topology, where M(K) is treated as the dual
space to C(K).
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For a Radon measure µ on K a Borel set F ⊆ K is a Borel support of µ, if µ(X) = 0
for every Borel X ⊆ K\F . We say that a sequence (µn)n∈N of Radon measures has
pairwise disjoint Borel supports, if there are pairwise disjoint Borel sets (Fn)n∈N ⊆ K

such that Fn is a Borel support of µn for every n ∈ N. Note that, unlike the support of
a measure, a Borel support is not unique.

Measures on Boolean algebras

For the general theory of measures on Boolean algebras see [119, Chapter V]. Throughout
Chapter 4 we will discuss canonical measures (witnesses to the lack of the Nikodym
property) φn for n ∈ N, given by the formula

φn(A) =
∫

A
δndλ

for A ∈ Bor(C), where δn : C → {−1, 1}, δn(x) = xn.
In what follows a measure on a Boolean algebra A is always a finitely additive signed

bounded measure on A. We will call such measures concisely “measures on A”. If µ is
a measure on a Boolean algebra A and B ⊆ A is a subalgebra, then µ ↾ B denotes the
restriction of µ to B. For a measure µ on A we define its variation |µ| as a measure on
A given by

|µ|(X) = sup{|µ(A)| + |µ(B)| : A,B ∈ A, A,B ⊆ X,A ∩B = ∅},

and its norm (total variation) as

∥µ∥ = |µ|(1),

where 1 is the biggest element of A. Note that for every n ∈ N we have |φn| = λ and
∥φn∥ = 1. If µ is non-negative and ∥µ∥ = 1, then µ is called a probability measure.

Every measure on a Boolean algebra A extends uniquely to a Radon measure on the
space St(A) (see [119, Section 18.7]). If µ is a measure on a Boolean algebra A, then
µ̃ denotes the corresponding Radon measure on St(A). In particular, ∥µ̃∥ = ∥µ∥ and
|µ̃| = |µ|.

A sequence (µn)n∈N of measures on a Boolean algebra A is said to be pointwise
convergent, if there is a measure µ on A such that µn(A) n→∞−−−→ µ(A) for every A ∈ A.
It is a well-known fact, that a sequence of Radon measures (µ̃n)n∈N on St(A) is weak*-
convergent if and only if the sequence (µn)n∈N is bounded in the norm and pointwise
convergent on A.

Forcing

Most of the notation concerning forcing should be standard. For the unexplained
terminology see [14, 69, 89]. The universe of sets will be denoted by V . For a forcing
notion P we denote by V P a generic extension of V obtained by forcing with P. The
evaluation of a constant c in the class V is denoted by cV .
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For the purpose of Section 4.5 we will identify Borel subsets of C with their codes
with respect to some absolute coding (see [69, Section 25]). We say that a notion of
forcing P is σ-centered , if there are countably many families An ⊆ P for n ∈ N such
that

⋃
n∈N An = P and for every n ∈ N and every finite set {pi}i∈I ⊆ An there is p ∈ P

so that p ≤ pi for all i ∈ I.
A P-name ẋ is a called nice name for a subset of M ∈ V , if it is of the form

ẋ =
⋃

m∈M {m̌} ×Am, where each Am is an antichain in P and m̌ is the canonical name
for m. Given an automorphism σ : P → P and a P-name ẋ = {(ẏi, pi) : i ∈ I} we denote
σ(ẋ) = {(σ(ẏi), σ(pi)) : i ∈ I} (cf. [69, p. 221]). In particular, we have σ(m̌) = m̌ for
m ∈ V .

C*-algebras

For basic terminology and information on C*-algebras see [15, 43]. By ℓ2 we denote the
Hilbert space of square-summable sequences of complex numbers with the standard inner
product ⟨(an)n∈N, (bn)n∈N⟩ =

∑∞
n=1 anbn. The symbol B(ℓ2) denotes the C*-algebra of

bounded operators on ℓ2 (with the standard operator norm). The ideal of compact
operators in B(ℓ2) is denoted by K(ℓ2). We define the Calkin algebra as the quotient
Q(ℓ2) = B(ℓ2)/K(ℓ2). For a C*-algebra A we denote by M(A) its multiplier algebra
and define its corona as Q(A) = M(A)/A (see Definition 5.3.4).

We say that an element p ∈ A of a C*-algebra A is a projection, if p = p2 = p∗. The
set of all projections in A is denoted by Proj(A) and forms a poset with the ordering
given by p ≤ q if and only if pq = p. If P,Q ∈ Proj(B(ℓ2)), then P ≤K Q means that
P − PQ ∈ K(ℓ2) or - equivalently - that π(P ) ≤ π(Q), where π : B(ℓ2) → Q(ℓ2) is the
canonical quotient map.



Chapter 2

Coverings of Banach spaces and
their subsets by hyperplanes

2.1 Introduction

All Banach spaces considered in this chapter are of dimension bigger than 1 and over
the reals. A hyperplane of a Banach space X is a one-codimensional closed subspace of
X. It is easy to see that it is nowhere dense in X. The family of all hyperplanes of X
will be denoted by H(X). Given a Banach space X one can define the hyperplane ideal
I of X as

I(X) = {Y ⊆ X : ∃F ⊆ H(X) Y ⊆
⋃

F , F countable}.

That is, I(X) is the family of all subsets of X which can be covered by countably many
hyperplanes of X. By the Baire category theorem X ̸∈ I(X) for any Banach space X.
We consider the standard cardinal characteristics of the ideal I(X):

• add(X) is the minimal cardinality of a family of sets from I(X) whose union is
not in I(X),

• cov(X) is the minimal cardinality of a family of sets from I(X) whose union is
equal to X,

• non(X) is the minimal cardinality of a subset of X that is not in I(X),
• cof(X) is the minimal cardinality of a family of sets from I(X) such that each

member of I(X) is contained in some element of that family.

Such cardinal characteristics are standard tools for investigating the combinatorial
properties of a σ-ideal. The most known case are their applications to the understanding
of the ideal of Lebesgue measure zero sets and the ideal of meager sets of the reals (see
e.g. [14]). It is easy to observe that if the ideal is proper and contains all singletons
we have the following inequalities: add ≤ cov ≤ cof and add ≤ non ≤ cof. The purpose
of this chapter is to investigate the possible values of the above cardinals for the ideal
I(X) and understand how they depend on X. A somewhat surprising conclusion is
that the values depend almost entirely only on the density of X and the X∗ or even are
fixed for all separable and all nonseparable Banach spaces. The first result presented in

11
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Section 2.3.1 describes these values for all separable Banach spaces. It is an immediate
consequence of appropriately formulated result from [77]:

Theorem 2.1.1. Suppose that X is a separable Banach space of dimension bigger than
1. Then the following equalities hold:

• add(X) = ω1,
• non(X) = ω1,
• cov(X) = c,
• cof(X) = c.

In fact the values of add and cof are always trivial (Propositions 2.3.2, 2.3.3) due
to an elementary fact that H ⊆ G implies H = G for any two G,H ∈ H(X) any X

(Proposition 2.2.1). The results from Section 2.3 provide also much information about
the general case including the nonseparable case:

Theorem 2.1.2. Suppose that X is a Banach space of dimension bigger than 1. Then
the following equalities and inequalities hold:

• add(X) = ω1,
• ω1 ≤ cov(X) ≤ c,
• dens(X) ≤ non(X) ≤ cf([dens(X)]ω),
• cof(X) = |X∗|.

Proof. Propositions 2.3.2, 2.3.3, 2.3.4, 2.3.5.

So the interesting cardinal characteristics are cov and non. First we note that making
additional (but diverse) set theoretic assumptions (which are known to be independent
of ZFC) the values of cov and non are completely determined by the density of the space
or even fixed. For non this follows just from results on cardinal arithmetic and Theorem
2.1.2:

Theorem 2.1.3. Assume the Generalized Continuum Hypothesis GCH or Martin’s
Maximum MM. Let X be a nonseparable Banach space. Then

(1) cov(X) = ω1,
(2) non(X) = dens(X) if cf(dens(X)) > ω,
(3) non(X) = dens(X)+ if cf(dens(X)) = ω.

Moreover the same is consistent with any possible size of the continuum c. If violations of
the above equalities concerning non are consistent, then so is the existence of a measurable
cardinal.

Proof. Propositions 2.3.5, 2.4.10, 2.5.4, 2.5.5, 2.5.6 and the fact that MM implies PFA.

Not only consistent set-theoretic hypotheses determine the values of cov. Also a
well-known topological statement which is unknown to be provable but known to be
consistent fixes the value of cov.
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Theorem 2.1.4. Assume that all compact Hausdorff spaces with a small diagonal are
metrizable. Let X be a nonseparable Banach space. Then

cov(X) = ω1.

Proof. Lemma 2.4.7.

For the definition of a space with a small diagonal see Definition 2.4.5. In fact a
weaker natural topological hypothesis has the same impact on cov (see Question 2.6.2).
The following main questions remain open:

Question 2.1.5. Can one prove in ZFC any of the following sentences?

(1) Every nonseparable Banach space can be covered by ω1 of its hyperplanes.
(2) In any Banach space X of dimension bigger than 1 each subset of cardinality

smaller than cf([dens(X)]ω) can be covered by countably many hyperplanes.

The positive answer to the above questions would settle the values of cov an non in
ZFC as in Theorem 2.1.3. Note that by Theorem 2.1.2 (3) in every infinite dimensional
Banach space X there is a subset of cardinality cf([dens(X)]ω) which cannot be covered
by countably many hyperplanes. Attempting to prove the sentences of Question 2.1.5
for all nonseparable Banach spaces we manage to prove them in many cases:

Theorem 2.1.6. Suppose that X is any nonseparable Banach space belonging to one of
the following classes:

(1) X admits a fundamental biorthogonal system,
(2) X is of the form C(K) for K scattered, Hausdorff compact,
(3) X contains an isomorphic copy of ℓ1(ω1),
(4) The dual ball BX∗ of X∗ has uncountable tightness in the weak∗ topology.

Then X can be covered by ω1 hyperplanes, i.e. cov(X) = ω1.

Proof. Propositions 2.4.4, 2.4.9, 2.4.8, Lemmas 2.4.6, 2.4.7.

Note that this implies that spaces like c0(κ), ℓp(κ) for 1 ≤ p < ∞, and any κ > 1,
reflexive spaces, WLD spaces (by (1)), ℓ∞(κ), L∞({0, 1}κ) for any κ > 1, (by (3)) satisfy
the conclusion of the above theorem.

Theorem 2.1.7. Suppose that X is any Banach space of dimension bigger than 1
belonging to one of the following classes:

(1) X admits a fundamental biorthogonal system,
(2) X has density ωn for some n ∈ N.

Then each subset of X of cardinality smaller than cf([dens(X)]ω) can be covered by
countably many hyperplanes, i.e. non(X) = cf([dens(X)]ω).

Proof. Propositions 2.5.1 and 2.5.3.
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Note that (1) above implies that spaces like c0(κ), ℓp(κ) for 1 ≤ p < ∞, spaces ℓ∞(κ),
L∞({0, 1}κ) for any κ > 1 (by a result of [27] since ℓ2(dens(X)) is a quotient of such
spaces X), reflexive spaces, WLD spaces satisfy the conclusion of the above theorem.
Note that a Banach space X of density ωn for n ∈ N may have cardinality arbitrarily
bigger than ωn as |X| = dens(X)ω = ωω

n = c · ωn by Proposition 2.2.2.
Let us also note one application of our results. Recall that a subset Y of a Banach

space X is overcomplete ([115], [85]) if |Y | = dens(X) and every subset Z ⊆ Y of
cardinality dens(X) is linearly dense in X. The following constitutes a progress on
Question 39 from [85].

Theorem 2.1.8. Assume the Proper Forcing Axiom PFA. Let X be a Banach space
such that cf(dens(X)) > ω1. Then X does not admit an overcomplete set. Moreover this
statement is consistent with any possible size of the continuum c.

Proof. By Theorem 2.1.3 the hypothesis implies that every nonseparable Banach space
X can be covered by ω1 many hyperplanes {Hα : α < ω1}. If Y ⊆ X and |Y | = dens(X),
then by cf(dens(X)) > ω1 there is α < ω1 such that |Hα ∩Y | = dens(X), so Z = Hα ∩Y
witnesses that Y is not overcomplete.

The structure of the chapter is the following. Section 2.2 contains preliminaries.
Section 2.3 establishes Theorems 2.1.1 and 2.1.2. Section 2.4 includes progress on
Question 2.1.5 (1) and arrives at Theorems 2.1.3 (1), 2.1.4 and 2.1.6. Section 2.5 includes
progress on Question 2.1.5 (2) and arrives at Theorems 2.1.3 (2), (3) and 2.1.7. The
last Section 2.6 discusses the perspectives for further research and states additional
questions.

No knowledge of logic or higher set-theory is required from the reader to follow the
chapter. This is because all consistency results are obtained by applying consistency
results already present in the literature.

2.2 Preliminaries

2.2.1 Hyperplanes

Let us recall here some elementary and well-known facts concerning hyperplanes in
Banach spaces.

Lemma 2.2.1. Suppose that X is a Banach space. Then the following hold.

(1) If H,G are hyperplanes of X and H ⊆ G, then H = G.
(2) If a hyperplane H is contained in a countable union

⋃
i∈NHi of hyperplanes Hi,

then H = Hi for some i ∈ N.

Proof. (1) Every hyperplane in a Banach space X is a kernel of some non-zero bounded
functional and kernels of f, g ∈ X∗ are different if and only if f and g are linearly
independent (3.1.13, 3.1.14 of [119]).
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For (2) assume that H ̸⊆ Hi for any i ∈ ω. Then Hi ∩H are nowhere dense in H.
Hence by the Baire category theorem

⋃
i∈ω Hi ∩H has empty interior in H, which leads

to contradiction with H =
⋃

i∈ω Hi ∩H. Now use (1).

2.2.2 Cardinalities of Banach spaces

Let us recall here some well-known facts concerning cardinalities of Banach spaces. The
first one follows from the Lemma 2.8 of [13] and the fact that (κω)ω = κω.

Proposition 2.2.2. If X is a Banach space, then dens(X)ω = |X|ω = |X|.

Proposition 2.2.3. If X is a Banach space of dimension bigger than 1, then |X∗| =
|H(X)|.

Proof. Every hyperplane in a Banach space X is a kernel of some non-zero bounded
functional and kernels of f, g ∈ X∗ are different if and only if f and g are linearly
independent (3.1.13, 3.1.14 of [119]). So |X∗| = c · |H(X)|. If f, g ∈ X∗ are linearly
independent, then the kernels of f + λg are different for different choices of λ ∈ R\{0}.
So c ≤ |H(X)| and so |X∗| = |H(X)|.

Note that |X∗| is not determined by |X| or dens(X). By Proposition 2.2.2 we have
dens(c0(c)) = |c0(c)| = dens(ℓ1(c)) = |ℓ1(c)| = c and dens(ℓ∞(c)) = |ℓ∞(c)| = 2c while
c0(c)∗ = ℓ1(c) and ℓ∗1(c) = ℓ∞(c).

2.2.3 Ideals

Proposition 2.2.4. Let X be a Banach space of dimension bigger than 1. Then
add(X) ≤ cov(X) ≤ cof(X) and add(X) ≤ non(X) ≤ cof(X).

Proof. This is elementary. Since I(X) contains all singletons and is a σ-ideal, Lemma
1.3.2 of [14] applies.

2.3 Basic results on the values of the cardinal characteris-
tics

2.3.1 Separable Banach spaces

It turns out that the values of our cardinal characteristics on separable Banach spaces
are the same. We include the proof of the following result for the convenience of the
reader.

Proposition 2.3.1 ([77, Theorem 2.4]). Let X be a separable Banach space. Then there
exists a set Y ⊆ X of cardinality c such that for every hyperplane H of X the set H ∩ Y
is finite.
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Proof. Let {xn : n ∈ N} ⊆ X be linearly dense in X and consist of norm one vectors.
Let

yλ =
∑
n∈N

λnxn

for each λ ∈ (0, 1/2). We claim that Y = {yλ : λ ∈ (0, 1/2)} satisfies the theorem.
Let H be a hyperplane x∗ ∈ X∗ be the norm one nonzero linear bounded functional
whose kernel is H. We have lim supn→∞

n
√

|x∗(xn)| ≤ supn∈N
n
√

|x∗(xn)| ≤ 1 and so the
formula

f(λ) =
∑
n∈N

x∗(xn)λn

defines an analytic function on (−1, 1). f ≡ 0 on (−1, 1) only if x∗(xn) = 0 for each
n ∈ N, which is not the case since x∗ is not the zero functional on X. By the properties
of analytic functions f cannot have infinitely many zeros in (0, 1/2), which means that
0 = f(λ) = x∗(

∑
n∈B λ

nxn) = x∗(yλ) only for finitely many λ ∈ (0, 1) as required.

Theorem 2.1.1. Suppose that X is a separable Banach space of dimension bigger than
1. Then the following equalities hold:

• add(X) = ω1,
• non(X) = ω1,
• cov(X) = c,
• cof(X) = c.

Proof. |H(X)| ≤ c if X is separable as hyperplanes are determined by continuous
functionals and such are determined by their values on a dense set. So by Proposition
2.2.4 it is enough to prove that non(X) = ω1 and cov(X) = c. Let Y be the set from
Proposition 2.3.1 and Y ′ ⊆ Y any set such that |Y ′| = ω1. If Y ′ is covered by countably
many hyperplanes {Hn}n∈N, then there is n ∈ N for which Hn contains an infinite subset
Z ⊆ Y ′, so Hn = span(Z) = X, which is a contradiction. Hence non(X) = ω1.

Assume now that X is covered by κ < c sets from I(X). Then X is covered by κ

hyperplanes, so there is a hyperplane H containing an infinite subset of Y and again we
get a contradiction. Hence cov(X) = c.

Note that the first and last equations are also special cases of Propositions 2.3.2 and
2.3.3.

2.3.2 General Banach spaces

Proposition 2.3.2. Let X be a Banach space of dimension bigger than 1. Then

add(X) = ω1.

Proof. It is clear that add(X) ≥ ω1. If f, g ∈ X∗ are linearly independent, then the
kernels of f + λg are different hyperplanes for different choices of λ ∈ R\{0}. So let F
be any collection of ω1-many distinct hyperplanes. We have F ⊆ I. However

⋃
F ̸∈ I

because otherwise if {Hi : i ∈ N} ⊆ H and
⋃

F ⊆
⋃

i∈NHi, then for every H ∈ F we
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have H = Hi for some i ∈ N by Proposition 2.2.1 which contradicts the fact that F is
uncountable.

Proposition 2.3.3. Let X be a Banach space of dimension bigger than 1. Then

cof(X) = |X∗|.

Proof. Let F be a cofinal family in I(X). Without losing generality we can assume
that F consists of countable sums of hyperplanes. By Lemma 2.2.1 every set in F
contains only countably many hyperplanes, so |F| ≥ |X∗|. Moreover |F| is not greater
than the cardinality of the family of all countable sets of hyperplanes which is equal to
|X∗|ω = |X∗| by Proposition 2.2.2. Thus |F| = |X∗|.

Proposition 2.3.4. Let X be a Banach space of dimension bigger than 1. Then

dens(X) ≤ non(X) ≤ cf([dens(X)]ω).

If cf(dens(X)) = ω, then dens(X) < non(X).

Proof. Assume that Y ⊆ X and |Y | < dens(X). Then span(Y ) is a proper subspace of
X and so it is contained in some hyperplane and hence Y ∈ I, so dens(X) ≤ non(X).

Let {xα : α < dens(X)} be a dense subset of X. Let F ⊆ [dens(X)]ω be a family
which is cofinal in [dens(X)]ω and of cardinality cf([dens(X)]ω). By Proposition 2.3.1
for each F ∈ F the subspace XF = span{xα : α ∈ F} ⊆ X contains a subset YF such
that |YF | = ω1 and it cannot be covered by countably many hyperplanes in XF . Put
Y =

⋃
F ∈F YF . We claim that Y ̸∈ I(X) and |Y | = [dens(X)]ω. If Y were covered by

countably many hyperplanes Hn of X, there would be F ∈ F such that Hn ∩XF ̸= XF

for all n ∈ N which is a contradiction with the choice of YF . Hence Y ̸∈ I(X). Also
|Y | = ω1 · |F| = ω1 · cf([dens(X)]ω) = cf([dens(X)]ω) as dens(X) is uncountable.

Now assume that cf(dens(X)) = ω. If Y ⊆ X and |Y | = dens(X), Y =
⋃

n∈N Yi with
|Yi| < dens(X), then every Yi is contained in some closed subspace of X and hence in a
hyperplane Hi for i ∈ N. Thus Y ∈ I.

Proposition 2.3.5. Let X be a Banach space of dimension bigger than 1. Then

ω1 ≤ cov(X) ≤ c.

In particular, under CH, cov(X) = ω1 for every nonseparable Banach space X. If
cf(dens(X)) > ω, then cov(X) ≤ cf(dens(X)). In particular if dens(X) = ω1, then
cov(X) = ω1.

Proof. Since I(X) is a σ-ideal, we have ω1 ≤ cov(X). Let f, g ∈ X∗ be linearly
independent. Then for every x ∈ X there are (a, b) ∈ R\{(0, 0)} such that af(x)+bg(x) =
0. Thus the family of hyperplanes {ker af + bg : (a, b) ∈ R2\{(0, 0)}} of cardinality c

covers X.
Let κ = dens(X) and let {xα : α < κ} be a dense subset of X. Let κ = sup{αξ :

ξ < cf(κ)}. Let Xξ = span{xα : α < αξ} for ξ < cf(κ). Each Xξ is a proper subspace
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of X since the density of X is κ > αξ. Also every element x ∈ X is in the closure of a
countable subset of {xα : α < κ}, and so by the uncountable cofinality of κ we conclude
that x ∈ Xξ for some ξ < cf(κ).

2.4 Covering nonseparable Banach spaces with ω1 hyper-
planes

By Proposition 2.3.5 and Theorem 2.1.1 if we assume CH we have cov(X) = ω1 for
all Banach spaces X. In this section we investigate whether cov(X) = ω1 may hold
for all nonseparable Banach spaces without this assumption (Note that by Theorem
2.1.1 if CH fails, then cov(X) > ω1 for all separable Banach spaces). We prove that the
value of cov is indeed ω1 for many classes of nonseparable Banach spaces (Propositions
2.4.4, 2.4.8, 2.4.9) and that consistently it holds for all Banach spaces in the presence
of diverse negations of CH (Proposition 2.4.10). The deepest observations rely heavily
on set-theoretic topological results of [71], [36], [35] concerning small diagonals and
countable tightness in compact Hausdorff spaces (Definition 2.4.5).

Lemma 2.4.1. Suppose that X,Y are Banach spaces and T : X → Y is a bounded linear
operator whose range is dense in Y . Then cov(Y ) ≤ cov(X).

Proof. If 0 ̸= y∗ ∈ Y ∗, then T ∗(y∗) ̸= 0 because the range of T is dense in Y , so a
covering of Y by hyperplanes induces a covering of X by hyperplanes which is of the
same cardinality which proves cov(X) ≤ cov(Y ).

Lemma 2.4.2. For every nonseparable Banach space X there is a linear bounded
operator T : X → ℓ∞(ω1) with nonseparable range. In particular, all values of the
cardinal characteristic cov on nonseparable Banach spaces are bounded by the values on
nonseparable subspaces of ℓ∞(ω1).

Proof. Every Banach space is isometric to a subspace of C(K) ⊆ ℓ∞(K), where K =
BX∗ . So we may assume that X ⊆ ℓ∞(κ) for some uncountable cardinal κ. As X is
nonseparable, it contains an uncountable discrete set D. This fact is witnessed by the
coordinates from some set A ⊆ κ of cardinality ω1. That is there exist ε > 0 such that
for every distinct d, d′ ∈ D we have is |d(α) − d′(α)| > ε for some α ∈ A. Consider the
restriction operator R : X → ℓ∞(A). It is clear that the range is nonseparable by the
choice of A. To conclude the last part of the lemma take any nonseparable Banach space
X and consider the operator T as in the first part of the lemma and let Y be the closure
of the range of T . Using Lemma 2.4.1 we conclude that cov(X) ≤ cov(Y ).

Let us now prove a simple but useful:

Lemma 2.4.3. Let X be a Banach space. The following conditions are equivalent:

(1) cov(X) = ω1.
(2) X is a union of ω1 hyperplanes.
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(3) There is A ⊆ X∗ \ {0} of cardinality ω1 such that for every x ∈ X there is x∗ ∈ A

such that x∗(x) = 0.
(4) There is a bounded linear operator T : X → ℓ∞(ω1) such that

(1) for every α < ω1 there is x ∈ X such that T (x)(α) ̸= 0.
(2) for every x ∈ X there is α < ω1 such that T (x)(α) = 0.

Proof. The equivalence of the first three items is clear. Assume (3) and let us prove (4).
Let {Hα : α < ω1} be the hyperplanes that cover X and let x∗

α ∈ X∗ be such that Hα

is the kernel of x∗
α and ∥x∗

α∥ = 1 for all α < ω1. Let T (x)(α) = x∗
α(x). Condition (a)

follows from the fact that x∗
α ̸= 0 and condition (b) from the fact that Hαs cover X.

Now assume (4) and let us prove (3). Condition (a) implies that x∗
α = T ∗(δα) is a

nonzero element of X∗, and so its kernel is a hyperplane. Condition (b) implies that the
kernels of x∗

αs cover X.

Proposition 2.4.4. Let X be a nonseparable Banach space. Each of the following
sentences implies the next.

(1) X admits a fundamental biorthogonal system.
(2) There is a bounded linear operator T : X → c0(ω1) with nonseparable range (i.e.

X is not half-pcc in the terminology of [33]).
(3) cov(X) = ω1.

In particular for every nonseparable WLD Banach space X we have cov(X) = ω1.

Proof. Let {(xα, x
∗
α) : α < κ} be a fundamental biorthogonal system. Define T : X →

ℓ∞(ω1) by T (x)(α) = x∗
α(x). As T (xα) = χ{α} ↾ ω1 ∈ c0(ω1) and X is the closure of the

linear span of {xα : α < ω1} we conclude that T [X] ⊆ c0(ω1). T (xα) = χ{α} for α < ω1

witnesses the fact that the range is nonseparable.
Now assume (2). As the range of T is nonseparable, by passing to an uncountable set

of coordinates we may assume that for all α < ω1 there is x ∈ X such that T (x)(α) ̸= 0.
So item (4) of Lemma 2.4.3 is satisfied, and hence cov(X) = ω1.

To make the final observation use the fact that WLD Banach spaces admit funda-
mental biorthogonal systems e.g. by the results of [134].

Note that the paper [33] contains many results on properties of Banach spaces X
which imply item (2) of Lemma 2.4.4, for example this happens when X∗ contains a
nonmetrizable weakly compact subset. To obtain more Banach spaces X satisfying
cov(X) we need some topological considerations. First recall the following:

Definition 2.4.5. Let K be a compact Hausdorff space.

(1) We say that K has a small diagonal if for every uncountable subset A of K2 \∆(K)
there is an uncountable B ⊆ A whose closure is disjoint from ∆(K).

(2) We say that K has countable tightness (is countably determined) if whenever
K ∋ x ∈ A for A ⊆ K, then there is a countable B ⊆ A such that x ∈ B.
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In the following lemma the implication from (3) to (4) is the result of [71].

Lemma 2.4.6. Suppose that K is a compact Hausdorff space. Each of the following
sentences implies the next.

(1) For every A ⊆ K of cardinality ω1 there is a continuous f : K → R such that f ↾ A

is injective.
(2) For every A = {(xα, yα) : α < ω1} ⊆ K2 \ ∆(K) of cardinality ω1 there is a

continuous f : K → R such that

{α : f(xα) ̸= f(yα)}

is uncountable.
(3) K has a small diagonal.
(4) K is countably tight.

Proof. Assume (1). Let A ⊂ K2 be a set of cardinality ω1 disjoint from the diagonal. Let
A = {(xα, yα) : α < ω1}. Put L = {xα, yα : α < ω1} and let f : K → R be continuous
and f ↾ L injective. Then f(xα) ̸= f(yα) for each α < ω1, so we obtain (2).

Assume (2). Let A ⊂ K2 be uncountable. We may assume that A is of cardinality
ω1 and so A = {(xα, yα) : α < ω1}. Let f : K → R be continuous and such that

{α : f(xα) ̸= f(yα)}

is uncountable. Then g : K2 → R defined by g(x, y) = |f(x) − f(y)| is continuous and
g ↾ A is non-zero. Hence there exist ε > 0 and an uncountable subset A′ ⊆ A such
that g(a) > ε for a ∈ A′. It follows that the closure of A′ is disjoint from diagonal as
g ↾ ∆(K) = 0 which completes the proof of (3).

For the last implication see the proof of [71, Corollary 2.3].

It is easy to see that the one-point compactification of an uncountable discrete space
is countably tight but does not have a small diagonal, so (4) does not imply (3). We do
not know if the other implications reverse (cf. Question 2.6.2).

Lemma 2.4.7. Let X be a Banach space. Each of the following sentences implies the
next.

(1) The dual ball BX∗ does not have a small diagonal in the weak∗ topology.
(2) There is {x∗

α : α < ω1} ⊆ BX∗ \ {0} such that {α : x∗
α(x) ̸= 0} is at most countable

for each x ∈ X.
(3) There is A ⊆ BX∗ of cardinality ω1 such that δx ↾ A is not injective for each x ∈ X,

where δx ∈ C(BX∗) is given by δx(x∗) = x∗(x).
(4) cov(X) = ω1.

Proof. Suppose (1). By the implication from (2) to (3) of Lemma 2.4.6 there is A =
{(y∗

α, z
∗
α) : α < ω1} ⊆ B2

X∗ \ ∆(BX∗) of cardinality ω1 such that for every continuous
f : K → R the set {α : f(y∗

α) ̸= f(z∗
α)} is countable. Of course x ∈ X defines a
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continuous function on the dual ball in the weak∗ topology so {α : (y∗
α − z∗

α)(x)} is
countable for all x ∈ X. So we put x∗

α = y∗
α − z∗

α and we obtain (2).
Assume (2). Put A = {x∗

α : α < ω1}. Then for each x ∈ X image of δx ↾ A is
countable, so δx ↾ A is not injective since |A| > ω.

Now suppose (3). Consider µα = xα − yα ∈ X∗, where {{xα, yα} : α < ω1} = [A]2.
Then the kernels of µα’s cover X.

Since it is consistent that all nonmetrizable compact spaces do not have small
diagonals, it is also consistent that sentences (1)-(4) from Lemma 2.4.7 are equivalent in
the class of nonseparable Banach spaces. It is still an open question whether this holds
in ZFC.

Proposition 2.4.8. If X is a Banach space which contains an isomorphic copy of
ℓ1(ω1), then cov(X) = ω1. In particular this holds for any space which contains ℓ∞ like
ℓ∞(κ), L∞({0, 1}κ), ℓ∞/c0 etc.

Proof. By the main result of [128], if a Banach space X contains ℓ1(ω1), then there
is a continuous surjection Φ: BX∗ → [0, 1]ω1 , where BX∗ is considered with the weak∗

topology. As countable tightness is preserved by continuous map and [0, 1]ω1 is not
countably tight (consider 1[0,ω1) ∈ {1[0,α) : α < ω1}) we conclude that BX∗ is considered
with the weak∗ topology is not countably tight. By Lemma 2.4.6 BX∗ does not have a
small diagonal, and so by Lemma 2.4.7 we conclude that cov(X) = ω1.

Proposition 2.4.9. If K is compact nonmetrizable and scattered, then cov(C(K)) = ω1.

Proof. K must be uncountable. Let A ⊆ K be any subset of cardinality ω1. As a
continuous image of a scattered compact space is scattered compact we conclude that
for any continuous f : K → R the image of f is countable and so f ↾ A is not injective
which implies that δf ↾ {δx : x ∈ A} is not injective. Hence C(K) satisfy condition (3)
of Lemma 2.4.7.

Proposition 2.4.10.

(1) PFA implies that every nonseparable Banach space X satisfies cov(X) = ω1.
(2) It is consistent with any possible size of the continuum, that every nonseparable

Banach space X satisfies cov(X) = ω1.

Proof. It is shown in [36] that assuming PFA every compact Hausdorff space with a
small diagonal is metrizable. So by Lemma 2.4.7 we conclude that cov(X) = ω1 for every
nonseparable Banach space X under PFA. Similarly Theorem 5.8 from [35] shows that it
is consistent with any possible size of the continuum (in models obtained from CH model
by adding Cohen reals) that each compact space with countable tightness has a small
diagonal if and only if it is metrizable. However, non-countably-tight compact spaces
cannot have a small diagonal (in ZFC) by the result of [71] that is the implication from
(3) to (4) in Lemma 2.4.6. So by Lemma 2.4.7 we conclude that cov(X) = ω1 for every
nonseparable Banach space X in these models as well.
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2.5 Covering small subsets of Banach spaces by countably
many hyperplanes

By Proposition 2.3.4 if X is a Banach space of dimension bigger than 1 the value of
non(X) (i.e. the minimal cardinality of a set not covered by countably many hyperplanes)
is in the interval [dens(X), cf([dens(X)]ω)] if cf(dens(X)) is uncountable and is in the
interval [dens(X)+, cf([dens(X)]ω)] if cf(dens(X)) is countable. As we will see below, just
purely set-theoretic known results imply that under many assumptions these intervals
reduce to singletons and so the values of non(X) are completely determined by dens(X).
It remains open, however, if non(X) = cf([dens(X)]ω)] for every nonseparable Banach
space without any extra set-theoretic assumptions.

Proposition 2.5.1. If X is a Banach space with density ωn for n ∈ N\{0}, then
non(X) = dens(X) = cf([dens(X)]ω).

Proof. By induction on n ∈ N, using the decomposition of ωn into smaller ordinals one
proves that cf([ωn]ω) = ωn. Now Proposition 2.3.4 implies that non(X) = ωn.

Proposition 2.5.2. Let X be a Banach space of density κ and dimension bigger than 1.
Suppose that there are functionals {x∗

α : α < κ} ⊆ X∗ such that for every x ∈ X the set
Zx = {α : x∗

α(x) ̸= 0} is countable. Then non(X) = cf([κ]ω).

Proof. Let λ < cf([κ]ω) and Y = {xα : α < λ} ⊆ X. By the assumption the family
Z = {Zx : x ∈ Y } is not cofinal in [κ]ω. Pick A ∈ [κ]ω, which is not included in any
element of Z. Then for every x ∈ Y there is α ∈ A such that x∗

α(x) = 0, so x is in kernel
of x∗

α. Thus kernels of x∗
αs for α ∈ A cover Y , which proves that non(X) ≥ cf([κ]ω). The

inequality non(X) ≤ cf([κ]ω) is true by Proposition 2.3.4.

Proposition 2.5.3. If a Banach space X of density κ and dimension bigger than 1
admits a fundamental biorthogonal system, then non(X) = cf([κ]ω).

Proof. Let {xα, x
∗
α}α<κ be a fundamental biorthogonal system. For every x pick a

countable set Lx ⊂ κ such that x ∈ span{xα : α ∈ Lx}. Then Zx = {α : x∗
α(x) ̸= 0} ⊆

Lx, so Zx is also countable. Hence x∗
αs satisfy conditions of Proposition 2.5.2.

Proposition 2.5.4. Assume that κω = κ for all regular κ > ωω. Let X be a Banach
space of dimension bigger than 1. Then

(1) If cf(dens(X)) = ω, then non(X) = dens(X)+,
(2) If cf(dens(X)) > ω, then non(X) = dens(X).

In particular the above equations hold under GCH or MM.

Proof. By assumption we have cf([κ]ω) = κ for all regular κ > ωω. If κ is singular of
uncountable cofinality then κω = Σµ<κ µ

ω = Σµ<κ µ = κ so cf([κ]ω) = κ. If cf(κ) = ω

then κω > κ and κω ≤ (κ+)ω = κ+ so cf([κ]ω) ≤ κ+. Hence for dens(X) ≥ ωω the
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equalities (1) and (2) follow from Proposition 2.3.4. The case when dens(X) = ωn for
some n ∈ N is covered by Proposition 2.5.1.

For a limit cardinal κ of uncountable cofinality under GCH we have

κω = Σλ<κλ
ω ≤ Σλ<κλ

+ ≤ κ2 = κ

so κω = κ. For successor cardinals we have (κ+)ω = κωκ+ ≤ (κ+)2 = κ+.
If MM holds, then by Theorem 37.13 of [69] we have κω = κω1 = κ for each regular

κ > ω1.

Proposition 2.5.5. It is consistent with any possible size of the continuum that for
every Banach space X of dimension bigger than 1 we have

(1) If cf(dens(X)) = ω, then non(X) = dens(X)+,
(2) If cf(dens(X)) > ω, then non(X) = dens(X).

Proof. Start with a model V of GCH and increase the continuum using a c.c.c. forcing
(e.g. add Cohen reals). The cardinals and their cofinalities do not change. Moreover
[κ]ω ∩V is cofinal in [κ]ω as any countable set of ordinals in a c.c.c. extension is included
in a countable set in the ground model, so the calculations from the proof of Proposition
2.5.4 remain true.

Proposition 2.5.6. For every Banach space X of dimension bigger than 1 we have

(1) If cf(dens(X)) = ω, then non(X) = dens(X)+,
(2) If cf(dens(X)) > ω, then non(X) = dens(X),

unless there is a measurable cardinal in an inner model.

Proof. If there is no measurable cardinal in an inner model, then there is an inner model
M which satisfies GCH and satisfies the covering lemma i.e. [κ]ω1 ∩M is cofinal in [κ]ω1

for each cardinal κ (see [32]). This implies that [κ]ω ∩ M is cofinal in [κ]ω for each
cardinal κ. So since M satisfies GCH, Proposition 2.5.4 implies the theorem. (For a
similar argument see the proof of Theorem 13.3 (d) in [111].)

Recall that assuming the existence of a suitably large cardinal the consistency of
2ωn < ωω and 2ωω = ωω+k for any n ∈ N and k > 1 was proved in [93] (this problem
was also considered with weaker assumptions in [59]). In this case cf([ωω]ω) = ωω+k

because [ωω]ω =
⋃

{[A]ω : A ∈ F} for any cofinal family in [ωω]ω and |
⋃

{[A]ω : A ∈
F}| ≤ c · |F| = |F| as c < ωω. It follows that cf([ωω+m]ω) ≥ ωω+k for 0 ≤ m < k. So
not only the existence of Banach spaces of density ωω which assume the value of non
smaller than in Propositions 2.5.4, 2.5.5 if k ≥ 3 but also of a regular density ωω+1 is
not excluded by cardinal arithmetic in the considered model.
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2.6 Final remarks

2.6.1 Densities of quotients of Banach spaces

The famous Separable Quotient Problem asks if every infinite dimensional Banach space
has a separable infinite dimensional quotient. In the direction of bounding the densities
of quotients of Banach spaces, one can easily prove that every Banach X space has
a infinite dimensional quotient whose density is not bigger then c. In this light the
following is natural to ask:

Question 2.6.1. Is it true in ZFC that every nonseparable Banach space has a quotient
of density ω1?

By Propositions 2.3.5 and 2.4.1 the positive answer to question 2.6.1 would imply
that cov(X) = ω1 for every Banach space X. It would also imply that the Separable
Quotient Problem consistently has positive answer since it is proved in [130] that it
is consistent that all Banach spaces of density ω1 have infinite dimensional separable
quotients. In fact, for this it would be enough to obtain the consistency of the positive
answer to Question 2.6.1 with the additional set-theoretic assumptions of [130], like the
PFA.

2.6.2 Banach spaces with no fundamental biorthogonal systems

Theorems 2.1.6 and 2.1.7 determine the values of cov and non for Banach spaces admitting
fundamental biorthogonal systems. So looking for spaces witnessing different values of
cov or non we should understand better spaces not admitting such systems. The first and
classical example of such a space is the subspace ℓc∞(c+) of ℓ∞(c+) consisting of elements
with countable supports ([58], [110]). However it contains a copy of ℓ∞ and so ℓ1(ω1) so
cov(ℓc∞(λ)) = ω1 for any infinite λ by Theorem 2.1.6. Moreover Proposition 2.5.2 implies
that non(ℓc∞(λ)) = cf([λ]ω) for any λ > c+ as dens(ℓc∞(λ)) = λ in such a case. Other
reason for not admitting a fundamental biorthogonal system in a nonseparable space is
not admitting any uncountable biorthogonal system: The Kunen line and the examples
of [91], [83], [18] have all density ω1, so they have cov = ω1 by Proposition 2.3.5. The
only known Banach space of density bigger than ω1 with no uncountable biorthogonal
systems is that of [19]. However it is of the form C(K) with K scattered so Theorem
2.1.6 implies that cov = ω1. It also has density ω2, so Theorem 2.1.7 implies that its non

is ω2 = cf([ω2]ω).

2.6.3 A question on compact Hausdorff spaces

By Lemma 2.4.7 positive answer to the following question would imply that cov(X) = ω1

for every nonseparable Banach space X:

Question 2.6.2. Is it provable that every nonmetrizable compact Hausdorff space K
admits a subspace L ⊆ K of cardinality ω1 such that for no f ∈ C(K) the restriction
f ↾ L is injective?
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Recall that it was proved in [34] that every nonmetrizable compact Hausdorff space
admits a subspace of size ω1 which is nonmetrizable. Moreover the above result and
Proposition 11 of [36] imply that every nonmetrizable compact Hausdorff space K admits
a subspace L ⊆ K of cardinality ω1 such that for no f ∈ C(K) we have f−1[{f(x)}] = {x}
for all x ∈ L.





Chapter 3

A Banach space C(K) reading the
dimension of K

In [80] Koszmider showed that there is a compact Hausdorff space K such that whenever
L is compact Hausdorff and the Banach spaces C(K) and C(L) are isomorphic, the
dimension of L is greater than zero. In the light of this result Pełczyński asked, whether
there is a compact space K with dim(K) = k for given k ∈ ω\{0}, such that if
C(K) ∼ C(L), then dim(L) ≥ k ([84, Problem 4]). We show that the answer to this
question is positive, if we assume Jensen’s diamond principle (♢). Namely, we prove the
following:

Theorem 3.4.9. Assume ♢. Then for every k ∈ ω ∪ {∞} there is a compact Hausdorff
space K such that dimK = k and whenever C(K) ∼ C(L), dimL = k.

Note that typically the dimension of K is not an invariant of the Banach space
C(K) under isomorphisms. For instance, the classical result by Miljutin says that if
K,L are compact metrizable uncountable spaces, then the Banach spaces C(K) and
C(L) are isomorphic ([95]). This also shows that C(K) with the desired property cannot
admit any complemented copy of C(L) where L is compact, metrizable and uncountable
(indeed, if C(K) ∼ X ⊕ C(L), then C(K) ∼ X ⊕ C(L) ⊕ C([0, 1]n) ∼ C(K) ⊕ C([0, 1]n)
for any n ∈ ω). Another result by Pełczyński says that if G is an infinite compact
topological group of weight κ, then C(G) is isomorphic to C({0, 1}κ) ([102]).

On the other hand the space C(K) remembers many topological and set-theoretic
properties of K. For example Cengiz showed that if C(K) ∼ C(L), then K and L have
the same cardinalities ([21]). If K is scattered, then by Pełczyński-Semadeni theorem L

is scattered as well ([103]). In this case both spaces must be zero-dimensional. If K is
an Eberlein compact, then L is also Eberlein ([98]). If K is a Corson compact and L is
homogeneous, then L is Corson ([108]).

Although the isomorphic structure of C(K) does not remember the dimension of
K, the metric structure of C(K) contains such information, since by the Banach-Stone
theorem K and L are homeomorphic, whenever C(K) and C(L) are isometric. Similar
results were obtained by Gelfand, Kolmogorov and Kaplansky in the category of rings of

27
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functions on compact spaces and in the category of Banach lattices ([52, 75]). It is also
worthy to mention that the covering dimension of K is an invariant for the space Cp(K)
of continuous functions on K with the pointwise topology ([104]).

The key property of the space K that we construct to prove Theorem 3.4.9 is
the fact that the Banach space C(K) has few operators i.e. every bounded operator
T : C(K) → C(K) is of the from T = gI + S, where g ∈ C(K) and S is weakly compact.
Schlackow showed that if the Banach space C(K) has few operators, C(K) ∼ C(L) and
both spaces K,L are perfect, then K and L are homeomorphic ([117]). We improve this
result under the assumption that K is separable and connected.

Theorem 3.2.19. Suppose that K is a separable connected compact Hausdorff space such
that C(K) has few operators and L is a compact Hausdorff space such that C(K) ∼ C(L).

Then K and L are homeomorphic modulo finite set i.e. there are open subsets
U ⊆ K,V ⊆ L and finite sets E ⊆ K,F ⊆ L such that U, V are homeomorphic and
K = U ∪ E,L = V ∪ F .

The first example (under the continuum hypothesis) of a Banach space C(K) with
few operators appeared in the work of Koszmider ([80]). Later, Plebanek showed how to
remove the use of CH from such constructions ([107]). Considered spaces have many
interesting properties (cf. [84, Theorem 13]) e.g. C(K) is indecomposable Banach space,
it is not isomorphic to any of its proper subspaces nor any proper quotient, it is a
Grothendieck space, K is strongly rigid (i.e. identity and constant functions are the only
continuous functions on K) and does not include non-trivial convergent sequences. For
more examples and properties of Banach spaces C(K) with few operators see [11, 40, 82,
84, 87, 88].

In the further part of the chapter we show how to construct a Banach space C(K)
with few operators, where K has arbitrarily given dimension. Theorem 3.4.9 is an almost
immediate consequence of Theorem 3.2.19 and the following theorem.

Theorem 3.4.8. Assume ♢. For each k > 0 there is a compact Hausdorff, separable,
connected space K such that C(K) has few operators and dimK = k.

Our construction is a modification of one of the spaces K from [80, Theorem 6.1],
which is a separable connected compact space such that C(K) has few operators. The
original space is constructed as an inverse limit of metrizable compact spaces (Kα)α<ω1 ,
where on intermediate steps we add suprema to countable families of functions in the
lattice C(Kα) for α < ω1, using the notion of strong extension. However, the considered
families of functions are very general, which leads to the problem that described operation
may rise the dimension of given space and the final space is infinite-dimensional. We
show that under ♢ we are able to limit the choice of functions in the way that we can
control the dimension of the spaces at each step. In order to control the dimension
we introduce the notion of essential-preserving maps. Similar ideas were studied in
Fedorchuk’s work ([48–50]). For instance, Fedorchuk considered maps that are ring-like,
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monotonic and surjective, which implies that they are essential-preserving (however,
those notions are much stronger and are not applicable in our context).

One may also consider other notions of dimension such as small or large inductive
dimension. However, since Theorem 3.1.12 does not work if we replace the covering
dimension with one of the inductive dimensions, we do not know if the spaces we
constructed have finite inductive dimensions.

The structure of the chapter is the following. Section 3.1 contains necessary results
about covering dimension. In section 3.2 we prove Theorem 3.2.19 characterizing
properties of spaces C(K) with few operators preserved under isomorphisms. In Section
3.3 we develop tools for controlling dimension in some inverse limits of systems of compact
spaces. Section 3.4 contains the description of the construction leading to the main
theorem of the chapter. The last section includes remarks and open questions.

3.1 Covering dimension

This section is devoted to the basic properties of covering dimension and its behavior in
inverse limits of compact spaces. We start with several basic definitions. Recall that for
a family A of sets we define its order as the largest integer n such that A contains n+ 1
sets with non-empty intersection. If there is no such n, then we say that the order of A
is ∞.

Definition 3.1.1. [38, Definition 1.6.7] Let X be a topological space. We say that
covering dimension of X (denoted by dimX) is not greater than n, if every finite
open cover of X has a finite open refinement of order at most n. We say that dimX = n

if dimX ≤ n, but not dimX ≤ n − 1. If there is no n such that dimX = n, then we
say that dimX = ∞.

Definition 3.1.2. [38, Definition 1.1.3] Let X be a topological space. A closed set
P ⊆ X is a partition between A and B if there are disjoint open sets U ⊇ A, V ⊇ B

such that X\P = U ∪ V .

Definition 3.1.3. [22, p. 16] A family {(Ai, Bi) : i = 1, 2, . . . , n} of pairs of disjoint
closed subsets of a space X is called essential if for every family {Ci : i = 1, 2, . . . , n}
such that for each i ≤ n the set Ci is a partition between Ai and Bi we have

n⋂
i=1

Ci ̸= ∅.

For the proof of the following theorems see [22, Lemma 3.2, Theorem 3.3].

Theorem 3.1.4. For a normal space X the following conditions are equivalent:

(1) a family {(Ai, Bi) : i = 1, 2, . . . , n} of pairs of disjoint closed sets is not essential
in X,
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(2) for each i = 1, 2, . . . n there are disjoint open sets Ui, Vi such that Ai ⊆ Ui, Bi ⊆ Vi

and
n⋃

i=1
(Ui ∪ Vi) = X,

(3) for each i = 1, 2, . . . n there are disjoint closed sets Ci, Di such that Ai ⊆ Ci, Bi ⊆
Di and

n⋃
i=1

(Ci ∪Di) = X.

Theorem 3.1.5. For a normal space X the following conditions are equivalent:

(1) dimX ≥ n,
(2) there is an essential family in X consisting of n pairs.

Definition 3.1.6. Let π : L → K be a continuous function between compact Hausdorff
spaces. We will say that π is essential-preserving if for every family {(Ai, Bi) : i =
1, 2, . . . , n} essential in K, the family {(π−1(Ai), π−1(Bi)) : i = 1, 2, . . . , n} is essential
in L.

Note that Theorem 3.1.5 immediately implies that if π : L → K is essential-preserving,
then dimL ≥ dimK.

Lemma 3.1.7. [22, Lemma 16.1] Assume that Kγ is an inverse limit of a system
{Kα : α < γ}, where Kα are compact Hausdorff spaces. If A,B are closed disjoint
subsets of Kγ then there is α < γ such that πγ

α[A], πγ
α[B] are disjoint subsets of Kα,

where πγ
α stands for the canonical projection from Kγ into Kα.

Theorem 3.1.8. Let {Kα : α < γ} be an inverse system of compact Hausdorff spaces
with inverse limit Kγ such that for each limit ordinal β < γ, Kβ is an inverse limit of
{Kα : α < β}. Assume that for each α < γ the map πα+1

α : Kα+1 → Kα is surjective and
essential-preserving. Then the canonical projection πγ

1 : Kγ → K1 is essential-preserving.
In particular dimKγ ≥ dimK1.

Proof. We will prove by induction on α that πα
1 : Kα → K1 is essential-preserving. For

successor ordinal α+ 1 it is enough to observe that if {(Ai, Bi) : i = 1, . . . , n} is essential
in K1, then {((πα

1 )−1(Ai), (πα
1 )−1(Bi)) : i = 1, . . . , n} is essential in Kα and hence

{((πα+1
1 )−1(Ai), (πα+1

1 )−1(Bi)) : i = 1, . . . , n} = {((πα+1
α )−1((πα

1 )−1(Ai)),
(πα+1

α )−1((πα
1 )−1(Bi))) : i = 1, . . . , n} is essential in Kα+1.

Let α be a limit ordinal and that for each β < α the map πβ
1 : Kβ → K1 is essential-

preserving. Let {(Ai, Bi) : i = 1, . . . , n} be an essential family in K1 and assume that
{(πα

1 )−1(Ai), (πα
1 )−1(Bi)) : i = 1, . . . , n} is not essential in Kα. Then by Theorem 3.1.4

for each i ≤ n there are closed disjoint sets Ci ⊇ (πα
1 )−1(Ai), Di ⊇ (πα

1 )−1(Bi) such that
n⋃

i=1
(Ci ∪Di) = Kα.

By Lemma 3.1.7 for each i there is βi < α such that πα
βi

[Ci], πα
βi

[Di] are disjoint
subsets of Kβi

. In particular πα
β [Ci], πα

β [Di] are disjoint closed subsets of Kβ, where
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β = max{βi : i ≤ n}. Since Kα is an inverse limit of surjective maps πα
β is also surjective

and so
n⋃

i=1
(πα

β [Ci] ∪ πα
β [Di]) = Kβ.

Moreover, (πβ
1 )−1(Ai) ⊆ πα

β [Ci] and (πβ
1 )−1(Bi) ⊆ πα

β [Di], so {(πβ
1 )−1(Ai), πα

β [Ci] : i ≤ n}
is not essential in Kβ which contradicts the inductive assumption.

We will need some basic but important properties of the covering dimension.

Theorem 3.1.9. [38, Theorem 3.1.3] If M is a closed subspace of a normal space X,
then dimM ≤ dimX.

Theorem 3.1.10. [38, Theorem 3.1.8] Let n ∈ ω ∪ {∞}. If a normal space X is a
union of countably many closed subspaces {Fi}i∈ω with dimFi ≤ n, then dimX ≤ n.

Theorem 3.1.11. [38, Theorem 3.2.13] If X,Y are non-empty compact Hausdorff
spaces, then dim(X × Y ) ≤ dimX + dim Y .

Theorem 3.1.12. [38, Theorem 3.4.11] If K is an inverse limit of compact Hausdorff
spaces of dimension at most n, then dimK ≤ n.

Definition 3.1.13. [38, p. 170] Let A be a subspace of a space X. We define the
relative dimension of A as

rdX A = sup{dimF : F ⊆ A,F closed in X}.

Lemma 3.1.14. Let n ∈ ω ∪ {∞}. Assume that a normal space X can be represented
as a union U ∪ F where F is finite and rdX U ≤ n. Then dimX ≤ n.

Proof. This is a special case of [38, Lemma 3.1.6] (which says that if X =
⋃∞

i=0 Fi and
for each k ∈ ω the subspace

⋃k
i=0 Fi is closed in X, and rdX Fk ≤ n, then dimX ≤ n)

where F0 = F, F1 = U and Fn = ∅ for n > 1.

Theorem 3.1.15. Assume that compact Hausdorff spaces X and Y can be represented
as X = U ∪ F, Y = V ∪ E where U, V are open, E,F are finite, U ∩ F = V ∩ E = ∅
and U is homeomorphic to V . Then dimX = dimY .

Proof. By Theorem 3.1.9 we have rdX U ≤ dimX and by Lemma 3.1.14 dimX ≤ rdX U ,
so dimX = rdX U . By the same argument dimY = rdY V . Since X,Y are compact we
have

rdX U = sup{dimF : F ⊆ U,F compact}

and
rdY V = sup{dimF : F ⊆ V, F compact}.

But U and V are homeomorphic, so every compact subset of U is homeomorphic to
some compact subset of V and vice versa, and hence rdX U = rdY V . This gives
dimX = rdX U = rdY V = dimY .
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Theorem 3.1.16. Suppose that K is a metrizable compact space and µ is a non-zero
Radon measure on K. Then there is a compact zero-dimensional subset Z ⊆ K such
that µ(Z) ̸= 0.

Proof. Let {dn}n∈ω be a countable dense subset of K. For every n ∈ ω pick a countable
local base {Un

i }i∈ω at dn such that U i+1 ⊆ Ui for i ∈ ω. Then for every n ∈ ω there is
kn ∈ ω such that

∞∑
i=kn

|µ|(∂Un
i ) < ∥µ∥

2n+1 .

In particular we have
|µ|(Y ) ̸= 0

where
Y = K\

∞⋃
n=0

∞⋃
i=kn

∂Un
i .

Moreover, Y is zero-dimensional, since {Un
i ∩ Y : n ∈ ω, i ≥ kn} = {(Un

i \∂Un
i ) ∩ Y :

n ∈ ω, i ≥ kn} forms a base of Y consisting of clopen sets. By regularity of µ there is
a compact set Z ⊆ Y with µ(Z) ̸= 0 which is zero-dimensional as a compact subset of
zero-dimensional space Y .

3.2 Spaces C(K) with few operators

We will follow the terminology from [88]. We say that a bounded linear operator
T : C(K) → C(K) is a weak multiplication, if it is of the form T = gI + S, where g is a
continuous function on K, I is the identity operator and S : C(K) → C(K) is weakly
compact. T is called a weak multiplier, if T ∗ = gI + S for some bounded Borel map
g : K → R and weakly compact S : C(K)∗ → C(K)∗.

Definition 3.2.1. Let K be a compact Hausdorff space. We say that the Banach space
C(K) has few operators if every bounded linear operator T : C(K) → C(K) is a weak
multiplication.

Lemma 3.2.2. Suppose that K is a c.c.c. compact Hausdorff space and that C(K) ∼
C(L) for a compact Hausdorff space L. Then L is also c.c.c.

Proof. By [113, Theorem 4.5(a)] a compact space M is c.c.c. if and only if C(M)
contains no isomorphic copy of c0(ω1), so in particular given property is an isomorphism
invariant.

Lemma 3.2.3. Let K be a compact Hausdorff space. If K has a non-trivial convergent
sequence, then C(K) admits a complemented copy of c0. In particular, if C(K) has few
operators, then K has no non-trivial convergent sequences.

Proof. The fact that non-trivial convergent sequences give rise to complemented copies
of c0 is well-known (see [62]). The second part of the lemma follows from [84, Theorem
13 (3)].
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Lemma 3.2.4. Assume that K is a separable connected compact Hausdorff space such
that C(K) has few operators and L is a compact Hausdorff space such that C(K) ∼ C(L).
Let J be the set of isolated points in L and L′ = L\J . Then J is a countable set and L′

has no isolated points.

Proof. Since K is separable, it is c.c.c., so by Lemma 3.2.2 L is also c.c.c. In particular
J is countable.

Obviously, if J is finite, then L′ has no isolated points, so we may assume that J is
infinite. Suppose that x ∈ L′ is an isolated point. Then L′\{x} is a closed subspace of
L, so there is an open set V ⊆ L such that x ∈ V and V ∩ (L′\{x}) = ∅. V ⊆ J ∪ {x},
so V is an infinite countable compact space with exactly one non-isolated point i.e. it
is a convergent sequence. By Lemma 3.2.3 C(L) admits a complemented copy of c0,
and so C(K) admits a complemented copy of c0. However, it is impossible since by [84,
Theorem 13 (a)] C(K) is indecomposable.

Definition 3.2.5. For a compact space K and a function f ∈ C(K) we denote by Mf

the operator Mf : C(K) → C(K) given by Mf (g) = fg.

In the next lemmas we will use the following characterization of weakly compact
operators on Banach spaces of continuous functions from [30, p. 160].

Theorem 3.2.6. If K is a compact Hausdorff space, then an operator T on C(K) is
weakly compact if and only if for every bounded sequence (en)n∈ω of pairwise disjoint
functions (i.e. en · em = 0 for n ̸= m) we have limn→∞ ∥T (en)∥ = 0.

Lemma 3.2.7. Let L be a compact Hausdorff space, J the set of isolated points in L,
and L′ = L\J . Assume that f ∈ C(L) is such that f ↾ L′ = 0. Then Mf is weakly
compact.

Proof. Fix any bounded pairwise disjoint sequence (en)n∈ω of elements of C(L). Without
loss of generality we may assume that ∥en∥ ≤ 1 for each n. Let ε > 0. Since f

is continuous and equal to 0 on L′ there is only finitely many points x such that
|f(x)| ≥ ε. Hence for n large enough we have ∥Mf (en)∥ = ∥fen∥ < ε, which means that
limn→∞ ∥Mf (en)∥ = 0. Now Theorem 3.2.6 implies that Mf is weakly compact.

Lemma 3.2.8. Assume that K has no isolated points and f ∈ C(K) is such that Mf is
weakly compact. Then f = 0.

Proof. Assume that f ̸= 0. Then there is non-empty open set U ⊂ K such that |f(x)| ≥ ε

for x ∈ U and some ε > 0. Since there are no isolated points in K, U is infinite, so
there are pairwise disjoint open subsets Un ⊆ U . Let en ∈ C(K) be such that en(x) = 1
for some x ∈ Un, en(x) = 0 for x ∈ K\Un and ∥en∥ = 1. Then for each n ∈ ω we have
∥Mfen∥ ≥ ε, so by Theorem 3.2.6 Mf is not weakly compact.

Lemma 3.2.9. Let f ∈ C(L) for L compact Hausdorff and assume that there is a
non-isolated point x0 ∈ L such that |f(x0)| = ∥f∥. If R : C(L) → C(L) is a weakly
compact operator, then ∥f∥ ≤ ∥Mf +R∥.
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Proof. Since x0 is non-isolated there are distinct points xn ∈ L such that |f(xn)| >
∥f∥ − 1/n. By passing to a subsequence we may assume that {xn : n ∈ ω} is a relatively
discrete subset of L.

Take pairwise disjoint open sets Un ⊆ {x ∈ K : |f(x)| > ∥f∥ − 1/n}, xn ∈ Un. For
each n ∈ ω pick en ∈ C(L) such that ∥en∥ = 1 and en ↾ (L\Un) = 0. In particular
(en)n∈ω are pairwise disjoint functions, so by Theorem 3.2.6 limn→∞ ∥R(en)∥ = 0.
Moreover, ∥Mf (en)∥ = ∥fen∥ ≥ ∥f∥ − 1/n (from the property of Un). Hence we get
that ∥Mf + R∥ ≥ ∥(Mf + R)(en)∥ = ∥Mf (en) + R(en)∥ ≥ ∥Mf (en)∥ − ∥R(en)∥ ≥
∥f∥ − 1/n− ∥R(en)∥. By taking limit with n → ∞ we get ∥Mf +R∥ ≥ ∥f∥.

Remark 3.2.10. If K and L are compact Hausdorff spaces, and T : C(K) → C(L)
is an isomorphism of Banach spaces, then T induces an isomorphism of the Banach
algebras ΦT : B(C(L)) → B(C(K)) given by

ΦT (U) = T−1UT.

If R ∈ B(C(L)) is a weakly compact operator, then ΦT (R) is also weakly compact
as a composition of a weakly compact operator with bounded operators. Similarly, if
S ∈ B(C(K)) is weakly compact, then Φ−1

T (S) is weakly compact.

For the rest of this section we will assume that K and L are compact Hausdorff spaces,
L′ is the set of non-isolated points of L, C(K) has few operators and T : C(K) → C(L)
is an isomorphism of Banach spaces.

Definition 3.2.11. Let ΦT be such as in Remark 3.2.10. We define an operator
ΨT : C(L′) → C(K) by putting for each f ′ ∈ C(L′)

ΨT (f ′) = g,

for g ∈ C(K) satisfying ΦT (Mf ) = Mg +R, where R is weakly compact and f ∈ C(L)
is such that f ′ = f ↾ L′.

In other words, ΨT is defined in the way such that the following diagram commutes:

C(L) B(C(L)) B(C(K)) B(C(K))/WC(C(K))

C(L′) C(K)

R

M ΦT π

I

ΨT

Here R stands for the restriction operator (i.e. R(f) = f ↾ L′), M(f) = Mf ,
π is the natural surjection onto the quotient algebra B(C(K))/WC(C(K)), where
WC(C(K)) is the closed ideal in B(C(K)) consisting of weakly compact operators
and I : B(C(K))/WC(C(K)) → C(K) is the isometry given by I([Mg]) = g.

Lemma 3.2.12. Suppose that K has no isolated points. Then the induced operator
ΨT : C(L′) → C(K) from Definition 3.2.11 is a well-defined bounded linear and multi-
plicative operator.
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Proof. Take any f ′ ∈ C(L′) and let f1, f2 ∈ C(L) and g1, g2 ∈ C(K) be such that
f1 ↾ L′ = f2 ↾ L′ = f ′ and

ΦT (Mfi
) = Mgi +Ri for i = 1, 2,

where R1, R2 are weakly compact. Then (f1 − f2) ↾ L′ = 0, so by Lemma 3.2.7
Mf1 −Mf2 = Mf1−f2 is weakly compact. This implies that

Mg1−g2 = Mg1 −Mg2 = R1 − ΦT (Mf1) −R2 + ΦT (Mf2) =

= R1 −R2 − ΦT (Mf1 −Mf2)

is weakly compact since ΦT (Mf1 −Mf2) is weakly compact (by Remark 3.2.10). Since
K has no isolated points, Lemma 3.2.8 implies that g1 − g2 = 0, so ΨT is well-defined.

For the linearity and multiplicativeness fix f ′
1 = f1 ↾ L′, f ′

2 = f2 ↾ L′ ∈ C(L), a, b ∈ R
and put ΨT (f ′

1) = g1,ΨT (f ′
2) = g2. We have

ΦT (Maf1+bf2) = ΦT (aMf1 + bMf2) = aΦT (Mf1) + bΦT (Mf2) =

= Mag1 + aR1 +Mbg2 + bR2 = Mag1+bg2 + aR1 + bR2

and

ΦT (Mf1f2) = ΦT (Mf1Mf2) = ΦT (Mf1)ΦT (Mf2) =

= (Mg1 +R1)(Mg2 +R2) = Mg1g2 +R1Mg2 +Mg1R2 +R1R2.

But aR1 + bR2 and R1Mg2 +Mg1R2 +R1R2 are weakly compact as the sums of weakly
compact operators composed with bounded operators. Hence ΨT (af ′

1 + bf ′
2) = ag1 + bg2

and ΨT (f ′
1f

′
2) = g1g2.

Now we will show that ΨT is bounded. Pick any f ′ ∈ C(L′). By the Tietze theorem
f ′ has an extension f ∈ C(L) satisfying ∥f∥ = ∥f ′∥. From Lemma 3.2.9 we get that if
ΦT (Mf ) = Mg + R, then ∥g∥ ≤ ∥Mg + R∥ ≤ ∥ΦT ∥∥Mf ∥ = ∥ΦT ∥∥f∥ = ∥ΦT ∥∥f ′∥, so
∥ΨT ∥ ≤ ∥ΦT ∥.

Lemma 3.2.13. Suppose that K is separable and connected. Then there is c > 0 such
that for every f ′ ∈ C(L′) we have ∥ΨT (f ′)∥ ≥ c∥f ′∥ i.e. ΨT is an isomorphism onto its
range. In particular ΨT has closed range.

Proof. Assume that ΨT (f ′) = g. Let f ∈ C(L) be an extension of f ′ such that ∥f∥ = ∥f ′∥.
We have ΦT (Mf ) = Mg +R for some weakly compact R, so Φ−1

T (Mg) = Mf − Φ−1
T (R).

Φ−1
T (R) is weakly compact by Remark 3.2.10, so from Lemma 3.2.9 we get

∥f∥ ≤ ∥Mf − Φ−1
T (R)∥ = ∥Φ−1

T ◦ ΦT (Mf − Φ−1
T (R))∥ = ∥Φ−1

T (Mg +R−R)∥ =

= ∥Φ−1
T (Mg)∥ ≤ ∥Φ−1

T ∥∥Mg∥ = ∥Φ−1
T ∥∥g∥.

Hence it is enough to take c = 1
∥Φ−1

T ∥ .
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Proposition 3.2.14. Suppose that K is separable and connected.
Let S : C(K) → C(K) be given by S(f) = ΨT (T (f) ↾ L′). Then

ker(S) = T−1({g ∈ C(L) : g ↾ L′ = 0})

and it is a separable subspace of C(K).

C(K) C(L) C(L′) C(K)T

S

R ΨT

Proof. By Lemma 3.2.4 the set J of isolated points in L is countable, so we may write
J = {xn : n ∈ ω}. Let χ{xn} be the characteristic function of {xn}. Observe that
span{χ{xn} : n ∈ ω} = {g ∈ C(L) : g ↾ L′ = 0} is a separable subspace of C(L), so it is
enough to show that ker(S) = T−1({g ∈ C(L) : g ↾ L′ = 0}), since T is an isomorphism.

Assume that S(f) = 0. Then ΨT (T (f) ↾ L′) = 0, so ΦT (MT (f)) = M0 + R = R

is weakly compact and hence MT (f) = TΦT (MT (f))T−1 is also weakly compact as a
composition of a weakly compact operator with bounded operators. From Theorem 3.2.6
limn→∞ ∥T (f)en∥ = 0 for every bounded disjoint sequence (en)n∈ω. This implies that
limn→∞ ∥(T (f) ↾ L′)en∥ = 0 for every bounded disjoint sequence (en)n∈ω. By applying
Theorem 3.2.6 once again we get that MT (f)↾L′ is weakly compact as an operator on C(L′).
Since L′ has no isolated points (by Lemma 3.2.4) we get that T (f) ↾ L′ = 0 by Lemma
3.2.8 i.e. f ∈ T−1({g ∈ C(L) : g ↾ L′ = 0}), so ker(S) ⊆ T−1({g ∈ C(L) : g ↾ L′ = 0}).

If g ∈ C(L) is such that g ↾ L′ = 0, then by Lemma 3.2.7 Mg is weakly compact, so
S(T−1(g)) = Ψ(g ↾ L′) = Ψ(0) = 0 and hence T−1(g) ∈ ker(S).

Proposition 3.2.15. Suppose that K is separable and connected. Let S = ΨT (T (f) ↾ L′).
Write S as a sum S = Me +W with W weakly compact. Then Me is an isomorphism of
C(K).

Proof. It is enough to prove that e(x) ̸= 0 for every x ∈ K. Indeed, if it is the case, then
Mg is the inverse of Me for g = 1

e .
Assume that e(z) = 0 for some z ∈ K and aim for a contradiction. Then using the

technique from the proof of Lemma 3.2.9 we construct pairwise disjoint non-empty open
subsets Un ⊆ K such that ∥e ↾ Un∥ ≤ 1

n for each n ∈ ω. Let Vn be non-empty open sets
such that V n ⊆ Un.

By Lemma 3.2.3 K has no convergent sequences and hence for every n ∈ ω the
space V n is non-metrizable as an infinite (because Vn has no isolated points) compact
set without convergent sequences. We get that points in V n cannot be separated by
countable family of continuous functions (otherwise, if (fn)n∈ω separated points of
V n, (f1, f2, . . . ) : V n → Rn would be a homeomorphism onto a compact subspace of
metrizable space), so since ker(S) is separable, there are points xn, yn ∈ V n ⊆ Un such
that d(xn) = d(yn) for all d ∈ ker(S). Let fn ∈ C(K) be such that ∥fn∥ = 1, fn(xn) =
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1, fn(yn) = 0 and fn ↾ (K\Un) = 0. Then for all d ∈ ker(S)

∥fn − d∥ ≥ max{|fn(xn) − d(xn)|, |fn(yn) − d(yn)|} =

= max{|1 − d(xn)|, |d(xn)|} ≥ 1/2.

Since fn ↾ (K\Un) = 0 and ∥e ↾ Un∥ ≤ 1
n we have ∥efn∥ ≤ 1

n , so limn→∞ ∥efn∥ = 0.
ΨT has closed range (Lemma 3.2.13) and T,R are surjective, so S has also closed

range. By the first isomorphism theorem (see e.g. [39, Corollary 2.26]) S[C(K)] is
isomorphic to C(K)/ ker(S), so since the distance of fn from ker(S) is greater than 1/2
for all n ∈ ω, there is c > 0 such that ∥S(fn)∥ > c for all n ∈ ω.

C(K) S[C(K)]

C(K)/ ker(S)

S

∼

But on the other hand we have

∥S(fn)∥ = ∥efn +W (fn)∥ ≤ ∥efn∥ + ∥W (fn)∥ → 0

when n → ∞, since we have limn→∞ ∥efn∥ = 0 and limn→∞ ∥W (fn)∥ = 0 (because W is
weakly compact and (fn) are bounded and pairwise disjoint), so we get a contradiction.

Recall that an operator R : X → Y is called strictly singular, if for every infinite-
dimensional subspace X ′ ⊆ X the restriction R ↾ X ′ is not isomorphism. We cite the
result from [101].

Theorem 3.2.16. Let X be a compact Hausdorff space. A bounded operator R : C(X) →
C(X) is weakly compact if and only if it is strictly singular.

If we apply the above theorem to [90, Proposition 2.c.10] we get the following.

Theorem 3.2.17. Let E : C(X) → C(X) be an operator with a closed range for which
dim ker(E) < ∞ and dim(C(X)/E(C(X))) < ∞. Let R : C(X) → C(X) be weakly
compact. Then E +R also has a closed range and dim((C(X))/(E +R)(C(X)) < ∞.

Corollary 3.2.18. Suppose that K is separable and connected. Let S = ΨT (T (f) ↾ L′).
Then the range of S is finite-codimensional in C(K). In particular the range of ΨT

is finite-codimensional in C(K).

Proof. Since Me is an isomorphism (by Proposition 3.2.15) and W is weakly compact
we may apply Theorem 3.2.17 to S = Me +W .

Since ΨT : C(L′) → C(K) is a bounded linear multiplicative operator (Lemma 3.2.12),
there is φ : K → L′ such that ΨT (f) = f ◦ φ for f ∈ C(L′) (see e.g. [119, Theorem
7.7.1]). From Lemma 3.2.13 and Corollary 3.2.18 we get that ΨT is an embedding with
finite-codimensional range, so the induced map φ is surjective and has only finitely many
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fibers containing more than one element and each of these fibers is finite. In particular
K = U ∪ F where F is a finite set and φ ↾ U is a homeomorphism and we get the
following theorem.

Theorem 3.2.19. Suppose that K is a separable connected compact Hausdorff space such
that C(K) has few operators and L is a compact Hausdorff space such that C(K) ∼ C(L).

Then K and L are homeomorphic modulo finite set i.e. there are open subsets
U ⊆ K,V ⊆ L and finite sets E ⊆ K,F ⊆ L such that U, V are homeomorphic and
K = U ∪ E,L = V ∪ F .

Corollary 3.2.20. If dim(K) = n and K is a compact, separable and connected
Hausdorff space such that C(K) has few operators, then for each compact Hausdorff
space L such that C(K) ∼ C(L) we have dim(L) = n.

Proof. Use Theorem 3.2.19 and Theorem 3.1.15.

3.3 Extensions of compact spaces

In this section we consider the notion of strong extension from [80]. We describe the
methods of controlling the dimension in constructions of compact spaces using strong
extensions. We prove that strong extensions cannot lower the dimension of initial space
and we show how to construct extensions that cannot rise the dimension.

Definition 3.3.1. Let K be a compact Hausdorff space and (fn)n∈ω be a sequence of
pairwise disjoint continuous functions fn : K → [0, 1]. Define

D((fn)n∈ω) =
⋃

{U : U is open and {n : supp(fn) ∩ U ̸= ∅} is finite}.

We say that L ⊆ K× [0, 1] is the extension of K by (fn)n∈ω if and only if L is the closure
of the graph of (

∑
n∈ω fn) ↾ D((fn)n∈ω). We say that this is a strong extension, if the

graph of
∑

n∈ω fn is a subset of L.

Lemma 3.3.2. [80, Lemma 4.1] If (fn)n∈ω are pairwise disjoint continuous functions
on K with values in [0, 1], then

∑
n∈ω fn is well-defined and continuous in the dense

open set D((fn)n∈ω).

Lemma 3.3.3. [80, Lemma 4.4] Strong extension of a connected compact Hausdorff
space is connected.

Note that there are known examples of extensions of connected compact spaces which
are not connected (see [10]), so the assumption that considered extensions are strong is
necessary.

Lemma 3.3.4. Let K be a separable compact Hausdorff space with a countable dense
set Q = {qn :∈ ω} and let L be an extension of K with the natural projection π : L → K.
Assume that Q′ = {q′

n : n ∈ ω} is a subset of L such that π(q′
n) = qn for every n ∈ ω.

Then Q′ is a dense subset of L.
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Proof. Let (fn)n∈ω be a sequence of pairwise disjoint continuous functions such that
L is the extension of K by (fn)n∈ω. By [80, Lemma 4.3 a)] π−1(D((fn)n∈ω) is dense
in L. Moreover, π ↾ π−1(D((fn)n∈ω)) is a homeomorphism as a projection of graph of
continuous function onto its domain. Since Q is dense in K and D((fn)n∈ω) is open,
Q∩D((fn)n∈ω) is dense in D((fn)n∈ω). Hence we get that π−1(Q∩D((fn)n∈ω)) is dense
in L. But if qn ∈ D((fn)n∈ω), then π−1(qn) = {q′

n}, so Q′ ⊇ π−1(Q ∩D((fn)n∈ω) is also
dense in L.

The following lemma is a special case of [80, Lemma 4.5].

Lemma 3.3.5. Suppose that K is a compact metric space and that for every n ∈ ω

Xn
1 , X

n
2 are disjoint relatively discrete subsets of K such that Xn

1 ∩Xn
2 ≠ ∅. Let (fn)n∈ω

be a pairwise disjoint sequence of continuous functions from K into [0, 1]. For an infinite
subset B ⊆ ω denote by K(B) the extension of K by (fn)n∈B. For i = 0, 1 and n ∈ ω

put
Xn

i (B) = {(x, t) : x ∈ Xn
i , t =

∑
k∈B

fk(x)}.

Then there is an infinite N ⊆ ω such that for every B ⊆ N :

(1) K(B) is a strong extension of K by (fn)n∈B,
(2) Xn

1 (B) ∩Xn
2 (B) ̸= ∅ for every n ∈ ω, where the closures are taken in K(B).

Proposition 3.3.6. If L is a strong extension of a compact Hausdorff space K with the
natural projection π : L → K, then π is essential-preserving.

Proof. Let (fk)k∈ω be such that L is a strong extension of K by (fk)k∈ω.
Let {(Ai, Bi) : i = 1, 2, . . . , n} be an essential family in K and assume that the family
{(π−1(Ai), π−1(Bi)) : i = 1, 2, . . . , n} is not essential in L. By Theorem 3.1.4 there are
closed sets Ci ⊇ π−1(Ai), Di ⊇ π−1(Bi) such that Ci ∩Di = ∅ for each i ≤ n and

n⋃
i=1

(Ci ∪Di) = L.

Since Ci, Di are compact, there are sets Ui, Vi open in K × [0, 1] such that Ci ⊆ Ui,
Di ⊆ Vi and Ui ∩ Vi = ∅ for every i ≤ n.

For each k ∈ ω denote by Lk the graph of
∑

i≤k fi and let πk : Lk → K be the
projection onto K.

Claim 1. For every k ∈ ω we have

Lk\
n⋃

i=1
(Ui ∪ Vi) ̸= ∅.

Proof of the claim. Assume that there is N such that

LN ⊆
n⋃

i=1
(Ui ∪ Vi).
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Then for every k ≥ N

Lk\LN = graph(
k∑

i=N+1
fi| supp(

k∑
i=N+1

fi)) ⊆ L ⊆
n⋃

i=1
(Ui ∪ Vi) (3.1)

(the first equality holds, because the supports of fi’s are pairwise disjoint), so we have

Lk ⊆
n⋃

i=1
(Ui ∪ Vi).

Put Ak
i = π−1

k (Ai), Bk
i = π−1

k (Bi) and observe that the family {(Ak
i , B

k
i ) : i ≤ n} is

essential in Lk since πk is a homeomorphism. Hence there is i ≤ n such that Ak
i ⊈ Ui or

Bk
i ⊈ Vi. Indeed, otherwise Ui ∩ Lk, Vi ∩ Lk would be disjoint open subsets of Lk with

n⋃
i=1

((Ui ∩ Lk) ∪ (Vi ∩ Lk)) = Lk,

which contradicts the fact that {(Ak
i , B

k
i ) : i ≤ n} is essential (by Theorem 3.1.4).

Without loss of generality there are infinitely many k such that Ak
1\U1 ≠ ∅. For every

k ∈ ω we have

Ak+1
1 \Ak

1 = π−1
k+1(A1)\π−1

k (A1) = graph(fk+1 ↾ (A1 ∩ supp(fk+1)) ⊆ π−1(A1) ⊆ U1.

In particular (Ak
1\U1)k∈ω form a decreasing sequence of non-empty compact sets. Hence

A =
∞⋂

k=1
Ak

1\U1 ̸= ∅.

We have A ⊆ L since if (x, t) ∈ A, then fk(x) = 0 for all k, so
∑

k∈ω fk(x) = 0 and hence
(x, t) = (x, 0) is an element of the graph of

∑
k∈ω fk which is a subset of L. Moreover

A ⊆ A1 × [0, 1], so A ⊆ (A1 × [0, 1]) ∩ L = π−1(A1) which contradicts the assumption
that π−1(A1) ⊆ U1 and completes the proof of the claim.

To finish the proof of the proposition put

Fk = Lk\
n⋃

i=1
(Ui ∪ Vi)

and observe that (Fk)k∈ω is a decreasing sequence of non-empty compact sets (by (1)
from the claim), so as in the case of the set A from the claim we get that

F =
∞⋂

k=1
Fk

is a non-empty subset of the graph of
∑

k∈ω fk, so F ⊆ L (because the extension is
strong), which is a contradiction, since F is disjoint from

⋃
i≤n(Ui ∪ Vi) ⊇ L.

Lemma 3.3.7. Suppose that K is a compact metric space with 0 < dim(K) ≤ n and
fk : K → [0, 1] are pairwise disjoint continuous functions such that the set

Z = K\D((fk)k∈ω)

is zero-dimensional. Assume that L is a strong extension of K by (fk)k∈ω. Then
dimL ≤ n.
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Proof. Let π be the natural projection from L onto K. π−1(D((fk)k∈ω)) is an open
subset of a metric space, so it is a union of countably many closed sets, each of dimension
at most n since π−1(D((fk)k∈ω)) is homeomorphic to D((fk)k∈ω) (see Theorem 3.1.9).
The set π−1(Z) is included in Z × [0, 1] so dim π−1(Z) ≤ 1 ≤ n by Theorem 3.1.11.
Hence L = π−1(D((fk)k∈ω)) ∪ π−1(Z) is a countable union of closed sets of dimension
at most n. Now Theorem 3.1.10 gives the inequality dimL ≤ n.

Corollary 3.3.8. Let γ be an ordinal number. Suppose that {Kα : α < γ} is an inverse
system of compact Hausdorff spaces such that:

• for every α the map πα+1
α : Kα+1 → Kα is a strong extension by pairwise dis-

joint continuous functions (fα
n )n∈ω and the set Zα = Kα\D((fα

n )n∈ω) is zero-
dimensional,

• if α is a limit ordinal, then Kα is the inverse limit of {Kβ : β < α}.

Denote by Kγ the inverse limit of {Kα : α < γ}. Then dimKγ = dimK1.

Proof. The inequality dimKγ ≥ dimK1 follows from Proposition 3.3.6 and Theorem
3.1.8. The inequality dimKγ ≤ dimK1 follows from Lemma 3.3.7 and Theorem 3.1.12.

3.4 The main construction

Theorem 3.4.1. [88, Lemma 2.4] Suppose that K is a compact Hausdorff space. If a
bounded linear operator T : C(K) → C(K) is not a weak multiplier, then there are δ > 0,
a pairwise disjoint sequence (gn)n∈ω ⊆ CI(K) and pairwise disjoint open sets (Vn)n∈ω

such that
supp(gn) ∩ Vm = ∅

for all n,m ∈ ω and
|T (gn)|Vn| > δ

for all n ∈ ω.

In particular, if xn ∈ Vn and µn = T ∗(δxn) for n ∈ ω, then |
∫
gndµn| = |T (gn)(qln)| >

δ, and so |µn|(supp(gn)) ≥ |
∫
gndµn| > δ.

The idea behind the construction is as follows. We will construct a compact space K
as the inverse limit of spaces Kα ⊆ [0, 1]α (so the final space is a subset of [0, 1]c). For
each bounded sequence (µn)n∈ω of Radon measures on [0, 1]c and a sequence of pairwise
disjoint open sets (Vn)n∈ω we want to use a strong extension in such a way that in the
final space there will be no sequence (gn)n∈ω for which the properties from Theorem
3.4.1 are satisfied. However, we need to consider 2c sequences of Radon measures on
[0, 1]c, while there are only c steps in the construction. In order to handle this we will
use ♢ (cf. Lemma 3.4.4).
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Proposition 3.4.2. Let K be a compact metrizable space and (µn)n∈ω be a bounded
sequence of Radon measures on K. Assume that (Un)n∈ω is a sequence of pairwise
disjoint open sets and δ > 0 is such that |µn|(Un) > δ for n ∈ ω. Then there is an
infinite set N ⊆ ω, continuous pairwise disjoint functions fn : K → [0, 1] and ε > 0 such
that

(1) supp(fn) ⊆ Un for n ∈ N ,
(2) |

∫
fndµn| > ε for n ∈ N ,

(3)
∑

{|
∫
fmdµn| : n ̸= m,m ∈ N} < ε/3 for n ∈ N ,

(4) K\D((fn)n∈N ) is zero-dimensional.

Proof. Since µn’s are Radon measures there is δ′ > 0 and open sets U ′
n ⊆ Un such that

|µn(U ′
n)| > δ′ for n ∈ ω. Without loss of generality we may assume that U ′

n = Un and
δ′ = δ.

Put νn = µn ↾ Un for n ∈ ω. Let N ′ be such that the sequence (νn)n∈N ′ has the
weak* limit ν. Since |

∫
1dνn| > δ for every n, we have |

∫
1dν| ≥ δ, so ν is a non-zero

measure. By Theorem 3.1.16 there is a compact zero-dimensional subset Z ⊆ K and
ε > 0 such that |ν(Z)| > 2ε. Since Z is a closed subset of a metrizable space and ν

is a regular measure, there is a decreasing sequence of open sets (Gn)n∈N ′ such that
Z =

⋂
Gn and |ν(Gn)| > 2ε for all n ∈ N ′.

Note that if f ∈ CI(K) is such that supp(f) ⊆ Gn and |
∫
fdν| > 2ε, then for big

enough l ∈ N ′ we have |
∫
fdνl| > 2ε and so |νl|(Gn) = |νl|(Gn ∩Ul) > 2ε. Hence for each

l ∈ N ′ we may pick fl ∈ CI(K) such that supp fl ⊆ Gn ∩Ul and |
∫
fldνl| = |

∫
fldµl| > ε.

For each n ∈ N ′ let ln ∈ N ′ be such that supp fln ⊆ Gn ∩ Uln , |
∫
flndµln | > ε and

(ln)n∈N ′ is an increasing sequence. Let N ′′ = {ln : n ∈ N ′}. For every M ⊆ N ′′ denote
ZM = K\D((fln)n∈M ). If x ∈ K\Z, then there is an open neighbourhood V ∋ x such
that for big enough n ∈ M we have V ∩ Gn = ∅ and so V ∩ supp(fln) = ∅. Hence
V ⊆ D((fln)n∈M ), which gives x /∈ ZM . This implies that ZM ⊆ Z, so in particular ZM

is zero-dimensional and condition (4) is satisfied for any choice of M ⊆ N ′′. Now we use
Rosenthal’s lemma (see [31, p. 82] or [120]) to obtain an infinite N ⊆ N ′′ such that the
3rd condition is also satisfied.

We will need the following strengthening of [80, Lemma 6.2].

Lemma 3.4.3. Let K be a compact, connected metrizable space with a countable dense
set Q = {qn : n ∈ ω}. Let U, V be open subsets of K such that U ∩ V ̸= ∅. Then
there is a sequence (fn)n∈ω of pairwise disjoint functions fn ∈ CI(K) and infinite sets
A0, A1, S0, S1 ⊆ ω such that:

(1) the sets {qn : n ∈ S0} ⊆ U, {qn : n ∈ S1} ⊆ V are relatively discrete,
(2) Ai ⊆ Si and |Si\Ai| = ω for i = 0, 1,
(3) for every infinite B ⊆ ω in the extension K(B) of K by (fn)n∈B there are disjoint

closed sets F0, F1 ⊆ K(B) and distinct x0, x1 ∈ K(B) such that for i = 0, 1

xi ∈ π−1(U) ∩ {qB
n : n ∈ Ai} ∩ π−1(V ) ∩ {qB

n : n ∈ Si\Ai}
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and
{qB

n : n ∈ Ai} ⊆ Fi,

where qB
j = (qj , t) and t =

∑
n∈B fn(qj),

(4) |K\D(fn)n∈B| = 1 (in particular K\D(fn)n∈B is zero-dimensional).

Proof. Fix any compatible metric d on K. Pick any x ∈ U ∩ V . Since K is connected,
x is not an isolated point. For n ∈ ω put U ′

n = U ∩ B(x, 1/n), V ′
n = V ∩ B(x, 1/n)

(where B(x, ε) is the open ball with x as the center and radius ε with respect to d) and
let Un ⊆ U ′

n, Vn ⊆ V ′
n be non-empty open sets such that the members of the family

{Un, Vn : n ∈ ω} are pairwise disjoint. Take continuous functions fn ∈ C(K) and
kn, ln ∈ ω such that:

• qkn ∈ Un, qln ∈ Vn,
• fn(qk2n) = fn(ql2n) = 1,
• supp(fn) ⊆ U2n ∪ V2n.

Let B ⊆ ω be infinite. For (2) and (3) it is enough to take S0 = {k2n+1, l2n+1 : n ∈
ω}, A0 = {k2n+1 : n ∈ ω}, S1 = {k2n, l2n : n ∈ ω}, A1 = {k2n : n ∈ ω}, x0 = (x, 0), x1 =
(x, 1) and F0 = K(B) ∩ (K × [0, 1/3]), F1 = K(B) ∩ (K × [2/3, 1]). (1) is satisfied since
Un, Vm are pairwise disjoint for n,m ∈ ω.

(4) follows from the fact that x is the only point all of whose neighborhoods intersect
all but finitely many Un’s and Vn’s, so we have K\D(fn)n∈B = {x}.

Lemma 3.4.4. Assume ♢. Then there is a sequence (Mα,Uα, Lα)α<ω1 such that:

• Mα = (µα
n)n∈ω is a bounded sequence of Radon measures on [0, 1]α,

• Uα = (Uα
n,m)n,m∈ω is a sequence of basic open sets in [0, 1]α,

• Lα = (lαn)n∈ω is a sequence of distinct natural numbers,

and for every:

• bounded sequence (µn)n∈ω of Radon measures on [0, 1]ω1,
• sequence (Un,m)n,m∈ω of basic open sets in [0, 1]ω1,
• increasing sequence ln of natural numbers

there is a stationary set S ⊆ ω1 such that for β ∈ S we have

• µn ↾ C([0, 1]β) = µβ
n,

• πβ[Un,m] = Uβ
n,m,

• ln = lβn,

where πβ denotes the natural projection from [0, 1]ω1 onto [0, 1]β.

Proof. First we will show that there is a sequence (Mα
0 )α<ω1 such that Mα

0 = ((να
n )n∈ω)

is a bounded sequence of Radon measures on [0, 1]α and for every bounded sequence
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(νn)n∈ω of Radon measures on [0, 1]ω1 there is a stationary set S ⊆ ω1 such that for
β ∈ S we have νn ↾ C([0, 1]β) = νβ

n .
We will use the identification of Radon measures on [0, 1]ω1 with bounded functionals

on C([0, 1]ω1) described in Section 1.2. For a finite set F ∈ [ω1]<ω denote by wF the
product

∏
α∈F wα, where wα ∈ C([0, 1]ω1), wα(x) = x(α). Observe that finite linear

combinations of wF ’s form a subalgebra of C([0, 1]ω1). If x, y ∈ [0, 1]ω1 are distinct
points with x(α) ̸= y(α), then wα(x) ̸= wα(y), so by the Stone-Weierstrass theorem this
subalgebra is dense in C([0, 1]ω1). Hence if ν is a Radon measure on [0, 1]ω1 then it is
determined by the values of ν(wF ) for F ∈ [ω1]<ω (note also that in the same way if
β < ω1, then ν ↾ C([0, 1]β) is determined by the values of ν(wF ) for F ∈ [β]<ω). So we
can represent each Radon measure ν on [0, 1]ω1 by the function

φν : [ω1]<ω → R, φ(F ) = ν(wF )

(and then ν ↾ C([0, 1]β) is represented by φν ↾ [β]<ω), and each countable sequence
M = (νn)n∈ω we can represent by the function

φM : [ω1]<ω × ω → R, φM (F, n) = νn(wF ).

Let Φ1 : ω1 → [ω1]<ω ×ω be a bijection such that for each limit ordinal γ ∈ Lim∩ω1

the restriction Φ1 ↾ γ is bijection onto [γ]<ω × ω (to see that such a bijection exists
it is enough to note that for every γ ∈ Lim ∩ ω1 there is a bijection ϕγ : [γ, γ + ω) →
([γ + ω]<ω × ω)\([γ]<ω × ω) and take Φ1 ↾ [γ, γ + ω) = ϕγ). We need to fix one more
bijection Φ2 : R → ω1 (♢ implies CH, so such a bijection exists). Put

ψM = Φ2 ◦ φM ◦ Φ1, ψM : ω1 → ω1.

Since Φ1 ↾ γ is a bijection onto [γ]<ω × ω for all limit γ we may treat ψM ↾ γ as a
representation of the sequence of measures (νn ↾ C([0, 1]γ))n∈ω.

We will use the following characterization of ♢ (see [28, Theorem 2.7]):
There exists a sequence (fα)α<ω1 , fα : α → α such that for for each f : ω1 → ω1 the set
{α : f ↾ α = fα} is stationary.

For α ∈ ω1 let Mα
0 be a sequence of Radon measures on [0, 1]α represented by fα, if

fα is a representation for some such sequence (otherwise we pick Mα
0 in any way). Let M

be a bounded sequence of of measures on [0, 1]ω1 and let S = {α : ψM ↾ α = fα}. Since
for limit γ < ω1 the function ψM ↾ γ is a representation of some sequence of measures
we get that for α ∈ Lim∩S the function ψM ↾ α is the representation of a sequence Mα

0 .
Moreover the set S ∩ Lim is a stationary subset of ω1, so the first part of the proof is
complete.

To show the existence of a sequence (Mα,Uα, Lα)α<ω1 required in the Lemma, we
need to observe that each triple (M,U , L) may be represented as a bounded countable
sequence of Radon measures on [0, 1]ω1 . Indeed, any basic open set U ∈ U may be
treated as a measure λU on [0, 1]ω1 , given by λU (A) = λ(A ∩ U), where λ is a product
measure of ω1 Lebesgue measures on [0, 1] (note that if U, V are different basic open
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sets, then some of their sections differ on a non-trivial interval, so we have λU ≠ λV )
and L may be represented as δxL where xL = (yl, 0, 0, . . . ) and yl = g(L) for some fixed
bijection g between the set of sequences of natural numbers and [0, 1].

Proposition 3.4.5. Assume ♢. Then for every k > 0, k ∈ ω ∪ {∞} there is a compact
Hausdorff space K satisfying the following:

(1) dimK = k,
(2) K is separable with a countable dense set Q = {qn : n ∈ ω},
(3) K is connected,
(4) for every:

• sequence (Un)n∈ω of pairwise disjoint open sets which are countable unions of
basic open sets (basic open set in K is a set of the form W ∩K, where W is
a basic open set in [0, 1]ω1),

• relatively discrete sequence (qln : n ∈ ω) ⊆ Q with qln /∈ Um for n,m ∈ ω,
• bounded sequence (µn)n∈ω of Radon measures on K such that |µn|(Un) > δ

for some δ > 0,

there is ε > 0, continuous functions (fn)n∈ω ⊆ CI(K) and infinite sets B ⊆ N ⊆ ω

such that:

(1) (fn) is a sequence of pairwise disjoint functions with supp(fn) ⊆ Un for n ∈ ω,
(2) |

∫
fndµn| > ε for n ∈ B,

(3)
∑

{|
∫
fmdµn| : m ∈ B\{n}} < ε/3 for n ∈ N ,

(4) {fn : n ∈ B} has supremum in the lattice C(K),
(5) {qln : n ∈ B} ∩ {qln : n ∈ N\B} ≠ ∅,

(5) whenever U, V are open subsets of K such that U ∩ V ̸= ∅, then U ∩ V contains
at least two points.

We will start with the description of the construction. Then we will prove that the
constructed space satisfies the required conditions.

Construction 3.4.6. Assume ♢. We will construct by induction on α < ω1 an
inverse system (Kα)α<ω1 with the limit K, where Kα ⊆ [0, 1]α and countable dense sets
Qα = {qn ↾ α : n ∈ ω} ⊆ Kα.

We start with Kk = [0, 1]k (or Kω = [0, 1]ω in the case k = ∞) and we pick Qk to be
any countable dense subset of Kk. If α is a limit ordinal then we take as Kα the inverse
limit of (Kβ)β<α.

Denote by Even and Odd the sets consisting of even and odd (respectively) countable
ordinals greater than k. Let (Mα,Uα, Lα)α<ω1 be as in Lemma 3.4.4 and fix an enumer-
ation (Uα, Vα)α∈Odd of pairs of open subsets of [0, 1]ω1 which are countable unions of
basic open sets, and require that each such a pair occurs in the sequence uncountably
many times (such an enumeration exists since by CH there is ωω

1 = ω1 open sets, which
are countable unions of basic open sets in [0, 1]ω1).
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First we describe the construction of Kα+1 where α is an even ordinal. We assume
that Kα is already constructed and for each β < α the following are satisfied:

(1) if β ∈ Even then we have infinite sets b∗
β ⊆ a∗

β ⊆ ω such that {qn ↾ α : n ∈ a∗
β} is

relatively discrete and

{qn ↾ α : n ∈ b∗
β} ∩ {qn ↾ α : n ∈ a∗

β\b∗
β} ≠ ∅.

(2) if β ∈ Odd then we have infinite sets bi
β ⊆ ai

β ⊆ ω for i = 0, 1 such that the set
{qn ↾ α : n ∈ ai

β} is relatively discrete and

{qn ↾ α : n ∈ bi
β} ∩ {qn ↾ α : n ∈ ai

β\bi
β} ≠ ∅

for i = 0, 1.

Put Uα
n =

⋃
m∈ω U

α
n,m. We will say that even step α is non-trivial if

• there is δ > 0 such that |µα
n|(Uα

n ∩Kα) > δ for each n ∈ ω,
• (Uα

n ∩Kα)n∈ω are pairwise disjoint,
• {qlαn : n ∈ ω} is relatively discrete in Kα,
• {qlαn : n ∈ ω} ∩ Uα

m = ∅ for m ∈ ω.

Otherwise we call this step trivial and we put Kα+1 = Kα×{0} and qn ↾ α+1 = qn ↾ α⌢0.
Assume that we are in a non-trivial case. Apply proposition 3.4.2 for Un = Uα

n ∩
Kα, µn = µα

n to obtain (fα
n )n∈ω ⊆ CI(Kα), infinite N ⊆ ω and ε > 0 such that

• supp(fα
n ) ⊆ Uα

n ∩Kα for n ∈ N ,
• |

∫
fα

n dµ
α
n| > ε for n ∈ N ,

•
∑

{|
∫
fα

mdµn| : n ̸= m,m ∈ N} < ε/3 for n ∈ N ,
• Kα\D((fα

n )n∈N ) is zero-dimensional.

By Lemma 3.3.5, without loss of generality (by passing to an infinite subset of N) we
may assume that for all infinite B ⊆ N the extension Kα(B) of Kα by (fα

n )n∈B is strong
and for each β < α and i ∈ {∗, 0, 1} we have

{qB
n ↾ α+ 1 : n ∈ bi

β} ∩ {qB
n ↾ α+ 1 : n ∈ ai

β\bi
β} ≠ ∅,

where
qB

l ↾ α+ 1 = ql ↾ α
⌢t, t =

∑
n∈B

fα
n (ql ↾ α),

and the closures are taken in Kα(B).
Let a∗

α = {lαn : n ∈ N}. Then

N = {n ∈ ω : lαn ∈ a∗
α}. (∗)

We will show that there is infinite b∗
α ⊆ a∗

α such that

{qn ↾ α : n ∈ b∗
α} ∩ {qn ↾ α : n ∈ a∗

α\b∗
α} ≠ ∅.
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Suppose otherwise. Then since Kα is a compact metrizable space, for each X ⊆ a∗
α there

are disjoint open sets UX , VX such that

{qn ↾ α : n ∈ X} ⊆ UX , {qn ↾ α : n ∈ a∗
α\X} ⊆ VX ,

and UX , VX are finite unions of members of some fixed countable base in Kα. There are
uncountably many choices of X and only countably many pairs of such open sets in Kα,
so for some X ̸= Y we have {UX , VX} = {UY , VY } which is a contradiction.

Let b∗
α be such that

{qn ↾ α : n ∈ b∗
α} ∩ {qn ↾ α : n ∈ a∗

α\b∗
α} ≠ ∅

and define

B = {n ∈ N : lαn ∈ b∗
α}. (∗∗)

To finish the construction at this step we put Kα+1 = Kα(B), qn ↾ α+ 1 = qB
n ↾ α+ 1

and observe that (1) is satisfied for a∗
α, b

∗
α, because if

x ∈ {qn ↾ α : n ∈ b∗
α} ∩ {qn ↾ α : n ∈ a∗

α\b∗
α},

then
(x, 0) ∈ {qn ↾ α+ 1 : n ∈ b∗

α} ∩ {qn ↾ α+ 1 : n ∈ a∗
α\b∗

α},

since fα
n (qk ↾ α) = 0 for all n ∈ B and k ∈ aα.

At step α ∈ Odd we assume that we are given ai
β, b

i
β satisfying (1) and (2) from the

even step for all β < α (where i = ∗ if β ∈ Odd and i ∈ {0, 1} if β ∈ Even). We call this
step non-trivial, if the closures of πα[Uα] and πα[Vα] have non-empty intersection. If
the case is non-trivial we use Lemma 3.4.3 (note that Lemma 3.3.3 implies that Kα is
connected) to find appropriate (fn)n∈ω ⊆ CI(Kα), Ai and Si for i = 0, 1. In the same
way as in the even step we find B ⊆ ω such that Kα(B) is a strong extension of Kα

and the conditions (1) and (2) are preserved in Kα(B) for β < α. To finish this step
we define Kα+1 = Kα(B), ai

α = Si, b
i
α = Ai and qn ↾ α+ 1 = qB

n ↾ α+ 1. Lemma 3.4.3
guarantees that the condition (2) holds at the step α+ 1.

In both cases the density of Qα+1 = {qn ↾ α + 1 : n ∈ ω} in Kα+1 follows from
Lemma 3.3.4.

Proof of Proposition 3.4.5. We will show that the space constructed above satisfies the
required conditions. (1) follows from Corollary 3.3.8 and the fact that [0, 1]k is a k-
dimensional space. Q is a countable dense set in K, since each Qα is dense in Kα for
α < ω1. Connectedness follows from inductive argument using Lemma 3.3.3.

Let Un, ln, µn be as in (4). Let Un =
⋃

m∈ω Un,m ∩K where Un,m are basic open sets
in [0, 1]ω1 . Every Un,m is determined by finitely many coordinates, so there is γ < ω1

such that π−1
γ (πγ [Un,m]) = Un,m for n ∈ ω, where πγ is the natural projection from

[0, 1]ω1 onto [0, 1]γ (so Un,m are determined by first γ coordinates). By Lemma 3.4.4
there is α > γ, α ∈ Even such that for n ∈ ω
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• µn ↾ C(Kα) = µα
n,

• πα[Un,m] = Uα
n,m,

• ln = lαn .

Let (fα
n )n∈B be such that in the α-th step of construction. Since (fα

n )n∈B satisfy
conditions of Proposition 3.4.2, functions fn = fα

n ◦ πα satisfy conditions (a-c). (d)
follows from [80, Lemma 4.6] and the fact that Kα+1 is a strong extension of Kα by
(fn)n∈B. By construction we have

{qn : n ∈ b∗
α} ∩ {qn : n ∈ a∗

α\b∗
α} ≠ ∅

and by (∗) and (∗∗)
{qn : n ∈ b∗

β} = {qln : n ∈ B},

{qn : n ∈ a∗
α\b∗

α} = {qln : n ∈ N\B},

which gives (e).
Now we will prove (5). Fix open sets U, V ⊆ K such that U ∩ V ̸= ∅. As K is

separable it is c.c.c. so there are open U ′ ⊆ U, V ′ ⊆ V which are countable unions of
basic open sets such that U ′ = U and V ′ = V (namely it is enough to take as U ′ the
union of a maximal antichain of open subsets in U , and similarly for V ′). Without loss of
generality we may assume that U ′ = U and V ′ = V . Since U, V are countable unions of
basic open sets, there is γ < ω1 such that U, V are determined by coordinates less than
γ. Let α > γ, α ∈ Odd be such that U = Uα ∩K,V = Vα ∩K. Then πα[U ] ∩ πα[V ] is
nonempty so α-th step in construction is nontrivial. By construction we have for i = 0, 1

{qn ↾ β : n ∈ bi
α} ∩ {qn ↾ β : n ∈ ai

α\bi
α} ≠ ∅

for all β > α, so there are xi ∈ U ∩ V such that

xi ∈ {qn : n ∈ bi
α} ∩ {qn : n ∈ ai

α\bi
α}.

To finish the proof we need only to notice that x0 ̸= x1, but this follows form the fact
that ai

α, b
i
α were chosen to satisfy Lemma 3.4.3(3).

Lemma 3.4.7. Suppose that (Un)n∈ω is a sequence of pairwise disjoint open subsets of
a compact Hausdorff space K. Let M,N ⊂ ω be infinite sets such that M ∩N is finite.
Assume that (fm)m∈M , (gn)n∈N ⊆ CI(K) are such that supp(fm) ⊆ Um, supp(gn) ⊆ Un

for m ∈ M,n ∈ N and the suprema fsup = sup{fm : m ∈ M}, gsup = sup{gn : n ∈ N}
exist in CI(K). Denote

f = fsup −
∑

m∈M

fm, g = gsup −
∑
n∈N

gn.

Then f, g are Borel functions with disjoint supports.



3.4. The main construction 49

Proof. f and g are Borel functions since they are pointwise sums of countably many
continuous functions. Put D = M ∩ N and note that since D is finite the function∑

m∈D fm is continuous. We will show that

sup{fm : m ∈ M\D} = sup{fm : m ∈ M} −
∑

m∈D

fm. (+)

Let x ∈ K. If x ∈ supp(fn) for some n ∈ M\D, then
∑

m∈D fm(x) = 0, so

(sup{fm : m ∈ M} −
∑

m∈D

fm)(x) = sup{fm : m ∈ M}(x) ≥ fn(x)

for every n ∈ M\D. If x /∈ supp(fn) for every n ∈ M\D, then since fn’s have disjoint
supports we get that

(sup{fm : m ∈ M} −
∑

m∈D

fm)(x) ≥ 0 = fn(x)

for n ∈ M\D. Hence
sup{fm : m ∈ M} −

∑
m∈D

fm ≥ fn

for n ∈ M\D in the lattice C(K). Let h ∈ C(K) be such that

sup{fm : m ∈ M} −
∑

m∈D

fm ≥ h ≥ fn

for n ∈ M\D. Since fn’s have disjoint supports we have

sup{fm : m ∈ M} ≥ h+
∑

m∈D

fm ≥
∑

m∈M

fm.

But
sup{fm : m ∈ M}(x) =

∑
m∈M

fm(x)

for x ∈ D((fn)n∈M ), so

sup{fm : m ∈ M} −
∑

m∈D

fm = h,

because sup{fm : m ∈ M} −
∑

m∈D fm and h are continuous functions equal on the set
D((fn)n∈M ), which is dense in K (by Lemma 3.3.2). This completes the proof of the
equality (+).

From (+) we get that

sup{fm : m ∈ M\D} −
∑

m∈M\D

fm = sup{fm : m ∈ M} −
∑

m∈M

fm = f.

In particular in the definition of f we may replace M with M\D and assume that
M ∩N = ∅.

We will show that in this case we have supp(fsup) ∩ supp(gsup) = ∅, which will finish
the proof since supp(f) ⊆ supp(fsup) and supp(g) ⊆ supp(gsup) (the inclusions hold
because f ≤ fsup, g ≤ gsup and f, g are non-negative). First we observe that for each
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n ∈ N we have supp(fsup) ∩ supp(gn) = ∅. Indeed, if it is not the case, then there
is x ∈ Un such that fsup(x) > 0. Then by the Tietze extension theorem we may find
h ∈ CI(K) such that h(x) = 0 and h ↾ K\Un = fsup ↾ K\Un. But then fsup > h ≥ fm

for every m ∈ M , which is a contradiction with the fact that fsup is the supremum of
fm’s. Now, in the same way we show that if supp(fsup) ∩ supp(gsup) ̸= ∅, then there is
h′ such that gsup > h′ > gn for n ∈ N .

Theorem 3.4.8. Assume ♢. For each k > 0 there is a compact Hausdorff, separable,
connected space K such that C(K) has few operators and dimK = k.

Proof. We will show that if K is the space with properties from Proposition 3.4.5, then
C(K) has few operators. K satisfies Proposition 3.4.5(5), so by [80, Theorem 2.7, Lemma
2.8] it is enough to show that all operators on C(K) are weak multipliers.

Assume that there is a bounded linear operator T : C(K) → C(K), which is not a
weak multiplier. By Theorem 3.4.1 there is a pairwise disjoint sequence (gn)n∈ω ⊆ CI(K)
and pairwise disjoint open sets (Vn)n∈ω such that gn ↾ Vm = 0 for n,m ∈ ω and
|T (gn) ↾ Vn| > δ for some δ > 0. For n ∈ ω let Un = supp(gn). Let g′

n ∈ C([0, 1]ω1) be an
extension of gn and U ′

n = supp(g′
n). By Mibu’s theorem (see [94]) for every n ∈ ω there

is αn < ω1 such that whenever x, y ∈ [0, 1]ω1 , x ↾ αn = y ↾ αn, we have g′
n(x) = g′

n(y).
Hence U ′

n is an open set of the form Wn × [0, 1]ω1\αn , where Wn is an open set in [0, 1]αn .
Since αn is countable, Wn is a union of countably many basic open set in [0, 1]αn . Thus
for every n ∈ ω the set U ′

n is a union of countably many basic open sets in [0, 1]ω1 and
Un = U ′

n ∩K is a union of countably many basic open sets in K.
Let (ln)n∈ω for n ∈ ω be such that qln ∈ Vn (so in particular {qln : n ∈ ω} is relatively

discrete in K) and define µn = T ∗(δqln
). Then |

∫
gndµn| = |T (gn)(qln)| > δ. Since

supp(gn) ⊆ Un and ∥gn∥ ≤ 1 we get that |µn|(Un) ≥ |
∫
gndµn| > δ.

By Proposition 3.4.5 for every infinite subset A ⊆ ω there are infinite sets BA ⊆
NA ⊆ A, continuous functions (fn,A)n∈A ⊆ CI(K) and εA such that

(a) (fn,A)n∈A is a sequence of pairwise disjoint functions with supp(fn,A) ⊆ Un for
n ∈ A,

(b) |
∫
fn,Adµn| > εA for n ∈ BA,

(c)
∑

{|
∫
fm,Adµn| : n ̸= m,m ∈ BA} < εA/3 for n ∈ NA,

(d) {fn,A : n ∈ BA} has its supremum in the lattice C(K),
(e) {qln : n ∈ BA} ∩ {qln : n ∈ NA\BA} ≠ ∅.

Put fA = sup{fn,A : n ∈ BA} −
∑

m∈BA
fm,A. We will show that there is an infinite

set M ⊆ ω such that ∫
fMdµn = 0. (++)

Suppose this is not the case. Let {Mξ : ξ < ω1} be a family of infinite subsets of ω
such that for ξ ̸= ξ′ the set Mξ ∩Mξ′ is finite. Assume (++) does not hold for every Mξ.
Then there is n ∈ ω such that ∫

fMξ
dµn ̸= 0
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for uncountably many ξ’s. By Lemma 3.4.7 fMξ
, fMξ′ have disjoint supports for ξ ≠ ξ′,

so in particular there is an uncountable family of non-null (with respect to µn) Borel
sets in K, which is a contradiction.

Put fn = fn,M , ε = εM , B = BM and N = NM . Let f = sup{fn : n ∈ B}. By (b),
(c), (++) and the definition of µn we get that for n ∈ B

|T (f)(qln)| = |
∫
fdµn| = |

∫
fndµn +

∫ ∑
m∈B\{n}

fm| ≥

|
∫
fndµn| − |

∫ ∑
m∈B\{n}

fm| ≥ ε− ε/3 = 2ε/3.

For n ∈ N\B (c) gives

|T (f)(qln)| = |
∫ ∑

m∈B

fmdµn| < ε/3.

As T (f) is a continuous function on K we obtain that

{qln : n ∈ B} ∩ {qln : n ∈ N\B} = ∅,

which contradicts (e).

Theorem 3.4.9. Assume ♢. Then for every k ∈ ω ∪ {∞} there is a compact Hausdorff
space K such that dim(K) = k and whenever C(K) ∼ C(L), dim(L) = k.

Proof. For k = 0 every finite space K works. If k > 0, then the space from Theorem
3.4.8 has the required property by Corollary 3.2.20.

3.5 Remarks and questions

The first natural question concerning our results is whether Theorem 3.4.9 is true without
any additional assumption.

Question 3.5.1. Let k ∈ ω\{0}. Is there (in ZFC) a compact Hausdorff space K such
that dim(K) = k and whenever C(K) ∼ C(L), dim(L) = k?

In the light of Theorem 3.2.19 to show that the Question 3.5.1 has positive answer it
would be enough to prove that the following question has positive answer.

Question 3.5.2. Let k ∈ ω\{0}. Is there (in ZFC) a compact, separable, connected
Hausdorff space K such that dimK = k and C(K) has few operators?

The original construction of a Banach space C(K) where all the operators are weak
multipliers was carried out in ZFC ([80]). In this construction we set all sequences of
pairwise disjoint continuous functions on [0, 1]c into a sequence of length c, and the
choice of the strong extension at α-th step depends on the α-th sequence of functions.
Later, in order to prove that K satisfies the required conditions, we look at any sequence
(µn)n∈ω of Radon measures on K and show that we can find sequences of continuous
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functions satisfying properties (a-e) from Proposition 3.4.5. However, in this approach we
may obtain an infinite-dimensional space, since used strong extensions may increase the
dimension. One can try to proceed in a similar way, by applying only those extensions
that preserve the dimension. The problem is that we do not know, whether the extension
by the sequence of functions given at some step changes the dimension, since it depends
on the earlier steps (i.e. it depends on the bookkeeping of sequences of continuous
functions on [0, 1]c). Consequently, there may be a sequence of measures on the final
space, for which every suitable sequence of functions appears at a step, in which using
the extension would increase the dimension.

Although the main reason to use the diamond principle is the guessing of measures in
Lemma 3.4.4, we also needed the continuum hypothesis to ensure that all intermediate
spaces from our construction are metrizable. At that point we used the fact that for
every non-zero Radon measure on metrizable compact space there is a zero-dimensional
Gδ compact subset of non-zero measure (Theorem 3.1.16). In the light of this theorem
the following problem seems to be interesting.

Problem 3.5.3. Describe the class of compact Hausdorff spaces K such that for every
non-zero Radon measure µ on K there is a zero-dimensional compact subset L ⊆ K such
that µ(L) ̸= 0.

Assume that K is such that C(K) has few operators. Then by [117, Proposition
4.8] there is a space L such that C(K) ∼ C(L), but C(L) does not have few operators.
However, by Theorem 3.2.19 the topology of L is very close to K, at least if we assume
that K is separable and connected.

Question 3.5.4. Suppose that K is a compact Hausdorff space such that every operator
T : C(K) → C(K) is a weak multiplier and C(L) ∼ C(K) for some compact Hausdorff
space. Is it true that K and L are homeomorphic modulo finitely many points in the
sense of Theorem 3.2.19?

One may also ask, what properties K should have to satisfy Theorem 3.4.9. There
are known examples of “nice” spaces K such that if C(K) ∼ C(L), then L is not
zero-dimensional. For instance Avilés and Koszmider showed that there is such a space
which is quasi Radon-Nikodym ([8]) and Plebanek gave a consistent example of such a
space which is a Corson copmact ([109]).



Chapter 4

Grothendieck vs Nikodym

4.1 Introduction

In 1953, Grothendieck [64, Section 4] proved that the space l∞ of bounded sequences
has the following property:

All weak*-convergent sequences in the dual space l∗∞ are also weakly convergent.

The above theorem motivated the following definition.

Definition 4.1.1. A Banach space X has the Grothendieck property if all weak*-
convergent sequences in the dual space X∗ are also weakly convergent.

Research on the Grothendieck property has long history and is still ongoing [12, 16,
29, 61–63, 66, 73, 81, 127]. If X is of the form C(K) for a compact space K, then X

has the Grothendieck property if and only if each weak*-convergent sequence of Radon
measures on K is also weakly convergent. Recall that l∞ is isometric to the Banach
space C(βN) of continuous functions on the Stone-Čech compactification of the natural
numbers. Moreover, βN is the Stone space of the Boolean algebra P(N).

Schachermayer, inspired by the Grothendieck’s result, introduced the notion of the
Grothendieck property for Boolean algebras [116, Definition 2.3].

Definition 4.1.2. A Boolean algebra A has the Grothendieck property, if the Banach
space C(St(A)) of continuous functions on the Stone space of A has the Grothendieck
property.

Analogously, motivated by Nikodym’s paper [99], Schachermayer defined the Nikodym
property for Boolean algebras [116, Definition 2.4].

Definition 4.1.3. A Boolean algebra A has the Nikodym property, if every sequence
(µn) of bounded finitely additive signed measures on A, which is pointwise convergent
to zero (i.e. for all A ∈ A we have limn→∞ µn(A) = 0) is bounded in the norm (i.e.
supn∈N ||µn|| is bounded, cf. Section 1.2).

53
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The Nikodym property is similar to the Grothendieck property in many ways. For
example, if a Boolean algebra A has the Grothendieck or Nikodym property, then
its Stone space does not contain non-trivial convergent sequences. In [64] and [7] the
authors proved that complete Boolean algebras have both the Grothendieck and Nikodym
properties. The completeness assumption can be relaxed to some combinatorial property
(SCP) introduced by Haydon [67, Definition 1A, Proposition 1B], which is even weaker
than σ-completeness [51]. Other connections between the Grothendieck property and the
Nikodym property may be found in [96, 118]. Both of the properties were also considered
in a recent paper by Żuchowski in the context of filters on N [137].

However, the Grothendieck and Nikodym properties are not equivalent. There are
Boolean algebras with the Nikodym property but without the Grothendieck property,
e.g. the Boolean algebra of Jordan measurable subsets of the unit interval [92],[116,
Propositions 3.2, 3.3]. The question if there is a Boolean algebra with the Grothendieck
property, but without the Nikodym property turned out to be much more difficult. This
is the central question of the chapter.

Question 4.1.4. Does there exist a Boolean algebra with the Grothendieck property that
does not have the Nikodym property?

So far there was only one known example of such a Boolean algebra. It was constructed
by Talagrand in [128]. However, his construction uses the continuum hypothesis (CH)
and so the question of the existence of such a Boolean algebra in ZFC remains open.
Since Talagrand’s construction there was no much progress in this subject, so it was
natural to ask the following question.

Question 4.1.5. Is it consistent with ¬CH that there is a Boolean algebra with the
Grothendieck property but without the Nikodym property?

In this chapter we answer this problem in the affirmative. Moreover, the algebra we
construct has cardinality ω1.

Theorem 4.5.15. It is consistent with ¬CH that there is a Boolean algebra of size ω1

with the Grothendieck property but without the Nikodym property.

Very recently, there has been released a preprint by Sobota and Zdomskyy [125] with
a proof that Martin’s axiom (MA) implies the existence of such an algebra of cardinality
c.

The proof of Theorem 4.5.15 strongly relies on the ideas behind Talagrand’s con-
struction. His Boolean algebra consists of Borel sets with certain symmetry property
(we call such sets balanced sets). This ensures that the constructed Boolean algebra will
not have the Nikodym property.

We define a σ-centered forcing notion that extends a given countable balanced
Boolean algebra to a bigger one that is still balanced. Moreover, some sequences of
measures (picked by a generic filter) which were weak*-convergent in the initial algebra
are no longer weak*-convergent in the extension. Then we show that in the model



4.1. Introduction 55

obtained from the finite support iteration of length ω1 of such forcing notions, there
exists a balanced Boolean algebra with the Grothendieck property. The idea behind this
forcing comes from the work of Koszmider [79] and of Fajardo [40]. In the former paper
Koszmider introduced a notion of forcing that adds a Boolean algebra of cardinality ω1,
whose Stone space does not contain non-trivial convergent sequences. Fajardo adapted
this method to obtain a Banach space C(K) of small density and with few operators. In
particular, this space has the Grothendieck property. In this chapter we show how to
combine this approach with the theory of balanced algebras to obtain a Boolean algebra
without the Nikodym property.

Most of the results concerning fundamental properties of balanced sets (see Section 4.3)
that we use in this chapter are essentially due to Talagrand. However, our construction
requires some significant changes. Since the construction is rather complicated and
technical, we decided to include detailed proofs at each step. We also show how to
construct a balanced Boolean algebra with the Grothendieck property under CH using
our modification of Talagrand’s method (see Theorem 4.4.8).

Another interesting related issue is the question about the possible sizes of Boolean
algebras with the Grothendieck and Nikodym properties. There always exists such
an algebra of size c (e.g. P(N)). It is well-known that if p = c, then c is the only
possible size of such an algebra (it follows from [68, Corollary 3F]). In particular, it
happens under MA. Brech showed the consistency of the existence of a Boolean algebra
with the Grothendieck property of cardinality smaller than c [17]. In [100, Chapter 52,
Question 10] Koszmider asked whether it is consistent that there is no Boolean algebra
with the Grothendieck property of size p. It turned out that the answer is positive [9,
Proposition 6.18]. Recently Sobota and Zdomskyy published several articles on cardinal
characteristics related to Boolean algebras with the Grothendieck or Nikodym property
[121–124, 126]. The Boolean algebra we construct is the first example of a Boolean
algebra with the Grothendieck property and without the Nikodym property of size
ω1 < c (in particular, our model satisfies p = ω1 < c, see Corollary 4.5.14) and the first
construction of such a Boolean algebra of size less than c. In particular, the Stone space
of this algebra is another example of a Efimov space. In fact, if we want only to obtain
a Boolean algebra with the Grothendieck property, then our forcing can be simplified in
a natural way (by dropping some restrictions on the conditions).

It is also worth mentioning that the Grothendieck and Nikodym properties are also
discussed in the non-commutative setting in the category of C*-algebras. The definition
of the Grothendieck property for C*-algebras is the same as for general Banach spaces.
We say that a C*-algebra A has the Nikodym property, if every sequence of bounded
linear functionals on A that is convergent to 0 on projections is bounded in the norm.
If A is a Boolean algebra, then it has the Nikodym property if and only if C(St(A))
has the Nikodym property, when considered as a C*-algebra. The Nikodym property
is especially interesting in the case when given C*-algebra has many projections, e.g.
when its real rank is zero. It is well-known that von Neumann algebras have both the
Grothendieck and Nikodym properties (see [105, Corollary 7] and [26, Theorem 1]). The
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problem of the existence of C*-algebras with the Grothendieck property and without
the Nikodym property is still open in ZFC even in the non-commutative case.

Question 4.1.6. Is there a C*-algebra of real rank zero, which has the Grothendieck
property, but does not have the Nikodym property?

The structure of the chapter is the following. In Section 4.2 we introduce the property
(G) of Boolean algebras and the property of being balanced. Then we show that they
imply the Grothendieck property and the negation of the Nikodym property respectively.
Section 4.3 is devoted to properties of finite balanced families (this includes the behavior
of balanced families under basic operations and approximating balanced families with
families of clopen subsets of the Cantor set) and tools for extending countable balanced
Boolean algebras. In Section 4.4 we show a method of extending countable balanced
Boolean algebras to bigger ones in a way that destroys the weak*-convergence of given
sequences of measures. Then we show how to apply this method to construct a Boolean
algebra with the Grothendieck property and without Nikodym property assuming the
continuum hypothesis. In Section 4.5 we describe a σ-centered notion of forcing that
forces the existence of a Boolean algebra with the Grothendieck property and without
the Nikodym property. In the last section we include final remarks and state some open
questions.

4.2 Grothendieck and Nikodym properties

In this section we will reduce the problem of the existence of a Boolean algebra with the
Grothendieck property and without the Nikodym property by introducing the property
(G) and the notion of a balanced Boolean algebra.

We start with the notion of semibalanced sets that describes these subsets A ⊆ C

for which the occurrences of 1’s and −1’s at r-th coordinate of elements of A are almost
equally distributed for large enough r. For this we introduce measures φn on Bor(C) for
n ∈ N, given by the formula

φn(A) =
∫

A
δndλ

for A ∈ Bor(C), where δn : C → {−1, 1}, δn(x) = xn.

Definition 4.2.1. Let A ∈ Bor(C);m ∈ N; ε > 0. The set A is (m, ε)-semibalanced if

∀r > m |φr(A)| < ε

r
. (3.1.1)

We say that A is semibalanced, if for every ε > 0 there is m ∈ N such that A is
(m, ε)-semibalanced.

Definition 4.2.2. Let A ∈ Bor(C);m, t ∈ N; t ≥ m; ε > 0. We say that A is (m, t, ε)-
balanced if for every s ∈ {−1, 1}m

λ(A ∩ ⟨s⟩)
λ(⟨s⟩) <

ε

m
or λ(⟨s⟩\A)

λ(⟨s⟩) <
ε

m
(3.2.1)
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and

∀r ∈ (m, t] |φr(A ∩ ⟨s⟩)|
λ(⟨s⟩) <

ε

r
. (3.2.2)

We say that A is (m, ε)-balanced if for every s ∈ {−1, 1}m the condition (3.2.1) is
satisfied and

∀r > m
|φr(A ∩ ⟨s⟩)|

λ(⟨s⟩) <
ε

r
. (3.2.3)

Definition 4.2.3. We say that a finite subfamily A ⊆ Bor(C) is (m, ε)-balanced if
every A ∈ A is (m, ε)-balanced.

We say that a family B ⊆ Bor(C) is balanced, if for every finite subfamily A ⊆ B
and every ε > 0 there is m ∈ N such that A is (m, ε)-balanced. A set A ∈ Bor(C) is
balanced, if {A} is balanced.

Remark 4.2.4. If A is a finite balanced family and ε > 0, then for every n ∈ N there is
m > n such that A is (m, ε)-balanced.

Note that if B is balanced, then every member of B is balanced, but the reverse
implication does not hold in general. It may happen that A and B are balanced, while
the sets {m ∈ N : A is (m, ε)-balanced} and {m ∈ N : B is (m, ε)-balanced} are disjoint
for some ε > 0.

Lemma 4.2.5. Let A ∈ Bor(C), ε > 0 and m, t ∈ N, where t ≥ m. Then A is (m, ε)-
balanced if and only if A is (m, t, ε)-balanced and for every s ∈ {−1, 1}m the set A ∩ ⟨s⟩
is (t, 2−mε)-semibalanced. In particular, if A is balanced, then it is semibalanced.

Proof. If A is (m, ε)-balanced, then it is clearly (m, t, ε)-balanced and by (3.2.3) for any
s ∈ {−1, 1}m and r > t we have

|φr(A ∩ ⟨s⟩)| < λ(⟨s⟩)ε
r

= ε

2mr
,

which shows that A ∩ ⟨s⟩ is (t, 2−mε)-semibalanced.
The above inequality also shows that if A is (t, 2−mε)-semibalanced, then (3.2.3)

is satisfied for s ∈ {−1, 1}m and r > t. In particular, if A is (m, t, ε)-balanced and
(t, 2−mε)-semibalanced, then it is (m, ε)-balanced.

To see that any balanced set is semibalanced fix ε > 0 and m ∈ N such that A is
(m, ε)-balanced. From the first part of the lemma applied to t = m we get that for r > m

|φr(A)| ≤
∑

s∈{−1,1}m

|φr(A ∩ ⟨s⟩)| <
∑

s∈{−1,1}m

ε

2mr
= ε

r
,

so A is semibalanced.

We will present a few examples to illustrate the above definitions.

Example 4.2.6. Every clopen subset of C is (m, ε)-balanced for every ε > 0 and
sufficiently large m ∈ N.
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Example 4.2.7. We will construct an open balanced set U that is not clopen. More
precisely, U will be

(
2n, 2n+2

22n

)
-balanced for every n ∈ N.

For every n ∈ N consider the set Zn of all sequences of the form (a1, a2, . . . , a2n) of
length 2n with values in {−1, 1} with the following properties:

(1) if n = 1, then a1 = −a2,
(2) if n ̸= 1, then a1 = a2,
(3) ∀l < n a2l−1+1 = a2l−1+2 = · · · = a2l ,
(4) a2n−1+1 = a2n−1+2 = · · · = a2n−1 = −a2n ,

and put Z =
⋃

n∈N Zn. On the figure below, the red (dark) sets are of the form ⟨s⟩,
where s ∈ Zn and s2n = 1 for some n ∈ N, while blue (light) sets are of the form ⟨s⟩,
where s ∈ Zn, s2n = −1.

Let U =
⋃

s∈Z⟨s⟩. Consider three cases.
1. If s ∈ Z then

m
λ(⟨s⟩\U)
λ(⟨s⟩) = m

λ(∅)
λ(⟨s⟩) = 0.

2. If s ∈ {−1, 1}2n for n ∈ N \ {1} satisfy conditions (2), (3) and

(4’) a2n−1+1 = a2n−1+2 = · · · = a2n−1 = a2n ,

then there are only 4 nonempty sets of the form U ∩ ⟨si⟩, for i ∈ {1, 2, 3, 4} where
si ∈ {−1, 1}2n+1 and ⟨si⟩ ⊆ ⟨s⟩. Hence

m
λ(U ∩ ⟨s⟩)
λ(⟨s⟩) < m

∑4
i=1 λ(⟨si⟩)
λ(⟨s⟩) ≤ 2n 4 · 2−2n+1

2−2n = 2n+2

22n .

3. In other cases
m
λ(U ∩ ⟨s⟩)
λ(⟨s⟩) = m

λ(∅)
λ(⟨s⟩) = 0.

For every r ∈ N the distribution of 1’s and −1’s in the elements of U at the r-th
coordinate is symmetric, as can be easily seen in the figure - the blue (light) sets are
symmetric to the red (dark) ones (i.e. ⟨s⟩ is a blue set if and only if ⟨−s⟩ is red). Thus,
for every r ∈ N we have

|φr(U ∩ ⟨s⟩)|
λ(⟨s⟩) = 0.
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Proposition 4.2.8. If a Boolean algebra B ⊆ Bor(C) consists of semibalanced sets, then
B does not have the Nikodym property. In particular, if B is balanced, then it does not
have the Nikodym property.

Proof. Consider a sequence of measures (µn)n∈N on B given by

µn(A) = nφn(A).

This sequence is pointwise convergent to 0, i.e. limn→∞ |µn(A)| = 0 for all A ∈ B.
Indeed, for A ∈ B and for any ε > 0 there exist m ∈ N such that for all n > m by (3.1.1)
we have

|µn(A)| = n|φn(A)| ≤ n
ε

n
= ε.

However, (µn)n∈N is not bounded in the norm, because

sup
n∈N

||µn|| = sup
n∈N

n∥λ∥ = ∞.

In particular, B does not have the Nikodym property.
If B is balanced, then by Lemma 4.2.5 it consists of semibalanced sets, so it does not

have the Nikodym property by the first part of the lemma.

Example 4.2.9. The following Boolean algebra considered by Plebanek1 is interesting
in the context of our considerations:

BP = {B ∈ Bor(C) : lim
n→∞

nψn(B) = 0},

where ψn(B) = min{λ(B△C) : C ∈ An}.
Each element of BP is semibalanced, so by Proposition 4.2.8 BP does not have the

Nikodym property. Indeed, one needs first to observe that if B ∈ BP and n < m, then

φm(B) ≤ ψn(B).

To show that every B ∈ BP is semibalanced take any B ∈ BP and ε > 0. Since nψn(B)
converges to 0, we can find m ∈ N such that for every r ≥ m we have rψr(B) < ε

2 . Then
for every r > m

r|φr(B)| ≤ rψr−1(B) ≤ 2(r − 1)ψr−1(B) < ε.

However, BP is not balanced. To see this, take

B =
∞⋃

k=2
⟨sk⟩,

where sk ∈ {−1, 1}k is of the form sk = (−1, . . . ,−1, 1, 1) for k ≥ 2. Then

nψn(B) = n
∑
k>n

λ(⟨sk⟩) = n

2n

1 Personal communication
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converges to 0, so B ∈ BP . But B is not balanced. Indeed, for k ∈ N consider
s′

k ∈ {−1, 1}k of the form s′
k = (−1, . . . ,−1, 1). Then

λ(B ∩ ⟨s′
k⟩)

λ(⟨s′
k⟩) = λ(⟨s′

k⟩ \B)
λ(⟨s′

k⟩) = 1
2 .

There are no non-trivial convergent sequences in St(BP ). However, this Boolean
algebra does not have the Grothendieck property. The sequence of measures on BP given
by

ϑn(A) = 2nφ2n(A ∩ ⟨s′
n⟩),

(where s′
n is as above) is weak*-convergent, but it is not weakly convergent2.

Moreover, according to Borodulin-Nadzieja3 no semibalanced Boolean algebra con-
taining BP has the Grothendieck property.

In order to take care of the Grothendieck property it is enough to restrict the choice
of sequences of measures to those with pairwise disjoint Borel supports and norms equal
to 1.

Definition 4.2.10. Let A be a Boolean algebra. We say that a sequence (νn)n∈N of
measures on A is normal, if:

• ∀n ∈ N ∥νn∥ = 1,
• (ν̃n)n∈N has pairwise disjoint Borel supports.

The following definition will be important throughout the chapter.

Definition 4.2.11. We say that a Boolean algebra B satisfies (G) if for every normal
sequence (νn)n∈N of measures on B there are G ∈ B, an antichain {Hn

0 , H
n
1 : n ∈ N} ⊆ B

and strictly increasing sequences (an)n∈N, (bn)n∈N of natural numbers such that for all
n ∈ N

(a) G ∩Hn
1 = ∅,

(b) |νan |(Hn
0 ) ≥ 0.9 and |νbn |(Hn

1 ) ≥ 0.9,
(c) |νan(G ∩Hn

0 )| ≥ 0.3.

Note that Schachermayer introduced the property (G) in [116] as a name for the
Grothendieck property. Our property (G) is different. It implies the Grothendieck
property, but the reverse implication does not hold.

To show that the property (G) implies the Grothendieck property we will use the
following lemma known as The Kadec-Pełczyński-Rosenthal Subsequence Splitting
Lemma:

Lemma 4.2.12. [3, Lemma 5.2.7] Let K be a compact space. For every bounded
sequence (ν̃n)n∈N ⊆ M(K) there exists a non-negative real r and a subsequence (ν̃nk

)k∈N,
each element of which may be decomposed into a sum of two measures ν̃nk

= µ̃k + θ̃k,
where µ̃k, θ̃k ∈ M(K), satisfying the following conditions:
2 The idea behind this sequence is due to Avilés.
3 Personal communication.
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(1) the measures µ̃k are supported by pairwise disjoint Borel sets,
(2) (θ̃k)k∈N is weakly convergent,
(3) ||µ̃k|| = r, for every k ∈ N.

Proposition 4.2.13. If a Boolean algebra B satisfies (G), then B has the Grothendieck
property.

Proof. Suppose B has the property (G), but does not have the Grothendieck property.
That is, there is a sequence µ̃n of measures on St(B) weak*-convergent to a measure µ̃,
which is not weakly convergent. Without loss of generality, by passing to a subsequence,
we can assume that no subsequence of (µ̃n)n∈N is weakly convergent. Indeed, suppose
that each subsequence of (µ̃n)n∈N contains a weakly convergent subsequence. Since the
sequence is weak*-convergent to µ̃, such a subsequence must be also weakly convergent
to µ̃. Then each subsequence of (µ̃n)n∈N has a subsequence weakly convergent to µ̃, so
the whole sequence is weakly convergent to µ̃, which gives a contradiction.

Since (µ̃n)n∈N is weak*-convergent, it is bounded in the norm (cf. [39, Theorem
3.88]). By Lemma 4.2.12 we can find a real r and a subsequence (µ̃nk

)k∈N each element
of which may be decomposed into the sum of two measures µ̃nk

= ν̃k + θ̃k satisfying

(1) the measures ν̃k are supported by pairwise disjoint Borel sets,
(2) (θ̃k)k∈N is weakly convergent,
(3) ||ν̃k|| = r, for every k ∈ N.

Note that since (θ̃n)n∈N is weakly convergent, (ν̃n)n∈N is not. In particular, r ̸= 0.
Thus, without loss of generality, by the normalization, we can assume that r = 1. Then
the sequence (νn)n∈N is normal. The Boolean algebra B satisfies the property (G), so
there are G ∈ B, an antichain {Hn

0 , H
n
1 : n ∈ N} ⊆ B and strictly increasing sequences

(an)n∈N, (bn)n∈N of natural numbers such that for all n ∈ N

(a) G ∩Hn
1 = ∅,

(b) |νan |(Hn
0 ) ≥ 0.9 and |νbn |(Hn

1 ) ≥ 0.9,
(c) |νan(G ∩Hn

0 )| ≥ 0.3.

Hence for n ∈ N we have

(1) |νan(G)| ≥ |νan(G ∩Hn
0 )| − |νan |(G\Hn

0 ) ≥ 0.3 − 0.1 = 0.2,
(2) |νbn |(G) ≤ |νbn |(C\Hn

1 ) ≤ 0.1.

So there is no ν such that νn(G) → ν(G). Thus, (ν̃k)k∈N is not weak*-convergent, which
is a contradiction, since (ν̃k)k∈N = (µ̃nk

− θ̃k)k∈N is a difference of two weak*-convergent
sequences.

Now we will introduce the property (G∗) similar to the property (G), which focuses
on only one sequence of measures. Then we will show that having the property (G∗) for
enough many sequences of measures we can conclude that the property (G) holds.
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Definition 4.2.14. Let B∗ ⊆ B be Boolean algebras and let ν = (νn)n∈N be a sequence
of measures on B∗. We say that (B∗,B, ν) satisfies (G∗), if there are: an antichain
{Hn

0 , H
n
1 : n ∈ N} ⊆ B∗, a set G ∈ B and strictly increasing sequences (an)n∈N, (bn)n∈N

of natural numbers such that for all n ∈ N

(a) G ∩Hn
0 ∈ B∗,

(b) G ∩Hn
1 = ∅,

(c) |νan |(Hn
0 ), |νbn |(Hn

1 ) ≥ 0.9,
(d) |νan(G ∩Hn

0 )| ≥ 0.3.

The next proposition shows the relationship between the properties (G) and (G∗).

Proposition 4.2.15. Suppose that B is a Boolean algebra such that for every normal
sequence of measures ν = (νn)n∈N on B there is a subalgebra B∗ ⊆ B such that the
sequence (νn ↾ B∗)n∈N is normal and (B∗,B, ν ↾ B∗) satisfies (G∗). Then B satisfies (G).
In particular, B has the Grothendieck property.

Proof. Fix any normal sequence (νn)n∈N of measures on B. Pick B∗ ⊆ B such that
there exist an antichain {Hn

0 , H
n
1 : n ∈ N} ⊆ B∗, G ∈ B and sequences (an)n∈N, (bn)n∈N

such that for the sequence (νn ↾ B∗) the conditions (a)-(d) from Definition 4.2.14 are
satisfied. In particular, G ∩Hn

1 = ∅, i.e. (a) of Definition 4.2.11 holds. To see that (b)
of Definition 4.2.11 is satisfied, observe that

|νan |(Hn
0 ) = sup{|νan(A)| + |νan(B)| : A,B ∈ B, A,B ⊆ Hn

0 , A ∩B = ∅} ≥

≥ sup{|νan(A)| + |νan(B)| : A,B ∈ B∗, A,B ⊆ Hn
0 , A ∩B = ∅} =

= |νan ↾ B∗|(Hn
0 ) ≥ 0.9

and similarly |νbn |(Hn
1 ) ≥ |νbn ↾ B∗|(Hn

1 ) ≥ 0.9.
For Definition 4.2.11 (c) note that

|νan(G ∩Hn
0 )| = |νan ↾ B∗(G ∩Hn

0 )| ≥ 0.3.

Use Proposition 4.2.13 to conclude that B has the Grothendieck property.

For the reader’s convenience we provide a brief sketch of our constructions. We
describe consecutive steps of reasoning, starting from general motivations. The parts
devoted only to the case of construction under the continuum hypothesis (from Theorem
4.4.8) are tagged (CH), while the parts devoted to the forcing construction (from Theorem
4.5.15) are tagged (F).

Construction roadmap

1. General idea: we construct an increasing sequence (Bα)α<ω1 of balanced countable
subalgebras of Bor(C).

(CH) For every α < ω1 the triple (B∗
α,Bα+1, (να

n )n∈N) satisfies (G∗), where (να
n )n∈N

is a sequence of measures (on some subalgebra B∗
α of Bα) which is given (by a

proper bookkeeping) in advance (see Theorem 4.4.8).
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(F) We define a finite support iteration (Pα)α≤ω1 of σ-centered forcings (Definition
4.5.9). For every α < ω1 the algebra Bα belongs to the α-th intermediate model
obtained from this iteration. The triples (Bα,Bα+1, (νn)n∈N) satisfy (G∗) for
uncountably many sequences of measures (on Bα), whose choice depends on
a generic filter in Pα (for the connection between the choice of sequences of
measures and a generic filter see Lemma 4.5.6).

We finish by taking the Boolean algebra

B =
⋃

α<ω1

Bα,

which is balanced and satisfies (G). Applying Proposition 4.2.8 and Proposition
4.2.13 we obtain Theorem 4.4.8 and Theorem 4.5.15.

2. We start with B0 = Clop(C). At limit steps we take unions. The only non-trivial
step is the construction of Bα+1 from Bα. In this case we extend Bα by a new set
G ∈ Bor(C) which is a union of countably many pairwise disjoint elements of Bα:

G =
⋃

n∈N
Gn

that satisfy the hypothesis of Lemma 4.3.7 (this ensures that Bα+1 is balanced).
Moreover, we require that

(CH) G (together with some antichain {Hn
0 , H

n
1 }n∈N ⊆ Bα) is a witness for the

property (G∗) for the triple (B∗
α,Bα+1, (να

n )n∈N),
(F) there is an antichain {Hn}n∈N ⊆ Bα such that for every sequence (νn)n∈N

satisfying the hypothesis of Proposition 4.5.7 the set G together with some
subset of {Hn}n∈N witnesses the property (G∗) for (Bα,Bα+1, (νn)n∈N).

3. From now on we will assume that α is fixed and we will focus on the construction of
Gn’s, Hn’s and Hn

i ’s for i = 0, 1.

(CH) We define (Gn)n∈N, (Hn
0 )n∈N, (Hn

1 )n∈N by induction on n ∈ N (see Lemma 4.4.6).
In order to obtain the property (G∗) we need to ensure that for every n ∈ N the
set Gn ∩Hn

0 is “big” in the sense of some measure from the sequence (να
n )n∈N

while Gn ∩Hk
1 = ∅ for k, n ∈ N.

(F) The sets Gn’s and Hn’s appear in the forcing conditions chosen by a generic
filter. Lemma 4.5.6 will imply that for an appropriate sequence (νn)n∈N of
measures, for infinitely many n ∈ N the set Gn ∩ Hn is “big” in the sense of
some measure from this sequence, while Gn ∩ Hk = ∅ for every n ∈ N and
infinitely many k ∈ N.

4. Given finite sequences (Gk)k≤n, (Hk
0 )k≤n, (Hk

1 )k≤n (or (Hk)k≤n in the case of forcing),
we extend them using Lemma 4.4.4 and Lemma 4.4.5 (applied to Ĝ =

⋃
k≤nGk and

Ĥ =
⋃

k≤n(Hk
0 ∪Hk

1 ) or Ĥ =
⋃

k≤nHk).

(CH) The set Gn+1 consists of 2 parts: Gn+1 = L ∪M , where L = Gn+1 ∩Hn+1
0 is

the part witnessing the property (G∗) and M is a very small set disjoint from
Hk

i ’s (so it has no influence on (G∗)).
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(F) It follows that there are l1, l2 > n such that Gl1 = L ∪M , where L = Gl1 ∩Hl1

witnesses the property (G∗) and M ∩Hk = ∅ for k ∈ N, while Gl2 ∩Hl2 = ∅
(this will ensure that G ∩Hl2 = ∅).

5. At the same time, to make sure that the hypothesis of Lemma 4.3.7 is satisfied (cf.
item 2), we need to pick Gn’s in such a way that the families F(Bn,

⋃
i≤k Gi) (where

Bn’s are some finite subalgebras of Bα) will have appropriate degrees of balance for
k, n ∈ N. However, we do not have enough control over the choice of L, which can
affect the balance. Thus, we need to fix it with the help of M .

6. The choice of M depends on L in the way described in Proposition 4.3.8. The main
idea behind this choice is to reduce the problem to finite combinatorics. We work
with some finite subalgebra H of B containing the sets that have appeared in the
construction so far (including L) that is sufficiently well balanced (cf. Lemma 4.3.12).

7. Lemma 4.3.5 shows that there is n ∈ N and a Boolean homomorphism h : H → An

(recall that An is a finite Boolean algebra consisting of clopen subsets of C) such that
every A ∈ H is well-approximated by h(A). The choice of M and most of the crucial
calculations take place in An (see Lemma 4.3.11). These include the use of techniques
such as probability inequalities involving weighted Rademacher sums (Lemma 4.3.9)
and analysis in finite-dimensional subspaces of the Hilbert space L2(C).

4.3 Properties of balanced families

This section is devoted to the combinatorics of balanced sets and families. In a series of
lemmas we will describe basic properties of balanced sets and show how to modify a
given set to a balanced one.

We start with a few simple observations.

Lemma 4.3.1. If A,B ∈ Bor(C) are disjoint and (m, ε)-balanced, then A ∪ B is
(m, 2ε)-balanced.

Proof. First we check (3.2.1). Fix any s ∈ {−1, 1}m. If

λ(⟨s⟩\A)
λ(⟨s⟩) <

ε

m
or λ(⟨s⟩\B)

λ(⟨s⟩) <
ε

m

then
λ(⟨s⟩\(A ∪B))

λ(⟨s⟩) ≤ min
{
λ(⟨s⟩\A)
λ(⟨s⟩) ,

λ(⟨s⟩\B)
λ(⟨s⟩)

}
<

ε

m
.

Otherwise, since A and B satisfy (3.2.1) we have

λ(A ∩ ⟨s⟩)
λ(⟨s⟩) <

ε

m
and λ(B ∩ ⟨s⟩)

λ(⟨s⟩) <
ε

m
.

Summing up the inequalities we get

λ((A ∪B) ∩ ⟨s⟩)
λ(⟨s⟩) <

2ε
m
,

so A ∪B satisfies (3.2.1) for 2ε.
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Now we check (3.2.3). Fix r > m. Since A ∩B = ∅ we have

|φr((A ∪B) ∩ ⟨s⟩)| ≤ |φr(A ∩ ⟨s⟩)| + |φr(B ∩ ⟨s⟩)|.

Thus, by summing up the inequalities (3.2.3) for A and B we get

|φr((A ∪B) ∩ ⟨s⟩)|
λ(⟨s⟩) ≤ |φr(A ∩ ⟨s⟩)|

λ(⟨s⟩) + |φr(B ∩ ⟨s⟩)|
λ(⟨s⟩) <

2ε
r
,

so A ∪B satisfies (3.2.3) for 2ε.

Lemma 4.3.2. Let A ∈ Bor(C), t ∈ N and ε > 0. If A is (t, ε)-semibalanced then C\A
is also (t, ε)-semibalanced.

Proof. Let r > t. We have

φr(A) + φr(C\A) =
∫

A
δrdλ+

∫
C\A

δrdλ =
∫

C
δrdλ = 0.

By (3.1.1) for A we get
|φ(C\A)| = |φ(A)| < ε

r
,

which implies (3.1.1) for C\A and so C\A is (t, ε)-semibalanced.

Lemma 4.3.3. Suppose that F is a finite Boolean subalgebra of Bor(C) and t ∈ N is
such that F is (t, ε)-balanced, where

ε = 1
100 inf{λ(A) : A ∈ F, λ(A) > 0}.

Then for every A ∈ F, if λ(A) > 0, then there is sA ∈ {−1, 1}t such that

λ(A ∩ ⟨sA⟩)
λ(⟨sA⟩) ≥ 0.99.

Proof. Let A ∈ F be such that λ(A) > 0. Then λ(A) > ε, so there must be sA ∈ {−1, 1}t

such that λ(A ∩ ⟨sA⟩) > ελ(⟨sA⟩). Hence

λ(⟨sA⟩\A)
λ(⟨sA⟩) ≤ 1 − ε.

Since A satisfies (3.2.1) we have

λ(⟨sA⟩\A)
λ(⟨sA⟩) <

ε

t
≤ ε.

But ε ≤ 0.01, so

λ(A ∩ ⟨sA⟩)
λ(⟨sA⟩) = λ(⟨sA⟩) − λ(⟨sA⟩\A)

λ(⟨sA⟩) > 1 − ε ≥ 0.99.

Lemma 4.3.4. Let H0 be an (n, ε)-balanced Boolean algebra. Then the Boolean algebra
H generated by H0 ∪ An is (n, ε)-balanced.



66 4. Grothendieck vs Nikodym

Proof. Take A ∈ H. Then A is of the form:

A =
⋃

⟨s⟩∈at(An)
(⟨s⟩ ∩As) =

⋃
s∈{−1,1}n

(⟨s⟩ ∩As),

where As ∈ H0 for s ∈ {−1, 1}n.
Let s0 ∈ {−1, 1}n. Then

A ∩ ⟨s0⟩ =
⋃

s∈{−1,1}n

(⟨s⟩ ∩As) ∩ ⟨s0⟩ = As0 ∩ ⟨s0⟩

and

⟨s0⟩\A = ⟨s0⟩\
⋃

s∈{−1,1}n

(⟨s⟩ ∩As) = ⟨s0⟩\As0 .

By (3.2.1) we have

λ(As0 ∩ ⟨s0⟩)
λ(⟨s0⟩) <

ε

n
or λ(⟨s0⟩\As0)

λ(⟨s0⟩) <
ε

n
.

If λ(As0 ∩⟨s0⟩)
λ(⟨s0⟩) < ε

n , then

λ(A ∩ ⟨s0⟩)
λ(⟨s0⟩) = λ(As0 ∩ ⟨s0⟩)

λ(⟨s0⟩) <
ε

n
.

If λ(⟨s0⟩\As0 )
λ(⟨s0⟩) < ε

n , then

λ(⟨s0⟩\A)
λ(⟨s0⟩) = λ(⟨s0⟩\As0)

λ(⟨s0⟩) <
ε

n
,

so A also satisfies (3.2.1).
Let r > n and let s0 ∈ {−1, 1}n. Then by (3.2.3)

|φr(A ∩ ⟨s0⟩)|
λ(⟨s0⟩) = |φr(As0 ∩ ⟨s0⟩)|

λ(⟨s0⟩) <
ε

r
.

The next lemma shows that while dealing with finite balanced families we can
approximate them with finite families of clopen subsets of C. This will allow us to reduce
many problems to the combinatorics of finite Boolean algebras An for n ∈ N.

Lemma 4.3.5. Suppose that H ⊆ Bor(C) is a finite subalgebra that is (n, ε)-balanced
for some n ∈ N and ε < 1/3. Then the function hn : H → An given by

hn(A) =
⋃{

⟨s⟩ : s ∈ {−1, 1}n,
λ(⟨s⟩\A)
λ(⟨s⟩) < ε

}
is a homomorphism of Boolean algebras and for every A ∈ H we have

λ (A△hn(A)) < ε/n.
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Proof. For the first part of the lemma we need to show that hn(C) = C, hn(A ∪B) =
hn(A) ∪ hn(B) and hn(C\A) = C\hn(A) for every A,B ∈ H.

The first equality holds since for every s ∈ {−1, 1}n we have

λ(⟨s⟩\C)
λ(⟨s⟩) = λ(∅)

λ(⟨s⟩) = 0.

The second equality follows from the fact that

λ(⟨s⟩\(A ∪B))
λ(⟨s⟩) < ε iff λ(⟨s⟩\A)

λ(⟨s⟩) < ε or λ(⟨s⟩\B)
λ(⟨s⟩) < ε.

Indeed, if
λ(⟨s⟩\(A ∪B))

λ(⟨s⟩) < ε,

then
λ((A ∪B) ∩ ⟨s⟩)

λ(⟨s⟩) ≥ 2
3

and so
max

{
λ(A ∩ ⟨s⟩)
λ(⟨s⟩) ,

λ(B ∩ ⟨s⟩)
λ(⟨s⟩)

}
≥ 1

3 > ε.

Since A and B are (n, ε)-balanced we have

max
{
λ(A ∩ ⟨s⟩)
λ(⟨s⟩) ,

λ(B ∩ ⟨s⟩)
λ(⟨s⟩)

}
> 1 − ε

or equivalently
min

{
λ(⟨s⟩\A)
λ(⟨s⟩) ,

λ(⟨s⟩\B)
λ(⟨s⟩)

}
< ε.

Conversely, if
λ(⟨s⟩\A)
λ(⟨s⟩) < ε or λ(⟨s⟩\B)

λ(⟨s⟩) < ε,

then
λ(⟨s⟩\(A ∪B)

λ(⟨s⟩) ≤ min
{
λ(⟨s⟩\A)
λ(⟨s⟩) ,

λ(⟨s⟩\B)
λ(⟨s⟩)

}
< ε.

The equality hn(C\A) = C\hn(A) holds since for s ∈ {−1, 1}n

⟨s⟩ ⊆ C\hn(A) iff λ(⟨s⟩\A)
λ(⟨s⟩) ≥ ε iff λ(A ∩ ⟨s⟩)

λ(⟨s⟩) ≤ 1 − ε iff

λ(A ∩ ⟨s⟩)
λ(⟨s⟩) < ε iff λ(⟨s⟩\(C\A))

λ(⟨s⟩) < ε iff ⟨s⟩ ⊆ hn(C\A).

For the second part of the lemma we notice that for every s ∈ {−1, 1}n if λ(⟨s⟩\A)
λ(⟨s⟩) < ε

n ,
then

λ(A△hn(A) ∩ ⟨s⟩) = λ(⟨s⟩\A) < λ(⟨s⟩) ε
n

and if λ(⟨s⟩\A)
λ(⟨s⟩) ≥ ε

n , then λ(A∩⟨s⟩)
λ(⟨s⟩) < ε

n , and so

λ(A△hn(A) ∩ ⟨s⟩) = λ(A ∩ ⟨s⟩) < λ(⟨s⟩) ε
n
.
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Hence

λ(A△hn(A)) =
∑

s∈{−1,1}n

λ(A△hn(A) ∩ ⟨s⟩) ≤
∑

s∈{−1,1}n

λ(⟨s⟩) ε
n

= ε

n
.

The next lemma says that small perturbations of (m, t, ε)-balanced sets are still
(m, t, ε)-balanced.

Lemma 4.3.6. Let m, t ∈ N, t > m, ε > 0. Then there is ϱ > 0 such that for every
A,B ∈ Bor(C), if A is (m, t, ε)-balanced and λ(B) < ϱ, then A ∪ B and A\B are
(m, t, ε)-balanced.

Proof. Let ε1 < ε be such that A is (m, t, ε1)-balanced and let

ϱ = ε− ε1
2mt

.

For every s ∈ {−1, 1}m we have

λ((A ∪B) ∩ ⟨s⟩)
λ(⟨s⟩) ≤ λ(A ∩ ⟨s⟩)

λ(⟨s⟩) + ϱ

λ(⟨s⟩) <
ε1
m

+ ε− ε1
t

≤ ε

m

or

λ(⟨s⟩\(A ∪B))
λ(⟨s⟩) ≤ λ(⟨s⟩\A)

λ(⟨s⟩) <
ε

m

and for every s ∈ {−1, 1}m, m < r ≤ t

|φr((A ∪B) ∩ ⟨s⟩)|
λ(⟨s⟩) ≤ |φr(A ∩ ⟨s⟩)|

λ(⟨s⟩) + |φr((B\A) ∩ ⟨s⟩)|
λ(⟨s⟩) ≤ ε1

r
+ ε− ε1

t
<
ε

r
.

Hence A ∪B is (m, t, ε)-balanced. Calculations showing that A\B is (m, t, ε)-balanced
are similar.

In the following lemma, we provide conditions for enlarging balanced Boolean algebras
to bigger ones.

Lemma 4.3.7. Suppose that B ⊆ Bor(C) is a balanced Boolean algebra and that

B =
⋃

n∈N
Bn

is a representation of B as an increasing union of finite subalgebras. Let (mn)n∈N be a
strictly increasing sequence of natural numbers and {Gn}n∈N ⊆ B be an antichain such
that

∀k ∈ N ∀n ≤ k F
(
Bn,

⋃
i≤k

Gi

)
is (mn, 2−n)-balanced,

where F
(
Bn,

⋃
i≤k Gi

)
=
{
A ∩

⋃
i≤k Gi, A\

⋃
i≤k Gi : A ∈ Bn

}
.

Put G =
⋃

n∈NGn. Then the Boolean algebra B′ generated by B ∪ {G} is balanced.
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Proof. Let ε > 0 and let A′ be a finite subfamily of B′. Every element A′ ∈ A′ is of
the form (A1 ∩ G) ∪ (A2\G) where A1, A2 ∈ B, so there is a finite family A ⊆ B such
that A′ ⊆ {(A1 ∩ G) ∪ (A2\G) : A1, A2 ∈ A}. Let n ∈ N be such that A ⊆ Bn and
1/2n−1 < ε. Fix A1, A2 ∈ A. Then for every k > n

A1 ∩
⋃
i≤k

Gi and A2\
⋃
i≤k

Gi are (mn, 1/2n) − balanced.

Hence for s ∈ {−1, 1}mn we have

λ(A1 ∩G ∩ ⟨s⟩)
λ(⟨s⟩) ≤

λ
(
A1 ∩

⋃
i≤k Gi ∩ ⟨s⟩

)
+ λ (

⋃
i>nGi)

λ(⟨s⟩) ≤

≤ 1
mn2n

+ λ (
⋃

i>k Gi)
λ(⟨s⟩)

k→∞−−−→ 1
mn2n

or

λ(⟨s⟩\(A1 ∩G))
λ(⟨s⟩) ≤

λ
(
⟨s⟩\

(
A1 ∩

⋃
i≤k Gi

))
λ(⟨s⟩) ≤ 1

mn2n

and for m > mn

|φm(A1 ∩G ∩ ⟨s⟩)|
λ(⟨s⟩) ≤

∣∣∣φm

(
A1 ∩

⋃
i≤k Gi ∩ ⟨s⟩

)∣∣∣
λ(⟨s⟩) +

∣∣∣φm

(
A1 ∩

⋃
i>k Gi ∩ ⟨s⟩

)∣∣∣
λ(⟨s⟩) ≤

≤ 1
m2n

+ λ (
⋃

i>k Gi)
λ(⟨s⟩)

k→∞−−−→ 1
m2n

,

so A1 ∩G is (mn, 1/2n)-balanced. By a similar argument A2\G is (mn, 1/2n)-balanced.
By Lemma 4.3.1 the set (A1 ∩ G) ∪ (A2\G) is (mn, 1/2n−1)-balanced, and so (mn, ε)-
balanced, which completes the proof.

The next theorem is key for the construction in Lemma 4.4.5. It says how much we
can modify a given finite balanced family without losing its balance.

Proposition 4.3.8. Let k ∈ N, η > 0. Let (mn)n≤k be an increasing sequence of
natural numbers. Let B∗ ⊆ B ⊆ Bor(C) be balanced Boolean algebras and assume that
Clop(C) ⊆ B∗. Let (Bn)n≤k ⊆ B be finite subalgebras. Suppose that G,P ∈ B∗ and the
following are satisfied:

(A) G ⊆ P ,
(B) ∀n ≤ k F(Bn, G) is (mn, 2−n)-balanced.

Then there is θ > 0 such that for every L,Q ∈ B∗ satisfying

(a) max{λ(L), λ(Q)} < θ,
(b) L ∩ P = ∅,

there is M ∈ B∗ such that

(1) M ∩ (P ∪Q) = ∅,
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(2) λ(M) < η,
(3) ∀n ≤ k F(Bn, G ∪ L ∪M) is (mn, 2−n)-balanced.

G
M

L

Q

P

Before we prove the proposition, we will need a few lemmas.
The following lemma is a version of [72, Theorem 3, page 31].

Lemma 4.3.9. Let n ∈ N. Let λn be the standard product probability measure on the
space {−1, 1}n (λ({x}) = λ({y}) for every x, y ∈ {−1, 1}n). Then for all (dm)m≤n ∈ Rn

and any ξ ∈ (0, 1)

λn

y ∈ {−1, 1}n :
∣∣∣∣∣

n∑
m=1

ymdm

∣∣∣∣∣
2

≥ ξ
n∑

m=1
|dm|2


 ≥ 1

3(1 − ξ)2.

The above lemma will allow us to pick y from some big enough subset of {−1, 1}n

satisfying the appropriate inequality.

Lemma 4.3.10. The sequence (δn)n∈N is orthonormal in the Hilbert space L2(C).

Proof. We need to show that for any n,m ∈ N

⟨δn, δm⟩ =
{

1 if n = m,

0 if n ̸= m.

If n = m, then ⟨δn, δm⟩ = ∥δn∥ = 1.
Suppose that n ̸= m. For i, j ∈ {−1, 1} let Ci

j = {s ∈ C : sn = i, sm = j} and note
that if x ∈ Ci

j , then

δn(x)δm(x) = ij.

Since λ(Ci
j) = 1/4 for i, j ∈ {−1, 1}, we get

⟨δn, δm⟩ =
∫

C
δnδmdλ =

∑
i,j∈{−1,1}

∫
Ci

j

δnδmdλ =
∑

i,j∈{−1,1}
ijλ(Ci

j) = 0.

Lemma 4.3.11. Let t ∈ N. Let η ∈ (0, 1/2t+10). Let n0 be large enough so that for all
n > n0 there exists k ∈ N that

η

2 <
k

2n
< η and n3

2n−1 ≤ η.

Let n > n0 and k satisfy the above inequality. Then for all
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• Q ∈ An such that λ(Q) < η,
• F ∈ An for which there exists s ∈ {−1, 1}t such that λ(F ∩⟨s⟩)

λ(⟨s⟩) ≥ 0.95,
• Z ∈ An such that λ(Z) < η2

64 and Z ⊆ F ,

there exists M ⊆ F \ (Q ∪ Z) such that

(a) M ∈ An,
(b) λ(M) = k

2n ,
(c) M ∪ Z is (t, η)-semibalanced.

⟨s⟩

M W Z Q

In the figure above, the lines indicating the position of the triangles forming Z and
M at each level go to the left as many times as to the right, which means that for every
r ∈ N we have φr(M ∪ Z) = 0 (and so M ∪ Z is (t, η)-semibalanced).

Proof. Let F ′ = F \ (Q ∪ Z) and fix s ∈ {−1, 1}t such that

λ(F ∩ ⟨s⟩)
λ(⟨s⟩) ≥ 0.95.

In particular,
λ(F ′ ∩ ⟨s⟩)
λ(⟨s⟩) ≥ 0.9.

Put M =
{
M ′ ∈ An : M ′ ⊆ F ′, λ(M ′) = k

2n

}
. Since for M ′ ∈ M we have M ′ ∩ Z = ∅.

It follows that φm(M ′ ∪ Z) = φm(M ′) + φm(Z).
Define

S(M ′) =
n∑

m=t+1
(φm(M ′ ∪ Z))2.

Choose a set M ∈ M such that

S(M) = min{S(M ′) : M ′ ∈ M}.

We will show, that M ∪ Z is (t, η)-semibalanced. Namely, we will show, that
S(M) < η2

n2 . This implies that for all n ≥ m > t we have

|φm(M ∪ Z)| ≤
√
S(M) < η

n
≤ η

m
,
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while for m > n we have |φm(M ∪ Z)| = 0 (because Z,M ∈ An). Thus, M ∪ Z is
(t, η)-semibalanced.
We need to show that

S(M) < k

2n

n

2n−1 . (4.1)

Indeed, if the above inequality holds, then

S(M) < k

2n

n

2n−1 < η
n

2n−1 = η

n2
n3

2n−1 ≤ η2

n2 .

The inequality (4.1) may be written as:

S(M) =
n∑

m=t+1
φm(Z)φm(M ∪ Z) +

n∑
m=t+1

φm(M)φm(M ∪ Z) <

<
k

2n

√
S(M)
4 + k

2n

(
n

2n−1 −
√
S(M)
4

)
.

To prove it we will split it into two inequalities:

n∑
m=t+1

φm(M)φm(M ∪ Z) ≤ k

2n

(
n

2n−1 −
√
S(M)
4

)
(4.2)

and
n∑

m=t+1
φm(Z)φm(M ∪ Z) < k

2n

√
S(M)
4 . (4.3)

We will prove the inequalities (4.2) and (4.3) with the help of four claims. The first
three are necessary to show the inequality (4.2) while the last one will prove inequality
(4.3).

In Claim 2 we make use of the minimality of S(M) analyzing the situation when we
change M by one atom of Am.

Claim 2. For any x, y ∈ {−1, 1}n such that ⟨x⟩ ⊆ M and ⟨y⟩ ⊆ F ′ \M

n∑
m=t+1

xmφm(M ∪ Z) ≤ n

2n−1 +
n∑

m=t+1
ymφm(M ∪ Z), (4.4)

where xm and ym are the m-th terms of the sequences x and y respectively.

Proof of the claim. Let M ′ = (M \ ⟨x⟩) ∪ ⟨y⟩. We have

φm(M ′) =
∫

M ′

δmdλ =
∫
M

δmdλ−
∫

⟨x⟩

δmdλ+
∫

⟨y⟩

δmdλ

= φm(M) + 1
2n

(ym − xm).
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Since M minimizes S, we have S(M ′) − S(M) ≥ 0. Then

S(M ′) − S(M) =
n∑

m=t+1

(
(φm(Z) + φm(M ′))2 − (φm(Z) + φm(M))2

)
=

n∑
m=t+1

(
φm(M ′)2 − φm(M)2 + 2φm(Z)(φm(M ′) − φm(M))

)
=

n∑
m=t+1

(φm(M ′) − φm(M))(φm(M ′) + φm(M) + 2φm(Z))

=
n∑

m=t+1

1
2n

(ym − xm)
( 1

2n
(ym − xm) + 2φm(M) + 2φm(Z)

)
.

Multiplying the above by 2n−1 and using the fact that (ym − xm)2 ∈ {0, 4} we get

0 ≤
n∑

m=t+1
(ym − xm)

( 1
2n+1 (ym − xm) + φm(M) + φm(Z)

)

≤
n∑

m=t+1

4
2n+1 + (ym − xm)(φm(M) + φm(Z))

≤ n

2n−1 +
n∑

m=t+1
(ym − xm)φm(M ∪ Z).

Let T : C → C be a function that swaps the sign of the coordinates from t+ 1 to n
given by the formula:

T (y)(i) =

−y(i) if i ∈ (t, n],

y(i) if i /∈ (t, n].

Note that for A ∈ Bor(C) we have φm(A ∪ T [A]) = 0, where m ∈ {t+ 1, . . . , n}.

Claim 3.
λ
(
((F ′ ∩ ⟨s⟩) ∩ T [F ′ ∩ ⟨s⟩]) \ (M ∪ T [M ])

)
λ(⟨s⟩) ≥ 0.75.

Proof of the claim. Since
λ(M) = k

2n
< η <

0.05
2t+1 ,

we have
λ(M ∪ T [M ]) ≤ 0.05

2t
.

Since
λ(F ′ ∩ ⟨s⟩)
λ(⟨s⟩) ≥ 0.9,

we have
λ((F ′ ∩ ⟨s⟩) ∩ T [F ′ ∩ ⟨s⟩])

λ(⟨s⟩) ≥ 0.8.

Therefore
λ(((F ′ ∩ ⟨s⟩) ∩ T [F ′ ∩ ⟨s⟩]) \ (M ∪ T [M ]))

λ(⟨s⟩) ≥ 0.8 − 0.05 = 0.75.
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It is clear that if y ∈ ⟨s⟩ then T (y) ∈ ⟨s⟩. In the proof of the next claim we will
use an obvious observation that if λ(A∩⟨s⟩)

λ(⟨s⟩) ≥ 0.75 and λ(B∩⟨s⟩)
λ(⟨s⟩) > 0.25 then there exists

y ∈ A ∩B ∩ ⟨s⟩.

Claim 4. There exists yM ∈ {−1, 1}n such that ⟨yM ⟩ ⊆ (F ′ \M) ∩ T [F ′ \M ] and∣∣∣∣∣
n∑

m=t+1
yM

m φm(M ∪ Z)
∣∣∣∣∣ ≥

√
S(M)
4 .

Proof of the claim. Recall that S(M) =
∑n

m=t+1 φm(M ∪ Z)2. By Lemma 4.3.9 for
ξ = 1/16 and

dm =

φm(M ∪ Z) if m ∈ (t, n],

0 if m ∈ [0, t],

we have

λn

y ∈ {−1, 1}n :
∣∣∣∣∣

n∑
m=t+1

ymφm(M ∪ Z)
∣∣∣∣∣
2

≥ 1
16S(M)


 ≥ 1

3

(15
16

)2
.

Hence

λn

({
y ∈ {−1, 1}n :

∣∣∣∣∣
n∑

m=t+1
ymφm(M ∪ Z)

∣∣∣∣∣ ≥
√
S(M)
4

})
> 0.25.

Now Claim 2 implies the existence of the desired yM .

Note that (F ′ \M)∩T [F ′ \M ] = T [(F ′ \M)∩T [F ′ \M ]]. So since ⟨yM ⟩ ⊆ (F ′ \M)∩
T [F ′\M ] we also have T [⟨yM ⟩] ⊆ (F ′\M)∩T [F ′\M ]. Moreover

∑n
m=t+1 y

M
m φm(M∪Z) =

−
∑n

m=t+1 T (yM
m )φm(M ∪ Z). Thus, by replacing yM with T (yM ) if needed Claim 3

implies that
n∑

m=t+1
yM

m φm(M ∪ Z) < −
√
S(M)
4 . (4.5)

From inequalities (4.4) and (4.5) for x as in Claim 1 we get

n∑
m=t+1

xmφm(M ∪ Z) ≤ n

2n−1 +
n∑

m=t+1
yM

m φm(M ∪ Z) ≤ n

2n−1 −
√
S(M)
4 . (4.6)

Let {x(i) : i ∈ {1, . . . k}} be an enumeration of all x ∈ {−1, 1}n such that ⟨x⟩ ⊆ M .

M =
⋃

x∈{−1,1}n

⟨x⟩⊆M

⟨x⟩ =
k⋃

i=1
⟨x(i)⟩

Since for all x ∈ {−1, 1}n and m ≤ n we have xm = 2n
∫

⟨x⟩ δmdλ we conclude that

k∑
i=1

x(i)
m = 2n

∫
M
δmdλ = 2nφm(M). (4.7)

By (4.7) and (4.6) we obtain
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n∑
m=t+1

2nφm(M)φm(M ∪ Z) =
n∑

m=t+1

k∑
i=1

x(i)
m φm(M ∪ Z) =

=
k∑

i=1

n∑
m=t+1

x(i)
m φm(M ∪ Z) ≤ k

(
n

2n−1 −
√
S(M)
4

)
.

(4.8)

Multiplying both sides of the inequality (4.8) by 2−n we get

n∑
m=t+1

φm(M)φm(M ∪ Z) ≤ k

2n

(
n

2n−1 −
√
S(M)
4

)
,

that is the inequality (4.2).
Now we will prove (4.3).

Claim 5.
n∑

m=t+1
φm(Z)φm(M ∪ Z) < k

2n

√
S(M)
4 .

Proof of the claim. By the Cauchy-Schwarz inequality we have

n∑
m=t+1

φm(Z)φm(M ∪ Z) ≤

√√√√ n∑
m=t+1

(φm(Z))2

√√√√ n∑
m=t+1

φm(M ∪ Z)2 =

=

√√√√ n∑
m=t+1

(φm(Z))2
√
S(M).

By Lemma 4.3.10 the sequence (δn)n∈N is orthonormal in the Hilbert space L2(C),
so by the Bessel inequality we get

n∑
m=t+1

(φm(Z))2 =
n∑

m=t+1

(∫
Z
δmdλ

)2
=

n∑
m=t+1

(∫
C
χZδmdλ

)2
=

=
n∑

m=t+1
(⟨χZ , δm⟩)2 ≤ ∥χZ∥2

2 = λ(Z).

Since λ(Z) < η2/64, we have
√
λ(Z) < η/8 < k/2n+2 and so

n∑
m=t+1

φm(Z)φm(M ∪ Z) ≤
√
λ(Z)

√
S(M) < k

2n

√
S(M)
4 .

Adding inequalities (4.2) and (4.3) side by side we get the following estimate

n∑
m=t+1

φm(M ∪ Z)2 <
k

2n

√
S(M)
4 + k

2n

(
n

2n−1 −
√
S(M)
4

)
= k

2n

n

2n−1 ,

which shows (4.1) and finishes the proof.
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Lemma 4.3.12. Let B∗ ⊆ B be balanced Boolean subalgebras of Bor(C) containing
Clop(C) and let F be a finite subalgebra of B. Let P ∈ F∩B∗. Let t ∈ N, δ > 0. Suppose
that for every A ∈ F such that λ(A) > 0 there is sA ∈ {−1, 1}t such that

λ(A ∩ ⟨sA⟩)
λ(⟨sA⟩) ≥ 0.99.

Then there is θ > 0 such that for any L,Q ∈ B∗, if max{λ(L), λ(Q)} < θ and L∩P = ∅,
then there is M ∈ B∗ such that

(1) M ∩ (P ∪Q) = ∅,
(2) λ(M) < δ,
(3) ∀F ∈ F (M ∪ L) ∩ F is (t, δ)-semibalanced,
(4) ∀F ∈ F F\(M ∪ L) is (t, δ)-semibalanced.

Proof. Let η < min{δ/(4|F|), 1/2t+10}, θ < η2/64 and let n0 be large enough so that for
every n > n0

(5) there is k ∈ N such that η
2 <

k
2n < η,

(6) n3

2n−1 ≤ η,
(7) η

n <
η2

64 − θ.

Fix Q and L satisfying the hypothesis of the lemma. Denote by H0 the Boolean
algebra generated by F ∪ {Q,L}. Since B is balanced, there is n > n0 such that H0 is
(n, η)-balanced. Let H be the Boolean algebra generated by H0 ∪ An. By Lemma 4.3.4

H is (n, η)-balanced.

Let hn be defined as in Lemma 4.3.5. By the same lemma, for F ∈ F we have

λ(hn(F ) ∩ ⟨sF ⟩)
λ(⟨sF ⟩) ≥ λ(F ∩ ⟨sF ⟩)

λ(⟨sF ⟩) − λ(F△hn(F ))
λ(⟨sF ⟩) ≥ 0.99 − 2tη

n
≥ 0.95.

By Lemma 4.3.5 and (7)

λ(hn(L) ∩ hn(F )) ≤ λ(hn(L)) ≤ λ(L) + η

n
< θ + η2

64 − θ = η2

64 .

By Lemma 4.3.11 (applied to Z = hn(L) ∩ hn(E)) for every E ∈ at(F) there is ME ∈ An

such that

(a) ME ⊆ hn(E)\hn(Q),
(b) λ(ME) < η < δ/|F|,
(c) ME ∪ (hn(L) ∩ hn(E)) is (t, δ/(4|F|))-semibalanced.

Put
M0 =

⋃
E∈at(F)

ME\Q,M = M0\P.

Then M ∩ (P ∪ Q) = ∅ and λ(M) < δ. To show (3) and (4) fix F ∈ F and r > t.
Consider 2 cases.
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Case 1. r ≤ n.

For every E ∈ at(F) we have ME ∈ An, so hn(ME) = ME . From (a) we get

hn(M0 ∩ hn(F )) = hn(M0 ∩ F ) = hn

 ⋃
E∈at(F)

(ME\Q) ∩ F

 =

=
⋃

E∈at(F)
E⊆F

(hn(ME) ∩ hn(E))\hn(Q) =

=
⋃

E∈at(F)
E⊆F

((ME ∩ hn(E))\hn(Q) =

=
⋃

E∈at(F)
E⊆F

(ME ∩ hn(E))\hn(Q) =
⋃

E∈at(F)
E⊆F

ME .

By Lemma 4.3.5 for any A ∈ H we have

|φr(A)| ≤ |φr(hn(A))| + λ(A△hn(A)) < |φr(hn(A))| + η

n
.

Putting A = (M0 ∪ L) ∩ F and using (c) we get

|φr((M0 ∪ L) ∩ F )| ≤ |φr(hn((M0 ∪ L) ∩ F ))| + η

n
<

< |φr((hn(M0) ∪ hn(L)) ∩ hn(F ))| + δ

4n =

=
∣∣∣∣∣φr

( ⋃
E∈at(F)

E⊆F

ME ∪ (hn(L) ∩ hn(E))
)∣∣∣∣∣+ δ

4n ≤

≤
∑

E∈at(F)
E⊆F

|φr(ME ∪ (hn(L) ∩ hn(E)))| + δ

4n ≤

≤ |F| δ

4r|F|
+ δ

4n ≤ δ

2r .

Case 2. r > n.

In this case, since H is (n, δ/2)-balanced, we have

|φr((M0 ∪ L) ∩ F )| ≤
∑

s∈{−1,1}n

|φr((M0 ∪ L) ∩ F ∩ ⟨s⟩)| < 2nλ(⟨s⟩) δ2r = δ

2r .

Hence

(M0 ∪ L) ∩ F is
(
t,
δ

2

)
-semibalanced for F ∈ F. (8)

Since L ∩ P = ∅ and M = M0\P , we get

(M ∪ L) ∩ F = (M0 ∪ L) ∩ (F\P ).

Since P ∈ F we get that if F ∈ F, then F\P ∈ F, so by (8) applied to F\P we get that

(M ∪ L) ∩ F is
(
t,
δ

2

)
-semibalanced for F ∈ F, (9)
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which implies (3).
For (4) note that C\(F\(M ∪ L)) = (C\F ) ∪ ((M ∪ L) ∩ F ). Since C\F and

(M ∪ L) ∩ F are disjoint we have

|φr(C\(F\(M ∪ L)))| ≤ |φr(C\F )| + |φr((M ∪ L) ∩ F )|.

Since H is (t, δ/2)-balanced and C\F ∈ F ⊆ H we have |φr(C\F )| < δ/(2r) and from
(9) we get that |φr((M ∪ L) ∩ F )| < δ/(2r). Hence

|φr(C\(F\(M ∪ L)))| < δ

r
,

so C\(F\(M ∪ L)) is (t, δ)-semibalanced. By Lemma 4.3.2 the set F\(M ∪ L) is (t, δ)-
semibalanced, which shows (4) and finishes the proof.

Proof of Proposition 4.3.8. Denote by F the subalgebra of B generated by

{G,P} ∪
⋃

n≤k

Bn ∪ Amk
.

Put

ε = min
{ 1

100 inf{λ(A) : A ∈ F, λ(A) > 0}, 2−mk−k−1
}
. (4)

Since B is balanced, there is t ∈ N, t > mk such that

F is (t, ε)-balanced. (5)

By Lemma 4.3.3 for every A ∈ F there is sA ∈ {−1, 1}t such that

λ(A ∩ ⟨sA⟩)
λ(⟨sA⟩) ≥ 0.99.

By Lemma 4.3.6 and the assumption (B) of the proposition there is ϱ > 0 such that

∀n ≤ k ∀A ∈ F(Bn, G) ∀B ∈ Bor(C)

λ(B) < ϱ =⇒ A ∪B,A\B are (mn, t, 2−n)-balanced.
(6)

By Lemma 4.3.12 (applied to δ = min
{
η, ϱ/2, 2−mk−k−1

}
), there is 0 < θ < ϱ/2 such

that for any L,Q ∈ B∗, if max{λ(L), λ(Q)} < θ and L ∩ P = ∅, then there is M ∈ B∗

satisfying

(1’) M ∩ (P ∪Q) = ∅,
(2’) λ(M) < min {η, ϱ/2},
(3’) ∀F ∈ F (M ∪ L) ∩ F is (t, 2−mk−k−1)-semibalanced,
(4’) ∀F ∈ F F\(M ∪ L) is (t, 2−mk−k−1)-semibalanced.
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In particular, the conditions (1) and (2) of the proposition are satisfied.
In order to show that such M satisfies (3), fix L,Q ∈ B∗ such that L ∩ P = ∅ and

max{λ(L), λ(Q)} < θ. Then we have

λ(L ∪M) ≤ λ(L) + λ(M) < ϱ/2 + ϱ/2 = ϱ,

so by (6) for every n ≤ k the family

F(Bn, G ∪ L ∪M) is (mn, t, 2−n)-balanced. (7)

Since Amn ,Bn ⊆ F for n ≤ k and G ∈ F, for every A ∈ Bn and s ∈ {−1, 1}mn we
have ⟨s⟩ ∩A ∩G,A\G ∈ F. Hence by (4), (5) and Lemma 4.2.5

⟨s⟩ ∩A ∩G, ⟨s⟩ ∩A\G are (t, 2−mn−n−1)-semibalanced. (8)

Since ⟨s⟩ ∩A ∈ F, by (3’) and (4’)

⟨s⟩ ∩A ∩ (L ∪M), ⟨s⟩ ∩A\(L ∪M) are (t, 2−mn−n−1)-semibalanced. (9)

Since L∩ P = M ∩ P = ∅ and G ⊆ P , the sets L∪M and G are disjoint, so by (8) and
(9) for A ∈ Bn, s ∈ {−1, 1}n

⟨s⟩ ∩A ∩ (G ∪ L ∪M), ⟨s⟩ ∩A\(G ∪ L ∪M) are (t, 2−mn−n)-semibalanced.

By the above, (7) and Lemma 4.2.5

F(Bn, G ∪ L ∪M) is (mn, 2−n)-balanced,

which shows (3) and completes the proof.

4.4 Extensions of countable balanced Boolean algebras

In this section, we will show how to enlarge a given countable balanced Boolean algebra
B to a balanced Boolean algebra B∗, so that (B,B∗, ν) satisfies the property (G∗), where
ν is a normal sequence of measures on B. We will also show how to deal with finitely
many measures simultaneously, which will be important in the forcing construction.

Lemma 4.4.1. (Folklore) Suppose K is a compact Hausdorff space with an open basis
B that is closed under finite unions. Let ν̃ ∈ M(K) and let M ⊆ M(K) be a finite set
of measures such that ν̃⊥µ̃ for every µ̃ ∈ M. Then for every ε > 0 there is X ∈ B such
that |ν̃|(X) < ε and for every µ̃ ∈ M we have |µ̃|(K\X) < ε.

Proof. First, we will show that the lemma holds when M = {µ̃}. Since ν̃⊥µ̃ we have
|ν̃|⊥|µ̃|, so there exists a Borel support A of |µ̃|, such that K \A is a Borel support of
|ν̃|. By the regularity there is closed B ⊆ A such that |µ̃|(B) > |µ̃|(K) − ε. We can find
a closed set D ⊆ K \ B such that |ν̃|(D) > |ν̃|(K) − ε. Note that |µ̃|(D) ≤ ε. Since
U = K \D is an open superset of B, there are finitely many sets B1, . . . Bk ∈ B, Bi ⊆ U
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for i ≤ k, which cover B. Let X =
⋃

i≤k Bi. Note that |µ̃|(X) ≥ |µ̃|(K) − ε, and
X ⊆ K \D, so |ν̃|(X) < ε and |µ̃|(K\X) < ε.

When M = {µ̃1, . . . µ̃n}, by the first part of the proof for each pair (ν̃, µ̃i) where i ≤ n

we can find Xi ∈ B such that |ν̃|(Xi) < ε
n and |µ̃i|(K\Xi) < ε

n . Then for X =
⋃

i∈1,...nXi

we have |ν̃|(X) < ε and |µ̃i|(K\X) < ε
n < ε.

Lemma 4.4.2. (Pełczyński)[74, Lemma 5.3] Let (ν̃n)n∈N be a bounded sequence of
Radon measures on a compact space K. Suppose there are pairwise disjoint Borel sets
(En)n∈N and c > 0 such that ν̃n(En) ≥ c for every n ∈ N. Then for every δ > 0 there is
a subsequence (ν̃nk

)n∈N and a sequence of pairwise disjoint open sets (Uk)k∈N such that
ν̃nk

(Uk) ≥ c− δ for every k ∈ N.

We will use the following application of the above lemma, in which K is the Stone
space of a Boolean algebra.

Corollary 4.4.3. Let (νn)n∈N be a sequence of measures on B and (En)n∈N be a sequence
of disjoint Borel sets in St(B). Let P ∈ B be such that En ∩ [P ] = ∅ for every n ∈ N.
Let c, δ > 0. If |ν̃n|(En) ≥ c for every n ∈ N, then there exist a subsequence (νnk

)k∈N

and a sequence (Vk)k∈N of pairwise disjoint elements of B such that Vk ∩ P = ∅ and
|νnk

|(Vk) ≥ c− δ for all k ∈ N.

The next lemma will let us build an antichain needed to satisfy the property (G).

Lemma 4.4.4. Let ν = (νn)n∈N be a normal sequence of measures on a Boolean algebra
B ⊆ Bor(C). Let M be a finite set of positive measures on B and assume that (|νn|)n∈N

has a subsequence pointwise convergent to a measure ν∞ ∈ M. Let d ∈ N and ε > 0.
Let P ∈ B be such that

ν∞(P ) < 0.1.

Then there are H0, H1 ∈ B and a, b > d such that

(1) H0, H1, P are pairwise disjoint,
(2) ∀µ ∈ M µ(H0 ∪H1) < ε,
(3) λ(H0 ∪H1) < ε,
(4) |νa|(H0), |νb|(H1) ≥ 0.9.

Proof. We may assume that λ ↾ B ∈ M, so it is enough to show (1), (2) and (4).
Since ν∞ is the pointwise limit of a sequence of probability measures, we have

ν∞(C) = 1, and so ν∞(C\P ) > 0.9. Hence there is δ > 0 such that for infinitely many
n ∈ N we have

|νn|(C\P ) > 0.9 + δ.

Since (ν̃n)n∈N has pairwise disjoint Borel supports, there are pairwise disjoint sets
(En)n∈N ⊆ Bor(C) such that

|ν̃n|(En\[P ]) > 0.9 + δ
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for infinitely many n ∈ N. By Corollary 4.4.3 there is an antichain (Vl)l∈N ⊆ B and a
subsequence (νnl

)l∈N such that Vl ∩ P = ∅ and |νnl
|(Vl) ≥ 0.9 for every l ∈ N. Since

(Vl)l∈N is an antichain, we have for every µ ∈ M

lim
l→∞

µ(Vl) = 0.

In particular, if l1, l2 are big enough, then we have µ(Vl1 ∪ Vl2) < ε for every µ ∈ M,
so it is enough to put a = nl1 , b = nl2 , H0 = Vl1 , H1 = Vl2 where l1 ̸= l2 are so big that
min {nl1 , nl2} > max{d, n}.

In the next two lemmas we describe how to pick a sequence of sets, whose union will
be a witness for the property (G∗) for a given sequence of measures.

For the purpose of the construction under CH, in the following lemma it is enough
to take M = {ν∞}. The case when M consists of more than one measure will be used
in Section 4.5.

Lemma 4.4.5. Suppose we are given:

(A) natural numbers k, d ∈ N,
(B) subalgebras B∗,B ⊆ Bor(C) and finite subalgebras Bn ⊆ B for n ≤ k + 1 such that

• B is balanced,
• Clop(C) ⊆ B∗ ⊆ B,

(C) a normal sequence of measures (νn)n∈N on B∗ and a finite set M of probability
measures on B∗ such that (|νn|)n∈N has a subsequence pointwise convergent to a
measure ν∞ ∈ M,

(D) a strictly increasing sequence of natural numbers (mn)n≤k and sets Ĝ, Ĥ ∈ B∗ such
that

• ∀n ≤ k F(Bn, Ĝ) is (mn, 2−n)-balanced,
• ∀µ ∈ M µ(Ĝ ∪ Ĥ) < 0.1.

Then there are a, b > d;mk+1 ∈ N;G′, H0, H1 ∈ B∗ such that:

(1) mk+1 > mk,

(2) ∀n ≤ k + 1 F(Bn, Ĝ ∪G′) is (mn, 2−n)-balanced,
(3) ∀µ ∈ M µ(Ĝ ∪G′ ∪ Ĥ ∪H0 ∪H1) < 0.1,
(4) Ĥ,H0, H1 are pairwise disjoint,
(5) G′ ∩ (Ĝ ∪ Ĥ ∪H1) = ∅,
(6) Ĝ ∩ (H0 ∪H1) = ∅,
(7) |νa|(H0), |νb|(H1) ≥ 0.9,
(8) |νa(G′ ∩H0)| ≥ 0.3.

Proof. Let E be the subalgebra of B generated by Bk+1 ∪ {Ĝ, Ĥ}. Since B is balanced,
by Remark 4.2.4 there is mk+1 ∈ N,mk+1 > mk such that

E is
(
mk+1,

1
2k+1

)
-balanced.
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In particular,
F(Bk+1, Ĝ) is

(
mk+1,

1
2k+1

)
-balanced. (9)

Put
ξ = 0.1 − max

µ∈M
µ(Ĝ ∪ Ĥ). (10)

For every µ ∈ M consider its Lebesgue decomposition (see [114, Theorem 6.10])

µ = µ1 + µ2, where µ1 ≪ λ and µ2⊥λ. (11)

In particular (by [114, Theorem 6.11]) there is η > 0 such that

∀µ ∈ M ∀A ∈ B∗ λ(A) < η =⇒ µ1(A) < ξ/4. (12)

By (9), the first part of (D) and Proposition 4.3.8 (applied to P = Ĝ ∪ Ĥ, G = Ĝ)
there is θ > 0 such that whenever L,Q ∈ B∗ and max{λ(L), λ(Q)} < θ, there is
M(L,Q) ∈ B∗ such that:

(13) M(L,Q) ∩ (Ĝ ∪ Ĥ ∪Q) = ∅,
(14) λ

(
M(L,Q)

)
< η,

(15) ∀n ≤ k + 1 F
(
Bn, Ĝ ∪ L ∪M(L,Q)

)
is (mn, 2−n)-balanced.

By (11) and Lemma 4.4.1 there is X ∈ B∗ such that for every µ ∈ M

λ(X) < θ, µ2(C\X) < ξ/4. (16)

By Lemma 4.4.4 (applied to ε = min {θ − λ(X), ξ/4}, P = Ĝ∪ Ĥ) there are a, b > d

and H0, H1 ∈ B∗ such that

• λ(H0 ∪H1 ∪X) < θ,
• ∀µ ∈ M µ(H0 ∪H1) < ξ/4,
• H0 ∩H1 = (H0 ∪H1) ∩ (Ĝ ∪ Ĥ) = ∅,
• |νa|(H0), |νb|(H1) ≥ 0.9.

Let L ∈ B∗ be such that

L ⊆ H0 and |νa(L)| ≥ 0.3. (17)

Let M = M(L,H0∪H1∪X). Then, in particular,

M ∩ (X ∪ Ĥ ∪ Ĝ ∪H0 ∪H1) = ∅. (18)

We put G′ = L ∪M .
We need to verify that these definitions satisfy conditions (1)-(8).
(1) follows directly from the choice of mk+1. (2) follows from ((15)).
For (3) fix any µ ∈ M. By (12) and ((14)) we have

µ1(M) < ξ/4.
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By (16) and (18) we have
µ2(M) < ξ/4.

By (17)
µ(L) < ξ/4.

Hence
µ(G′) = µ(M) + µ(L) = µ1(M) + µ2(M) + µ(L) < 3ξ/4.

Finally, from (10) we get

µ(Ĝ∪G′ ∪ Ĥ ∪H0 ∪H1) = µ(Ĝ∪ Ĥ) +µ(G′) +µ(H0 ∪H1) < 0.1 − ξ+ 3ξ/4 + ξ/4 = 0.1.

Conditions (4)-(7) follow directly from the choice of a, b,H0, H1, G
′.

(8) follows from (17) and the fact that G′ ∩H0 = L.

Lemma 4.4.6. Let B∗ ⊆ B ⊆ Bor(C) be balanced countable Boolean algebras and
suppose that (νn)n∈N is a normal sequence of measures on B∗.

Then there exists a balanced countable Boolean algebra B′ ⊆ Bor(C) such that B ⊆ B′

and (B∗,B′, (νn)n∈N) satisfies (G∗).

Proof. Since B∗ is countable, the dual ball in C(St(B∗)) is metrizable and by the Banach-
Alaoglu theorem it is compact in the weak* topology. Hence there is a subsequence
(|ν̃nk

|)n∈N of (|ν̃n|)n∈N that converges to a measure ν̃∞ in the weak* topology. In
particular, (|νnk

|)n∈N is pointwise convergent to ν∞.
Let us represent B as an increasing union of finite subalgebras

B =
⋃

n∈N
Bn.

Using Lemma 4.4.5 we construct by induction on k ∈ N sequences (mk)k∈N, (ak)k∈N,
(bk)k∈N ⊆ N and (Gk)k∈N, (Hk

0 )k∈N, (Hk
1 )k∈N ⊆ B∗ such that

(1) (mk)k∈N, (ak)k∈N, (bk)k∈N are strictly increasing,
(2) ∀k ∈ N ∀n ≤ k F

(
Bn,

⋃
i≤k Gi

)
is (mn, 2−n)-balanced,

(3) ∀k ∈ N ν∞
(⋃

n≤k(Gn ∪Hn
0 ∪Hn

1 )
)
< 0.1,

(4) {Hk
0 , H

k
1 }k∈N are pairwise disjoint,

(5) {Gk}k∈N are pairwise disjoint,
(6) Gk ∩Hn

i ̸= ∅ if and only if i = 0 and n = k,
(7) ∀k ∈ N |νak

|(Hk
0 ), |νbk

|(Hk
1 ) ≥ 0.9,

(8) ∀k ∈ N |νak
(Gk ∩Hk

0 )| ≥ 0.3.

Let k ∈ N ∪ {0} and suppose we have constructed (mn)n≤k, (an)n≤k, (bn)n≤k, (Gn)n≤k,
(Hn

0 )n≤k, (Hn
1 )n≤k (if k = 0, then we assume that all of these sequences are empty). We

apply Lemma 4.4.5 to M = {ν∞}, Ĝ =
⋃

i≤k Gi, Ĥ =
⋃

i≤k(H i
0∪H i

1) and d = max{ak, bk}
(or Ĝ = Ĥ = ∅ and d = 1, if k = 0) to obtain mk+1, ak+1 = a, bk+1 = b, Gk+1 = G′,
Hk+1

0 = H0, Hk+1
1 = H1 satisfying (1)-(8).
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Let
G =

⋃
n∈N

Gn

and let B′ be the Boolean algebra generated by B ∪ {G}. By (2) and Lemma 4.3.7 B′

is balanced. To see that (B∗,B′, (νn)n∈N) satisfies (G∗) we notice that by (6) for every
n ∈ N we have G ∩Hn

i = Gn ∩Hn
i for i = 0, 1, and so

• |νan(G ∩Hn
0 )| = |νan(Gn ∩Hn

0 )| ≥ 0.3,
• G ∩Hn

1 = ∅,

which together with (7) and (8) shows that the conditions (a)-(d) of Definition 4.2.14
are satisfied and it completes the proof.

Properties of measures on a Boolean algebra A such as norm or disjointness of Borel
supports depend only on countably many elements of A. In particular, the following
lemma holds.

Lemma 4.4.7. Let B =
⋃

α<ω1 Bα, where (Bα)α<ω1 is an increasing sequence of countable
Boolean algebras. Let (νn)n∈N be a normal sequence of measures on B. Then there exists
α < ω1 such that for every β > α the sequence (νn ↾ Bβ)n∈N is normal.

The next theorem shows how to construct a Boolean algebra with the Grothendieck
property and without the Nikodym property under CH.

Theorem 4.4.8. (Talagrand, [128]) Assume CH. There exists a Boolean algebra with
the Grothendieck property, but without the Nikodym property.

Proof. By Proposition 4.2.8 and Proposition 4.2.13 it is enough to construct a balanced
Boolean algebra B ⊆ Bor(C) satisfying (G). We will define B as a union of a sequence of
countable subalgebras (Bα)α<ω1 of Bor(C), which is constructed by induction.

First, using CH we fix an enumeration

(να,B∗
α)α<ω1

of all pairs such that each B∗
α is a countable subalgebra of Bor(C) and να = (να

n )n∈N is
a normal sequence of measures on B∗

α. We also require each such pair to appear cofinaly
often in the sequence (να,B∗

α)α<ω1 .
Successor stage: Suppose we have constructed Bα. If B∗

α is not a subalgebra of Bα,
then we put Bα+1 = Bα. If B∗

α ⊆ Bα, then by Lemma 4.4.6 there is a balanced Boolean
algebra B′ ⊇ Bα such that (B∗

α,B′, να) satisfies (G∗). We put Bα+1 = B′.
If γ is a limit ordinal then we put Bγ =

⋃
α<γ Bα.

We will prove that B =
⋃

α<ω1 Bα satisfies (G). By Proposition 4.2.15 it is enough
to show that for every normal sequence (νn)n∈N of measures on B there is β < ω1 such
that the sequence (νn ↾ Bβ)n∈N is normal and (Bβ,B, (νn ↾ Bβ)n∈N) satisfies (G∗). By
Lemma 4.4.7 there is α < ω1 such that for every β ≥ α the sequence (νn ↾ Bβ)n∈N is
normal. To finish the proof, pick β > α such that B∗

β = Bα ⊆ Bβ and νβ = ν ↾ Bα and
notice that by the construction (B∗

β,Bβ+1, (νn ↾ B∗
β)n∈N) satisfies (G∗), which implies

that (Bβ,B, (νn ↾ Bβ)n∈N) satisfies (G∗).
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4.5 Forcing

For the purpose of this section we identify Borel subsets of C with their codes (with
respect to some absolute coding, see [69, Section 25]) i.e. whenever we say about the
same Borel sets in different models of ZFC we mean Borel sets coded by the same code.

If c > ω1, then the method from the previous section does not work, since it requires
extending a given Boolean algebra c many times, while this method does not allow us
to enlarge uncountable Boolean algebras keeping them balanced. Instead, we define a
notion of forcing that adds to a given balanced algebra B a witness for (G∗) for many
sequences of measures (chosen by a generic filter) on B simultaneously. However, it is
not possible to pick one extension that is suitable for every sequence, so we will iterate
ω1 such forcings and the final Boolean algebra will have cardinality ω1 < c.

Definition 4.5.1. Let B ⊆ Bor(C) be a balanced countable Boolean algebra containing
Clop(C) and fix a representation B =

⋃
n∈N Bn, where (Bn)n∈N is an increasing sequence

of finite subalgebras of B. We define a forcing notion PB consisting of conditions of the
form

p = (kp, (mp
n)n≤kp , (Gp

n)n≤kp , (Hp
n)n≤kp ,Mp),

where

(1) kp ∈ N,
(2) (mp

n)n≤kp is a strictly increasing sequence of natural numbers,
(3) Mp is a finite set of probability measures on B such that λ ↾ B ∈ Mp,
(4) (Gp

n)n≤kp and (Hp
n)n≤kp are sequences of elements of B such that

(1) Gp
n ∩Gp

l = Hp
n ∩Hp

l = Gp
n ∩Hp

l = ∅ for n ̸= l,
(2) µ

(⋃
n≤kp(Gp

n ∪Hp
n)
)
< 0.1 for all µ ∈ Mp,

(3) F
(
Bn,

⋃
i≤kp G

p
i

)
is (mn, 2−n)−balanced for n ≤ kp.

We put q ≤ p, if

• kq ≥ kp,
• mq

n = mp
n for n ≤ kp,

• Gq
n = Gp

n for n ≤ kp,
• Hq

n = Hp
n for n ≤ kp,

• Mq ⊇ Mp.

Lemma 4.5.2. PB is σ-centered. In particular, PB satisfies c.c.c.

Proof. For p ∈ PB define

f(p) = (kp, (mp
n)n≤kp , (Gp

n)n≤kp , (Hp
n)n≤kp).

If f(p) = f(q), then r ≤ p, q and f(r) = f(p) = f(q), where

r = (kp, (mp
n)n≤kp , (Gp

n)n≤kp , (Hp
n)n≤kp ,Mp ∪ Mq) ∈ PB.
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In particular, for every x ∈ f [PB] the set f−1(x) is directed. Since B is countable,
f [PB] is also countable, so PB is a union of countably many directed sets. Hence PB is
σ-centered.

The next few lemmas concern the basic properties of PB.

Lemma 4.5.3. Let p ∈ PB and k > kp. Then there is q ∈ PB, q ≤ p such that kq = k.

Proof. It is enough to show that there is such q for k = kp + 1 and apply an inductive
argument. For this put Ĝ =

⋃
n≤kp Gp

n, Ĥ =
⋃

n≤kp Hp
n. Since λ ↾ B, by the condition

(4c) of Definition 4.5.1 we have λ(C\(Ĝ ∪ Ĥ)) > 0. Hence there is a normal sequence
(νn)n∈N of measures on B, whose supports are included in C\(Ĝ ∪ Ĥ). We may also
assume that (|νn|)n∈N is pointwise convergent to a probability measure ν∞. In particular,
we have

ν∞(Ĝ ∪ Ĥ) = lim
n→∞

|νn|(Ĝ ∪ Ĥ) = 0.

Let M = Mp ∪ {ν∞}. By Lemma 4.4.5 there are m > mkp and G′, H0 ∈ B such that

q = (k, ((mp
n)n≤kp ,m), ((Gp

n)n≤kp , G′), ((Hp
n)n≤kp , H0),Mp) ∈ PB.

We have q ≤ p.

Definition 4.5.4. Let us introduce the following notation for a balanced Boolean algebra
B ⊆ Bor(C) containing Clop(C):

• Ġ denotes the canonical name for a generic filter in PB,
• Ġ is a PB-name such that

PB ⊩ Ġ =
⋃

p∈Ġ,n∈N

Ǧp
n,

• Ḃ′ denotes a PB-name such that

PB ⊩ Ḃ′ is the subalgebra of Bor(C) generated by B̌ ∪ {Ġ},

• Ḣ, Ḣn for n ∈ N denote PB-names such that

PB ⊩ Ḣ = (Ḣn)n∈N and ∀n ∈ N ∃p ∈ Ġ Ḣn = Ȟp
n.

Lemma 4.5.5. Let n ∈ N and p ∈ PB be such that kp ≥ n. Then

PB ⊩ Ġ ∩ Ḣn ∈ B̌

and
p ⊩ Ġ ∩ Ḣn = Ǧp

n ∩ Ȟp
n.

Proof. By the definitions of Ġ, Ḣn and by (4a) from Definition 4.5.1 we have

PB ⊩ Ġ ∩ Ḣn =
⋃

q∈Ġ,l∈N
kq≥n,l

Ǧq
l ∩ Ȟq

n =
⋃

q∈Ġ
kq≥n

Ǧq
n ∩ Ȟq

n.
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If q and r are compatible and kq, kr ≥ n, then Gq
n = Gr

n and Hq
n = Hr

n, so the last union
above is in fact a union of one-element family consisting of a set from B. In particular,

PB ⊩ Ġ ∩ Ḣn ∈ B̌

and
PB ⊩ p̌ ∈ Ġ =⇒ Ġ ∩ Ḣn = Ǧp

n ∩ Ȟp
n

or equivalently
p ⊩ Ġ ∩ Ḣn = Ǧp

n ∩ Ȟp
n.

In the following lemma we will make use of Lemma 4.4.5 in the case when M consists
of many probability measures. This is where the differences between our approach and
that of work [128] are crucial.

Lemma 4.5.6. Let B ⊆ Bor(C) be a balanced Boolean algebra containing Clop(C). Let
p ∈ PB and ν = (νn)n∈N be a normal sequence of measures on B such that the sequence
(|νn|)n∈N is pointwise convergent on B to a measure ν∞ ∈ Mp. Then

(1) p ⊩ ∀k ∈ N ∃n, l > k |ν̌n|(Ḣl) ≥ 0.9 and |ν̌n(Ġ ∩ Ḣl)| ≥ 0.3,
(2) p ⊩ ∀k ∈ N ∃n, l > k |ν̌n|(Ḣl) ≥ 0.9 and Ġ ∩ Ḣl = ∅.

Proof. In the light of Lemma 4.5.5 it is enough to show that the sets

Dk = {q ∈ PB : kq > k, ∃n > k |νn|(Hq
kq ) ≥ 0.9 and |νn(Gq

kq ∩Hq
kq )| ≥ 0.3}

and
Ek = {q ∈ PB : kq > k, ∃n > k |νn|(Hq

kq ) ≥ 0.9 and Gq
kq ∩Hq

kq = ∅}

are dense below p for every k ∈ N.
First, we will show that Dk is dense below p. Pick any r ≤ p. By Lemma 4.5.3 we

may assume that kr ≥ k.
We apply Lemma 4.4.5 to M = Mr, Ĝ =

⋃
i≤kr Gr

i , Ĥ =
⋃

i≤kr Hr
i and d = k to

obtain m = mkr+1, a > k, G′, H0 so that the conditions (1)-(8) from Lemma 4.4.5 are
satisfied. In particular:

(a) m > mkr ,
(b) G′ ∩Gr

i = H0 ∩Hr
i = G′ ∩Hr

i = ∅ for i ≤ kr,
(c) µ

(⋃
i≤kr (Gr

i ∪Hr
i ) ∪G′ ∪H0

)
< 0.1 for all µ ∈ Mr,

(d) F
(
Bn,

⋃
i≤kr Gr

i ∪G′
)

is (mn, 2−n)−balanced for n ≤ kr + 1,
(e) |νa|(H0) ≥ 0.9,
(f) |νa(G′ ∩H0)| ≥ 0.3.

It follows from (a)-(d) that

q = (kr + 1, ((mr
i )i≤kr ,m), ((Gr

i )i≤kr , G′), ((Hr
i )i≤kr , H0),Mr) ∈ PB
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and from (e), (f) that q ∈ Dk.
We show the density of Ek in a similar way: the difference is that instead of H0 we

pick H1 such that

• |νa|(H1) ≥ 0.9,
• G′ ∩H1 = ∅.

Directly from Lemma 4.5.5, Lemma 4.5.6 and Definition 4.2.14 we obtain

Proposition 4.5.7. Let B ⊆ Bor(C) be a balanced Boolean algebra that contains
Clop(C). Let p ∈ PB and ν = (νn)n∈N be a normal sequence of measures on B such that
the sequence (|νn|)n∈N is pointwise convergent to a measure ν∞. Suppose that ν∞ ∈ Mp.
Then

p ⊩ (B̌, Ḃ′, ν̌) satisfies (G∗).

Proposition 4.5.8. Suppose that B ⊆ Bor(C) is a balanced countable Boolean algebra
containing Clop(C). Then

PB ⊩ Ḃ′ is balanced.

Proof. Since the property of being balanced is absolute between transitive models of
ZFC

V PB |= B is balanced.

In V PB for every n ∈ N we define Gn = Gp
n for some p ∈ G such that kp ≥ n. Then

B′ is the Boolean algebra generated by B ∪ {G}, where G =
⋃

n∈NGn. By Definition
4.5.1(4a,4c) the hypothesis of Lemma 4.3.7 is satisfied and so B′ is balanced.

Definition 4.5.9. We define an iteration (Pα)α≤ω1 with finite supports and Pα-names
Ḃα for every α ≤ ω1 by induction in the following way:

• P0 is the trivial forcing and B0 = Clop(C),
• having constructed Pα and Ḃα we define

Pα+1 = Pα ∗ PḂα

and we pick a Pα+1-name Ḃα+1 such that

Pα+1 ⊩ Ḃα+1 = Ḃ′
α,

• if γ is a limit ordinal, then we define Pγ as the iteration of (Pα)α<γ with finite
supports and we pick Ḃγ so that

Pγ ⊩ Ḃγ =
⋃

α<γ

Ḃα

We will identify each Pα with the subset of Pω1 consisting of those p ∈ Pω1 , for which
p(β) = 1β for all β ≥ α, where 1β denotes the maximal element of PḂβ

.
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Lemma 4.5.10. Pω1 is σ-centered. In particular, Pω1 satisfies c.c.c.

Proof. This follows from Lemma 4.5.2 and the fact that a finite support iteration of
length ω1 of σ-centered forcings is σ-centered [129, proof of Lemma 2].

Since Pω1 satisfies c.c.c. the standard closure argument shows the following (cf. [40,
Lemma 5.3])

Lemma 4.5.11. Let ν̇ = (ν̇n)n∈N be a sequence such that

Pω1 ⊩ (ν̇n)n∈N is a sequence of measures on Ḃω1 .

Let
Cν̇ = {α < ω1 : Pω1 ⊩ ν̇ ↾ Ḃα ∈ V Pα}.

Then Cν̇ is a closed and unbounded subset of ω1.

Proposition 4.5.12. Pω1 ⊩ Ḃω1 is balanced and satisfies (G).

Proof. The fact that Pω1 ⊩ Ḃω1 is balanced follows directly from Proposition 4.5.8 and
the fact that increasing unions of balanced Boolean algebras are balanced.

To prove the second part of the proposition, by Proposition 4.2.15 it is enough to
show that for every sequence (ν̇n)n∈N such that

Pω1 ⊩ (ν̇n)n∈N is a normal sequence of measures on Ḃω1

we have
Pω1 ⊩ ∃α<ω1 (Ḃα, Ḃω1 , ν̇ ↾ Ḃα) satisfies (G∗).

Pick any p ∈ Pω1 . By Lemma 4.4.7 there is α1 < ω1 and p1 ≤ p such that for every
β ≥ α1

p1 ⊩ (ν̇n ↾ Ḃβ)n∈N is normal.

By Lemma 4.5.11 there are: β ∈ Cν̇ such that α1 < β, p1 ∈ V Pβ and Pβ-names ν̇β, ν̇β
n

for n ∈ N such that
Pβ ⊩ ν̇β = (ν̇β

n)n∈N = (ν̇n ↾ Ḃβ)n∈N.

Without loss of generality by passing to a subsequence we may assume that there is ν̇∞

such that
Pβ ⊩ (|ν̇β

n |)n∈N is pointwise convergent to a measure ν̇∞.

Since p1(β) = 1β, there is p2 ≤ p1 such that

p2 ↾ β ⊩ ν̇∞ ∈ Ṁp̌2(β).

By Proposition 4.5.7 we have

p2 ⊩ (Ḃβ, Ḃβ+1, ν̇
β) satisfies (G∗)

and hence
p2 ⊩ ∃α<ω1 (Ḃα, Ḃω1 , ν̇ ↾ Ḃα) satisfies (G∗)

which completes the proof.
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In particular, by Proposition 4.2.8 and Proposition 4.2.13 we obtain

Corollary 4.5.13. Pω1 ⊩ there is a Boolean algebra of size ω1 with the Grothendieck
property but without the Nikodym property.

The existence of a Boolean algebra with the Grothendieck property of small cardinality
has influence on certain cardinal characteristics of the continuum. Below p denotes the
pseudointersection number, s is the splitting number and cov(M) is the covering number
of the ideal of meager sets in R.

Corollary 4.5.14. Pω1 ⊩ p = s = cov(M) = ω1.

Proof. Apply [122, Corollary 4.3].

Theorem 4.5.15. It is consistent with ¬CH that there is a Boolean algebra of size ω1

with the Grothendieck property but without the Nikodym property.

Proof. Start with a model V of ZFC satisfying ¬CH. Since Pω1 is σ-centered, it preserves
cardinals and the value of the continuum, so we have

V Pω1 |= c = cV > ωV
1 = ω1.

By Corollary 4.5.13 in V Pω1 there is a Boolean algebra with the Grothendieck property,
but without the Nikodym property.

4.6 Final remarks

Let us start with a comment concerning differences between the original Talagrand’s
contruction and our approach. To obtain the Grothendieck property, Talagrand uses CH
to enumerate (in a sequence of length ω1) all normalized sequences (νn)n∈N of measures
on countable subalgebras of Borel subsets of the Cantor set, for which there exists an
antichain (Hn)n∈N such that |νn|(Hn) ≥ 0.95. Then for each such sequence he constructs
another antichain (Gn)n∈N satisfying the hypothesis of Lemma 4.3.7, such that for
G =

⋃
n∈NGn we have

• |νn(G ∩Hn)| ≥ 0.4 for infinitely many n ∈ N,
• |νn(G ∩Hn)| < 0.1 for infinitely many n ∈ N.

It follows that extending a given Boolean algebra with G keeps it balanced, and in the
extension the sequence (νn)n∈N satisfies a property similar to (G∗) from Definition 4.2.14.
Thus, the final algebra has the Grothendieck property and does not have the Nikodym
property. The same approach was used in [125].

However, this technique applies only when we work with one sequence of measures at
a time. In our method, we construct a suitable antichain (Hn)n∈N along with (Gn)n∈N,
which allows us to pick both the antichains in a generic way, making them working for
uncountably many sequences of measures simultaneously.

The method of construction we have described relies strongly on the fact that the
Boolean algebras we extend are countable.
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Question 4.6.1. Let B ⊆ Bor(C) be a balanced Boolean algebra of cardinality < c and
ν be a normal sequence of measures on B.

Does there exist a balanced Boolean algebra B ⊆ B′ ⊆ Bor(C) such that (B,B′, ν)
satisfies (G∗)?

Positive answer for the above question would allow us to construct (by induction of
length c) a balanced Boolean algebra of size c. Thus, it would imply the positive answer
for the following question:

Question 4.6.2. Is there (in ZFC) a balanced Boolean algebra with the Grothendieck
property?

One may look for candidates for Boolean algebras with the Grothendieck and without
Nikodym property among maximal balanced Boolean algebras.

Question 4.6.3. Let B ⊆ Bor(C) be a maximal balanced Boolean algebra. Does B have
the Grothendieck property?





Chapter 5

The Calkin algebra in the Cohen
model

5.1 Introduction

By the classical Parovičenko theorem CH implies that every compact space of cardinality
at most c is a continuous image of the remainder N∗ = βN\N of the Stone-Čech
compactification of the natural numbers. It follows that every space of type C(K) of
density at most c embeds into ℓ∞/c0 ≡ C(N∗) as a C*-algebra. It is also well-known
that under CH the Banach space ℓ∞/c0 is isometrically universal in the class of Banach
spaces of density at most c. On the other hand, due to a result of Brech and Koszmider
[20], none of the above statements holds in the Cohen model1.

For a separable Hilbert space H we denote by B(H) the C*-algebra of all bounded
operators on H and by K(H) the ideal of B(H) consisting of compact operators. The
quotient Q(H) = B(H)/K(H) is called the Calkin algebra and is considered to be the
non-commutative analogue of N∗ and ℓ∞/c0 (see [42, 43, 136]). In this chapter we will
focus on possible embeddings of C*-algebras of density c into Q(ℓ2).

It is well-known that Q(ℓ2) contains a *-isomorphic copy of every separable C*-
algebra. Under MA every C*-algebra of density strictly smaller than c embeds into
Q(ℓ2) [47, Corollary C]. In [46] the authors proved that assuming CH the C*-algebra
Q(ℓ2) is c-universal (i.e. the density of Q(ℓ2) equals c and every C*-algebra of density at
most c embeds into Q(ℓ2)). Vaccaro showed that if we assume OCA, then the class of
C*-algebras that embed into Q(ℓ2) is not closed under tensor products [133, Theorem
1.2], which implies that Q(ℓ2) is not c-universal. In the Cohen model, by another result
of Vaccaro [131, Corollary 2.5.5], in Q(ℓ2) there is no well-ordered strictly increasing
sequence of projections of length ω2. Hence the abelian algebra generated by such a
sequence of projections does not embed into Q(ℓ2), though its density equals ω2 ≤ c.
It follows, that Q(ℓ2) is not c-universal in the Cohen model. Among other results, it
is worth mentioning that PFA implies that there exists a c-universal C*-algebra, while

1 By the Cohen model we mean a model obtained from a model of CH by adding ω2 Cohen reals.
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Q(ℓ2) is not c-universal, and it is consistent that there is no c-universal C*-algebra [46,
Corollary 3.2].

We will focus on the ℓ∞-sum of infinitely many copies of the Calkin algebra i.e. the
algebra ℓ∞(Q(ℓ2)) consisting of bounded (in norm) sequences of elements of Q(ℓ2) with
pointwise multiplication and the norm given by

∥(xn)n∈N∥ = sup
n∈N

∥xn∥.

Our main result consists of a proof that in the Cohen model ℓ∞(Q(ℓ2)) is not isomorphic
to a *-subalgebra of Q(ℓ2) (which in particular gives another proof that Q(ℓ2) is not
c-universal in the Cohen model). Note that this is not covered by the mentioned result of
Vaccaro, since every strictly increasing well-ordered sequence of length ω2 of projections
in ℓ∞(Q(ℓ2)) induces a strictly increasing sequence of projections in Q(ℓ2) of length
ω2 (namely, if (pα)α<ω2 is a strictly increasing sequence of projections in ℓ∞(Q(ℓ2)),
then pα = (pα

n)n∈N, where (pα
n)α<ω2 is an increasing sequence of projections in Q(ℓ2) for

n ∈ N, and there is n ∈ N such that (pα
n)α<ω2 has ω2 distinct values).

Our result may be seen as a non-commutative version of a theorem of [20], which says
that in the Cohen model ℓ∞(ℓ∞/c0) cannot be included isomorphically into ℓ∞/c0 as a
Banach space. On the other hand, CH implies that the Banach spaces ℓ∞(ℓ∞/c0) and
ℓ∞/c0 are isomorphic (this fact was proved by Drewnowski and Roberts and used to obtain
the primariness of the space ℓ∞/c0 under CH [37, Thoeorem 3.3]). The construction
of this isomorphism strongly relies on the result of Negrepontis that assuming CH the
closure of non-empty open Fσ subset of N∗ = βN\N is a retract of N∗ [97, Corollary 3.2].
It is not clear whether a non-commutative version of the Negrepontis theorem holds
under CH.

In [44] Farah compares the Calkin algebra with some coronas of the form Q(A⊗K(ℓ2)).
In particular, he shows that Q(ℓ2) is not isomorphic to the corona of the stabilization of
the Cuntz algebra i.e. Q(O∞ ⊗ K(ℓ2)), though these algebras are not distinguishable
from the K-theoretical point of view. The problem of the existence of such isomorphisms
is important, since they may induce K-theory reversing automorphisms of Q(ℓ2) (such
automorphisms are not known to exist consistently). We apply the result about the
non-existence of an embedding of ℓ∞(Q(ℓ2)) into Q(ℓ2) to show that in the Cohen model
Q(ℓ2) is not isomorphic to Q(Q(ℓ2)⊗K(ℓ2)). This should be compared with the fact that
the Banach spaces ℓ∞(ℓ∞/c0)/c0(ℓ∞/c0) and ℓ∞/c0 are not isomorphic in the Cohen
model [20], while they are isomorphic, if we assume CH [37, Proposition 4.4]. It is not
clear, whether this result does not follow from other known facts concerning rigidity of
Q(ℓ2) (cf. [45, 132, 135]).
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5.2 Preliminaries

5.2.1 Operators on separable Hilbert spaces

Throughout the chapter by ℓ2 we mean the separable complex Hilbert space consisting
of square-summable sequences (an)n∈N of complex numbers with the standard inner
product ⟨(an)n∈N, (bn)n∈N⟩ =

∑∞
n=1 anbn.

Recall that an element p of a C*-algebra A is a projection, if p = p2 = p∗. If
P ∈ B(ℓ2), then P is a projection if and only if it is an orthogonal projection onto a
subspace of ℓ2. On the set of all projections Proj(A) on A we introduce the ordering
given by p ≤ q if and only if pq = p. For P,R ∈ Proj(B(ℓ2)) we denote P ≤K Q, if
PQ−P ∈ K(ℓ2). Note that P ≤K Q if and only if π(P ) ≤ π(Q), where π : B(ℓ2) → Q(ℓ2)
is the canonical quotient map.

Definition 5.2.1. Given an orthonormal sequence (en)n∈N in ℓ2 we denote by E(n) the
projection onto the closed subspace of ℓ2 spanned by (ei)i≥n.

The following lemma follows from the proof of [23, Theorem II.4.4].

Lemma 5.2.2. Let K ∈ K(ℓ2). Let (en)n∈N be an orthonormal basis of ℓ2. Then

lim
n→∞

∥KE(n)∥ = lim
n→∞

∥E(n)K∥ = 0.

Lemma 5.2.3. Let K ∈ K(ℓ2) and ε > 0. Let (en)n∈N be an orthonormal basis of ℓ2.
Suppose vn ∈ B(ℓ2) for n ∈ N are such that

∥vn∥ ∈ [1, 1 + ε) and ∥vn − E(n)(vn)∥ < 1
n
.

Then ∥K(vn)∥ < ε for large enough n ∈ N.

Proof. By Lemma 5.2.2 we have limn→∞ ∥KE(n)n∥ = 0. Hence

∥K(vn)∥ = ∥K(vn − E(n)(vn)) +KE(n)(vn)∥ ≤ 1
n

∥K∥ + (1 + ε)∥KE(n)∥ n→∞−−−→ 0.

5.2.2 Embedding c0(c) and ℓ∞(c0(c))

For a set A by c0(A) we mean the algebra of (complex) sequences on A converging to
0 (i.e. (aα)α∈A ∈ c0(A), if for every ε > 0 the set {α ∈ A : |aα| < ε} is finite) with
pointwise multiplication and the supremum norm. We put (aα)∗

α∈A = (aα)α∈A. If A is
a C*-algebra, then ℓ∞(A) denotes the C*-algebra of bounded (in norm) sequences of
elements of A and c0(A) denotes the subalgebra of ℓ∞(A) of sequences converging to 0
in norm.

We will need two lemmas on embedding c0(c) and ℓ∞(c0(c)). Suitable embeddings are
described in [20, proofs of implications (b) → (c) and (c) → (e)] (those embeddings are
considered in the category of Banach spaces, but the same arguments give *-embeddings).

Lemma 5.2.4. There is a *-embedding of c0(c) into ℓ∞/c0.

Lemma 5.2.5. There is a *-embedding of ℓ∞(c0(c)) into ℓ∞(ℓ∞/c0)/c0(ℓ∞/c0).
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5.2.3 Set theory

In this chapter V will denote a universe of sets satisfying CH and P will denote the
Cohen forcing adding ω2 reals i.e.

P = {p : dom(p) → {0, 1} : dom(p) ∈ [ω2]<ω}

with the ordering given by q ≤ p if and only if q ⊇ p.

Definition 5.2.6. Let σ : ω2 → ω2 be a permutation. We define the lifting of σ as
the automorphism σ : P → P given by σ(p)(σ(x)) = p(x) for p ∈ P, x ∈ dom(p). If
ẋ = {(ẏi, pi) : i ∈ I} is a P-name, then we denote σ(ẋ) = {(σ(ẏi), σ(pi)) : i ∈ I} (cf. [69,
p. 221]).

Note that if x̌ is the canonical name for x ∈ V , then for any permutation σ : ω2 → ω2

we have σ(x̌) = x̌.

Definition 5.2.7. Let σ : ω2 → ω2 be a permutation such that σ[S1] = S2, where
S1, S2 ⊆ ω2. We say that p ∈ P is (σ, S1, S2)-symmetric, if σ(p ↾ S1) = p ↾ S2.

Lemma 5.2.8. Let S1, S2 ⊆ ω2 and suppose σ : ω2 → ω2 is a permutation such that
σ[S1] = S2 and σ ↾ S1 ∩ S2 = Id. Suppose p ∈ P is (σ, S1, S2)-symmetric and q ≤ p is
such that (dom(q)\dom(p)) ∩ S2 ⊆ S1. Let

r = q ∪ σ(q ↾ S1).

Then r ∈ P is a (σ, S1, S2)-symmetric condition.

Proof. First, note that r ∈ P since if α ∈ dom(q)∩dom(σ(q ↾ S1)), then either α ∈ S1∩S2

(and r(α) is well-defined by the hypothesis that σ ↾ S1 ∩ S2 = Id) or α ∈ dom(p) ∩ S2,
and so r(α) is well-defined by the symmetry of p.

Now we will show that r is (σ, S1, S2)-symmetric. It is clear from the definition
that supp(σ(r ↾ S1)) = supp(r ↾ S2). Fix α ∈ dom(r) ∩ S1. If α ∈ dom(p), then
σ(r)(α) = r(σ(α)) by the symmetry of p. If α ∈ dom(q)\dom(p), then we have
σ(r)(α) = r(σ(α)) from the equality defining r.

Let us recall the definition of a nice name.

Definition 5.2.9. A P-name Ẋ is a nice name for a subset of M ∈ V , if it is of the form
Ẋ =

⋃
m∈M {m̌}×Am, where each Am is an antichain in P. The set

⋃
m∈M

⋃
p∈Am

dom(p)
is called the support of Ẋ and is denoted by supp(Ẋ).

Note that since P satisfies c.c.c. every nice name for a subset of N has a countable
support.

Remark 5.2.10. If ḣ is a nice name such that

P ⊩ ḣ : N → N is a function,
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then for every p ∈ P and n ∈ N there is q ≤ p and m ∈ N such that

q ⊩ ḣ(n) = m

and dom(q)\dom(p) ⊆ supp(ḣ).

We will need some basic facts concerning ∆-systems.

Definition 5.2.11. We say that a family of sets A is a ∆-system with root ∆, if for
every A,B ∈ A we have A ∩B = ∆ whenever A ̸= B.

Lemma 5.2.12. [69, Theorem 9.19] Assume CH. Then for every family of countable
sets A of cardinality ω2 there is a ∆-system B ⊆ A with |B| = ω2.

Lemma 5.2.13. Assume CH. Suppose (Sα)α<ω2 is a sequence of pairwise disjoint
countable subsets of ω2 and (Rα)α<ω2 is a sequence of countable subsets of ω2. Then
there are ξ, η < ω2 such that ξ ̸= η and

Sξ ∩Rη = Sη ∩Rξ = ∅.

Proof. By Lemma 5.2.12 there is A ∈ [ω2]ω2 such that (Rξ)ξ∈A is a ∆-system with root
∆. The set ∆ is countable, so there is B ∈ [A]ω2 such that Sξ ∩ ∆ = ∅ for ξ ∈ B.
Pick any ξ ∈ B. Since Rξ is countable, there is C ∈ [B]ω2 such that Sη ∩ Rξ = ∅ for
η ∈ C. Since Sξ is countable and the sets (Rη\∆)η∈C are pairwise disjoint, we can pick
η ∈ C\{ξ} such that Sξ ∩ (Rη\∆) = ∅. It follows that Sξ ∩Rη = ∅.

Lemma 5.2.14. Suppose An ∈ [ω2]ω2 , Sn,α ∈ [ω2]ω for n ∈ N, α < ω2 are such that for
every n ∈ N the family (Sn,α)α∈An is a ∆-system with root ∆n. Assume that for each
α ∈ An we have ∆ ∩ Sn,α = ∆n, where ∆ =

⋃
n∈N ∆n. Then for every ξ < ω2 there is

γξ ∈ ωN
2 such that

(a) γξ(n) ∈ An for n ∈ N,
(b) for distinct (ξ, n), (η,m) ∈ ω2 × N we have

(Sn,γξ(n)\∆n) ∩ (Sm,γη(m)\∆m) = ∅,

(c) γξ ∩ γη = ∅ for ξ, η < ω2, ξ ̸= η.

Proof. We construct (γξ)ξ<ω2 by induction on ξ < ω2 and n ∈ N. Fix ξ < ω2 and n ∈ N.
Suppose we have constructed γη for η < ξ and γξ(m) for m < n. Put δ = sup

η<ξ,n∈N
γη(n)

and observe that |An\(δ + 1)| = ω2. The set

B =
⋃

(η,m)<lex(ξ,n)
Sm,γη(m)\∆

has cardinality at most ω1 and the family (Sn,α\∆)α<ω2 consists of non-empty pairwise
disjoint sets, so there is β ∈ An\(δ + 1) such that Sn,β ∩B = ∅. We put γξ(n) = β. It
follows directly from the construction that the conditions (a)-(c) are satisfied.
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5.3 Embedding ℓ∞-sums into the Calkin algebra

Every sequence of vectors in ℓ2 is a sequence of sequences of complex numbers, and
every complex number is a pair of real numbers. Thus, by the standard argument we
may choose bijections defined in an absolute way, that identify the sets ℓN2 ∼ (CN)N ∼
RN ∼ NN ∼ P(N). We will use such identification in the context of names for sequences
of vectors - in particular, under such identification, every v ∈ (ℓ2)N in V P is named by a
nice P-name v̇ in V . Since P is c.c.c. the support supp(v̇) is countable.

Lemma 5.3.1. Assume CH. Suppose A ∈ [ω2]ω2, {Sα}α∈A is a ∆-system of distinct
countable sets with root ∆ and for every α < ω2 we are given a nice P-name v̇α for
a sequence of vectors in ℓ2 such that supp(v̇α) ⊆ Sα. Then there is C ∈ [A]ω2 and
permutations σα,β : ω2 → ω2 such that

• σα,β = σ−1
β,α

• σα,β[Sα] = Sβ,
• σα,β ↾ ∆ = Id,
• σα,β(v̇α) = v̇β

for all α, β ∈ C,α ̸= β.

Proof. Without loss of generality we may assume that each Sα is infinite. For each
α ∈ A choose a permutation σα : ω2 → ω2 such that σα[Sα] = N and σα ↾ ∆ = σβ ↾ ∆
for all α, β ∈ A. Then for every α ∈ N the name σα(v̇α) is a nice P-name with the
support included in N. By CH there is only ω1 such names, so there is C ∈ [A]ω2 such
that σα(v̇α) = σβ(v̇β) for α, β ∈ C. For α, β ∈ C,α < β let σα,β = σ−1

β σα. Then
σα,β(v̇α) = σ−1

β σα(v̇α) = σ−1
β σβ(v̇β) = v̇β for α, β ∈ C. Since σα ↾ ∆ = σβ ↾ ∆ we have

σα,β ↾ ∆ = Id. If α > β, then we define σα,β = σ−1
β,α.

Proposition 5.3.2. Suppose in the Cohen model V P we are given non-compact projec-
tions (En,α : (n, α) ∈ N × ω2) and (Bγ : γ ∈ ωN

2 ) in B(ℓ2) such that if γ(n) = α, then
En,α ≤K Bγ. Then there are disjoint γ1, γ2 ∈ ωN

2 such that Bγ1Bγ2 is non-compact.

Proof. For simplicity of the notation put ε = 1/100. Denote by F the subset of ℓ2
consisting of all sequences of the form (an + ibn)n∈N, where an, bn ∈ Q are non-zero only
for finitely many n ∈ N. Observe that F is a countable dense subset of ℓ2.

In V , for (n, α) ∈ N × ω2 and γ ∈ ωN
2 let Ėn,α, Ḃγ be P-names such that

• P ⊩ Ėn,α and Ḃγ are non-compact projections in B(ℓ2),
• if γ(n) = α, then P ⊩ Ėn,α ≤K Ḃγ .

For (n, α) ∈ N × ω2 let ėn,α be a nice P-name for a countable sequence of vectors
from ℓ2 and for l ∈ N let Ė(l)

n,α be P-names such that

• P ⊩ ėn,α is an orthonormal basis of Ėn,α[ℓ2],
• P ⊩ Ė

(l)
n,α is the projection onto the closed subspace spanned by (ėn,α(i))i≥l.
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In particular, P ⊩ Ėn,α = Ė
(1)
n,α.

Since F is dense in ℓ2, for each (n, α) ∈ N × ω2 there is a nice P-name v̇n,α for a
countable sequence of vectors such that for every l ∈ N

P ⊩ v̇n,α(l) ∈ F̌ , ∥v̇n,α(l)∥ ∈ [1, 1 + ε), ∥v̇n,α(l) − ėn,α(l)∥ < 1
2l .

(1)

Hence

P ⊩ ∥v̇n,α(l) − Ė(l)
n,α(v̇n,α(l))∥ ≤ ∥v̇n,α(l) − ėn,α(l)∥ + ∥Ė(l)

n,α(v̇n,α(l) − ėn,α(l))∥ ≤ 1
l
. (2)

For n ∈ N, α ∈ ω2 put

Sn,α = supp(ėn,α) ∪ supp(v̇n,α).

Consider partition ω2 =
⋃

n∈ω Bn, where |Bn| = ω2 and (Bn)n∈ω are pairwise disjoint.
Each Sn,α is countable, so by Lemma 5.2.12, for each n ∈ ω there is a set An ∈ [Bn]ω2

such that (Sn,α)α∈An is a ∆-system with root ∆n. The set ∆ =
⋃

n∈ω ∆n is countable,
so by a further thinning out of each An we may assume that for every α ∈ An we have
∆ ∩ Sn,α = ∆n.

By Lemma 5.3.1 we may also assume that for each n ∈ N and α, β ∈ An there is a
permutation σn,α,β : ω2 → ω2 such that

• σn,α,β = σ−1
n,β,α,

• σn[Sn,α] = Sn,β,
• σn,α,β ↾ ∆n = Id,
• σn,α,β(ėn,α) = ėn,β.

By Lemma 5.2.14 for every ξ < ω2 there is γξ ∈ ωN
2 such that

(a) γξ(n) ∈ An for n ∈ N,
(b) for distinct (ξ, n), (η,m) ∈ ω2 × N we have

(Sn,γξ(n)\∆n) ∩ (Sm,γη(m)\∆m) = ∅,

(c) γξ ∩ γη = ∅ for ξ, η < ω2, ξ ̸= η.

For n ∈ N, ξ < ω2 let K̇n,ξ, L̇n,ξ be such P-names that

P ⊩ K̇n,ξ = Ėn,γξ(n) − Ėn,γξ(n)Ḃγξ
, L̇n,ξ = Ėn,γξ(n) − Ḃγξ

Ėn,γξ(n).

Since P ⊩ Ėn,γξ(n) ≤K Ḃγξ
we have

P ⊩ K̇n,ξ is compact

and since P ⊩ L̇n,ξ = (K̇n,ξ)∗, we get that

P ⊩ L̇n,ξ is compact.
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By Lemma 5.2.2 there is a nice P-name ḣξ such that

P ⊩ ḣξ : N → N and ∀(n, α) ∈ γ̌ξ ∀l ≥ ḣξ(n)

∥Ė(l)
n,γξ(n)K̇n,ξ∥ < ε, ∥L̇n,ξĖ

(l)
n,γξ(n)∥ < ε.

(3)

Let Rξ = supp(ḣξ) and Sξ =
⋃

n∈ω(Sn,γξ(n)\∆n). By (b) the sequence (Sξ)ξ<ω2 consists
of pairwise disjoint subsets of ω2. Since each Sn,γξ(n) is countable, Sξ is also countable
for ξ < ω2.

By Lemma 5.2.13 there are ξ, η < ω2 such that ξ ̸= η and

Sξ ∩Rη = Sη ∩Rξ = ∅.

We will show that

P ⊩ Ḃγξ
Ḃγη is non-compact.

Suppose this is not the case. Then by Lemma 5.2.3, (1) and (2) there is p ∈ P and
m ∈ N such that

p ⊩ ∀l ≥ m ∥Ḃγξ
Ḃγη (v̇n,γξ(n)(l))∥ < ε. (4)

Fix n ∈ N such that dom(p) ∩ (Sn,γξ(n) ∪ Sn,γη(n)) ⊆ ∆n (such n exists, since by
(b) the sequence ((Sn,γξ(n) ∪ Sn,γη(n))\∆n)n∈N consists of pairwise disjoint sets and
dom(p) is finite) and notice that p is (σn,γξ(n),γη(n), Sn,γξ(n), Sn,γη(n))-symmetric. Since
supp(ḣξ) = Rξ, by Remark 5.2.10 there is qξ ≤ p and kξ ∈ N such that

dom(qξ)\dom(p) ⊆ Rξ and qξ ⊩ ḣξ(n) = kξ.

Put
pξ = qξ ∪ σn,γξ(n),γη(n)(qξ ↾ Sn,γξ(n)).

By Lemma 5.2.8 we have pξ ∈ P and pξ is (σn,γξ(n),γη(n), Sn,γξ(n), Sn,γη(n))-symmetric
(it is also (σn,γη(n),γξ(n), Sn,γη(n), Sn,γξ(n))-symmetric, since σn,γξ(n),γη(n) = σ−1

n,γη(n),γξ(n)).
By the same argument there is qη ≤ pξ and kη ∈ N such that

dom(qη)\dom(pξ) ⊆ Rη and qη ⊩ ḣη(n) = kη

and
pη = qη ∪ σn,γη(n),γξ(n)(qη ↾ Sn,γη(n))

is an (σn,γη(n),γξ(n), Sn,γη(n), Sn,γξ(n))-symmetric element of P.
Pick l > max{kξ, kη,m,

1
ε }. By (2) we have

P ⊩∥Ė(l)
n,γξ(n)(v̇n,γξ(n)(l))∥ ≥ ∥v̇n,γξ(n)(l)∥+

− ∥Ė(l)
n,γξ(n)(v̇n,γξ(n)(l)) − v̇n,γξ(n)(l)∥ ≥ 1 − ε.

(5)

Since supp(v̇n,γξ(n)) ⊆ Sn,γξ(n), there is r ≤ pη and v ∈ F such that

dom(r)\dom(pη) ⊆ Sn,γξ(n) and r ⊩ v̌ = v̇n,γξ(n)(l).
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Then
s = r ∪ σn,γξ(n),γη(n)(r ↾ Sn,γξ(n))

is an (σn,γξ(n),γη(n), Sn,γξ(n), Sn,γη(n))-symmetric element of P. From (5) we get

r ⊩ ∥Ė(l)
n,γξ(n)(v̌)∥ ≥ 1 − ε. (6)

Since v̌ is a canonical name for an element of V we have σn,γξ(n),γη(n)(v̌) = v̌ and since
s ≤ σn,γξ(n),γη(n)(r) we get

s ⊩ ∥Ė(l)
n,γη(n)(v̌)∥ ≥ 1 − ε. (7)

By the inequality

P ⊩ ∥v̌ − Ė
(l)
n,γη(n)(v̌)∥2 + ∥Ė(l)

n,γη(n)(v̌)∥2 = ∥v̌∥2 ≤ (1 + ε)2

and (7) we get that

s ⊩ ∥v̌ − Ė
(l)
n,γη(n)(v̌)∥2 ≤ (1 + ε)2 − (1 − ε)2 = 4ε (8)

and hence

s ⊩ ∥Ė(l)
n,γξ(n)Ė

(l)
n,γη(n)(v̌)∥ = ∥Ė(l)

n,γξ(n)(v̌) − Ė
(l)
n,γξ(n)(v̌ − Ė

(l)
n,γη(n)(v̌))∥ ≥

≥ ∥Ė(l)
n,γξ(n)(v̌)∥ − ∥Ė(l)

n,γξ(n)(v̌ − Ė
(l)
n,γη(n)(v̌))∥ ≥

≥ 1 − ε− ∥v̌ − Ė
(l)
n,γη(n)(v̌)∥ ≥ 1 − ε− 2

√
ε > 1/2.

(9)

On the other hand we have

s ⊩ ∥Ḃγξ
Ḃγη Ė

(l)
n,γη(n)(v̌)∥ = ∥Ḃγξ

Ḃγη (v̌) − Ḃγξ
Ḃγη (v̌ − Ė

(l)
n,γη(n)(v̌))∥ ≤

≤ ∥Ḃγξ
Ḃγη (v̌)∥ + ∥v̌ − Ė

(l)
n,γη(n)(v̌)∥ ≤ ε+ 2

√
ε,

(10)

where the last inequality follows from (4) and (8). Hence

s ⊩ ∥Ė(l)
n,γξ(n)Ė

(l)
n,γη(n)(v̌)∥ = ∥Ė(l)

n,γξ(n)Ėn,γξ(n)Ėn,γη(n)Ė
(l)
n,γη(n)(v̌)∥ =

= ∥Ė(l)
n,γξ(n)(K̇n,ξ + Ėn,γξ(n)Ḃγξ

)(L̇n,η + Ḃγξ
Ėn,γη(n))Ė

(l)
n,γη(n)(v̌)∥ ≤

≤ ∥Ė(l)
n,γξ(n)Ḃγξ

Ḃγη Ė
(l)
n,γη(n)(v̌)∥ + ∥Ė(l)

n,γξ(n)K̇n,ξL̇n,ηĖ
(l)
n,γη(n)(v̌)∥+

+ ∥Ė(l)
n,γξ(n)Ḃγξ

L̇n,ηĖ
(l)
n,γη(n)(v̌)∥ + ∥Ė(l)

n,γξ(n)K̇n,ξḂγη Ė
(l)
n,γη(n)(v̌)∥ ≤

≤ ∥Ḃγξ
Ḃγη Ė

(l)
n,γη(n)(v̌)∥ + 2(1 + ε)∥L̇n,ηĖ

(l)
n,γη(n)∥ + (1 + ε)∥Ė(l)

n,γξ(n)K̇n,ξ∥.

By (3) and the fact that l > max{kξ, kη} (which holds since s ⊩ max{kξ, kη} =
max{ḣξ(n), ḣη(n)}) the last two terms of the above sum may be estimated by 3ε(1 + ε).
From this and (10) we get

s ⊩ ∥Ė(l)
n,γξ(n)Ė

(l)
n,γη(n)(v̌)∥ ≤ ε+ 2

√
ε+ 3ε(1 + ε) < 1/2,

which is a contradiction with (9).
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Theorem 5.3.3. In the Cohen model V P there is no *-embedding of ℓ∞(c0(ω2)) into
Q(ℓ2). In particular, there is no *-embedding of ℓ∞(Q(ℓ2)) into Q(ℓ2).

Proof. Assume that T : ℓ∞(c0(ω2)) → Q(ℓ2) is a *-embedding. Let χn,α, χγ ∈ ℓ∞(c0(ω2))
for n ∈ N, α < ω2, γ ∈ ωN

2 be given by

χn,α(m)(β) =

 1, if (n, α) = (m,β)

0, otherwise

and

χγ(m)(β) =

 1, if γ(m) = β

0, otherwise

Clearly χn,α, χγ are projections and if γ(n) = α, then χn,α ≤ χγ .
Since *-embeddings preserve posets of projections, T (χn,α) and T (χγ) are projec-

tions in Q(ℓ2) for n ∈ N, α ∈ ω2, γ ∈ ωN
2 and T (χn,α) ≤ T (χγ) whenever γ(n) = α.

By [43, Lemma 3.1.13] there are projections En,α, Bγ in B(ℓ2) such that π(En,α) =
T (χn,α), π(Bγ) = T (χγ) for n ∈ N, α ∈ ω2, γ ∈ ωN

2 (here π : B(ℓ2) → Q(ℓ2) =
B(ℓ2)/K(ℓ2) denotes the quotient map). These projections satisfy the hypothesis of
Proposition 5.3.2, so there are disjoint γ1, γ2 ∈ ωN

2 such that Bγ1Bγ2 is non-compact,
which contradicts the fact that T (χγ1)T (χγ2) = T (χγ1χγ2) = T (0) = 0.

To see that there is no *-embedding of ℓ∞(Q(ℓ2)) into Q(ℓ2) we use the facts that
c0(c) embeds into ℓ∞/c0 (Lemma 5.2.4) and ℓ∞/c0 embeds into Q(ℓ2) (the natural
embedding is given by [(an)n∈N] 7→ [A], where A ∈ B(ℓ2), A((cn)n∈N) = (ancn)n∈N for
(cn)n∈N ∈ ℓ2 i.e. A is the infinite diagonal matrix with entries (an)n∈N on the diagonal),
which implies that ℓ∞(c0(ω2)) = ℓ∞(c0(c)) embeds into ℓ∞(Q(ℓ2)).

Now we will show an application of this result in the context of corona algebras of
tensor products. Let us recall important definitions.

Definition 5.3.4. A C*-algebra M(A) ⊇ A is called the multiplier algebra of a
C*-algebra A, if A is an essential ideal in M(A) (i.e. A⊥

M(A) = {0}, where A⊥
D = {x ∈

D : Ax = {0}}) and for every C*-algebra D containing A as an ideal the identity map
Id : A → B(A) has a unique extension to D with kernel A⊥

D.
The quotient algebra Q(A) = M(A)/A is called the corona of A.

It is well-known that M(K(ℓ2)) ≡ B(ℓ2) and Q(K(ℓ2)) ≡ Q(ℓ2). If X is a locally
compact Hausdorff space, then M(C0(X)) ≡ C(βX) and Q(C0(X)) ≡ C(βX\X), and so
the multiplier algebra should be seen as the non-commutative analogue of the Stone-Čech
compactification of a topological space, and corona as the non-commutative analogue of
the Stone-Čech remainder. For more information on multiplier algebras and coronas see
[15] or [43].

We will use the characterization of multipliers algebras in terms of double centralizers.

Definition 5.3.5. A pair (L,R) of linear maps on a C*-algebra A is a double central-
izer of A, if xL(y) = R(x)y for all x, y ∈ A.



5.3. Embedding ℓ∞-sums into the Calkin algebra 103

Lemma 5.3.6. [15, Theorem II.7.3.4] If (L,R) is a double centralizer of a C*-algebra
A, then L,R are bounded operators and ∥L∥ = ∥R∥. The set of all double centralizers
of A form a C*-algebra with operations

• (L1, R1) + (L2, R2) = (L1 + L2, R1 +R2),
• (L1, R1)(L2, R2) = (L2L1, R1R2),
• (L,R)∗ = (R∗, L∗),
• ∥(L,R)∥ = ∥L∥ = ∥R∥.

This C*-algebra is isomorphic to M(A).

Recall that K(ℓ2) is a nuclear C*-algebra i.e. for every C*-algebra A there is a unique
tensor product A ⊗ K(ℓ2).

Lemma 5.3.7. There is a *-embedding of ℓ∞(ℓ∞/c0)/c0(ℓ∞/c0) into Q(ℓ2) ⊗ K(ℓ2).

Proof. Let I : ℓ∞/c0 → Q(ℓ2) be the quotient of the diagonal embedding described in the
proof of Theorem 5.3.3. Then I induces an embedding I0 : c0(ℓ∞/c0) → Q(ℓ2) ⊗ K(ℓ2).
Namely

I0((an)n∈N)) =
∑
n∈N

I(an) ⊗ en,n

where an ∈ ℓ∞/c0 and en,m ∈ K(ℓ2) is given by

en,m((ck)k∈N)(l) =

cm, if l = n

0, otherwise

for n,m, l ∈ N and (cn)n∈N ∈ ℓ2 i.e. en,m is the matrix with entry 1 at position (n,m)
and 0 at other positions (so called matrix unit).

Now fix A ∈ ℓ∞(ℓ∞/c0), A = (an)n∈N. Consider operators LA, RA : Q(ℓ2) ⊗ K(ℓ2) →
Q(ℓ2) ⊗ K(ℓ2) defined by

LA(q ⊗ en,m) = I(an)q ⊗ en,m

RA(q ⊗ en,m) = qI(am) ⊗ en,m

i.e. LA and RA are multiplications by diagonal matrices (from the left and right side
respectively) with entries (an)n∈N on the diagonal.

It is easy to check that (LA, RA) is a double centralizer of Q(ℓ2) ⊗ K(ℓ2) and
I∞ : ℓ∞(ℓ∞/c0) → M(Q(ℓ2) ⊗ K(ℓ2)) given by I∞(A) = (LA, RA) is a *-embedding.
Moreover, I∞(A) ∈ Q(ℓ2) ⊗ K(ℓ2) if and only if A ∈ c0(ℓ∞/c0). Thus,

J : ℓ∞(ℓ∞/c0)/c0(ℓ∞/c0) → Q(Q(ℓ2) ⊗ K(ℓ2))

given by J([A]) = [I∞(A)] is well-defined and is a *-embedding.

Theorem 5.3.8. In the Cohen model V P there is no *-embedding of Q(Q(ℓ2) ⊗ K(ℓ2))
into Q(ℓ2).

Proof. By Lemma 5.2.5 the algebra ℓ∞(c0(c)) embeds into ℓ∞(ℓ∞/c0)/c0(ℓ∞/c0). In V P

we have c = ω2, so by Theorem 5.3.3 there is no embedding of ℓ∞(ℓ∞/c0)/c0(ℓ∞/c0)
into Q(ℓ2). Apply Lemma 5.3.7 to finish the proof.
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