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Streszczenie

Rozprawa poswigcona jest wybranym problemom w analizie funkcjonalnej, ktorych
rozwigzania opieraja sie na metodach teorii mnogosci i topologii. Omawiamy cztery
tematy obejmujace zagadnienia takie jak niezmienniki przestrzeni Banacha, zbieznos¢
miar Radona oraz istnienie zanurzen pewnych C*-algebr w algebre Calkina.

W pierwszej czesci rozprawy badamy o-idealy podzbioréw przestrzeni Banacha gen-
erowane przez hiperptaszczyzny i analizujemy ich standardowe niezmienniki kardynalne:
addytywnosé¢, liczba pokryciowa, jednorodno$é¢ i kofinalnosé. Obliczamy ich wartosci dla
osrodkowych przestrzeni Banacha oraz pokazujemy, ze niesprzecznie zalezg one tylko
od gestosci dla wszystkich przestrzeni Banacha. Pozostale pytania sprowadzaja sie do
rozstrzygniecia, czy dla kazdej nieosrodkowej przestrzeni Banacha X nastepujace zdania
sa dowodliwe w ZFC:

e X mozna pokry¢ przy pomocy wi hiperplaszczyzn,
o wszystkie podzbiory X mocy mniejszej niz cf([dens(X)]*) mozna pokry¢ przeliczal-

nie wieloma hiperpltaszyznami.

Pokazujemy takze, ze odpowiedzi na powyzsze sa twierdzace, jesli ograniczymy sie do jed-
nej z wielu dobrze zbadanych klas przestrzeni Banacha. Pierwsze pytanie zwigzane jest z
problemem, czy kazda zwarta przestrzen Hausdorffa z mata przekatna jest metryzowalna,
a drugie z duzymi liczbami kardynalnymi.

Drugi temat dotyczy przestrzeni Banacha funkcji ciaglych na przestrzeniach zwartych.
Pokazujemy, ze jesli K jest osrodkowa i spdjna przestrzenia zwarta, C'(K) ma malo
operatoréw (tzn. kazdy ograniczony operator liniowy T': C(K) — C(K) jest postaci
T(f) = fg+ S(f), gdzie S jest stabo zwarty oraz g € C(K)) oraz przestrzen C(K)
jest izomorficzna z przestrzenia C (L), to K i L sa homeomorficzne z doktadnoscia do
skonczenie wielu punktéw. Nastepnie, dla kazdej liczby naturalnej n > 0 konstruujemy,
przy zalozeniu zasady karo Jensena (<{»), przestrzen zwartg K majaca opisane powyzej
wtlasnoéci oraz wymiar pokryciowy réwny n. Wnioskujemy, ze jesli L jest przestrzenia
zwarta taka, ze C'(K) i C(L) sa izomorficzne, to dim L = n.

Trzeci temat dotyczy teorio-miarowych wtasnosci algebr Boole’a oraz powiazanych
z nimi przestrzeni Banacha. Definiujemy o-scentrowane pojecie forcingu, ktore forsuje
istnienie algebry Boole’a z wlasnoéciag Grothendiecka i bez wlasnosci Nikodyma. W
szczegblnoéci dowodzimy, ze istnienie takiej algebry jest niesprzeczne z negacja hipotezy

continuum. Skonstruowana przez nas algebra sktada sie z borelowskich podzbioréw
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zbioru Cantora oraz ma moc rowng wi. Pokazujemy tez, jak usprawnié¢ konstrukcje takiej
algebry otrzymanej przez Talagranda przy zalozeniu hipotezy continuum korzystajac z
naszej metody.

Ostatnia cze$é rozprawy poswiecona jest algebrze Calkina Q(¢3) tj. algebrze ogranic-
zonych operatoréw na £ podzielonej przez ideal operatoréw zwartych. Pokazujemy, ze w
modelu Cohena nie istnieje *-zanurzenie algebry (o, (Q(¢2))) w algebre Q(¢2). Wniosku-

jemy z tego, ze w modelu Cohena korona stabilizacji algebry Q(¢3) nie jest izomorficzna

z Q({2).

Stowa kluczowe: algebra Calkina, forcing, hiperptaszczyzna, malo operatoréw, mi-
ara Radona, przestrzen Banacha, teoria mnogoéci, wlasnos¢ Grothendiecka, wlasnosé

Nikodyma, wymiar pokryciowy.



Abstract

The dissertation is devoted to selected problems in functional analysis whose solutions
rely on set-theoretic and topological methods. We discuss four topics involving issues
such as invariants of Banach spaces, convergence of Radon measures or the existence of
embeddings of various C*-algebras into the Calkin algebra.

In the first part we study the o-ideals of subsets of Banach spaces generated by
hyperplanes and investigate their standard cardinal characteristics: the additivity, the
covering number, the uniformity and the cofinality. We determine their values for
separable Banach spaces, and we show that it is consistent that they depend only on the
density for all Banach spaces. The remaining questions can be reduced to deciding if

the following can be proved in ZFC for every nonseparable Banach space X:

e X can be covered by wi-many of its hyperplanes,
o all subsets of X of cardinalities less than cf([dens(X)]*) can be covered by countably

many hyperplanes.

We also answer these questions in the affirmative in many well-investigated classes of
Banach spaces. The first question is related to the problem whether every compact
Hausdorff space which has a small diagonal is metrizable and the second to large cardinals.

The second topic concerns Banach spaces of continuous functions on compact spaces.
We show that if K is a separable connected compact space, C(K) has few operators
(i.e. every bounded linear operator T': C(K) — C(K) is of the form T'(f) = fg+ S(f),
where S is weakly compact and g € C(K)) and C(K) is isomorphic to C(L) for some
compact space L, then K and L are homeomorphic modulo finitely many points. Next,
for every natural number n > 0 we construct, assuming Jensen’s diamond principle
(), a compact space K that has the covering dimension equal to n and possesses the
above mentioned properties. We conclude that if L is a compact space such that C'(L)
is isomorphic to C(K), then dim L = n.

The third topic concerns measure-theoretic properties of Boolean algebras and related
Banach spaces. We define a o-centered notion of forcing that forces the existence of a
Boolean algebra with the Grothendieck property and without the Nikodym property. In
particular, we prove that the existence of such an algebra is consistent with the negation
of the continuum hypothesis. The algebra we construct consists of Borel subsets of the
Cantor set and has cardinality w;. We also show how to apply our method to streamline

Talagrand’s construction of such an algebra under the continuum hypothesis.
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The last part of the dissertation is devoted to the Calkin algebra Q(¢2) i.e. the
C*-algebra of bounded operators on /5 divided by the ideal of compact operators. We
show that in the Cohen model there is no *-embedding of /,.-sum of Calkin algebras
into Q(f2). We conclude that in the Cohen model the corona of the stabilization of Q(¢3)
is not isomorphic to Q(¢2).

Keywords: Banach space, Calkin algebra, covering dimension, few operators, forcing,

Grothendieck property, hyperplane, Nikodym property, Radon measure, set theory.
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Chapter 1

Introduction

1.1 Overview

The dissertation focuses on applications of set theory and general topology in functional
analysis. These include results on cardinal invariants of Banach spaces, constructions of
Banach spaces with special properties and the consistency of the non-existence of some
embeddings in the category of C*-algebras. Most of the results concern nonseparable
Banach spaces. Set-theoretic methods involve infinitary combinatorics, consistency
proofs by forcing and the use of additional axioms.

The history of applications of set theory and topology in the theory of Banach spaces
goes back to the foundations of functional analysis. It became clear from the very
beginning that even the most basic results strongly rely on the use of the axiom of
choice and basic topological principles such as the Baire category theorem or Tychonoff’s
theorem.

Along with the development of set theory it naturally turned out that many properties
of classical Banach spaces are closely related to combinatorial and topological structures.
For instance, the Banach space o, of bounded sequences of real numbers is isometric to
the space C(BN) of continuous real-valued functions on the Cech-Stone compactification
of the natural numbers. Thus, the analysis of SN and the Boolean algebra of its clopen
subsets (which is isomorphic to P(N)) is a useful tool for investigating properties of o,
and related spaces (see e.g. [37, 64]).

More generally, the properties of Banach spaces of the form C(K) (where K is a
compact Hausdorff space) may be deduced from the topological properties of K. For
instance, K is metrizable if and only if C'(K) is separable. If K is extremally disconnected
(which is equivalent to being projective in the category of compact Hausdorff spaces [54]),
then C'(K) is an injective Banach space [76] (however, the problem if every injective
Banach space is isomorphic to C(K) for K extremally disconnected remains open).

Another advantage of Banach spaces of the form C'(K) is the description of bounded
functionals as Radon measures on K coming from the Riesz representation theorem [119,
Theorem 18.4.1]. Moreover, if K is zero-dimensional, then Radon measures on K are

in the natural correspondence with finitely additive bounded measures on the Boolean
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algebra Clop(K) consisting of clopen subsets of K. These facts will be crucial for many

of the results contained in the dissertation.

Among other examples of useful set-theoretic tools, we can mention almost disjoint
families i.e. uncountable families of subsets of N in which intersections of two distinct
members are finite. Such families are a source of interesting examples of Banach spaces.
For example, they were used in the construction of the famous Johnson-Lindenstrauss
space J Lo, which is the first example of a Banach space that is not WCGQG, but whose
dual is WCG [70]. They also appear in the context of few operators and decompostions
[86]. Haydon used almost disjoint families to show that Banach spaces of continuous
functions on the Stone spaces of Boolean algebras with the Subsequential Completeness
Property have the Grothendieck property [67, Proposition 1B]. We use Haydon’s idea in
Chapter 3 in the proof of Theorem 3.4.8.

At the end of the last century it turned out that the answers for many natural
questions concerning nonseparable Banach spaces are independent of ZFC. Most known
examples include, among others, Kaplansky’s conjecture asking if there is a discontinuous
homomorphism from a Banach algebra of the form C(K) (with pointwise multiplication)
[24], the question whether every nonseparable Banach space admits an uncountable
biorthogonal system [65] or the question whether the ideal of compact operators on a
separable Hilbert space may be written as the sum of two properly smaller ideals [112].
There are also statements that are known to be consistent, but still open in ZFC. For
instance, Drewnowski and Roberts showed that the continuum hypothesis (CH) implies
that the Banach space £ /cg is primary (i.e. for every decomposition o, /co = X @Y
at least one of the spaces X,Y is isomorphic to o /co) [37]. Many of our main results
consist of proofs of consistency or independence of ZFC involving the use of additional
axioms or the method of forcing (see e.g. Theorem 2.1.3, Theorem 3.4.9, Theorem
4.5.15).

Recently set-theoretic methods received a lot of attention also in the category of
C*-algebras. First examples come from the works of Akemann and Anderson [1, 2, 4-6].
Most of the results concern objects such as the algebra B(H) of bounded operators on
a separable Hilbert space H and the Calkin algebra Q(H) of bounded operators on H
modulo compact operators, which are treated as the non-commutative analogues of SN
and N* = SN\N (or ¢y, and f/cp) respectively. For instance, due to works of Phillips,
Weaver and Farah [41, 106] the existence of outer automorphisms of the Calkin algebra
is independent of ZFC. Another issue is the universality in the category of C*-algebras.
It follows from CH that the Calkin algebra is universal in the class of C*-algberas of
density not bigger than ¢ [46], while there are models of ZFC in which this statement is
false [133]. In Chapter 5 we discuss possible *-embeddings of /n.-sums of Calkin algebras
into the Calkin algebra in the Cohen model.

The dissertation is divided into four independent parts, each presented in one of the

following chapters.
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Chapter 2: Coverings of Banach spaces and their subsets by hyperplanes

In this chapter we introduce and investigate some cardinal characteristics of o-ideals
generated by hyperplanes in Banach spaces.

We say that a subspace of a Banach space X is a hyperplane of X if it is the kernel
of a non-zero bounded linear functional of X. For a Banach space X of dimension bigger
than 1 we consider the ideal Z(X) consisting of all subsets of X that may be covered by
countably many hyperplanes and investigate its standard cardinal characteristics (which
are motivated by the characteristics of the ideal of Lebesgue measure zero sets and the

ideal of meager sets of the reals, cf. [14, p. 12]):

e add(X) = the minimal cardinality of a family of sets from Z(X) whose union is
not in Z(X),

e cov(X) = the minimal cardinality of a family of sets from Z(X) whose union is
equal to X,

o non(X) = the minimal cardinality of a subset of X that is not in Z(X),

e ¢0of(X) = the minimal cardinality of a family of sets from Z(X) such that each

member of Z(X) is contained in some element of that family.

It turns out that the values of ad0 and cof are trivial in the context of the considered
ideals. Namely, for any Banach space X of dimension bigger than 1 we have add(X) = w;
and cof(X) = |X*|, where X* is the dual space of X. Moreover, if X is separable, then
non(X) = w; and cov(X) = ¢ (Theorem 2.1.1).

We determine the values of cov and non assuming additional axioms (the Generalized

Continuum Hypothesis GCH or Martin’s Maximum MM):
Theorem 2.1.3. Assume GCH or MM. Let X be a nonseparable Banach space. Then

(1) cov(X) = wy,
(2) non(X) = dens(X) if cf(dens(X)) > w,
(3) non(X) = dens(X)* if cf(dens(X)) = w.

Moreover, the same is consistent with any possible size of the continuum c. If violations of
the above equalities concerning non are consistent, then so is the existence of a measurable

cardinal.

We also calculate cov and non and for many classes of nonseparable Banach spaces
in ZFC (Theorem 2.1.6 and Theorem 2.1.7).

Surprisingly, in all cases we know the considered characteristics depend only on the
density of the corresponding Banach spaces. We conjecture that this holds in ZFC for
all Banach spaces.

Another interesting issues are the connections between the covering number and
an open problem concerning small diagonals in non-metrizable compact spaces (see
Proposition 2.4.10), and the problem of the existence of overcomplete sets in nonseparable
Banach spaces (Theorem 2.1.3).

This chapter covers the content of the paper [56] (joint work with Piotr Koszmider).
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Chapter 3: A Banach space C(K) reading the dimension of K

This chapter is devoted to the question whether the dimension of a compact space K
may be an isomorphic invariant of the Banach space C'(K) of continuous functions on
K.

The classical theorem of Miljutin says that if K and L are uncountable compact
metric spaces, then the Banach spaces C'(K) and C(L) are isomorphic. In particular,
C(]0,1]™) and C([0,1]™) are isomorphic for any n,m > 0, so in general the dimension of
the underlying compact space is not an invariant of given Banach space of continuous
functions. Koszmider constructed an example of a compact space K such that C(K)
is not isomorphic to any C(L) for L zero-dimensional [80]. We show that under the
assumption of Jensen’s diamond principle () this result may be improved. Namely, we

show the following:

Theorem 3.4.9. Assume . Then for every k € w U {oc} there is a compact Hausdorff
space K such that dim(K) = k and whenever C(K) ~ C(L), dim(L) = k.

The proof of this theorem consists of two parts. First, we show that if K is a perfect
separable compact Hausdorff space such that C(K') has few operators (i.e. every bounded
operator T: C'(K) — C(K) is of the form T'(f) = gf + S(f), where S: C(K) — C(K)
is weakly compact), then every L such that C(K) ~ C(L) differs from K only on a finite
set (Theorem 3.2.19). More precisely: there are open subsets U C K,V C L and finite
sets £ C K, F C L such that U,V are homeomorphicand K =UUE, L=V UF. It
follows that if C(L) ~ C(K), then dim K = dim L.

Then using < for every k € w U {oco} we construct a compact Hausdorff space of
dimension k with the above mentioned properties (see Theorem 3.4.8).

This chapter covers the content of the paper [55].

Chapter 4: Grothendieck vs Nikodym

This chapter focuses on a longstanding open problem concerning the existence of a
Boolean algebra with the Grothendieck property, but without the Nikodym property.

We say that a Boolean algebra B has the Grothendieck property if the Banach space
C(St(B)) of continuous real-valued functions on the Stone space of B has the Grothendieck
property (i.e. the weak*-convergence of sequences in C'(St(B))* is equivalent to the weak
convergence). We say that B has the Nikodym property if every pointwise convergent
(here by points we mean elements of B) sequence of finitely additive bounded measures
on B is bounded in norm.

In 1984 Talagrand constructed assuming CH an example of a Boolean algebra with the
Grothendieck property and without the Nikodym property. His algebra consists of Borel
subsets of the Cantor set with certain symmetry property (we call such sets balanced).
We modify Talagrand’s approach, which allows us to obtain a consistent example of
such Boolean algebra in a model satisfying =CH (Theorem 4.5.15). More precisely, we

define a o-centered notion of forcing P that forces the existence of a Boolean algebra
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of cardinality wy with the Grothendieck property and without the Nikodym property.
In the model obtained from P we have p = s = cov(M) = w; (Corollary 4.5.14). We
also show how to construct a balanced Boolean algebra with the Grothendieck property
under CH using our modification of Talagrand’s method (Theorem 4.4.8)

This chapter covers the content of the paper [57] (joint work with Agnieszka Widz).

Chapter 5: The Calkin algebra in the Cohen model

In this chapter we discuss the problem of the existence of *-embeddings of some C*-
algebras of density ¢ into the Calkin algebra i.e. the quotient algebra Q(¢2) = B(f2)/K({2)
of bounded operators on 5 modulo compact operators.

Recently, the algebra Q(¢2) has received a lot of attention in the context of applications
of set theory, since it shares some important properties with P(N)/Fin. For instance,
CH implies that Q(¢3) is universal in the class of C*-algebras of the density continuum
[46]. Inspired by a result of [20] which says, that in the Cohen model {(¢s/co) does

not embed into /o, /¢y as a Banach space, we show:

Theorem 5.3.3. In the Cohen model there is no *-embedding of s (co(w2)) into Q(f2).
In particular, there is no *-embedding of oo (Q(f2)) into Q(f2).

As a consequence we get that Q(¢2) is not isomorphic to the corona of the stabilization
of the Calkin algebra.

Theorem 5.3.8. In the Cohen model there is no *-embedding of Q(Q(f2) ® K(f2)) into
Q(fa).
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1.2 Notation and terminology

Most of the notation that we use should be standard. For unexplained terminology check
[38, 39, 69].

Set theory

For the purpose of the thesis we denote by N the set of positive integers and we put
w = NU{0}. The symbols Q and R denote the rationals and the reals respectively. The
cardinality of a set A is denoted by |A|. For n € N, w,, stands for the n-th uncountable
cardinal, w,, is the smallest cardinal which is greater than w, for each n € N. The
cardinality of R is denoted by ¢ and is called the continuum. If « is an ordinal number,
then cf(«) denotes its cofinality. Lim stands for the class of all limit ordinals. Odd
and Even stand for the classes of odd and even ordinals respectively. A subset S C wy
is called stationary, if it has non-empty intersection with every closed and unbounded
subset of wy.

The symbol [A]<“ denotes the family of all finite subsets of A, [A]¥ is the family
of countable subsets of A, cf([A]“) denotes the cofinality of [A]“ considered as the set
partially ordered by inclusion, that is the minimal cardinality of a family of countable
subsets of A such that any countable subset of A is included in an element of the family.

By f | A we mean the restriction of a function f to a set A. If f is a partial function,
then f [ A= f | (dom(f) N A), where dom(f) is the domain of f. The symbol 3, o, fn

will always denote the pointwise sum of functions f,, (if the sum exists).

Axioms

ZFC denotes Zermelo-Fraenkel set theory with the axiom of choice. We say that a
sentence ¢ is relatively consistent with a set of axioms if its negation —¢ cannot be
proven from those axioms unless assuming ZFC leads to a contradiction. We usually skip
the word “relatively”. A sentence ¢ is independent of ZFC if both ¢, =y are consistent
with ZFC. The continuum hypothesis CH means ‘c = w;’. The generalized continuum
hypothesis GCH means 2% = kT for every cardinal k. MM stands for Martin’s Maximum
and PFA for Proper Forcing Axiom. It is known that MM implies PFA and PFA implies
¢ = wy (for the definitions of MM and PFA and proofs of mentioned facts check [69]).
Jensen’s diamond principle ({) stands for the following sentence (for other equivalent
formulations see [28]): there is a sequence of sets A C «a for @ < w; such that for any
subset A C w; the set {o: ANa = A,} is stationary in wy. It is a well-known fact, that
¢ implies CH.

General topology

All topological spaces we consider are Hausdorff. We denote the closure of A by A.
For a topological space X the set A(X) = {(z,z) : © € X} is called the diagonal of

X. The covering dimension (also known as Lebesgue covering dimension or topological
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dimension, [38, Definition 1.6.7]) of X is denoted by dim X. The set X’ is the subset of
X consisting of non-isolated points in X. A sequence (zy,)ne, is said to be non-trivial, if
it is not eventually constant. We say that a topological space X is c.c.c. if every family
of pairwise disjoint open subsets of X is countable. We say that X is scattered if there
every subset Y C X contains an isolated point in Y. By basic open subset of [0, 1]“*

we mean the product [] U, where each U, C [0, 1] is a relatively open interval with

a<wi

rational endpoints and U, = [0, 1] for all but finitely many o’s.

The Cantor set

For a sequence s, its m-th term will be denoted by s,,. By the Cantor set we mean

the set C = {—1, 1} of the sequences with values in {—1,1} with the usual product

topology. The set {—1,1}" consists of all sequences of length n with values in {—1,1}.
For s € {—1,1}" we put

(s) ={zeC:z|n=s},

where x [ n is the sequence of first n elements of x. The family of all Borel subsets of C
will be denoted by Bor(C). For a set Z C C' the symbol xz stands for the characteristic
function of Z.

The symbol A will denote the normalized Haar measure on C' (considered as a group

with coordinate-wise multiplication). In particular, A\({s)) = 1/2" for s € {—1,1}".

Boolean algebras.

For the basic terminology concerning Boolean algebras see [25, 53, 78]. We will focus on
Boolean algebras consisting of Borel subsets of the Cantor set endowed with the standard
operations U, N, \. The symmetric difference of sets A and B will be denoted by AAB. For
n € N, A,, is the finite subalgebra of Bor(C') generated by {(s) : s € {—1,1}"}. The family
of all clopen subsets of C' will be denoted by Clop(C'). Note that Clop(C) = U,,en An-
For a Boolean algebra A we denote by at(A) the set of its atoms. In particular,
at(A,) = {(s) : s € {—1,1}"}. The Stone space of A will be denoted by St(A). For
A € A we denote by [A] the corresponding clopen subset of St(A). A family {H, }pen € A
is called an antichain, if H, N H,,, = @ for n # m. For a Boolean algebra B and a subset
B C C we put
F(B,B)={ANDB,A\B: A€ B}.

Banach spaces

We will use one symbol || - || to denote norms in all considered Banach spaces - this
should not lead to misunderstandings. For a Banach space X, its density dens(X) is
the minimal cardinality of a dense subset in X (in the norm topology). X* stands
for the Banach space of bounded linear functionals on X (with the operator norm).

For S C X by span(S) we denote the smallest linear subspace of X containing S and
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span(S) stands for its closure. The symbol ker(z*) denotes the kernel of a functional
¥ e X*. If x; € X,z7 € X* for i € I are such that z}(x;) = 0;;, then (z;,2])icr is

called a biorthogonal system. If moreover X = span{x; : ¢ € I'}, then such a system is
called fundamental. For the definition and various characterizations of WLD spaces see
[60].

For a compact space K we denote by C'(K) the Banach space of real-valued continuous
functions on K with the standard supremum norm. If x € K, then 6, € C(K)* is defined
by 0x(f) = f(z). Cr(K) denotes the subset of C'(K) of functions with the range included
in the interval [0, 1]. For Banach spaces X and Y, a bounded linear operator 7': X — Y
is said to be weakly compact if the closure of T[Bx] is compact in the weak topology in
Y (here Bx stands for the unit ball in X). The symbol X ~ Y means that X and Y
are isomorphic as Banach spaces. B(X) denotes the algebra of all bounded operators
on a Banach space X (with the operator norm). An operator T: C(K) — C(L) is
multiplicative, if T'(fg) = T(f)T(g).

For any set A by ¢o(A) we denote the Banach space of functions f: A — R such that
for each € > 0 there is finitely many a € A with |f(a)| > ¢ with the supremum norm.
For 1 < p < oo by £,(A) we denote the Banach space of functions f: A — R such that
| fIIP =>gca lf(a)]P < oco. By oo(A) we mean the Banach space of bounded functions
f+ A — R with the supremum norm. The symbol ¢5_(A) denotes the subspace of £ (A)
consisting of functions with countable supports (where the support of f € ¢o(A) is the
set {a € A: f(a) # 0}). We also write co(N) = ¢g, p(N) = £, and {o(N) = lo. We will
denote by L5(C') the real Hilbert space of square-integrable (with respect to \) functions

on C' with the inner product

(f.g) = /O fgd.

Radon measures on compact spaces

For a compact space K we will identify the space of bounded linear functionals on C(K)
with the space M (K) of Radon measures on K (the identification is given by the Riesz
representation theorem). For every a < w; we have an embedding E,: C(]0,1]%) —
C([0,1]“1) given by E.(f) = f oma, where 7y : [0,1]“t — [0, 1]% is the natural projection.
For a Radon measure p on [0,1]“! we will denote by p [ C([0,1]%) the restriction of
w treated as a functional on C([0,1]“") to the subspace E,[C([0,1]%)]. Equivalently,
w ] C([0,1]%) is a measure on [0, 1]* given by

w1 C([0,1]%)(4) = p(mg ' (4)).

For any measure ;. we denote by |ul its variation.

We say that a sequence (up)neny © M(K) converges weakly, if it is convergent in
the weak topology of the Banach space M (K). We say that (uy)neny € M(K) is weak™-
convergent, if it converges in the weak™ topology, where M (K) is treated as the dual

space to C(K).
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For a Radon measure p on K a Borel set F' C K is a Borel support of p, if u(X) =0
for every Borel X C K\F. We say that a sequence (p,)nen of Radon measures has
pairwise disjoint Borel supports, if there are pairwise disjoint Borel sets (F},)peny € K
such that F,, is a Borel support of yu, for every n € N. Note that, unlike the support of

a measure, a Borel support is not unique.

Measures on Boolean algebras

For the general theory of measures on Boolean algebras see [119, Chapter V]. Throughout
Chapter 4 we will discuss canonical measures (witnesses to the lack of the Nikodym

property) ¢, for n € N, given by the formula

on(A) = /A SndA

for A € Bor(C), where §,,: C — {—1,1},9,,(z) = xp.

In what follows a measure on a Boolean algebra A is always a finitely additive signed
bounded measure on A. We will call such measures concisely “measures on A”. If y is
a measure on a Boolean algebra A and B C A is a subalgebra, then p [ B denotes the
restriction of u to B. For a measure p on A we define its variation |u| as a measure on

A given by
() = sup{u(A)| + [u(B)| : A, B € A, A, BC X,ANB = 2},
and its norm (total variation) as

el = wal (1),

where 1 is the biggest element of A. Note that for every n € N we have |p,| = A and
lon]l = 1. If @ is non-negative and ||u|| = 1, then u is called a probability measure.

Every measure on a Boolean algebra A extends uniquely to a Radon measure on the
space St(A) (see [119, Section 18.7]). If u is a measure on a Boolean algebra A, then
it denotes the corresponding Radon measure on St(A). In particular, ||| = ||¢/ and
Al = [ul-

A sequence (fip)nen of measures on a Boolean algebra A is said to be pointwise
convergent, if there is a measure p on A such that u,(A) LA w(A) for every A € A.
It is a well-known fact, that a sequence of Radon measures (fi,)nen on St(A) is weak*-
convergent if and only if the sequence (py,)nen is bounded in the norm and pointwise

convergent on A.

Forcing

Most of the notation concerning forcing should be standard. For the unexplained
terminology see [14, 69, 89]. The universe of sets will be denoted by V. For a forcing
notion P we denote by VF a generic extension of V obtained by forcing with P. The

evaluation of a constant ¢ in the class V is denoted by ¢V .
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For the purpose of Section 4.5 we will identify Borel subsets of C with their codes
with respect to some absolute coding (see [69, Section 25]). We say that a notion of
forcing IP is o-centered , if there are countably many families A,, C P for n € N such
that U,y An = P and for every n € N and every finite set {p;}icr C A, thereis p € P
so that p < p; for all i € I.

A P-name % is a called nice name for a subset of M € V, if it is of the form
& = Umerr{m} x Ap, where each A, is an antichain in P and m is the canonical name
for m. Given an automorphism o: P — P and a P-name & = {(9;,p;) : ¢ € I'} we denote
() = {(o(9i),0(p;)) : 1 € I} (cf. [69, p. 221]). In particular, we have () = m for
meV.

C*-algebras

For basic terminology and information on C*-algebras see [15, 43]. By {2 we denote the
Hilbert space of square-summable sequences of complex numbers with the standard inner
product ((an)nen, (bn)nen) = 302 | anb,. The symbol B(f3) denotes the C*-algebra of
bounded operators on ¢, (with the standard operator norm). The ideal of compact
operators in B({2) is denoted by K(f2). We define the Calkin algebra as the quotient
Q(ly) = B(l2)/K(¢2). For a C*-algebra A we denote by M(A) its multiplier algebra
and define its corona as Q(A) = M(A)/A (see Definition 5.3.4).

We say that an element p € A of a C*-algebra A is a projection, if p = p? = p*. The
set of all projections in A is denoted by Proj(.A) and forms a poset with the ordering
given by p < ¢ if and only if pg = p. If P,Q € Proj(B(f2)), then P <X Q means that
P — PQ € K(¢3) or - equivalently - that 7(P) < 7(Q), where w: B({3) — Q(f2) is the

canonical quotient map.



Chapter 2

Coverings of Banach spaces and

their subsets by hyperplanes

2.1 Introduction

All Banach spaces considered in this chapter are of dimension bigger than 1 and over
the reals. A hyperplane of a Banach space X is a one-codimensional closed subspace of
X. It is easy to see that it is nowhere dense in X. The family of all hyperplanes of X
will be denoted by H(X). Given a Banach space X one can define the hyperplane ideal
I of X as

I(X)={Y C X :3F CH(X) Y C|JF, F countable}.

That is, Z(X) is the family of all subsets of X which can be covered by countably many
hyperplanes of X. By the Baire category theorem X ¢ Z(X) for any Banach space X.
We consider the standard cardinal characteristics of the ideal Z(X):

o add(X) is the minimal cardinality of a family of sets from Z(X) whose union is
not in Z(X),

o ¢ov(X) is the minimal cardinality of a family of sets from Z(X) whose union is
equal to X,

o non(X) is the minimal cardinality of a subset of X that is not in Z(X),

o cof(X) is the minimal cardinality of a family of sets from Z(X) such that each

member of Z(X) is contained in some element of that family.

Such cardinal characteristics are standard tools for investigating the combinatorial
properties of a o-ideal. The most known case are their applications to the understanding
of the ideal of Lebesgue measure zero sets and the ideal of meager sets of the reals (see
e.g. [14]). It is easy to observe that if the ideal is proper and contains all singletons
we have the following inequalities: a0d < cov < cof and add < non < cof. The purpose
of this chapter is to investigate the possible values of the above cardinals for the ideal
Z(X) and understand how they depend on X. A somewhat surprising conclusion is
that the values depend almost entirely only on the density of X and the X™* or even are

fixed for all separable and all nonseparable Banach spaces. The first result presented in

11
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Section 2.3.1 describes these values for all separable Banach spaces. It is an immediate

consequence of appropriately formulated result from [77]:

Theorem 2.1.1. Suppose that X is a separable Banach space of dimension bigger than
1. Then the following equalities hold:

o add(X) = ws,
o non(X) = wy,
o cov(X)=c,
o cof(X) =rc.

In fact the values of add and cof are always trivial (Propositions 2.3.2, 2.3.3) due
to an elementary fact that H C G implies H = G for any two G, H € H(X) any X
(Proposition 2.2.1). The results from Section 2.3 provide also much information about

the general case including the nonseparable case:

Theorem 2.1.2. Suppose that X is a Banach space of dimension bigger than 1. Then

the following equalities and inequalities hold:

o add(X) = wy,

o wy <cov(X) <c,

o dens(X) < non(X) < cf([dens(X)]“),
. cof(X) = |X7.

Proof. Propositions 2.3.2, 2.3.3, 2.3.4, 2.3.5. O

So the interesting cardinal characteristics are cov and non. First we note that making
additional (but diverse) set theoretic assumptions (which are known to be independent
of ZFC) the values of cov and non are completely determined by the density of the space
or even fixed. For non this follows just from results on cardinal arithmetic and Theorem
2.1.2:

Theorem 2.1.3. Assume the Generalized Continuum Hypothesis GCH or Martin’s

Mazimum MM. Let X be a nonseparable Banach space. Then
(1) COU(X) w1,

(2) non(X) =dens(X) if cf(dens(X)) > w,
(8) non(X) = dens(X)*  if cf(dens(X)) = w.

Moreover the same is consistent with any possible size of the continuum c. If violations of
the above equalities concerning non are consistent, then so is the existence of a measurable

cardinal.
Proof. Propositions 2.3.5, 2.4.10, 2.5.4, 2.5.5, 2.5.6 and the fact that MM implies PFA. [

Not only consistent set-theoretic hypotheses determine the values of cov. Also a
well-known topological statement which is unknown to be provable but known to be

consistent fixes the value of cov.
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Theorem 2.1.4. Assume that all compact Hausdorff spaces with a small diagonal are

metrizable. Let X be a nonseparable Banach space. Then
cov(X) = wy.
Proof. Lemma 2.4.7. 0

For the definition of a space with a small diagonal see Definition 2.4.5. In fact a
weaker natural topological hypothesis has the same impact on cov (see Question 2.6.2).

The following main questions remain open:
Question 2.1.5. Can one prove in ZFC any of the following sentences?

(1) Every nonseparable Banach space can be covered by wy of its hyperplanes.
(2) In any Banach space X of dimension bigger than 1 each subset of cardinality

smaller than cf([dens(X)]¥) can be covered by countably many hyperplanes.

The positive answer to the above questions would settle the values of cov an non in
ZFC as in Theorem 2.1.3. Note that by Theorem 2.1.2 (3) in every infinite dimensional
Banach space X there is a subset of cardinality cf([dens(X)]*) which cannot be covered
by countably many hyperplanes. Attempting to prove the sentences of Question 2.1.5

for all nonseparable Banach spaces we manage to prove them in many cases:

Theorem 2.1.6. Suppose that X is any nonseparable Banach space belonging to one of

the following classes:

(1) X admits a fundamental biorthogonal system,

(2) X is of the form C(K) for K scattered, Hausdorff compact,

(8) X contains an isomorphic copy of {1(w1),

(4) The dual ball Bx+ of X* has uncountable tightness in the weak® topology.

Then X can be covered by wi hyperplanes, i.e. cov(X) = wy.
Proof. Propositions 2.4.4, 2.4.9, 2.4.8, Lemmas 2.4.6, 2.4.7. O

Note that this implies that spaces like c¢y(k), £p(k) for 1 < p < oo, and any & > 1,
reflexive spaces, WLD spaces (by (1)), oo(k), Loo({0,1}") for any £ > 1, (by (3)) satisfy

the conclusion of the above theorem.

Theorem 2.1.7. Suppose that X is any Banach space of dimension bigger than 1

belonging to one of the following classes:

(1) X admits a fundamental biorthogonal system,
(2) X has density wy, for some n € N.

Then each subset of X of cardinality smaller than cf([dens(X)]“) can be covered by
countably many hyperplanes, i.e. non(X) = cf([dens(X)]¥).

Proof. Propositions 2.5.1 and 2.5.3. O
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Note that (1) above implies that spaces like co(k), £,(k) for 1 < p < oo, spaces oo (k),
Lo ({0,1}7) for any k > 1 (by a result of [27] since l2(dens(X)) is a quotient of such
spaces X), reflexive spaces, WLD spaces satisfy the conclusion of the above theorem.
Note that a Banach space X of density w, for n € N may have cardinality arbitrarily
bigger than w, as |X| = dens(X)¥ = w¥ = ¢ w,, by Proposition 2.2.2.

Let us also note one application of our results. Recall that a subset Y of a Banach
space X is overcomplete ([115], [85]) if |Y| = dens(X) and every subset Z C Y of
cardinality dens(X) is linearly dense in X. The following constitutes a progress on
Question 39 from [85].

Theorem 2.1.8. Assume the Proper Forcing Axiom PFA. Let X be a Banach space
such that cf(dens(X)) > wy. Then X does not admit an overcomplete set. Moreover this

statement is consistent with any possible size of the continuum c.

Proof. By Theorem 2.1.3 the hypothesis implies that every nonseparable Banach space
X can be covered by w; many hyperplanes {H, : @ <wi}. If Y C X and |Y| = dens(X),
then by cf(dens(X)) > w; there is a < wy such that |[H,NY| = dens(X), so Z = H,NY

witnesses that Y is not overcomplete. ]

The structure of the chapter is the following. Section 2.2 contains preliminaries.
Section 2.3 establishes Theorems 2.1.1 and 2.1.2. Section 2.4 includes progress on
Question 2.1.5 (1) and arrives at Theorems 2.1.3 (1), 2.1.4 and 2.1.6. Section 2.5 includes
progress on Question 2.1.5 (2) and arrives at Theorems 2.1.3 (2), (3) and 2.1.7. The
last Section 2.6 discusses the perspectives for further research and states additional
questions.

No knowledge of logic or higher set-theory is required from the reader to follow the
chapter. This is because all consistency results are obtained by applying consistency

results already present in the literature.

2.2 Preliminaries

2.2.1 Hyperplanes

Let us recall here some elementary and well-known facts concerning hyperplanes in

Banach spaces.
Lemma 2.2.1. Suppose that X is a Banach space. Then the following hold.

(1) If H,G are hyperplanes of X and H C G, then H = G.
(2) If a hyperplane H is contained in a countable union J;eny H; of hyperplanes H;,
then H = H; for some i € N.

Proof. (1) Every hyperplane in a Banach space X is a kernel of some non-zero bounded
functional and kernels of f,g € X* are different if and only if f and g are linearly
independent (3.1.13, 3.1.14 of [119]).
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For (2) assume that H ¢ H; for any i € w. Then H; N H are nowhere dense in H.
Hence by the Baire category theorem |J
to contradiction with H =

icw Hi N H has empty interior in H, which leads
H; N H. Now use (1). O

TEW

2.2.2 Cardinalities of Banach spaces

Let us recall here some well-known facts concerning cardinalities of Banach spaces. The
first one follows from the Lemma 2.8 of [13] and the fact that (k“)* = k“.

Proposition 2.2.2. If X is a Banach space, then dens(X)“ = | X|¥ = | X]|.

Proposition 2.2.3. If X is a Banach space of dimension bigger than 1, then | X*| =
[H(X)]-

Proof. Every hyperplane in a Banach space X is a kernel of some non-zero bounded
functional and kernels of f,g € X* are different if and only if f and g are linearly
independent (3.1.13, 3.1.14 of [119]). So |X*| = ¢ |[H(X)|. If f,g € X* are linearly
independent, then the kernels of f + Ag are different for different choices of A € R\{0}.
So ¢ < |H(X)| and so | X*| = |H(X)|. O

Note that |X*| is not determined by | X| or dens(X). By Proposition 2.2.2 we have
dens(co(c)) = |eo(c)| = dens(¢1(c)) = |[¢1(c)] = ¢ and dens({o(c)) = [loo(c)| = 2° while
co(c)* = £1(c) and £7(c) = loo(c).

2.2.3 Ideals

Proposition 2.2.4. Let X be a Banach space of dimension bigger than 1. Then
add(X) < con(X) < cof(X) and add(X) < non(X) < cof(X).

Proof. This is elementary. Since Z(X) contains all singletons and is a o-ideal, Lemma
1.3.2 of [14] applies. O

2.3 Basic results on the values of the cardinal characteris-

tics

2.3.1 Separable Banach spaces

It turns out that the values of our cardinal characteristics on separable Banach spaces
are the same. We include the proof of the following result for the convenience of the

reader.

Proposition 2.3.1 ([77, Theorem 2.4]). Let X be a separable Banach space. Then there
exists a set Y C X of cardinality ¢ such that for every hyperplane H of X the set HNY

is finite.
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Proof. Let {xy, : n € N} C X be linearly dense in X and consist of norm one vectors.

Let
Y\ = Z )\nxn
neN

for each A € (0,1/2). We claim that Y = {y) : A € (0,1/2)} satisfies the theorem.
Let H be a hyperplane z* € X™* be the norm one nonzero linear bounded functional

whose kernel is H. We have limsup,,_,., /|z*(z,)| < sup,eny V]z*(2,)| < 1 and so the

formula

FO) =) 2" (za)A"

neN
defines an analytic function on (—1,1). f =0 on (—1,1) only if 2*(z,) = 0 for each
n € N, which is not the case since x* is not the zero functional on X. By the properties
of analytic functions f cannot have infinitely many zeros in (0,1/2), which means that
0= f(A) =2"( e A\"xn) = z*(yx) only for finitely many A € (0,1) as required. O

Theorem 2.1.1. Suppose that X is a separable Banach space of dimension bigger than
1. Then the following equalities hold:

. aDD(X) = W,
(X)=w

e NoN = w1,
o cov(X)=c¢,
o cof(X) =rc.

Proof. |H(X)| < ¢ if X is separable as hyperplanes are determined by continuous
functionals and such are determined by their values on a dense set. So by Proposition
2.2.4 it is enough to prove that non(X) = w; and cov(X) = ¢. Let Y be the set from
Proposition 2.3.1 and Y’ C Y any set such that |Y’| = wy. If Y is covered by countably
many hyperplanes { H, },en, then there is n € N for which H,, contains an infinite subset
Z CY' so H, =span(Z) = X, which is a contradiction. Hence non(X) = w;.

Assume now that X is covered by k < ¢ sets from Z(X). Then X is covered by k
hyperplanes, so there is a hyperplane H containing an infinite subset of Y and again we

get a contradiction. Hence cov(X) = c. O
Note that the first and last equations are also special cases of Propositions 2.3.2 and
2.3.3.
2.3.2 General Banach spaces
Proposition 2.3.2. Let X be a Banach space of dimension bigger than 1. Then
add(X) = wy.

Proof. 1t is clear that add(X) > w;. If f,g € X* are linearly independent, then the
kernels of f + Ag are different hyperplanes for different choices of A € R\{0}. So let F
be any collection of wi-many distinct hyperplanes. We have F C Z. However JF € Z
because otherwise if {H; : i € N} C H and JF C U;en Hi, then for every H € F we
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have H = H; for some ¢ € N by Proposition 2.2.1 which contradicts the fact that F is

uncountable. O
Proposition 2.3.3. Let X be a Banach space of dimension bigger than 1. Then
cof(X) = | X*|.

Proof. Let F be a cofinal family in Z(X). Without losing generality we can assume
that F consists of countable sums of hyperplanes. By Lemma 2.2.1 every set in F
contains only countably many hyperplanes, so |F| > |X*|. Moreover |F| is not greater
than the cardinality of the family of all countable sets of hyperplanes which is equal to
| X*|“ = | X*| by Proposition 2.2.2. Thus |F| = |X*|. O

Proposition 2.3.4. Let X be a Banach space of dimension bigger than 1. Then
dens(X) < non(X) < cf([dens(X)]*).
If cf(dens(X)) = w, then dens(X) < non(X).

Proof. Assume that Y C X and |Y| < dens(X). Then span(Y) is a proper subspace of
X and so it is contained in some hyperplane and hence Y € Z, so dens(X) < non(X).
Let {z4 : @ < dens(X)} be a dense subset of X. Let F C [dens(X)]¥ be a family
which is cofinal in [dens(X)]“ and of cardinality cf([dens(X)]*). By Proposition 2.3.1
for each F' € F the subspace Xrp = span{z, : « € F'} C X contains a subset Yy such

that |Yr| = w; and it cannot be covered by countably many hyperplanes in Xr. Put
Y = Uper Yr. We claim that Y € Z(X) and |Y| = [dens(X)]“. If Y were covered by
countably many hyperplanes H, of X, there would be F' € F such that H, N Xp # Xp
for all n € N which is a contradiction with the choice of Yr. Hence Y &€ Z(X). Also
Y| =w; - |F| = w; - cf([dens(X)]¥) = cf([dens(X)]*) as dens(X) is uncountable.

Now assume that cf(dens(X)) =w. If Y C X and Y| = dens(X),Y = U, ey Yi with
|Y;| < dens(X), then every Y; is contained in some closed subspace of X and hence in a
hyperplane H; for ¢ € N. Thus Y € Z. O

Proposition 2.3.5. Let X be a Banach space of dimension bigger than 1. Then
w1 < cov(X) <c.

In particular, under CH, cov(X) = wy for every nonseparable Banach space X. If
cf(dens(X)) > w, then cov(X) < cf(dens(X)). In particular if dens(X) = wi, then
cov(X) = wy.

Proof. Since Z(X) is a o-ideal, we have w; < cov(X). Let f,g € X* be linearly
independent. Then for every x € X there are (a,b) € R\{(0,0)} such that af(x)+bg(x) =
0. Thus the family of hyperplanes {keraf + bg : (a,b) € R*\{(0,0)}} of cardinality ¢
covers X.

Let k = dens(X) and let {z, : & < k} be a dense subset of X. Let x = sup{ag :

£ < cf(r)}. Let X¢ = span{z, : o < ag} for £ < cf(k). Each X¢ is a proper subspace
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of X since the density of X is k > a¢. Also every element x € X is in the closure of a
countable subset of {z, : @ < k}, and so by the uncountable cofinality of x we conclude
that x € X¢ for some & < cf(k). O

2.4 Covering nonseparable Banach spaces with w; hyper-

planes

By Proposition 2.3.5 and Theorem 2.1.1 if we assume CH we have cov(X) = w; for
all Banach spaces X. In this section we investigate whether cov(X) = w; may hold
for all nonseparable Banach spaces without this assumption (Note that by Theorem
2.1.1 if CH fails, then cov(X) > w; for all separable Banach spaces). We prove that the
value of cov is indeed w; for many classes of nonseparable Banach spaces (Propositions
2.4.4,2.4.8,2.4.9) and that consistently it holds for all Banach spaces in the presence
of diverse negations of CH (Proposition 2.4.10). The deepest observations rely heavily
on set-theoretic topological results of [71], [36], [35] concerning small diagonals and

countable tightness in compact Hausdorff spaces (Definition 2.4.5).

Lemma 2.4.1. Suppose that X,Y are Banach spaces and T: X — Y is a bounded linear
operator whose range is dense in'Y . Then cov(Y') < cov(X).

Proof. If 0 # y* € Y*, then T*(y*) # 0 because the range of T is dense in Y, so a
covering of Y by hyperplanes induces a covering of X by hyperplanes which is of the
same cardinality which proves cov(X) < coo(Y). O

Lemma 2.4.2. For every nonseparable Banach space X there is a linear bounded
operator T: X — loo(w1) with nonseparable range. In particular, all values of the
cardinal characteristic cov on nonseparable Banach spaces are bounded by the values on

nonseparable subspaces of loo(wy).

Proof. Every Banach space is isometric to a subspace of C'(K) C {o(K), where K =
Bx+. So we may assume that X C /. (k) for some uncountable cardinal k. As X is
nonseparable, it contains an uncountable discrete set D. This fact is witnessed by the
coordinates from some set A C k of cardinality wi. That is there exist € > 0 such that
for every distinct d,d’ € D we have is |d(a) — d'(a)| > € for some o € A. Consider the
restriction operator R: X — {5 (A). It is clear that the range is nonseparable by the
choice of A. To conclude the last part of the lemma take any nonseparable Banach space
X and consider the operator T as in the first part of the lemma and let Y be the closure
of the range of T. Using Lemma 2.4.1 we conclude that cov(X) < coo(Y). O

Let us now prove a simple but useful:

Lemma 2.4.3. Let X be a Banach space. The following conditions are equivalent:

(1) cov(X) = w;.
(2) X is a union of w1 hyperplanes.
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(8) There is A C X*\ {0} of cardinality wi such that for every x € X there is x* € A
such that x*(x) = 0.
(4) There is a bounded linear operator T: X — loo(w1) such that

(1) for every o < wy there is x € X such that T'(x)(a) # 0.
(2) for every x € X there is o < wy such that T'(x)(o) = 0.

Proof. The equivalence of the first three items is clear. Assume (3) and let us prove (4).
Let {H, : @ < w1} be the hyperplanes that cover X and let =}, € X* be such that H,
is the kernel of z}, and ||z}| = 1 for all @ < w;. Let T'(x)(a) = z},(x). Condition (a)
follows from the fact that z, # 0 and condition (b) from the fact that H,s cover X.
Now assume (4) and let us prove (3). Condition (a) implies that z}, = T*(d,) is a
nonzero element of X*, and so its kernel is a hyperplane. Condition (b) implies that the

kernels of xs cover X. O

Proposition 2.4.4. Let X be a nonseparable Banach space. FEach of the following

sentences implies the next.

(1) X admits a fundamental biorthogonal system.

(2) There is a bounded linear operator T: X — co(w1) with nonseparable range (i.e.
X is not half-pcc in the terminology of [33]).

(3) co0(X) = w;.

In particular for every nonseparable WLD Banach space X we have coo(X) = w;.

Proof. Let {(zq,2)) : @ < k} be a fundamental biorthogonal system. Define T: X —
loo(wr) by T'(x)(ar) = 2,(2). As T(za) = X{a} [ w1 € co(w1) and X is the closure of the
linear span of {7, : a < w1} we conclude that T[X] C co(w1). T(7a) = X{a} for a < wy
witnesses the fact that the range is nonseparable.

Now assume (2). As the range of T is nonseparable, by passing to an uncountable set
of coordinates we may assume that for all & < wy there is z € X such that T'(x)(a) # 0.
So item (4) of Lemma 2.4.3 is satisfied, and hence cov(X) = wy.

To make the final observation use the fact that WLD Banach spaces admit funda-

mental biorthogonal systems e.g. by the results of [134]. O

Note that the paper [33] contains many results on properties of Banach spaces X
which imply item (2) of Lemma 2.4.4, for example this happens when X* contains a
nonmetrizable weakly compact subset. To obtain more Banach spaces X satisfying

cov(X) we need some topological considerations. First recall the following:
Definition 2.4.5. Let K be a compact Hausdorff space.

(1) We say that K has a small diagonal if for every uncountable subset A of K2\ A(K)
there is an uncountable B C A whose closure is disjoint from A(K).

(2) We say that K has countable tightness (is countably determined) if whenever
K >z € Afor AC K, then there is a countable B C A such that x € B.
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In the following lemma the implication from (3) to (4) is the result of [71].

Lemma 2.4.6. Suppose that K is a compact Hausdorff space. FEach of the following

sentences implies the next.

(1) For every A C K of cardinality wy there is a continuous f: K — R such that f | A
15 injective.

(2) For every A = {(20,%a) : @ < w1} C K2\ A(K) of cardinality wy there is a
continuous f: K — R such that

{a: f(za) # f(ya)}

is uncountable.
(3) K has a small diagonal.
(4) K is countably tight.

Proof. Assume (1). Let A C K? be a set of cardinality w; disjoint from the diagonal. Let
A={(za,Ya) :a <wi}. Put L ={24,ya : @ <wi}and let f: K — R be continuous
and f | L injective. Then f(x,) # f(ya) for each a < wy, so we obtain (2).

Assume (2). Let A C K? be uncountable. We may assume that A is of cardinality
wp and s0 A = {(za,Ya) : @ <wi}. Let f: K — R be continuous and such that

{a: f(xa) # f(ya)}

is uncountable. Then g: K2 — R defined by g(z,y) = |f(z) — f(y)| is continuous and
g | A is non-zero. Hence there exist € > 0 and an uncountable subset A" C A such
that g(a) > ¢ for a € A’. Tt follows that the closure of A’ is disjoint from diagonal as
g [ A(K) = 0 which completes the proof of (3).

For the last implication see the proof of [71, Corollary 2.3]. O

It is easy to see that the one-point compactification of an uncountable discrete space
is countably tight but does not have a small diagonal, so (4) does not imply (3). We do

not know if the other implications reverse (cf. Question 2.6.2).

Lemma 2.4.7. Let X be a Banach space. Fach of the following sentences implies the

next.

(1) The dual ball Bx~ does not have a small diagonal in the weak* topology.

(2) There is {z}, : @ < w1} C Bx= \ {0} such that {« : z},(x) # 0} is at most countable
for each x € X.

(8) There is A C Bx~ of cardinality wy such that §, | A is not injective for each x € X,
where §, € C(Bx~) is given by d,(x*) = x*(x).

(4) cov(X) = wy.

Proof. Suppose (1). By the implication from (2) to (3) of Lemma 2.4.6 there is A =

*

{(y%,2%) @ < w1} € B%. \ A(Bx+) of cardinality w; such that for every continuous
f: K — R the set {a : f(yh) # f(2%)} is countable. Of course z € X defines a
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continuous function on the dual ball in the weak* topology so {« : (y} — 2%)(z)} is
countable for all z € X. So we put z}, =y} — 2} and we obtain (2).

Assume (2). Put A = {2} : @ < wi}. Then for each x € X image of 6, [ A is
countable, so d; [ A is not injective since |A| > w.

Now suppose (3). Consider fiq = To — Yo € X*, where {{Za,ya} : a < w1} = [A]%

Then the kernels of u,’s cover X. O

Since it is consistent that all nonmetrizable compact spaces do not have small
diagonals, it is also consistent that sentences (1)-(4) from Lemma 2.4.7 are equivalent in
the class of nonseparable Banach spaces. It is still an open question whether this holds
in ZFC.

Proposition 2.4.8. If X is a Banach space which contains an isomorphic copy of
l1(w1), then cov(X) = wy. In particular this holds for any space which contains o like
loo(K), Loo({0,1}7), £ /co etec.

Proof. By the main result of [128], if a Banach space X contains ¢;(w), then there
is a continuous surjection ®: Bx+ — [0,1]“", where By~ is considered with the weak*

topology. As countable tightness is preserved by continuous map and [0,1]“? is not

countably tight (consider 1jg ) € {1j0,a) : @ < w1}) we conclude that Bx« is considered
with the weak™ topology is not countably tight. By Lemma 2.4.6 Bx+ does not have a
small diagonal, and so by Lemma 2.4.7 we conclude that cov(X) = wy. O

Proposition 2.4.9. If K is compact nonmetrizable and scattered, then cov(C(K)) = wy.

Proof. K must be uncountable. Let A C K be any subset of cardinality w;. As a
continuous image of a scattered compact space is scattered compact we conclude that
for any continuous f: K — R the image of f is countable and so f [ A is not injective
which implies that 67 [ {, : @ € A} is not injective. Hence C(K) satisfy condition (3)
of Lemma 2.4.7. O

Proposition 2.4.10.

(1) PFA implies that every nonseparable Banach space X satisfies cou(X) = wy.
(2) It is consistent with any possible size of the continuum, that every nonseparable

Banach space X satisfies cov(X) = wy.

Proof. 1t is shown in [36] that assuming PFA every compact Hausdorff space with a
small diagonal is metrizable. So by Lemma 2.4.7 we conclude that cov(X) = w; for every
nonseparable Banach space X under PFA. Similarly Theorem 5.8 from [35] shows that it
is consistent with any possible size of the continuum (in models obtained from CH model
by adding Cohen reals) that each compact space with countable tightness has a small
diagonal if and only if it is metrizable. However, non-countably-tight compact spaces
cannot have a small diagonal (in ZFC) by the result of [71] that is the implication from
(3) to (4) in Lemma 2.4.6. So by Lemma 2.4.7 we conclude that cov(X) = w; for every

nonseparable Banach space X in these models as well. O
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2.5 Covering small subsets of Banach spaces by countably

many hyperplanes

By Proposition 2.3.4 if X is a Banach space of dimension bigger than 1 the value of
non(X) (i.e. the minimal cardinality of a set not covered by countably many hyperplanes)
is in the interval [dens(X), cf([dens(X)]¥)] if cf(dens(X)) is uncountable and is in the
interval [dens(X)™, cf([dens(X)]*)] if cf(dens(X)) is countable. As we will see below, just
purely set-theoretic known results imply that under many assumptions these intervals
reduce to singletons and so the values of non(X) are completely determined by dens(X).
It remains open, however, if non(X) = cf([dens(X)]“)] for every nonseparable Banach

space without any extra set-theoretic assumptions.

Proposition 2.5.1. If X is a Banach space with density w, for n € N\{0}, then
non(X) = dens(X) = cf([dens(X)]*).

Proof. By induction on n € N, using the decomposition of w,, into smaller ordinals one

proves that cf(jwp]*) = wy,. Now Proposition 2.3.4 implies that non(X) = wy,. O

Proposition 2.5.2. Let X be a Banach space of density x and dimension bigger than 1.
Suppose that there are functionals {z¥ : « < k} C X* such that for every x € X the set
Zy =A{a:xk(x) # 0} is countable. Then non(X) = cf([x]*).

Proof. Let A < cf([k]¥Y) and Y = {zo : @ < A} € X. By the assumption the family
Z ={Z, : x € Y} is not cofinal in [k]“. Pick A € [k]*, which is not included in any
element of Z. Then for every x € Y there is @ € A such that z(z) = 0, so x is in kernel
of . Thus kernels of ;s for & € A cover Y, which proves that non(X) > cf([x]*). The
inequality non(X) < cf([k]*) is true by Proposition 2.3.4. O

Proposition 2.5.3. If a Banach space X of density k and dimension bigger than 1
admits a fundamental biorthogonal system, then non(X) = cf([k]¥).

Proof. Let {xq,x}}a<r be a fundamental biorthogonal system. For every x pick a
countable set L, C k such that x € span{z, : « € L, }. Then Z, = {a: z¥(x) # 0} C

L,, so Z, is also countable. Hence z7;s satisfy conditions of Proposition 2.5.2. O

Proposition 2.5.4. Assume that k¥ = K for all regular k > w,,. Let X be a Banach

space of dimension bigger than 1. Then

(1) If cf(dens(X)) = w, then non(X) = dens(X)™",
(2) If cf(dens(X)) > w, then non(X) = dens(X).

In particular the above equations hold under GCH or MM.

Proof. By assumption we have cf([x]) = & for all regular k > w,,. If k is singular of
uncountable cofinality then k% = ¥, p* = ¥ «x p = & so cf([k]*) = k. If cf(k) =w
then x* > k and k% < (k7)¥ = kT so cf([k]“) < k. Hence for dens(X) > w, the
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equalities (1) and (2) follow from Proposition 2.3.4. The case when dens(X) = w, for
some n € N is covered by Proposition 2.5.1.

For a limit cardinal k of uncountable cofinality under GCH we have
kY = E/\<ﬁ>\w < 2)\<n)\+ < K=k

so k¥ = k. For successor cardinals we have (k) = k“kT < (k1)? = k.
If MM holds, then by Theorem 37.13 of [69] we have k¥ = k*“! = k for each regular
K> Wwi.

O]

Proposition 2.5.5. It is consistent with any possible size of the continuum that for

every Banach space X of dimension bigger than 1 we have

(1) If cf(dens(X)) = w, then non(X)
(2) If cf(dens(X)) > w, then non(X) =

dens(X)T,

ens(X).
Proof. Start with a model V' of GCH and increase the continuum using a c.c.c. forcing
(e.g. add Cohen reals). The cardinals and their cofinalities do not change. Moreover
[£]“ NV is cofinal in [k]“ as any countable set of ordinals in a c.c.c. extension is included

in a countable set in the ground model, so the calculations from the proof of Proposition

2.5.4 remain true. O

Proposition 2.5.6. For every Banach space X of dimension bigger than 1 we have

(1) If cf(dens(X)) = w, then non(X)
(2) If cf(dens(X)) > w, then non(X)

dens(X)T,
dens

unless there is a measurable cardinal in an inner model.

Proof. If there is no measurable cardinal in an inner model, then there is an inner model
M which satisfies GCH and satisfies the covering lemma i.e. [k]“* N M is cofinal in [k]*"
for each cardinal k (see [32]). This implies that [k]“ N M is cofinal in [k]* for each
cardinal k. So since M satisfies GCH, Proposition 2.5.4 implies the theorem. (For a

similar argument see the proof of Theorem 13.3 (d) in [111].) O

Recall that assuming the existence of a suitably large cardinal the consistency of
2 < w,, and 2% = w4y for any n € N and k > 1 was proved in [93] (this problem
was also considered with weaker assumptions in [59]). In this case cf([wy]¥) = wWytk
because [w,]¥ = U{[A]¥ : A € F} for any cofinal family in [w,]* and |U{[A]Y : A €
FH < ¢ |F|=|F| as ¢ < wy. It follows that cf ([wytm]¥) > werk for 0 < m < k. So
not only the existence of Banach spaces of density w, which assume the value of non
smaller than in Propositions 2.5.4, 2.5.5 if £k > 3 but also of a regular density w11 is

not excluded by cardinal arithmetic in the considered model.
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2.6 Final remarks

2.6.1 Densities of quotients of Banach spaces

The famous Separable Quotient Problem asks if every infinite dimensional Banach space
has a separable infinite dimensional quotient. In the direction of bounding the densities
of quotients of Banach spaces, one can easily prove that every Banach X space has
a infinite dimensional quotient whose density is not bigger then ¢. In this light the

following is natural to ask:

Question 2.6.1. Is it true in ZFC that every nonseparable Banach space has a quotient

of density wy ?

By Propositions 2.3.5 and 2.4.1 the positive answer to question 2.6.1 would imply
that cov(X) = w; for every Banach space X. It would also imply that the Separable
Quotient Problem consistently has positive answer since it is proved in [130] that it
is consistent that all Banach spaces of density w; have infinite dimensional separable
quotients. In fact, for this it would be enough to obtain the consistency of the positive
answer to Question 2.6.1 with the additional set-theoretic assumptions of [130], like the
PFA.

2.6.2 Banach spaces with no fundamental biorthogonal systems

Theorems 2.1.6 and 2.1.7 determine the values of cov and non for Banach spaces admitting
fundamental biorthogonal systems. So looking for spaces witnessing different values of
cov or non we should understand better spaces not admitting such systems. The first and
classical example of such a space is the subspace £ (¢T) of o (¢) consisting of elements
with countable supports ([58], [110]). However it contains a copy of ¢o, and so ¢1(w1) so
cov (L5, (X)) = wy for any infinite A by Theorem 2.1.6. Moreover Proposition 2.5.2 implies
that non(€5,(\)) = cf([A\]¥) for any A > ¢t as dens(¢5,(A\)) = A in such a case. Other
reason for not admitting a fundamental biorthogonal system in a nonseparable space is
not admitting any uncountable biorthogonal system: The Kunen line and the examples
of [91], [83], [18] have all density w, so they have cov = w; by Proposition 2.3.5. The
only known Banach space of density bigger than w; with no uncountable biorthogonal
systems is that of [19]. However it is of the form C(K) with K scattered so Theorem
2.1.6 implies that cov = wy. It also has density wo, so Theorem 2.1.7 implies that its non

is w2 = Cf([WQ]w).

2.6.3 A question on compact Hausdorff spaces

By Lemma 2.4.7 positive answer to the following question would imply that cov(X) = wq

for every nonseparable Banach space X:

Question 2.6.2. Is it provable that every nonmetrizable compact Hausdorff space K
admits a subspace L C K of cardinality wi such that for no f € C(K) the restriction
I I L is injective?
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Recall that it was proved in [34] that every nonmetrizable compact Hausdorff space
admits a subspace of size wy which is nonmetrizable. Moreover the above result and
Proposition 11 of [36] imply that every nonmetrizable compact Hausdorff space K admits
asubspace L C K of cardinality w; such that for no f € C(K) we have f~[{f(z)}] = {z}
for all x € L.






Chapter 3

A Banach space C'(K) reading the

dimension of K

In [80] Koszmider showed that there is a compact Hausdorff space K such that whenever
L is compact Hausdorff and the Banach spaces C'(K) and C(L) are isomorphic, the
dimension of L is greater than zero. In the light of this result Petczynski asked, whether
there is a compact space K with dim(K) = k for given k € w\{0}, such that if
C(K) ~ C(L), then dim(L) > k ([84, Problem 4]). We show that the answer to this
question is positive, if we assume Jensen’s diamond principle ({). Namely, we prove the

following:

Theorem 3.4.9. Assume ). Then for every k € w U {oo} there is a compact Hausdorff
space K such that dim K = k and whenever C(K) ~ C(L), dim L = k.

Note that typically the dimension of K is not an invariant of the Banach space
C(K) under isomorphisms. For instance, the classical result by Miljutin says that if
K, L are compact metrizable uncountable spaces, then the Banach spaces C'(K) and
C(L) are isomorphic ([95]). This also shows that C(K) with the desired property cannot
admit any complemented copy of C(L) where L is compact, metrizable and uncountable
(indeed, if C(K) ~ X @ C(L), then C(K) ~ X & C(L) ® C([0,1]") ~ C(K) @ C([0,1]™)
for any n € w). Another result by Pelczynski says that if G is an infinite compact
topological group of weight x, then C(G) is isomorphic to C({0,1}") ([102]).

On the other hand the space C'(K) remembers many topological and set-theoretic
properties of K. For example Cengiz showed that if C'(K) ~ C(L), then K and L have
the same cardinalities ([21]). If K is scattered, then by Pelczyniski-Semadeni theorem L
is scattered as well ([103]). In this case both spaces must be zero-dimensional. If K is
an Eberlein compact, then L is also Eberlein ([98]). If K is a Corson compact and L is
homogeneous, then L is Corson ([108]).

Although the isomorphic structure of C'(K) does not remember the dimension of
K, the metric structure of C'(K) contains such information, since by the Banach-Stone
theorem K and L are homeomorphic, whenever C'(K) and C(L) are isometric. Similar

results were obtained by Gelfand, Kolmogorov and Kaplansky in the category of rings of

27



28 3. A Banach space C(K) reading the dimension of K

functions on compact spaces and in the category of Banach lattices ([52, 75]). It is also
worthy to mention that the covering dimension of K is an invariant for the space Cp,(K)
of continuous functions on K with the pointwise topology ([104]).

The key property of the space K that we construct to prove Theorem 3.4.9 is
the fact that the Banach space C'(K) has few operators i.e. every bounded operator
T: C(K)— C(K) is of the from T'= gI + S, where g € C(K) and S is weakly compact.
Schlackow showed that if the Banach space C'(K') has few operators, C(K) ~ C(L) and
both spaces K, L are perfect, then K and L are homeomorphic ([117]). We improve this

result under the assumption that K is separable and connected.

Theorem 3.2.19. Suppose that K is a separable connected compact Hausdorff space such
that C(K) has few operators and L is a compact Hausdorff space such that C(K) ~ C(L).

Then K and L are homeomorphic modulo finite set i.e. there are open subsets
UC K,V CL and finite sets E C K, F C L such that U,V are homeomorphic and
K=UUE, L=V UF.

The first example (under the continuum hypothesis) of a Banach space C(K) with
few operators appeared in the work of Koszmider ([80]). Later, Plebanek showed how to
remove the use of CH from such constructions ([107]). Considered spaces have many
interesting properties (cf. [84, Theorem 13]) e.g. C'(K) is indecomposable Banach space,
it is not isomorphic to any of its proper subspaces nor any proper quotient, it is a
Grothendieck space, K is strongly rigid (i.e. identity and constant functions are the only
continuous functions on K') and does not include non-trivial convergent sequences. For
more examples and properties of Banach spaces C'(K) with few operators see [11, 40, 82,
84, 87, 88].

In the further part of the chapter we show how to construct a Banach space C'(K)
with few operators, where K has arbitrarily given dimension. Theorem 3.4.9 is an almost

immediate consequence of Theorem 3.2.19 and the following theorem.

Theorem 3.4.8. Assume {». For each k > 0 there is a compact Hausdorff, separable,
connected space K such that C(K) has few operators and dim K = k.

Our construction is a modification of one of the spaces K from [80, Theorem 6.1],
which is a separable connected compact space such that C(K) has few operators. The
original space is constructed as an inverse limit of metrizable compact spaces (Kq)a<w,
where on intermediate steps we add suprema to countable families of functions in the
lattice C(K,) for a < wy, using the notion of strong extension. However, the considered
families of functions are very general, which leads to the problem that described operation
may rise the dimension of given space and the final space is infinite-dimensional. We
show that under < we are able to limit the choice of functions in the way that we can
control the dimension of the spaces at each step. In order to control the dimension
we introduce the notion of essential-preserving maps. Similar ideas were studied in

Fedorchuk’s work ([48-50]). For instance, Fedorchuk considered maps that are ring-like,
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monotonic and surjective, which implies that they are essential-preserving (however,
those notions are much stronger and are not applicable in our context).

One may also consider other notions of dimension such as small or large inductive
dimension. However, since Theorem 3.1.12 does not work if we replace the covering
dimension with one of the inductive dimensions, we do not know if the spaces we
constructed have finite inductive dimensions.

The structure of the chapter is the following. Section 3.1 contains necessary results
about covering dimension. In section 3.2 we prove Theorem 3.2.19 characterizing
properties of spaces C'(K') with few operators preserved under isomorphisms. In Section
3.3 we develop tools for controlling dimension in some inverse limits of systems of compact
spaces. Section 3.4 contains the description of the construction leading to the main

theorem of the chapter. The last section includes remarks and open questions.

3.1 Covering dimension

This section is devoted to the basic properties of covering dimension and its behavior in
inverse limits of compact spaces. We start with several basic definitions. Recall that for
a family A of sets we define its order as the largest integer n such that A contains n + 1
sets with non-empty intersection. If there is no such n, then we say that the order of A

is oo.

Definition 3.1.1. [38, Definition 1.6.7] Let X be a topological space. We say that
covering dimension of X (denoted by dim X) is not greater than n, if every finite
open cover of X has a finite open refinement of order at most n. We say that dim X =n
if dim X < n, but not dim X < n — 1. If there is no n such that dim X = n, then we
say that dim X = oc.

Definition 3.1.2. [38, Definition 1.1.3] Let X be a topological space. A closed set
P C X is a partition between A and B if there are disjoint open sets U D A,V O B
such that X\P =UUV.

Definition 3.1.3. [22, p. 16] A family {(4;,B;) : i = 1,2,...,n} of pairs of disjoint
closed subsets of a space X is called essential if for every family {C; :i=1,2,...,n}

such that for each i < n the set C; is a partition between A; and B; we have

ﬁCZ#Q

i=1
For the proof of the following theorems see [22, Lemma 3.2, Theorem 3.3].

Theorem 3.1.4. For a normal space X the following conditions are equivalent:

(1) a family {(A;, B;) :i=1,2,...,n} of pairs of disjoint closed sets is not essential
n X,
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(2) for each i =1,2,...n there are disjoint open sets U;, V; such that A; C U;, B; CV;

and .
i=1
(3) for eachi=1,2,...n there are disjoint closed sets C;, D; such that A; C C;, B; C
D; and
n
U (Cl U Dz) =X.
i=1

Theorem 3.1.5. For a normal space X the following conditions are equivalent:

(1) dim X > n,

(2) there is an essential family in X consisting of n pairs.

Definition 3.1.6. Let 7: L — K be a continuous function between compact Hausdorff
spaces. We will say that 7 is essential-preserving if for every family {(4;, B;) : i =
1,2,...,n} essential in K, the family {(7=1(4;), 7 1(B;)) :i =1,2,...,n} is essential
in L.

Note that Theorem 3.1.5 immediately implies that if 7: L — K is essential-preserving,
then dim L > dim K.

Lemma 3.1.7. [22, Lemma 16.1] Assume that K. is an inverse limit of a system
{Ks : a < v}, where K, are compact Hausdorff spaces. If A, B are closed disjoint
subsets of K then there is o < vy such that w)[A], 7)[B] are disjoint subsets of K,

where 77, stands for the canonical projection from K., into K.

Theorem 3.1.8. Let {K, : a <7y} be an inverse system of compact Hausdorff spaces
with inverse limit K such that for each limit ordinal 8 < v, Kg is an inverse limit of
{K, :a < B}. Assume that for each o < 7y the map 7¢1: Kqy1 — K is surjective and
essential-preserving. Then the canonical projection w] : K, — K is essential-preserving.

In particular dim K, > dim Kj.

Proof. We will prove by induction on « that n{*: K, — K is essential-preserving. For
successor ordinal «a+ 1 it is enough to observe that if {(A4;, B;) : i =1,...,n} is essential
in K1, then {((7§)71(A;), (7§)"Y(B;)) : i = 1,...,n} is essential in K, and hence
[ )1 (A, (R B i = 1,y = {((r8 )7 (78) 7 (40)),

(o)=Y (7))~ H(By))) s i =1,...,n} is essential in K.

Let o be a limit ordinal and that for each 5 < o the map Wf : Kg — K is essential-
preserving. Let {(A;, B;) : i =1,...,n} be an essential family in K; and assume that
{(7m) YA, (7¢)~1(B;)) i =1,...,n} is not essential in K. Then by Theorem 3.1.4
for each i < n there are closed disjoint sets C; 2 (7§)~1(A;), D; 2 (7$)~1(B;) such that

Cs

(CZ U DZ) = K,.
i=1

By Lemma 3.1.7 for each i there is 8; < « such that «§ [Ci], 73 [D;] are disjoint
subsets of Kjp,. In particular n§[C;], 7§[D;] are disjoint closed subsets of Kz, where
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B = max{f; : i < n}. Since K, is an inverse limit of surjective maps w3 Is also surjective

and so

U@g[Clung(Di]) = K.
i=1

Moreover, (1) ~}(A;) € 7§[Ci] and (x7)~'(B;) € 7§[Di], so {(7}) " (A;), 7§[Ci] : i < n}

is not essential in Kz which contradicts the inductive assumption. ]
We will need some basic but important properties of the covering dimension.

Theorem 3.1.9. [38, Theorem 3.1.8] If M is a closed subspace of a normal space X,
then dim M < dim X.

Theorem 3.1.10. [38, Theorem 3.1.8] Let n € w U {oco}. If a normal space X is a

union of countably many closed subspaces {F;}ic,, with dim F; < n, then dim X < n.

Theorem 3.1.11. [38, Theorem 3.2.13] If X,Y are non-empty compact Hausdorff
spaces, then dim(X xY) < dim X + dimY.

Theorem 3.1.12. /38, Theorem 3.4.11] If K is an inverse limit of compact Hausdorff

spaces of dimension at most n, then dim K < n.

Definition 3.1.13. [38, p. 170] Let A be a subspace of a space X. We define the

relative dimension of A as
rdx A =sup{dim F : FF C A, F closed in X}.

Lemma 3.1.14. Let n € wU {oo}. Assume that a normal space X can be represented
as a union U U F where F is finite and rdx U < n. Then dim X < n.

Proof. This is a special case of [38, Lemma 3.1.6] (which says that if X = (J;2, F; and
for each k € w the subspace Uf:o F; is closed in X, and rdx Fj, < n, then dim X < n)
where Fy = F, F} = U and F,, = @ for n > 1. ]

Theorem 3.1.15. Assume that compact Hausdorff spaces X and Y can be represented
as X =UUF,)Y =V UEFE where U,V are open, E,F are finite, UNF =V NE =0
and U is homeomorphic to V. Then dim X =dimY.

Proof. By Theorem 3.1.9 we have rdx U < dim X and by Lemma 3.1.14 dim X < rdx U,
so dim X = rdx U. By the same argument dimY = rdy V. Since X,Y are compact we

have
rdx U = sup{dim F' : F C U, F compact}

and
rdy V =sup{dim F' : F C V, F' compact}.

But U and V are homeomorphic, so every compact subset of U is homeomorphic to
some compact subset of V' and vice versa, and hence rdx U = rdy V. This gives
dimX =rdx U =rdy V =dimY. ]
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Theorem 3.1.16. Suppose that K is a metrizable compact space and i is a non-zero
Radon measure on K. Then there is a compact zero-dimensional subset Z C K such
that u(Z) # 0.

Proof. Let {d,}necw be a countable dense subset of K. For every n € w pick a countable
local base {U*}ic., at d, such that U; 11 C U; for i € w. Then for every n € w there is
k,, € w such that

> lulour) < JEI

i=kn
In particular we have
ul(Y) # 0
where
oo o
Yy=kK\{J U ou
n=0i=ky,
Moreover, Y is zero-dimensional, since {U"NY :n € w,i > k,} = {(UM\OU*) NY :
n € w,i > ky} forms a base of Y consisting of clopen sets. By regularity of u there is
a compact set Z C Y with u(Z) # 0 which is zero-dimensional as a compact subset of

zero-dimensional space Y. O

3.2 Spaces C(K) with few operators

We will follow the terminology from [88]. We say that a bounded linear operator
T: C(K)— C(K) is a weak multiplication, if it is of the form T' = g/ + S, where g is a
continuous function on K, I is the identity operator and S: C(K) — C(K) is weakly
compact. T is called a weak multiplier, if 7% = gI + S for some bounded Borel map
g: K — R and weakly compact S: C(K)* — C(K)*.

Definition 3.2.1. Let K be a compact Hausdorff space. We say that the Banach space
C(K) has few operators if every bounded linear operator 7': C'(K) — C(K) is a weak

multiplication.

Lemma 3.2.2. Suppose that K is a c.c.c. compact Hausdorff space and that C(K) ~
C(L) for a compact Hausdorff space L. Then L is also c.c.c.

Proof. By [113, Theorem 4.5(a)] a compact space M is c.c.c. if and only if C(M)
contains no isomorphic copy of cyp(w1), so in particular given property is an isomorphism

invariant. UJ

Lemma 3.2.3. Let K be a compact Hausdorff space. If K has a non-trivial convergent
sequence, then C(K) admits a complemented copy of cy. In particular, if C(K) has few

operators, then K has no non-trivial convergent sequences.

Proof. The fact that non-trivial convergent sequences give rise to complemented copies
of ¢y is well-known (see [62]). The second part of the lemma follows from [84, Theorem
13 (3)]. O
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Lemma 3.2.4. Assume that K is a separable connected compact Hausdorff space such
that C(K) has few operators and L is a compact Hausdorff space such that C(K) ~ C(L).
Let J be the set of isolated points in L and L' = L\J. Then J is a countable set and L’

has no isolated points.

Proof. Since K is separable, it is c.c.c., so by Lemma 3.2.2 L is also c.c.c. In particular
J is countable.

Obviously, if J is finite, then L’ has no isolated points, so we may assume that .J is
infinite. Suppose that x € L’ is an isolated point. Then L’\{z} is a closed subspace of
L, so there is an open set V' C L such that z € V and V N (L'\{z}) = 2. V C JU {z},
so V is an infinite countable compact space with exactly one non-isolated point i.e. it
is a convergent sequence. By Lemma 3.2.3 C'(L) admits a complemented copy of ¢y,
and so C(K) admits a complemented copy of ¢y. However, it is impossible since by [84,
Theorem 13 (a)] C(K) is indecomposable. O

Definition 3.2.5. For a compact space K and a function f € C'(K) we denote by My
the operator My: C(K) — C(K) given by M¢(g) = fg.

In the next lemmas we will use the following characterization of weakly compact

operators on Banach spaces of continuous functions from [30, p. 160].

Theorem 3.2.6. If K is a compact Hausdorff space, then an operator T on C(K) is
weakly compact if and only if for every bounded sequence (€n)ncw of pairwise disjoint

functions (i.e. ey - en =0 for n # m) we have lim,_, || T (ey)| = 0.

Lemma 3.2.7. Let L be a compact Hausdorff space, J the set of isolated points in L,
and L' = L\J. Assume that f € C(L) is such that f | L' = 0. Then My is weakly

compact.

Proof. Fix any bounded pairwise disjoint sequence (e, )ne. of elements of C'(L). Without
loss of generality we may assume that ||e,|| < 1 for each n. Let ¢ > 0. Since f
is continuous and equal to 0 on L’ there is only finitely many points z such that
|f(x)| > €. Hence for n large enough we have |[|[M¢(ey,)|| = || fen|| < €, which means that
limy, o0 [|Mf(en)|| = 0. Now Theorem 3.2.6 implies that My is weakly compact. O

Lemma 3.2.8. Assume that K has no isolated points and f € C(K) is such that My is
weakly compact. Then f = 0.

Proof. Assume that f # 0. Then there is non-empty open set U C K such that |f(x)| > ¢
for x € U and some ¢ > 0. Since there are no isolated points in K, U is infinite, so
there are pairwise disjoint open subsets U, C U. Let e, € C(K) be such that e,(z) =1
for some = € Uy, e,(z) = 0 for x € K\U, and ||e,|| = 1. Then for each n € w we have

|Myen|| > €, so by Theorem 3.2.6 My is not weakly compact. O

Lemma 3.2.9. Let f € C(L) for L compact Hausdorff and assume that there is a
non-isolated point xo € L such that |f(xo)| = ||f]|. If R: C(L) — C(L) is a weakly
compact operator, then | f|| < ||My + R|.
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Proof. Since x( is non-isolated there are distinct points x, € L such that |f(z,)| >
|| Il — 1/n. By passing to a subsequence we may assume that {x,, : n € w} is a relatively
discrete subset of L.

Take pairwise disjoint open sets U,, C {z € K : |f(z)| > | fl| — 1/n},z, € U,. For
each n € w pick e, € C(L) such that ||e,|| = 1 and e, [ (L\U,) = 0. In particular

(en)new are pairwise disjoint functions, so by Theorem 3.2.6 lim,,_, |[|[R(e,)|| = O.
Moreover, |[M¢(en)|| = || fenll = ||f|| = 1/n (from the property of U,). Hence we get
that (M + R|| 2 My + B)en)| = [My(ea) + Rlea)l| 2 [My(en)l| — [Rlen)]| >
| fIl = 1/n — ||R(ey)||. By taking limit with n — co we get || My + R|| > || f]|- O

Remark 3.2.10. If K and L are compact Hausdorff spaces, and T: C(K) — C(L)
is an isomorphism of Banach spaces, then T induces an isomorphism of the Banach
algebras ®1: B(C(L)) — B(C(K)) given by

o (U) =T UT.

If R € B(C(L)) is a weakly compact operator, then ®r(R) is also weakly compact
as a composition of a weakly compact operator with bounded operators. Similarly, if
S € B(C(K)) is weakly compact, then ®:'(S) is weakly compact.

For the rest of this section we will assume that K and L are compact Hausdorff spaces,
L' is the set of non-isolated points of L, C(K) has few operators and T': C(K) — C(L)

is an isomorphism of Banach spaces.

Definition 3.2.11. Let 1 be such as in Remark 3.2.10. We define an operator
Ur: C(L') — C(K) by putting for each f' € C(L')

\IIT(fI) =9,

for g € C(K) satisfying ®7(My) = My + R, where R is weakly compact and f € C(L)
is such that f' = f [ L.

In other words, Ur is defined in the way such that the following diagram commutes:

(L) —M B(O(L)) <2y B(C(K)) —"— B(C(K))/WC(C(K))

Here R stands for the restriction operator (i.e. R(f) = f | L), M(f) = My,
7 is the natural surjection onto the quotient algebra B(C(K))/WC(C(K)), where
WC(C(K)) is the closed ideal in B(C(K)) consisting of weakly compact operators
and Z: B(C(K))/WC(C(K)) — C(K) is the isometry given by Z([M,]) = g.

Lemma 3.2.12. Suppose that K has no isolated points. Then the induced operator
Up: C(L') = C(K) from Definition 3.2.11 is a well-defined bounded linear and multi-

plicative operator.
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Proof. Take any f' € C(L') and let f1,f» € C(L) and g1,92 € C(K) be such that
[l =fa]L'=f and

CDT(Mfl) = Mgi + R; for i =1,2,

where R, Ry are weakly compact. Then (f; — f2) | L' = 0, so by Lemma 3.2.7
My — My, = My, _y, is weakly compact. This implies that

Mg1—92 = Mgl - M92 =R — (I)T(Mﬁ) — Ry + (I)T(Mfz) =
= R — Ry — ®p(My, — My,)

is weakly compact since ®7(My, — Mjy,) is weakly compact (by Remark 3.2.10). Since
K has no isolated points, Lemma 3.2.8 implies that g; — go = 0, so ¥ is well-defined.

For the linearity and multiplicativeness fix f{ = f1 [ L', f4 = fo | L' € C(L),a,b € R
and put Ur(f]) = g1, Y7 (f5) = go. We have

(I)T(Maf1+bf2) = (I)T(aMfl + be2) = a(I)T(Mﬁ) + bq)T(Mfz) =
= Ma91 +aRy + Mbg2 + bRy = Maglergz 4+ aRi + bRs

and

Op(My,f,) = @p(Mp, My,) = O (My, )@r(My,) =
= (Mg, + R1)(Mg, + R2) = My, g, + RiMy, + My, Ry + R R.

But aR; 4 bRy and R1 Mgy, + My, Ry + R1 Ry are weakly compact as the sums of weakly
compact operators composed with bounded operators. Hence Up(af] +bfs) = agr + bga
and V7 (f1f3) = 9192

Now we will show that U is bounded. Pick any f’ € C(L'). By the Tietze theorem
/! has an extension f € C(L) satisfying || f|| = || f’||. From Lemma 3.2.9 we get that if
o7 (My) = My + R, then ||g|| < [My + R|| < [|@r[[|My]| = [ 2l[[[f]] = [I@2llLf]l, so
[ W[l < [[@r]. O

Lemma 3.2.13. Suppose that K is separable and connected. Then there is ¢ > 0 such
that for every f' € C(L") we have ||Or(f")|| > c|lf'|| i.e. ¥ is an isomorphism onto its

range. In particular Y7 has closed range.

Proof. Assume that U (f’) = g. Let f € C(L) be an extension of f" such that || f|| = ||f/||-
We have ®7(M;) = M, + R for some weakly compact R, so &5 (M,) = M; — &, (R).
@;1(1%) is weakly compact by Remark 3.2.10, so from Lemma 3.2.9 we get

IFI < 1My — @7 (R)|| = @71 0 @1 (My — 7' (R))]| = 27" (M + R~ R)|| =
= [[o7' (M)l < 07 1M1l = |27 [lll9]l

Hence it is enough to take ¢ = ﬁ.
T
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Proposition 3.2.14. Suppose that K is separable and connected.
Let S: C(K) — C(K) be given by S(f) = Vp(T(f) | L'). Then

ker(S) =T *({ge C(L):g | L' =0})
and it is a separable subspace of C(K).

oK) -2 o) R o) 2 oK)

\/

S

Proof. By Lemma 3.2.4 the set J of isolated points in L is countable, so we may write

J ={r, : n € w}. Let x(z,) be the characteristic function of {z,,}. Observe that

span{xys,} :n €w}={g€ C(L):g [ L' =0} is a separable subspace of C(L), so it is
enough to show that ker(S) = T"1({g € C(L): g | L' =0}), since T is an isomorphism.
Assume that S(f) = 0. Then U7(T(f) [ L") = 0, so ®7(Mpp)) = Mo+ R = R
is weakly compact and hence My = T®r (M f))T_1 is also weakly compact as a
composition of a weakly compact operator with bounded operators. From Theorem 3.2.6
limy, 00 ||T(f)en|| = 0 for every bounded disjoint sequence (ey,)ne,. This implies that
limy, 00 ||(T(f) T L')en|| = 0 for every bounded disjoint sequence (e,,)new- By applying
Theorem 3.2.6 once again we get that Mp(y)1/ is weakly compact as an operator on C (L.
Since L’ has no isolated points (by Lemma 3.2.4) we get that T'(f) [ L' = 0 by Lemma
328ie. feT 1 {geC(L):g] L' =0}),s0ker(S) CT'({geC(L):g| L =0}).
If g € C(L) is such that g [ L' = 0, then by Lemma 3.2.7 M, is weakly compact, so
S(T71(g)) = ¥(g | L') = ¥(0) = 0 and hence T1(g) € ker(9). O

Proposition 3.2.15. Suppose that K is separable and connected. Let S = Up(T(f) | L').
Write S as a sum S = M, + W with W weakly compact. Then M, is an isomorphism of
C(K).

Proof. Tt is enough to prove that e(z) # 0 for every x € K. Indeed, if it is the case, then
M, is the inverse of M, for g = %

Assume that e(z) = 0 for some z € K and aim for a contradiction. Then using the
technique from the proof of Lemma 3.2.9 we construct pairwise disjoint non-empty open
subsets U, C K such that |le | Uy < L for each n € w. Let Vj, be non-empty open sets
such that V,, C U,.

By Lemma 3.2.3 K has no convergent sequences and hence for every n € w the
space V, is non-metrizable as an infinite (because V;, has no isolated points) compact
set without convergent sequences. We get that points in V,, cannot be separated by
countable family of continuous functions (otherwise, if (fy,)new separated points of
Vo, (f1, f2,-..): V,y — R™ would be a homeomorphism onto a compact subspace of
metrizable space), so since ker(S) is separable, there are points z,,y, € V,, C U, such
that d(z,) = d(yn) for all d € ker(S). Let f,, € C(K) be such that || f,| = 1, fu(zn) =
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1, fu(yn) =0 and f, | (K\U,) = 0. Then for all d € ker(S)

[fn = dll = max{[fn(zn) = d(zn)], [fn(yn) = d(yn)]} =
— max{|1 — dea), [d(za)]} > 1/2.
Since f, | (K\U,) =0 and |le | Uy|| < £ we have |lefn|| < 1, so lim,_ [|efn]| = 0.
U7 has closed range (Lemma 3.2.13) and T, R are surjective, so S has also closed
range. By the first isomorphism theorem (see e.g. [39, Corollary 2.26]) S[C(K)] is
isomorphic to C'(K)/ ker(S), so since the distance of f,, from ker(S) is greater than 1/2
for all n € w, there is ¢ > 0 such that ||S(f,)|| > ¢ for all n € w.

C(K) 5 S[C(K)]

T~

C(K)/ker(S)

But on the other hand we have

ISl = llefn + W ()l < llefull + W (fa)] = 0

when n — oo, since we have lim,,_, [lefn| = 0 and lim,,— ||W(fn)]| = 0 (because W is
weakly compact and (f,,) are bounded and pairwise disjoint), so we get a contradiction.
O

Recall that an operator R: X — Y is called strictly singular, if for every infinite-
dimensional subspace X’ C X the restriction R [ X’ is not isomorphism. We cite the
result from [101].

Theorem 3.2.16. Let X be a compact Hausdorff space. A bounded operator R: C'(X) —
C(X) is weakly compact if and only if it is strictly singular.

If we apply the above theorem to [90, Proposition 2.c.10] we get the following.

Theorem 3.2.17. Let E: C(X) — C(X) be an operator with a closed range for which
dimker(E) < oo and dim(C(X)/E(C(X))) < co. Let R: C(X) — C(X) be weakly
compact. Then E + R also has a closed range and dim((C(X))/(E + R)(C(X)) < oo.

Corollary 3.2.18. Suppose that K is separable and connected. Let S = Up(T(f) | L').
Then the range of S is finite-codimensional in C(K). In particular the range of ¥

is finite-codimensional in C(K).

Proof. Since M, is an isomorphism (by Proposition 3.2.15) and W is weakly compact
we may apply Theorem 3.2.17 to S = M, + W. O

Since ¥p: C(L') — C(K) is a bounded linear multiplicative operator (Lemma 3.2.12),
there is p: K — L' such that ¥p(f) = fop for f € C(L') (see e.g. [119, Theorem
7.7.1]). From Lemma 3.2.13 and Corollary 3.2.18 we get that Uz is an embedding with

finite-codimensional range, so the induced map ¢ is surjective and has only finitely many
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fibers containing more than one element and each of these fibers is finite. In particular
K = U U F where F is a finite set and ¢ [ U is a homeomorphism and we get the

following theorem.

Theorem 3.2.19. Suppose that K is a separable connected compact Hausdorff space such
that C(K) has few operators and L is a compact Hausdorff space such that C(K) ~ C(L).

Then K and L are homeomorphic modulo finite set i.e. there are open subsets
U C K,V CL and finite sets E C K, F C L such that U,V are homeomorphic and
K=UUE, L=V UF.

Corollary 3.2.20. If dim(K) = n and K is a compact, separable and connected
Hausdorff space such that C(K) has few operators, then for each compact Hausdorff
space L such that C(K) ~ C(L) we have dim(L) = n.

Proof. Use Theorem 3.2.19 and Theorem 3.1.15. O

3.3 Extensions of compact spaces

In this section we consider the notion of strong extension from [80]. We describe the
methods of controlling the dimension in constructions of compact spaces using strong
extensions. We prove that strong extensions cannot lower the dimension of initial space

and we show how to construct extensions that cannot rise the dimension.

Definition 3.3.1. Let K be a compact Hausdorff space and (fy,)necw be a sequence of

pairwise disjoint continuous functions f,,: K — [0, 1]. Define

D((fn)new) = U{U : U is open and {n : supp(f,) NU # &} is finite}.

We say that L C K x [0, 1] is the extension of K by (fn)new if and only if L is the closure
of the graph of (3°,,c, fn) [ D((fn)new). We say that this is a strong extension, if the
graph of > - fn is a subset of L.

Lemma 3.3.2. [80, Lemma 4.1] If (fn)new are pairwise disjoint continuous functions
on K with values in [0,1], then >

open set D((fn)new)-

new Jn is well-defined and continuous in the dense

Lemma 3.3.3. [80, Lemma 4.4] Strong extension of a connected compact Hausdorff

space is connected.

Note that there are known examples of extensions of connected compact spaces which
are not connected (see [10]), so the assumption that considered extensions are strong is

necessary.

Lemma 3.3.4. Let K be a separable compact Hausdorff space with a countable dense
set Q = {qn :€ w} and let L be an extension of K with the natural projection m: L — K.
Assume that Q" = {q}, : n € w} is a subset of L such that 7(q),) = g, for every n € w.
Then Q' is a dense subset of L.
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Proof. Let (fn)new be a sequence of pairwise disjoint continuous functions such that
L is the extension of K by (fn)new- By [80, Lemma 4.3 a)] 71 (D((fn)new) is dense
in L. Moreover, 7 [ 7~ (D((fn)new)) is a homeomorphism as a projection of graph of
continuous function onto its domain. Since @ is dense in K and D((fy)new) is open,
QN D((fu)new) is dense in D((fp)new). Hence we get that 7= 1(Q N D((fn)new)) is dense
in L. But if ¢, € D((fn)new), then 77(gn) = {¢.}, s0 Q" 2 77 1(Q N D((fn)new) is also
dense in L. O

The following lemma is a special case of [80, Lemma 4.5].

Lemma 3.3.5. Suppose that K is a compact metric space and that for every n € w

n X% are disjoint relatively discrete subsets of K such that XPN XY # @. Let (fn)new
be a pairwise disjoint sequence of continuous functions from K into [0,1]. For an infinite
subset B C w denote by K(B) the extension of K by (fn)nep. Fori=0,1 andn € w
put

X'(B)={(z,t):x € X", t = Z fr(z)}.
keB

Then there is an infinite N C w such that for every B C N:

(1) K(B) is a strong extension of K by (fn)neB,
(2) X1(B)NX%(B) # @ for every n € w, where the closures are taken in K(B).

Proposition 3.3.6. If L is a strong extension of a compact Hausdorff space K with the

natural projection m: L — K, then w is essential-preserving.

Proof. Let (fx)kew be such that L is a strong extension of K by (fx)rew-
Let {(4;,B;):i=1,2,...,n} be an essential family in K and assume that the family
{(z71(Ay), 77 1(B;)) : i =1,2,...,n} is not essential in L. By Theorem 3.1.4 there are
closed sets C; D m~1(4;), D; O 7~ (B;) such that C; N D; = & for each i < n and

n

UJ@iuDy) =L

i=1
Since Cj, D; are compact, there are sets U;, V; open in K x [0, 1] such that C; C Uj,
D; CV;and U; NV, = @ for every ¢ < n.

For each k € w denote by Ly the graph of >, fi and let m: Ly — K be the

projection onto K.

Claim 1. For every k € w we have

Lo Jwun) £ .

i=1

Proof of the claim. Assume that there is N such that

Ly € | JWiuvy).
=1
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Then for every k > N

Cs=

k k
Li\Ly = graph( Y filsupp( > fi)) CLC Uiy Vi) (3.1)

i=N+1 i=N+1 i=1

(the first equality holds, because the supports of f;’s are pairwise disjoint), so we have
n
L C U (U uV;).
i=1
Put A¥ = 7.1(A;), B¥ = 7, }(B;) and observe that the family {(A¥ BF) :i < n} is
essential in Ly since 7 is a homeomorphism. Hence there is 7 < n such that Af ¢ U; or
Bf g_ V;. Indeed, otherwise U; N Ly, V; N L would be disjoint open subsets of L; with

((UZ N Lk) U (Vl N Lk)) = Ly,

-

1

(2

which contradicts the fact that {(AF, BF) : i < n} is essential (by Theorem 3.1.4).
Without loss of generality there are infinitely many k& such that A’f\Ul % &. For every

k € w we have

ATTINAY = m ! (A)\ (A1) = graph(frsr [ (A1 Nsupp(fegr)) € ' (Ar) C U

In particular (A’f\Ul) kew form a decreasing sequence of non-empty compact sets. Hence

A= (AN # 2.
k=1

We have A C L since if (x,t) € A, then f(z) =0 for all k, so Y ,.c,, fu(x) = 0 and hence
(x,t) = (x,0) is an element of the graph of Y, fr which is a subset of L. Moreover
A C A x[0,1],50 A C (A; x [0,1]) N L = 7~1(Ay) which contradicts the assumption
that m7~!(A;) € U; and completes the proof of the claim. O

To finish the proof of the proposition put
n
F, =L\ | JU:;u W)
i=1
and observe that (Fy)ke, is a decreasing sequence of non-empty compact sets (by (1)

from the claim), so as in the case of the set A from the claim we get that
[e.e]
F=)F
k=1

is a non-empty subset of the graph of >, fr, so ' C L (because the extension is
strong), which is a contradiction, since F' is disjoint from {J;<,,(U; UV;) 2 L. O

Lemma 3.3.7. Suppose that K is a compact metric space with 0 < dim(K) < n and

fr: K — [0,1] are pairwise disjoint continuous functions such that the set

Z = K\D((fx)rew)

is zero-dimensional. Assume that L is a strong extension of K by (fi)kew. Then
dim L <n.
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Proof. Let 7 be the natural projection from L onto K. 7 1(D((ft)rew)) is an open
subset of a metric space, so it is a union of countably many closed sets, each of dimension
at most n since 77 (D((fx)rew)) is homeomorphic to D((fi)rew) (see Theorem 3.1.9).
The set 71(Z) is included in Z x [0,1] so dim7~!(Z) < 1 < n by Theorem 3.1.11.
Hence L = 7Y (D((fr)rew)) U 1(Z) is a countable union of closed sets of dimension

at most n. Now Theorem 3.1.10 gives the inequality dim L < n. O

Corollary 3.3.8. Let v be an ordinal number. Suppose that {K, : o < v} is an inverse

system of compact Hausdorff spaces such that:

o for every a the map w2T! : Kov1 — Ko is a strong extension by pairwise dis-
joint continuous functions (f)new and the set Z, = K \D((f¥)new) is zero-
dimenstonal,

o if a is a limit ordinal, then K, is the inverse limit of {Kg : B < a}.
Denote by K., the inverse limit of {K, : o <~}. Then dim K, = dim K.

Proof. The inequality dim K, > dim K follows from Proposition 3.3.6 and Theorem
3.1.8. The inequality dim K, < dim K7 follows from Lemma 3.3.7 and Theorem 3.1.12.
O

3.4 The main construction

Theorem 3.4.1. [88, Lemma 2.4] Suppose that K is a compact Hausdorff space. If a
bounded linear operator T': C(K) — C(K) is not a weak multiplier, then there are § > 0,
a pairwise disjoint sequence (gn)necw C C1(K) and pairwise disjoint open sets (Vy,)new
such that

supp(gn) N Vi = &

for alln,m € w and
T (gn)|Vnl| >0

foralln € w.

In particular, if z,, € V,, and p,, = T*(d,,,) for n € w, then | [ gndun| = |T(gn)(aq,)| >
6, and 50 |fin|(supp(gn)) > | [ gndpin] > 6.

The idea behind the construction is as follows. We will construct a compact space K
as the inverse limit of spaces K, C [0,1]* (so the final space is a subset of [0, 1]). For
each bounded sequence (pi,)ne, of Radon measures on [0, 1]° and a sequence of pairwise
disjoint open sets (V,,)new We want to use a strong extension in such a way that in the
final space there will be no sequence (g, )ne, for which the properties from Theorem
3.4.1 are satisfied. However, we need to consider 2¢ sequences of Radon measures on
[0, 1], while there are only ¢ steps in the construction. In order to handle this we will
use ¢ (cf. Lemma 3.4.4).
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Proposition 3.4.2. Let K be a compact metrizable space and (fin)new be a bounded
sequence of Radon measures on K. Assume that (Up)new @S a sequence of pairwise
disjoint open sets and 6 > 0 is such that |u,|(U,) > § for n € w. Then there is an
infinite set N C w, continuous pairwise disjoint functions f,: K — [0,1] and € > 0 such
that

(1) supp(fy) C U, forn € N,

(2) | [ fndin| > € forn € N,

(3) Al [ fmdpn| :n#m,me N} <e/3 forne N,
(4) K\D((fn)nen) is zero-dimensional.

Proof. Since py’s are Radon measures there is ' > 0 and open sets U] C U, such that
lpn (UL > &' for n € w. Without loss of generality we may assume that U], = U,, and
§ =0.

Put v, = pyp | Uy, for n € w. Let N’ be such that the sequence (v,)nen’ has the
weak™ limit v. Since | [ 1dv,| > § for every n, we have | [ 1dv| > 6, so v is a non-zero
measure. By Theorem 3.1.16 there is a compact zero-dimensional subset Z C K and
e > 0 such that |v(Z)] > 2¢. Since Z is a closed subset of a metrizable space and v
is a regular measure, there is a decreasing sequence of open sets (G, )nen such that
Z =G, and |v(G,)| > 2 for all n € N'.

Note that if f € C7(K) is such that supp(f) C G, and | [ fdv| > 2e, then for big
enough [ € N’ we have | [ fdy| > 2¢ and so |y|(Gy) = |v|(G,NU;) > 2¢. Hence for each
[ € N we may pick f; € C;(K) such that supp f; C G,NU; and | [ fidy| = | [ fidw| > €.

For each n € N’ let I, € N’ be such that supp f;, € G, NU,,, | [ fi,,dm,| > € and
(In)nen is an increasing sequence. Let N” = {l,, : n € N'}. For every M C N” denote
Zy = K\D((f1,,)nem)- If x € K\Z, then there is an open neighbourhood V' 3 z such
that for big enough n € M we have VNG, = @ and so V Nsupp(f;,) = &. Hence
V' C D((fi, )nem), which gives = ¢ Zys. This implies that Zy; C Z, so in particular Zj;
is zero-dimensional and condition (4) is satisfied for any choice of M C N”. Now we use
Rosenthal’s lemma (see [31, p. 82] or [120]) to obtain an infinite N C N” such that the

3rd condition is also satisfied. O
We will need the following strengthening of [80, Lemma 6.2].

Lemma 3.4.3. Let K be a compact, connected metrizable space with a countable dense
set Q = {qn : n € w}. Let U,V be open subsets of K such that UNV # @. Then
there is a sequence (fn)new of pairwise disjoint functions f, € Ci(K) and infinite sets

Ap, A1, 80,51 C w such that:

(1) the sets {gn :n € So} CU,{q, :n € S1} CV are relatively discrete,

(2) A; CS; and |S;\A;| =w fori=0,1,

(3) for every infinite B C w in the extension K(B) of K by (fn)nep there are disjoint
closed sets Fy, F1 C K(B) and distinct xo,z1 € K(B) such that fori=0,1

vierm W U)N{¢E :ne A}na=1(V)n{¢l : n € S;\A;}
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and

where q]B = (g;,t) and t =3, cp fn(qj),
(4) |K\D(fn)ne| =1 (in particular K\D(fn)nep is zero-dimensional).

Proof. Fix any compatible metric d on K. Pick any 2 € U N'V. Since K is connected,
x is not an isolated point. For n € w put U}, = U N B(x,1/n), V) =V N B(x,1/n)
(where B(x,¢) is the open ball with x as the center and radius € with respect to d) and
let U, C U},,V,, € V., be non-empty open sets such that the members of the family
{Upn, Vs, : n € w} are pairwise disjoint. Take continuous functions f,, € C(K) and
kn,ly, € w such that:

* dk, € UanZn € Vn7
i fn(ngn) = fn(‘ﬂgn) =1,
o supp(fn) C Usp U Vay,.

Let B C w be infinite. For (2) and (3) it is enough to take Sy = {kan+1,lont1 : 1 €
w}, Ag = {kan+1 : n € w}, S1 = {kan,lon : n € w}, A = {kon 1 n € W}, g = (2,0),21 =
(z,1) and Fy = K(B) N (K x [0,1/3]), F1 = K(B) N (K x [2/3,1]). (1) is satisfied since
Uy, Vp, are pairwise disjoint for n,m € w.
(4) follows from the fact that x is the only point all of whose neighborhoods intersect
all but finitely many U,,’s and V,,’s, so we have K\D(f,)nen = {z}.
U

Lemma 3.4.4. Assume 5. Then there is a sequence (M, U%, L*)q<w, Such that:

o M% = (uS)new s a bounded sequence of Radon measures on [0,1]%,
o U = (U, )nmew 15 a sequence of basic open sets in [0,1]%,

o L= (I%)new is a sequence of distinct natural numbers,
and for every:

o bounded sequence (in)new of Radon measures on [0,1]“,
o sequence (Unm)nmew Of basic open sets in [0, 1],

e increasing sequence l, of natural numbers

there is a stationary set S C wy such that for § € S we have

o pn | C([0,1)5) = 18,
* WB[Un,m] = Ur?,ma
b ln = lﬁ;

where 75 denotes the natural projection from [0,1]“* onto [0, 1]°.

Proof. First we will show that there is a sequence (M§')q<w, such that M§ = (vS)new)

is a bounded sequence of Radon measures on [0,1]* and for every bounded sequence
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(Vn)new of Radon measures on [0, 1]“* there is a stationary set S C w; such that for
B € S we have v, | C([0,1]%) = v2.

We will use the identification of Radon measures on [0, 1] with bounded functionals
on C([0,1]“*) described in Section 1.2. For a finite set F' € [w1]<“ denote by wp the
product [[,ecr wa, where w, € C([0,1]%1), wy(z) = z(a). Observe that finite linear
combinations of wg’s form a subalgebra of C([0,1]"). If x,y € [0,1]“" are distinct
points with z(a) # y(a), then wy () # wa(y), so by the Stone-Weierstrass theorem this
subalgebra is dense in C([0,1]“"). Hence if v is a Radon measure on [0, 1]*! then it is
determined by the values of v(wp) for F € [wi]<“ (note also that in the same way if
B < wi, then v | C(]0,1]?) is determined by the values of v(wr) for F' € [5]<*). So we

can represent each Radon measure v on [0, 1]“! by the function
i [wi]™ = R, o(F) = v(wp)

(and then v [ C([0,1]%) is represented by ¢, | [6]<“), and each countable sequence

M = (Vn)new We can represent by the function
om: [wi]™ xw = R, oy (F,n) = vp(wp).

Let ®@1: wy — [w1]<¥ X w be a bijection such that for each limit ordinal v € Lim Nwy

the restriction ®; | v is bijection onto [y]<¥

X w (to see that such a bijection exists
it is enough to note that for every v € Lim Nw; there is a bijection ¢.: [y, +w) —
([y + W< x w)\([7]=* x w) and take @1 | [y,7 4+ w) = ¢). We need to fix one more

bijection ®9: R — wy ({ implies CH, so such a bijection exists). Put

Y = Paoprr o @y, Yar: w1 — wi.

Since @1 [ v is a bijection onto [y]<* x w for all limit v we may treat ¥y, [ v as a
representation of the sequence of measures (v, [ C([0,1]7))new-

We will use the following characterization of ¢ (see [28, Theorem 2.7]):

There exists a sequence (fo)a<w;, fo: @ — a such that for for each f: w; — w; the set
{a: f | a= f,} is stationary.

For a € wy let M§ be a sequence of Radon measures on [0, 1]* represented by f, if
fa is a representation for some such sequence (otherwise we pick M§' in any way). Let M
be a bounded sequence of of measures on [0,1]“* and let S = {a: ¥ [ @ = fo}. Since
for limit v < wy the function ¥y [ v is a representation of some sequence of measures
we get that for « € Lim NS the function ¢y | « is the representation of a sequence Mg'.
Moreover the set SN Lim is a stationary subset of wy, so the first part of the proof is
complete.

To show the existence of a sequence (M, U%, L) 4<w, required in the Lemma, we
need to observe that each triple (M,U, L) may be represented as a bounded countable
sequence of Radon measures on [0,1]“!. Indeed, any basic open set U € U may be
treated as a measure Ay on [0, 1]“1, given by Ay(A) = A(ANU), where A is a product

measure of w; Lebesgue measures on [0, 1] (note that if U,V are different basic open
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sets, then some of their sections differ on a non-trivial interval, so we have \yy # Ay)
and L may be represented as 0, where xy, = (y;,0,0,...) and y; = g(L) for some fixed

bijection g between the set of sequences of natural numbers and [0, 1]. O

Proposition 3.4.5. Assume {. Then for every k > 0,k € w U {oc} there is a compact
Hausdorff space K satisfying the following:

(1) dim K =k,
(2) K is separable with a countable dense set Q = {g, : n € w},
(3) K is connected,

(4) for every:

o sequence (Up)new of pairwise disjoint open sets which are countable unions of
basic open sets (basic open set in K is a set of the form W N K, where W is
a basic open set in [0, 1]“1),

o relatively discrete sequence (qi, : n € w) C Q with q, ¢ Uy, for n,m € w,

o bounded sequence (lin)new of Radon measures on K such that |puy,|(Uy) > §
for some § > 0,

there is € > 0, continuous functions (fn)new C C1(K) and infinite sets BC N Cw
such that:

(1) (fn) is a sequence of pairwise disjoint functions with supp(fy,) C Uy, forn € w,
(2) | | fadpn| > € forn € B,

(8) S| [ fmdpn| : m € B\{n}} <&/3 forn e N,
(4) {fn:m € B} has supremum in the lattice C(K),

() Ta sw € BY 0 a, :m € B} £,
(5) whenever U,V are open subsets of K such that UNV # &, then UNV contains

at least two points.

We will start with the description of the construction. Then we will prove that the

constructed space satisfies the required conditions.

Construction 3.4.6. Assume . We will construct by induction on a < wi an

inverse system (Ka)a<w, with the limit K, where K, C [0,1]* and countable dense sets
Qo={qn [a:ncw} CK,.

We start with K, = [0, 1]¥ (or K, = [0,1]¥ in the case k = 0o) and we pick Qy to be
any countable dense subset of K. If « is a limit ordinal then we take as K, the inverse
limit of (K,B)ﬁ<a-

Denote by Even and Odd the sets consisting of even and odd (respectively) countable
ordinals greater than k. Let (M“,U%, L“)4<w, be as in Lemma 3.4.4 and fix an enumer-
ation (Uy, Va)acodd of pairs of open subsets of [0, 1]“! which are countable unions of
basic open sets, and require that each such a pair occurs in the sequence uncountably
many times (such an enumeration exists since by CH there is w§ = w; open sets, which

are countable unions of basic open sets in [0, 1]“1).
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First we describe the construction of K1 where « is an even ordinal. We assume

that K, is already constructed and for each § < « the following are satisfied:

(1) if B € Even then we have infinite sets b3 C a; C w such that {g, [ a:n € aj} is

relatively discrete and

{gn TainebsyN{gn [ a:neag\bs} #o.

(2) if B € Odd then we have infinite sets biﬁ C a% C w for i = 0,1 such that the set

{gn [:n € af@} is relatively discrete and

{qn[a:neb%}ﬁ{qn[a:nEafB\be}#@
for i =0,1.

Put US =U U, .. We will say that even step « is non-trivial if

mew “n,m:*

o there is § > 0 such that |uS|(US N Ky) > 6 for each n € w,
o (UYN Ky)new are pairwise disjoint,

o {qo :n € w} is relatively discrete in K,

e {qo:necwtnUf = form € w.

Otherwise we call this step trivial and we put Ko41 = Ko x{0} and ¢, [ a+1 =g, [ 0.
Assume that we are in a non-trivial case. Apply proposition 3.4.2 for U, = U5 N
Ko, pin, = p& to obtain (f5)new € Cr(Ky), infinite N C w and € > 0 such that

o supp(fY) CUYNK, forn e N,
o | [fedul| > e forne N,
o S{|J fodun| :n#m,me N} <e/3forne N,

o K \D((f¥)nen) is zero-dimensional.

By Lemma 3.3.5, without loss of generality (by passing to an infinite subset of N) we
may assume that for all infinite B C N the extension K, (B) of K, by (f%)nep is strong
and for each f < aw and i € {*,0,1} we have

{dB1a+l:nebpyn{gd la+1:neal\bs} #2,

where
@ la+tl=qla"tt=> fialw),

neB
and the closures are taken in K, (B).
Let a} = {lS :n € N}. Then
N={necw:l; €a}. (%)

We will show that there is infinite b7, C a}, such that

{gnTa:nebi}n{g, [a:nca \by} # 2.
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Suppose otherwise. Then since K|, is a compact metrizable space, for each X C a}, there

are disjoint open sets Ux, Vx such that

{gn la:ne X} CUx, {gn [ a:neat\X} C Vyx,

and Ux, Vx are finite unions of members of some fixed countable base in K. There are
uncountably many choices of X and only countably many pairs of such open sets in K,
so for some X # Y we have {Ux, Vx} = {Uy, Vy'} which is a contradiction.

Let b}, be such that

{gn [a:nebi}n{g, [a:necai\bi} # 2
and define
B={neN:Il;eb,}. (%)

To finish the construction at this step we put Koi1 = Ko(B),qn [ a+1=¢2 [ a+1

and observe that (1) is satisfied for a}, b}, because if

r€{gn a:nebi}N{g, [ a:nea\b},

then

(z,0)e{gn la+1:nebi}n{g. a+1:necar\b},

since f(qr [ @) =0 for all n € B and k € a,.

At step a € Odd we assume that we are given a%, biﬁ satisfying (1) and (2) from the
even step for all § < «a (where i = % if § € Odd and i € {0,1} if 5 € Even). We call this
step non-trivial, if the closures of 7,[U,| and 7,[V,] have non-empty intersection. If
the case is non-trivial we use Lemma 3.4.3 (note that Lemma 3.3.3 implies that K, is
connected) to find appropriate (f,)new € Cr1(Ky), A; and S; for ¢ = 0,1. In the same
way as in the even step we find B C w such that K,(B) is a strong extension of K,
and the conditions (1) and (2) are preserved in K, (B) for § < a. To finish this step
we define K41 = Ko(B),al, = S;,b!, = A;and ¢, | a+1=¢5 | @ + 1. Lemma 3.4.3
guarantees that the condition (2) holds at the step o + 1.

In both cases the density of Qu+1 = {qgn [ @+ 1 :n € w} in K,y follows from
Lemma 3.3.4.

Proof of Proposition 3.4.5. We will show that the space constructed above satisfies the
required conditions. (1) follows from Corollary 3.3.8 and the fact that [0, 1] is a k-
dimensional space. @ is a countable dense set in K, since each @), is dense in K, for
a < wi. Connectedness follows from inductive argument using Lemma 3.3.3.

Let Up, by, pin, be as in (4). Let U, = U

in [0,1]*1. Every U, is determined by finitely many coordinates, so there is v < w;

mew Un,m N K where U, ,, are basic open sets
such that 7T,;1(7T7[Un7m]) = Up,m for n € w, where 7, is the natural projection from
[0,1]“* onto [0,1]Y (so Uy, are determined by first v coordinates). By Lemma 3.4.4

there is a > 7, @ € Even such that for n € w
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o« pn [ C(Ka) = py,
o TalUpm) = U

n,m»
o I, =1%

Let (f%)nep be such that in the a-th step of construction. Since (f%)nep satisfy
conditions of Proposition 3.4.2, functions f, = f o m, satisfy conditions (a-c). (d)
follows from [80, Lemma 4.6] and the fact that K, is a strong extension of K, by

(fn)nep- By construction we have

{gn :n e by} N{gn:n € at\bi} # 2

and by (x) and (xx)
{gn 1 € b} = {q, : 1 € B},

{gn : n € ag\bo} = {q, : n € N\B},

which gives (e).

Now we will prove (5). Fix open sets U,V C K such that UNV # @&. As K is
separable it is c.c.c. so there are open U’ C U, V' C V which are countable unions of
basic open sets such that U’ = U and V/ = V (namely it is enough to take as U’ the
union of a maximal antichain of open subsets in U, and similarly for V'). Without loss of
generality we may assume that U’ = U and V/ = V. Since U,V are countable unions of
basic open sets, there is v < wjy such that U,V are determined by coordinates less than

v. Let a > v, € Odd be such that U = U, N K,V =V, N K. Then 7,[U] N7y[V] is

nonempty so a-th step in construction is nontrivial. By construction we have for i = 0, 1

{gn [ B:nebi}n{g, | f:ne€al\b}+#2

for all 8 > «, so there are z; € U NV such that

i € {qgn:n €L} N{g,:n € al\bi}.

To finish the proof we need only to notice that xg # x1, but this follows form the fact
that a’,, b, were chosen to satisfy Lemma 3.4.3(3). O
Lemma 3.4.7. Suppose that (Up)new is a sequence of pairwise disjoint open subsets of
a compact Hausdorff space K. Let M, N C w be infinite sets such that M N N is finite.
Assume that (fm)mem, (9n)nen C C1(K) are such that supp(fm) C Up,supp(gn) C Uy
form € M,n € N and the suprema fsyp = sup{fm : m € M}, gsup = sup{gn : n € N}
exist in C7(K). Denote

f:fsup_ Z fma g:gsup_zgn-

meM neN

Then f,g are Borel functions with disjoint supports.
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Proof. f and g are Borel functions since they are pointwise sums of countably many
continuous functions. Put D = M N N and note that since D is finite the function

> mep [m is continuous. We will show that

sup{fm:mEM\D}:sup{fm:mEM}—me- (+)
meD

Let z € K. If € supp(f,,) for some n € M\D, then Y, cp fm(z) =0, so

(sup{fm :m € M} = > fm)(@) = sup{fm : m € M}(z) 2 fu(z)
meD
for every n € M\D. If x ¢ supp(f,) for every n € M\D, then since f,’s have disjoint
supports we get that

(sup{fm :m € M} = > fu)(z) 2 0= fu(2)

meD

for n € M\D. Hence
sup{fm :me M} — Z fm > fn

meD
for n € M\D in the lattice C(K). Let h € C(K) be such that

sup{fm :m € M} — meZhan
meD

for n € M\D. Since f,’s have disjoint supports we have

sup{fm :me M} > h+ mez Z fm-

meD meM
But
sup{fm : m € M}(z) = Y fn(x)

meM
for z € D((fn)nem), so

sup{fm :me M} — Z fm=h,
meD
because sup{fm : m € M} — > p fm and h are continuous functions equal on the set
D((fn)nem), which is dense in K (by Lemma 3.3.2). This completes the proof of the
equality (4).
From (+4) we get that

sup{fm :m € M\D} — Z fm =sup{fm :me M} — Z fm = 1.
meM\D meM
In particular in the definition of f we may replace M with M\D and assume that
MNN=g.
We will show that in this case we have supp( fsup) N supp(gsup) = &, which will finish
the proof since supp(f) C supp(fsup) and supp(g) C supp(gsup) (the inclusions hold

because f < foup, 9 < gsup and f, g are non-negative). First we observe that for each
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n € N we have supp(fsup) N supp(gn) = @. Indeed, if it is not the case, then there
is ¢ € U, such that fs,,(z) > 0. Then by the Tietze extension theorem we may find
h € Cr(K) such that h(z) =0 and h [ K\U,, = foup [ K\Uy. But then fg,p > h > fp,
for every m € M, which is a contradiction with the fact that fq,p is the supremum of
fm’s. Now, in the same way we show that if supp(fsup) N supp(gsup) # &, then there is
R’ such that gsup > h' > gy, for n € N. O

Theorem 3.4.8. Assume . For each k > 0 there is a compact Hausdorff, separable,
connected space K such that C(K) has few operators and dim K = k.

Proof. We will show that if K is the space with properties from Proposition 3.4.5, then
C(K) has few operators. K satisfies Proposition 3.4.5(5), so by [80, Theorem 2.7, Lemma
2.8] it is enough to show that all operators on C'(K) are weak multipliers.

Assume that there is a bounded linear operator 7' : C(K) — C(K), which is not a
weak multiplier. By Theorem 3.4.1 there is a pairwise disjoint sequence (gn)new € C1(K)
and pairwise disjoint open sets (V},)new such that g, [ V;, = 0 for n,m € w and
|T(gn) | V| > 0 for some § > 0. For n € w let U,, = supp(gn). Let ¢/, € C([0,1]“*) be an
extension of g, and U], = supp(g,,). By Mibu’s theorem (see [94]) for every n € w there
is ay, < wy such that whenever z,y € [0,1]“', 2 | apn, = y | o, we have g, (z) = ¢, (y).
Hence U/, is an open set of the form W, x [0, 1]*1\*" where W, is an open set in [0, 1].
Since ay, is countable, W), is a union of countably many basic open set in [0, 1]*". Thus
for every n € w the set U/ is a union of countably many basic open sets in [0, 1]“* and
U, = U] N K is a union of countably many basic open sets in K.

Let (In)new for n € w be such that ¢g;, € V;, (so in particular {g;, : n € w} is relatively
discrete in K') and define p, = T*(d;,. ). Then | [ gndpn| = |T(gn)(q, )| > 6. Since
supp(gn) € Un and ||gn|| <1 we get that [ua|(Un) 2 | [ gndpn| > 6.

By Proposition 3.4.5 for every infinite subset A C w there are infinite sets B4 C
N4 C A, continuous functions (fp a)nea € Cr(K) and €4 such that

(a) (fn,A)nea is a sequence of pairwise disjoint functions with supp(f,.4) C U, for
neaA,

(b) | [ fn,adpn| > €4 for n € By,

() {l [ fm,adpn| :n# m,m € By} <ea/3 for n € Ny,

(d) {fn,a:n € Ba} has its supremum in the lattice C'(K),

(e) {q, :n € BatN{q, :n € Ns\Ba} # 2.

Put fa =sup{fna:n € Ba} — > ,,ep, fm,a. We will show that there is an infinite
set M C w such that

/ Fardyin = 0. (++)

Suppose this is not the case. Let {M¢ : £ < w1} be a family of infinite subsets of w
such that for £ # £ the set Mg N My is finite. Assume (4+) does not hold for every M;.
Then there is n € w such that

[ fusedia #0
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for uncountably many ¢’s. By Lemma 3.4.7 fyy,, st, have disjoint supports for £ # &/,
so in particular there is an uncountable family of non-null (with respect to yu,) Borel
sets in K, which is a contradiction.

Put fn, = fam,€ =em, B= By and N = Ny, Let f =sup{f, : n € B}. By (b),
(¢c), (++) and the definition of u, we get that for n € B

T @) =1 [ fdpal =1 [ Bdpat [ 5 ful >
meB\{n}

[ i =1 [ Xl ze-e3 =223

meB\{n}

For n € N\B (c) gives

T a) =1 [ X fmdinl < /3.

meB

As T'(f) is a continuous function on K we obtain that

{@, :ne B}N{q, :ne€ N\B} =2,
which contradicts (e). O

Theorem 3.4.9. Assume . Then for every k € wU {oo} there is a compact Hausdorff
space K such that dim(K) = k and whenever C(K) ~ C(L), dim(L) = k.

Proof. For k = 0 every finite space K works. If £ > 0, then the space from Theorem
3.4.8 has the required property by Corollary 3.2.20. O

3.5 Remarks and questions

The first natural question concerning our results is whether Theorem 3.4.9 is true without

any additional assumption.

Question 3.5.1. Let k € w\{0}. Is there (in ZFC) a compact Hausdorff space K such
that dim(K) = k and whenever C(K) ~ C(L), dim(L) = k?

In the light of Theorem 3.2.19 to show that the Question 3.5.1 has positive answer it

would be enough to prove that the following question has positive answer.

Question 3.5.2. Let k € w\{0}. Is there (in ZFC) a compact, separable, connected
Hausdorff space K such that dim K = k and C(K) has few operators?

The original construction of a Banach space C(K) where all the operators are weak
multipliers was carried out in ZFC ([80]). In this construction we set all sequences of
pairwise disjoint continuous functions on [0, 1] into a sequence of length ¢, and the
choice of the strong extension at a-th step depends on the a-th sequence of functions.
Later, in order to prove that K satisfies the required conditions, we look at any sequence

(tin)new of Radon measures on K and show that we can find sequences of continuous
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functions satisfying properties (a-e) from Proposition 3.4.5. However, in this approach we
may obtain an infinite-dimensional space, since used strong extensions may increase the
dimension. One can try to proceed in a similar way, by applying only those extensions
that preserve the dimension. The problem is that we do not know, whether the extension
by the sequence of functions given at some step changes the dimension, since it depends
on the earlier steps (i.e. it depends on the bookkeeping of sequences of continuous
functions on [0, 1]¢). Consequently, there may be a sequence of measures on the final
space, for which every suitable sequence of functions appears at a step, in which using
the extension would increase the dimension.

Although the main reason to use the diamond principle is the guessing of measures in
Lemma 3.4.4, we also needed the continuum hypothesis to ensure that all intermediate
spaces from our construction are metrizable. At that point we used the fact that for
every non-zero Radon measure on metrizable compact space there is a zero-dimensional
Gs compact subset of non-zero measure (Theorem 3.1.16). In the light of this theorem

the following problem seems to be interesting.

Problem 3.5.3. Describe the class of compact Hausdorff spaces K such that for every
non-zero Radon measure p on K there is a zero-dimensional compact subset L. C K such

that p(L) # 0.

Assume that K is such that C(K) has few operators. Then by [117, Proposition
4.8] there is a space L such that C(K) ~ C(L), but C(L) does not have few operators.
However, by Theorem 3.2.19 the topology of L is very close to K, at least if we assume

that K is separable and connected.

Question 3.5.4. Suppose that K is a compact Hausdorff space such that every operator
T: C(K)— C(K) is a weak multiplier and C(L) ~ C(K) for some compact Hausdorff
space. Is it true that K and L are homeomorphic modulo finitely many points in the
sense of Theorem 3.2.19%

One may also ask, what properties K should have to satisfy Theorem 3.4.9. There
are known examples of “nice” spaces K such that if C(K) ~ C(L), then L is not
zero-dimensional. For instance Avilés and Koszmider showed that there is such a space
which is quasi Radon-Nikodym ([8]) and Plebanek gave a consistent example of such a

space which is a Corson copmact ([109]).



Chapter 4

Grothendieck vs Nikodym

4.1 Introduction

In 1953, Grothendieck [64, Section 4] proved that the space I of bounded sequences
has the following property:

All weak*-convergent sequences in the dual space I, are also weakly convergent.

The above theorem motivated the following definition.

Definition 4.1.1. A Banach space X has the Grothendieck property if all weak*-

convergent sequences in the dual space X* are also weakly convergent.

Research on the Grothendieck property has long history and is still ongoing [12, 16,
29, 61-63, 66, 73, 81, 127]. If X is of the form C(K) for a compact space K, then X
has the Grothendieck property if and only if each weak*-convergent sequence of Radon
measures on K is also weakly convergent. Recall that [ is isometric to the Banach
space C(BN) of continuous functions on the Stone-Cech compactification of the natural
numbers. Moreover, SN is the Stone space of the Boolean algebra P(N).

Schachermayer, inspired by the Grothendieck’s result, introduced the notion of the

Grothendieck property for Boolean algebras [116, Definition 2.3].

Definition 4.1.2. A Boolean algebra A has the Grothendieck property, if the Banach
space C'(St(A)) of continuous functions on the Stone space of A has the Grothendieck

property.

Analogously, motivated by Nikodym’s paper [99], Schachermayer defined the Nikodym
property for Boolean algebras [116, Definition 2.4].

Definition 4.1.3. A Boolean algebra A has the Nikodym property, if every sequence
(1) of bounded finitely additive signed measures on A, which is pointwise convergent
to zero (i.e. for all A € A we have lim,_, pn(A) = 0) is bounded in the norm (i.e.

Sup,en || tn|| is bounded, cf. Section 1.2).

53
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The Nikodym property is similar to the Grothendieck property in many ways. For
example, if a Boolean algebra A has the Grothendieck or Nikodym property, then
its Stone space does not contain non-trivial convergent sequences. In [64] and [7] the
authors proved that complete Boolean algebras have both the Grothendieck and Nikodym
properties. The completeness assumption can be relaxed to some combinatorial property
(SCP) introduced by Haydon [67, Definition 1A, Proposition 1B], which is even weaker
than o-completeness [51]. Other connections between the Grothendieck property and the
Nikodym property may be found in [96, 118]. Both of the properties were also considered
in a recent paper by Zuchowski in the context of filters on N [137].

However, the Grothendieck and Nikodym properties are not equivalent. There are
Boolean algebras with the Nikodym property but without the Grothendieck property,
e.g. the Boolean algebra of Jordan measurable subsets of the unit interval [92],[116,
Propositions 3.2, 3.3]. The question if there is a Boolean algebra with the Grothendieck
property, but without the Nikodym property turned out to be much more difficult. This

is the central question of the chapter.

Question 4.1.4. Does there exist a Boolean algebra with the Grothendieck property that
does not have the Nikodym property?

So far there was only one known example of such a Boolean algebra. It was constructed
by Talagrand in [128]. However, his construction uses the continuum hypothesis (CH)
and so the question of the existence of such a Boolean algebra in ZFC remains open.
Since Talagrand’s construction there was no much progress in this subject, so it was

natural to ask the following question.

Question 4.1.5. Is it consistent with —~CH that there is a Boolean algebra with the
Grothendieck property but without the Nikodym property?

In this chapter we answer this problem in the affirmative. Moreover, the algebra we

construct has cardinality w;.

Theorem 4.5.15. It is consistent with =CH that there is a Boolean algebra of size wq

with the Grothendieck property but without the Nikodym property.

Very recently, there has been released a preprint by Sobota and Zdomskyy [125] with
a proof that Martin’s axiom (MA) implies the existence of such an algebra of cardinality
.

The proof of Theorem 4.5.15 strongly relies on the ideas behind Talagrand’s con-
struction. His Boolean algebra consists of Borel sets with certain symmetry property
(we call such sets balanced sets). This ensures that the constructed Boolean algebra will
not have the Nikodym property.

We define a o-centered forcing notion that extends a given countable balanced
Boolean algebra to a bigger one that is still balanced. Moreover, some sequences of
measures (picked by a generic filter) which were weak*-convergent in the initial algebra

are no longer weak*-convergent in the extension. Then we show that in the model
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obtained from the finite support iteration of length w; of such forcing notions, there
exists a balanced Boolean algebra with the Grothendieck property. The idea behind this
forcing comes from the work of Koszmider [79] and of Fajardo [40]. In the former paper
Koszmider introduced a notion of forcing that adds a Boolean algebra of cardinality w,
whose Stone space does not contain non-trivial convergent sequences. Fajardo adapted
this method to obtain a Banach space C'(K) of small density and with few operators. In
particular, this space has the Grothendieck property. In this chapter we show how to
combine this approach with the theory of balanced algebras to obtain a Boolean algebra
without the Nikodym property.

Most of the results concerning fundamental properties of balanced sets (see Section 4.3)
that we use in this chapter are essentially due to Talagrand. However, our construction
requires some significant changes. Since the construction is rather complicated and
technical, we decided to include detailed proofs at each step. We also show how to
construct a balanced Boolean algebra with the Grothendieck property under CH using
our modification of Talagrand’s method (see Theorem 4.4.8).

Another interesting related issue is the question about the possible sizes of Boolean
algebras with the Grothendieck and Nikodym properties. There always exists such
an algebra of size ¢ (e.g. P(N)). It is well-known that if p = ¢, then ¢ is the only
possible size of such an algebra (it follows from [68, Corollary 3F]). In particular, it
happens under MA. Brech showed the consistency of the existence of a Boolean algebra
with the Grothendieck property of cardinality smaller than ¢ [17]. In [100, Chapter 52,
Question 10] Koszmider asked whether it is consistent that there is no Boolean algebra
with the Grothendieck property of size p. It turned out that the answer is positive [9,
Proposition 6.18]. Recently Sobota and Zdomskyy published several articles on cardinal
characteristics related to Boolean algebras with the Grothendieck or Nikodym property
[121-124, 126]. The Boolean algebra we construct is the first example of a Boolean
algebra with the Grothendieck property and without the Nikodym property of size
w1 < ¢ (in particular, our model satisfies p = w; < ¢, see Corollary 4.5.14) and the first
construction of such a Boolean algebra of size less than ¢. In particular, the Stone space
of this algebra is another example of a Efimov space. In fact, if we want only to obtain
a Boolean algebra with the Grothendieck property, then our forcing can be simplified in
a natural way (by dropping some restrictions on the conditions).

It is also worth mentioning that the Grothendieck and Nikodym properties are also
discussed in the non-commutative setting in the category of C*-algebras. The definition
of the Grothendieck property for C*-algebras is the same as for general Banach spaces.
We say that a C*-algebra A has the Nikodym property, if every sequence of bounded
linear functionals on A that is convergent to 0 on projections is bounded in the norm.
If A is a Boolean algebra, then it has the Nikodym property if and only if C'(St(A))
has the Nikodym property, when considered as a C*-algebra. The Nikodym property
is especially interesting in the case when given C*-algebra has many projections, e.g.
when its real rank is zero. It is well-known that von Neumann algebras have both the
Grothendieck and Nikodym properties (see [105, Corollary 7] and [26, Theorem 1]). The



56 4. Grothendieck vs Nikodym

problem of the existence of C*-algebras with the Grothendieck property and without

the Nikodym property is still open in ZFC even in the non-commutative case.

Question 4.1.6. Is there a C*-algebra of real rank zero, which has the Grothendieck
property, but does not have the Nikodym property?

The structure of the chapter is the following. In Section 4.2 we introduce the property
(G) of Boolean algebras and the property of being balanced. Then we show that they
imply the Grothendieck property and the negation of the Nikodym property respectively.
Section 4.3 is devoted to properties of finite balanced families (this includes the behavior
of balanced families under basic operations and approximating balanced families with
families of clopen subsets of the Cantor set) and tools for extending countable balanced
Boolean algebras. In Section 4.4 we show a method of extending countable balanced
Boolean algebras to bigger ones in a way that destroys the weak*-convergence of given
sequences of measures. Then we show how to apply this method to construct a Boolean
algebra with the Grothendieck property and without Nikodym property assuming the
continuum hypothesis. In Section 4.5 we describe a o-centered notion of forcing that
forces the existence of a Boolean algebra with the Grothendieck property and without
the Nikodym property. In the last section we include final remarks and state some open

questions.

4.2 Grothendieck and Nikodym properties

In this section we will reduce the problem of the existence of a Boolean algebra with the
Grothendieck property and without the Nikodym property by introducing the property
(G) and the notion of a balanced Boolean algebra.

We start with the notion of semibalanced sets that describes these subsets A C C
for which the occurrences of 1’s and —1’s at r-th coordinate of elements of A are almost
equally distributed for large enough r. For this we introduce measures ¢,, on Bor(C') for

n € N, given by the formula
on(A) = / SndA
A
for A € Bor(C), where d,,: C — {—1,1},6,(x) = x.
Definition 4.2.1. Let A € Bor(C);m € N;e > 0. The set A is (m, ¢)-semibalanced if

Vr > m | (A)] < ; (3.1.1)

We say that A is semibalanced, if for every ¢ > 0 there is m € N such that A is

(m, €)-semibalanced.

Definition 4.2.2. Let A € Bor(C);m,t € N;t > m;e > 0. We say that A is (m,t,¢)-
balanced if for every s € {—1,1}™

MANG) _ e A\ _ <
X&) < m T A ~m (8.2.1)
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and

Vr e (m,t] ler(AN ()] << (3.2.2)

A((s)) r
We say that A is (m,e)-balanced if for every s € {—1,1}" the condition (3.2.1) is
satisfied and

v > m PrA0S)] ; (3.2.3)

A((s))
Definition 4.2.3. We say that a finite subfamily A C Bor(C) is (m,¢)-balanced if
every A € A is (m,e)-balanced.
We say that a family B C Bor(C) is balanced, if for every finite subfamily A C B
and every € > 0 there is m € N such that A is (m,e)-balanced. A set A € Bor(C) is
balanced, if {A} is balanced.

Remark 4.2.4. If A is a finite balanced family and € > 0, then for every n € N there is

m > n such that A is (m,e)-balanced.

Note that if B is balanced, then every member of B is balanced, but the reverse
implication does not hold in general. It may happen that A and B are balanced, while
the sets {m € N: A is (m, e)-balanced} and {m € N: B is (m, e)-balanced} are disjoint

for some ¢ > 0.

Lemma 4.2.5. Let A € Bor(C),e > 0 and m,t € N, where t > m. Then A is (m,e)-
balanced if and only if A is (m,t,e)-balanced and for every s € {—1,1}™ the set AN (s)

is (t,27™e)-semibalanced. In particular, if A is balanced, then it is semibalanced.

Proof. If A is (m,e)-balanced, then it is clearly (m,t,e)-balanced and by (3.2.3) for any
s € {=1,1}™ and r > t we have

€ €
[er(An ()] < AU = 5o
which shows that AN (s) is (¢,27¢)-semibalanced.

The above inequality also shows that if A is (¢,27™¢)-semibalanced, then (3.2.3)
is satisfied for s € {—1,1} and r > ¢. In particular, if A is (m,t,e)-balanced and
(t,27™¢)-semibalanced, then it is (m, ¢)-balanced.

To see that any balanced set is semibalanced fix ¢ > 0 and m € N such that A is
(m, €)-balanced. From the first part of the lemma applied to ¢t = m we get that for r > m

el Y leAn< Y g =1

2my
se{-1,1}m se{-1,1}m

so A is semibalanced. O
We will present a few examples to illustrate the above definitions.

Example 4.2.6. Every clopen subset of C is (m,e)-balanced for every ¢ > 0 and
sufficiently large m € N.
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Example 4.2.7. We will construct an open balanced set U that is not clopen. More
2n+2

precisely, U will be (2", 527 )-balanced for every n € N.

For every n € N consider the set Z, of all sequences of the form (a1, as, ..., asn) of

length 2" with values in {—1,1} with the following properties:

(1) if n =1, then a; = —ao,

(2) if n # 1, then a; = ag,

(3) VI <n agi-141 = Goi—149 = -+ = agu,

(4) agn-141 = agn-149 =+ = agn_1 = —agn,

and put Z = U,en Zn. On the figure below, the red (dark) sets are of the form (s),
where s € Z,, and sgn = 1 for some n € N, while blue (light) sets are of the form (s),

where s € Z,,, s9n = —1.

VAN VAN VAN VAN

Let U = Ucz(s). Consider three cases.

1. If s € Z then
AN\ A@)
A((s)) A((s))

2. If s € {—1,1}*" for n € N\ {1} satisfy conditions (2), (3) and

(47> a2n71+1 - a2n71+2 = =AaA9n_1 = 0,271,7

then there are only 4 nonempty sets of the form U N (s'), for i € {1,2,3,4} where
st e {=1,1}2""" and (s') C (s). Hence

m/\(Uﬂ <s>) - mZ?zl )\(<Sz>) - 2n4 . 272n+1 _ on+2

A((s)) AM(s) T 7 22

3. In other cases

M) M)

For every r € N the distribution of 1’s and —1’s in the elements of U at the r-th

AU N (s)) AN2) _

coordinate is symmetric, as can be easily seen in the figure - the blue (light) sets are
symmetric to the red (dark) ones (i.e. (s) is a blue set if and only if (—s) is red). Thus,

for every r € N we have
lor(U N (s))]

)
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Proposition 4.2.8. If a Boolean algebra B C Bor(C) consists of semibalanced sets, then
B does not have the Nikodym property. In particular, if B is balanced, then it does not
have the Nikodym property.

Proof. Consider a sequence of measures (i, )neny on B given by

tn(A) = np,(A).

This sequence is pointwise convergent to 0, i.e. lim,_,o |in(A)| = 0 for all A € B.
Indeed, for A € B and for any € > 0 there exist m € N such that for all n > m by (3.1.1)

we have
€
un(A)] = nlen(A)] < n_ =e.
However, (fin)nen is not bounded in the norm, because
sup | ||| = sup n|[A|| = oco.
neN neN

In particular, B does not have the Nikodym property.
If B is balanced, then by Lemma 4.2.5 it consists of semibalanced sets, so it does not

have the Nikodym property by the first part of the lemma. O

Example 4.2.9. The following Boolean algebra considered by Plebanek! is interesting

in the context of our considerations:
Bp = {B € Bor(C) : Jim nyn(B) = 0},

where ¢, (B) = min{\(BAC) : C € A, }.
Each element of Bp is semibalanced, so by Proposition 4.2.8 Bp does not have the
Nikodym property. Indeed, one needs first to observe that if B € Bp and n < m, then

em(B) < ¥n(B).

To show that every B € Bp is semibalanced take any B € Bp and ¢ > 0. Since ny,(B)
converges to 0, we can find m € N such that for every » > m we have r1,(B) < §. Then

for every r > m
rler(B)] < ripr1(B) < 2(r = 1)ihr1(B) <e.

However, Bp is not balanced. To see this, take

B = U (Sk),
k=2
where s € {—1,1}" is of the form sy = (—1,...,—1,1,1) for £ > 2. Then
n
ma(B) = n Y M) = o

k>n

! Personal communication
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converges to 0, so B € Bp. But B is not balanced. Indeed, for k¥ € N consider

sj, € {—1,1}* of the form s}, = (—1,...,—1,1). Then
ANBAE)  A\VB) 1
A{s)) A(sp) 2

There are no non-trivial convergent sequences in St(Bp). However, this Boolean
algebra does not have the Grothendieck property. The sequence of measures on Bp given
by

Un(A) = 2" (AN (s),)),

(where s/, is as above) is weak*-convergent, but it is not weakly convergent?.
Moreover, according to Borodulin-Nadzieja? no semibalanced Boolean algebra con-

taining Bp has the Grothendieck property.

In order to take care of the Grothendieck property it is enough to restrict the choice
of sequences of measures to those with pairwise disjoint Borel supports and norms equal
to 1.

Definition 4.2.10. Let A be a Boolean algebra. We say that a sequence (v, )nen of

measures on A is normal, if:

e Yn €N |lp,| =1,

o (Un)nen has pairwise disjoint Borel supports.
The following definition will be important throughout the chapter.

Definition 4.2.11. We say that a Boolean algebra B satisfies (G) if for every normal
sequence (vy,)nen of measures on B there are G € B, an antichain {HJ, H' :n € N} CB
and strictly increasing sequences (ap)nen, (bn)nen of natural numbers such that for all

n €N

(a) GNH} =@,
(b) |va,|(HY) > 0.9 and |v,, |(HT') > 0.9,
(€) |Va,(GNH)| > 0.3.

Note that Schachermayer introduced the property (G) in [116] as a name for the
Grothendieck property. Our property (G) is different. It implies the Grothendieck
property, but the reverse implication does not hold.

To show that the property (G) implies the Grothendieck property we will use the
following lemma known as The Kadec-Petczyniski-Rosenthal Subsequence Splitting

Lemma:

Lemma 4.2.12. [3, Lemma 5.2.7] Let K be a compact space. For every bounded
sequence (Un)nen C M (K) there exists a non-negative real v and a subsequence (Vp, )ken,
each element of which may be decomposed into a sum of two measures vy, = [ix + §k7

where iy, 0, € M(K), satisfying the following conditions:

2 The idea behind this sequence is due to Avilés.
3 Personal communication.
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(1) the measures Ji; are supported by pairwise disjoint Borel sets,
(2) (6p)ken is weakly convergent,
(3) ||fk|| = r, for every k € N.

Proposition 4.2.13. If a Boolean algebra B satisfies (G), then B has the Grothendieck
property.

Proof. Suppose B has the property (G), but does not have the Grothendieck property.
That is, there is a sequence i, of measures on St(B) weak*-convergent to a measure i,
which is not weakly convergent. Without loss of generality, by passing to a subsequence,
we can assume that no subsequence of (fiy,)nen is weakly convergent. Indeed, suppose
that each subsequence of (fin)nen contains a weakly convergent subsequence. Since the
sequence is weak™-convergent to fi, such a subsequence must be also weakly convergent
to . Then each subsequence of (fi,)nen has a subsequence weakly convergent to fi, so
the whole sequence is weakly convergent to ji, which gives a contradiction.

Since (fin)nen is weak™-convergent, it is bounded in the norm (cf. [39, Theorem
3.88]). By Lemma 4.2.12 we can find a real r and a subsequence (fin, )ren €ach element

of which may be decomposed into the sum of two measures fi,, = vy + ék satisfying

(1) the measures vy are supported by pairwise disjoint Borel sets,
(2) (0g)ken is weakly convergent,
(3) ||zg|| = r, for every k € N.

Note that since (gn)neN is weakly convergent, (7, )nen is not. In particular, r # 0.
Thus, without loss of generality, by the normalization, we can assume that » = 1. Then
the sequence (v, )nen is normal. The Boolean algebra B satisfies the property (G), so
there are G € B, an antichain {H{', H' : n € N} C B and strictly increasing sequences
(an)nen, (bn)nen of natural numbers such that for all n € N

(a) GNH! =@,
() [va, [(HE) > 0.9 and |, |(H}) > 0.9,
(€) Ve, (GNHE)| >0.3.

Hence for n € N we have

(1) [Var (@) 2 Iva, (G N HP)| = |, | (G\HE) > 03— 0.1 = 0.2,
(2) 115, (G) < |y, |(C\HY) < 0.1,

So there is no v such that v,(G) — v(G). Thus, (Vg)ken is not weak*-convergent, which
is a contradiction, since (Uk)ken = (fin, — §k) renN is a difference of two weak*-convergent

sequences. ]

Now we will introduce the property (G*) similar to the property (G), which focuses
on only one sequence of measures. Then we will show that having the property (G*) for

enough many sequences of measures we can conclude that the property (G) holds.
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Definition 4.2.14. Let B* C B be Boolean algebras and let v = (v,)nen be a sequence
of measures on B*. We say that (B*,B,v) satisfies (G*), if there are: an antichain
{Hy,H} :n € N} CB*, aset G € B and strictly increasing sequences (an)nen, (bn)neN
of natural numbers such that for all n € N

(a) GNHY € B*,

(b) GNHY = @,

(©) [Va,|(HG), v, |(HT') = 0.9,
(d) |Va,(GNHE) > 0.3.

The next proposition shows the relationship between the properties (G) and (G*).

Proposition 4.2.15. Suppose that B is a Boolean algebra such that for every normal
sequence of measures v = (Vp)nen on B there is a subalgebra B* C B such that the
sequence (v, | B*)nen is normal and (B*, B, v | B*) satisfies (G*). Then B satisfies (G).
In particular, B has the Grothendieck property.

Proof. Fix any normal sequence (v,)nen of measures on B. Pick B* C B such that
there exist an antichain {HJ', H' : n € N} C B*, G € B and sequences (an)nen, (bn)nen
such that for the sequence (v, | B*) the conditions (a)-(d) from Definition 4.2.14 are
satisfied. In particular, G N H* = @, i.e. (a) of Definition 4.2.11 holds. To see that (b)
of Definition 4.2.11 is satisfied, observe that

va, [(Hy) = sup{|va, (A)| + |va,(B)[: A, B €B, A, BC Hy, ANB =2} >
> sup{|va,(A)| + v, (B)|: A, BeB*",A,BC Hy,ANB =0} =
= |va, | BY|(HY) > 0.9

and similarly |vp, |(HT") > |vp, | B*|(HT') > 0.9.
For Definition 4.2.11 (c) note that

|Va, (GNHY)| = |va, | BY(GNHy)| > 0.3.
Use Proposition 4.2.13 to conclude that B has the Grothendieck property. ]

For the reader’s convenience we provide a brief sketch of our constructions. We
describe consecutive steps of reasoning, starting from general motivations. The parts
devoted only to the case of construction under the continuum hypothesis (from Theorem
4.4.8) are tagged (CH), while the parts devoted to the forcing construction (from Theorem
4.5.15) are tagged (F).

Construction roadmap

1. General idea: we construct an increasing sequence (B, )q<y, of balanced countable
subalgebras of Bor(C).

(CH) For every a < w; the triple (B}, Bo+1, (V5 )nen) satisfies (G*), where (v )nen
is a sequence of measures (on some subalgebra B} of B, ) which is given (by a

proper bookkeeping) in advance (see Theorem 4.4.8).
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(F) We define a finite support iteration (Py)a<w, of o-centered forcings (Definition
4.5.9). For every o < wy the algebra B, belongs to the a-th intermediate model
obtained from this iteration. The triples (Bq, Bot1, (Vn)nen) satisfy (G*) for
uncountably many sequences of measures (on B, ), whose choice depends on
a generic filter in P, (for the connection between the choice of sequences of

measures and a generic filter see Lemma 4.5.6).

We finish by taking the Boolean algebra
B= |J Ba,
a<wi
which is balanced and satisfies (G). Applying Proposition 4.2.8 and Proposition
4.2.13 we obtain Theorem 4.4.8 and Theorem 4.5.15.

2. We start with By = Clop(C'). At limit steps we take unions. The only non-trivial
step is the construction of B, from B,. In this case we extend B, by a new set
G € Bor(C) which is a union of countably many pairwise disjoint elements of B,:

G = U Gy
neN
that satisfy the hypothesis of Lemma 4.3.7 (this ensures that B, is balanced).

Moreover, we require that

(CH) G (together with some antichain {H{, H{'}neny € B,) is a witness for the
property (G*) for the triple (B, Bat1, (VS )nen),
(F) there is an antichain {H,},en € B, such that for every sequence (vp,)nen
satisfying the hypothesis of Proposition 4.5.7 the set G together with some
subset of {H, }nen witnesses the property (G*) for (Ba, Bat1, (Vn)nen)-

3. From now on we will assume that « is fixed and we will focus on the construction of
Gy’s, Hy,’s and H]"’s for i =0, 1.

(CH) We define (Gy,)nen, (H{ )nen, (HT)nen by induction on n € N (see Lemma 4.4.6).
In order to obtain the property (G*) we need to ensure that for every n € N the
set G, N H{ is “big” in the sense of some measure from the sequence (V9 )nen
while G, N HF = @ for k,n € N.

(F) The sets G,’s and H,,’s appear in the forcing conditions chosen by a generic
filter. Lemma 4.5.6 will imply that for an appropriate sequence (vy,)nen of
measures, for infinitely many n € N the set G, N H, is “big” in the sense of
some measure from this sequence, while G,, N H, = & for every n € N and

infinitely many k € N.

4. Given finite sequences (Gy.)k<n, (HE)k<n, (HF)k<n (or (Hy)g<n in the case of forcing),
we extend them using Lemma 4.4.4 and Lemma 4.4.5 (applied to G' = Uj.<,, G and
H= Un<n(H§ U HY) or = Uk<n He)-

(CH) The set Gj,41 consists of 2 parts: G,11 = LU M, where L = Gy N Hy ™ is
the part witnessing the property (G*) and M is a very small set disjoint from

HF’s (so it has no influence on (G*)).
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(F) It follows that there are l1,ls > n such that Gj, = LU M, where L = G, N Hy,
witnesses the property (G*) and M N Hy = @ for k € N, while G, N H, = &
(this will ensure that G N H;, = @).

. At the same time, to make sure that the hypothesis of Lemma 4.3.7 is satisfied (cf.

item 2), we need to pick G,’s in such a way that the families F (B, U;<; Gi) (where
B,,’s are some finite subalgebras of B, ) will have appropriate degrees of balance for
k,n € N. However, we do not have enough control over the choice of L, which can
affect the balance. Thus, we need to fix it with the help of M.

. The choice of M depends on L in the way described in Proposition 4.3.8. The main

idea behind this choice is to reduce the problem to finite combinatorics. We work
with some finite subalgebra H of B containing the sets that have appeared in the
construction so far (including L) that is sufficiently well balanced (cf. Lemma 4.3.12).
Lemma 4.3.5 shows that there is n € N and a Boolean homomorphism h: H — A,
(recall that A, is a finite Boolean algebra consisting of clopen subsets of C') such that
every A € H is well-approximated by h(A). The choice of M and most of the crucial
calculations take place in A,, (see Lemma 4.3.11). These include the use of techniques
such as probability inequalities involving weighted Rademacher sums (Lemma 4.3.9)

and analysis in finite-dimensional subspaces of the Hilbert space L2(C).

4.3 Properties of balanced families

This section is devoted to the combinatorics of balanced sets and families. In a series of

lemmas we will describe basic properties of balanced sets and show how to modify a

given set to a balanced one.

We start with a few simple observations.

Lemma 4.3.1. If A,B € Bor(C) are disjoint and (m,e)-balanced, then A U B is
(m, 2¢)-balanced.

Proof. First we check (3.2.1). Fix any s € {—1,1}™. If

A{\A) _ e A(\B) _ €

As)) m A({s)

then

AESNAUB) _ [A(N\A) A(\B)| _ e
(B Sm“‘{ A5 M) }<'

m

Otherwise, since A and B satisfy (3.2.1) we have

AAN(s)) < £ ond AMBN(s)) e

NE) Sm ™G S

Summing up the inequalities we get

M(AUB) N (s) _ 2

A((s)) m’

so AU B satisfies (3.2.1) for 2e.
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Now we check (3.2.3). Fix r > m. Since AN B = & we have

[or (AU B) N (s))] < [0r (AN ()| + o (BN (s))].
Thus, by summing up the inequalities (3.2.3) for A and B we get

ler((AUB) N ()] _ ler(AN ()] | len(BN{s))] _ 2e

A{s)) T As) A{s)) r’
so AU B satisfies (3.2.3) for 2e. O

Lemma 4.3.2. Let A € Bor(C),t € N and e > 0. If A is (t,e)-semibalanced then C\ A

is also (t,e)-semibalanced.

Proof. Let r > t. We have
or(A) + o (C\A) = / 5rd\ + / Srd) = / 5rdA = 0.
A o\A c

By (3.1.1) for A we get
€
[P(O\A)] = lp(A)] < &,
which implies (3.1.1) for C\ A and so C\ A is (¢, e)-semibalanced. O

Lemma 4.3.3. Suppose that F is a finite Boolean subalgebra of Bor(C) and t € N is
such that F is (t,e)-balanced, where

1 _
e = 755 IF{A(4) : A € FA(4) > 0},

Then for every A € F, if N(A) > 0, then there is s4 € {—1,1}' such that
A(AN (s4))
A({s4))

Proof. Let A € F be such that A(A) > 0. Then A\(A) > ¢, so there must be s4 € {—1,1}
such that A(A N (sa)) > eA((sa)). Hence

> 0.99.

A((sa)\A)
M) = F
Since A satisfies (3.2.1) we have
A({sa\A) _ e
M) T F

But £ < 0.01, so

AMAN(sa)) _ M(sa)) = AM(sa)\A)
A{s4)) A{sa))

>1—-¢2>0.99.

O]

Lemma 4.3.4. Let Hy be an (n,e)-balanced Boolean algebra. Then the Boolean algebra
H generated by Hy U A, is (n,e)-balanced.
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Proof. Take A € H. Then A is of the form:

A= U nd)= U s)n4y),

(syeat(Ay) se{-1,1}n

where Ag € Hy for s € {—1,1}".
Let sp € {—1,1}". Then

AN {(sp) = U ((s) N As) N (sg) = As, N (s0)
se{-1,1}n

and

(so\A = (so)\  [J  ({s) N As) = (s0)\As,.-

se{-1,1}n

By (3.2.1) we have

MAs N {s0) _ e Also\As) _ e

A((s0)) n A((s0)) n

AAsgNis0)) _ &
If W < then

n’

A(AN (s0)) _ A(As, N (s0)) €

A({s0)) A((s0)) n

A({so)\Asg)
If W < o then

Al{so)\A) _ Al{s0)\Aso)

3
A(s0))  Mlso)

so A also satisfies (3.2.1).
Let r > n and let so € {—1,1}". Then by (3.2.3)

’(pT(A N <80>)| _ “-PT(ASO N <$0>)| < €
A((50)) A((50)) r

O]

The next lemma shows that while dealing with finite balanced families we can
approximate them with finite families of clopen subsets of C'. This will allow us to reduce

many problems to the combinatorics of finite Boolean algebras A,, for n € N.

Lemma 4.3.5. Suppose that H C Bor(C) is a finite subalgebra that is (n,e)-balanced
for some n € N and ¢ < 1/3. Then the function hy: H — A, given by

A((s)\A)
O }

is a homomorphism of Boolean algebras and for every A € H we have

n(4) = { () s € (=11

A(AAR(A)) < e/n.
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Proof. For the first part of the lemma we need to show that h,(C) = C, h,(AU B) =
hn(A) U hy(B) and h,(C\A) = C\h,,(A) for every A, B € H.
The first equality holds since for every s € {—1,1}" we have

A{sN\C) _ A(9)

M) A
The second equality follows from the fact that
MENAUB) _ M\ _ AGNB)
M TG ST T
Indeed, if (N (4 )
A((s UuB
(C)
e NAUB) NG 2
A((s)) ~ 3
and so
x AMAN(s)) NBN(s)) 1
S O I e i
Since A and B are (n,¢)-balanced we have
i AMAN(s)) AMBN(s)) B
S w1
or equivalently
mm{A(<8>\A) )\(<S>\B)} e
A((s)) 7 A(s))
Conversely, if (9\A) (N\B)
A((s)\A A(s)\B
M) ST A ST

then

MENAUB) _ (AL A(\B)
Moy =Sy <
The equality h,(C\A) = C\h,(A) holds since for s € {—1,1}"

e AN\A) L AMAN(s))
(s) € C\hn(A) iff A((s)) > ¢ iff A((s))
)\(?S;;)) < ¢ iff W < g iff <S> C hn(C\A)

AUNA) e

For the second part of the lemma we notice that for every s € {—1,1}" if (O) £

n?
then

<1l-—¢iff

;e AUsN\A)
and if () >
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Hence

ANAALR,(A)) = Z AMAALRL(A) N (s)) < Z A((s))

se{-1,1}» se{-1,1}n

The next lemma says that small perturbations of (m,t,¢)-balanced sets are still

(m, t,e)-balanced.

Lemma 4.3.6. Let m,t € N;t > m,e > 0. Then there is ¢ > 0 such that for every
A,B € Bor(C), if A is (m,t,e)-balanced and A\(B) < g, then AU B and A\B are
(m,t,e)-balanced.

Proof. Let €1 < € be such that A is (m,t,e1)-balanced and let

_5—51
0= oy

For every s € {—1,1}™ we have

MAUB)N(s) _NANG) , o _a1 c-a _ <
A S M) A Sm T S
As)I\(AUB)) _ A((s)\A) _ €
M) S Al Sm
and for every s € {—1,1}"™, m<r <t
ler((AUB)N ()] _ [er(AN(s)] | [or(B\A)N(s))| &1 e—e1 ¢
() Y () I T
Hence AU B is (m,t,¢)-balanced. Calculations showing that A\B is (m,t,¢)-balanced
are similar. ]

In the following lemma, we provide conditions for enlarging balanced Boolean algebras

to bigger ones.

Lemma 4.3.7. Suppose that B C Bor(C) is a balanced Boolean algebra and that

B= ] Bn

neN

is a representation of B as an increasing union of finite subalgebras. Let (my)nen be a
strictly increasing sequence of natural numbers and {Gy}neny € B be an antichain such
that

Vk € N Vn <k I(Bn, U Gi) is (mn, 27™)-balanced,
i<k
where F By, Uiy, Gi) = {AN U< Gis A\Uj1, Gi : A € By}
Put G = U,y Gn- Then the Boolean algebra B’ generated by B U {G} is balanced.
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Proof. Let ¢ > 0 and let A’ be a finite subfamily of B’. Every element A’ € A’ is of
the form (A1 N G) U (A2\G) where Aq, Ay € B, so there is a finite family A C B such
that A" C {(41 NG) U (A2\G) : A1, A2 € A}. Let n € N be such that A C B, and
1/2"71 < e. Fix Ay, Ay € A. Then for every k >n

AN U G; and A\ U G; are (my, 1/2") — balanced.

i<k i<k

Hence for s € {—1,1}™" we have

AL NG N (s)) A (A1 NUi<k Gi N <8>) + A Uisn Gi) _
A((s))

>
~—~
—

. YA
~
SN—r

or

MENANnG) _ AEN (ANU«G)) 1
Gy S ) S

and for m > m,,

(AN G (s)] _|om (410U Gi0 ()| N om (410U Gin ()]
A((s)) - A((s)) A((s)) -
1 A (Ui>k Gz‘) k— o0 1

S T () T

so A1 NG is (my, 1/2™)-balanced. By a similar argument As\G is (my, 1/2")-balanced.
By Lemma 4.3.1 the set (A1 N G) U (A2\G) is (my,, 1/2"1)-balanced, and so (my,, €)-
balanced, which completes the proof. O

The next theorem is key for the construction in Lemma 4.4.5. It says how much we

can modify a given finite balanced family without losing its balance.

Proposition 4.3.8. Let k € N, n > 0. Let (my)n<k be an increasing sequence of
natural numbers. Let B* C B C Bor(C) be balanced Boolean algebras and assume that
Clop(C) C B*. Let (By,)n<r C B be finite subalgebras. Suppose that G, P € B* and the

following are satisfied:

(4) GC P,
(B) ¥Yn < k F(B,,G) is (my,2~")-balanced.

Then there is 6 > 0 such that for every L,Q € B* satisfying

(a) max{A(L),\(Q)} <0,
(b)) LNP =g,

there is M € B* such that

(1) MN(PUQ) =2,
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(2) M(M) <,
(8) Vn <k F(B,,GULUM) is (my,2™)-balanced.

P

Q

Before we prove the proposition, we will need a few lemmas.

The following lemma is a version of [72, Theorem 3, page 31].

Lemma 4.3.9. Let n € N. Let A\, be the standard product probability measure on the
space {—1,1}" (A({z}) = A({y}) for every z,y € {—1,1}"). Then for all (dw)m<n € R"

and any & € (0,1)
>€Z|d |2})

An ({y e{-1,1}": Y
m=1

The above lemma will allow us to pick y from some big enough subset of {—1,1}"

(1-¢7

CO\>—~

satisfying the appropriate inequality.
Lemma 4.3.10. The sequence (0n)neN is orthonormal in the Hilbert space L2(C).

Proof. We need to show that for any n,m € N

1 ifn=
(O B} = if n=m,
0 ifn#m.

If n = m, then (3, 0) = ||0n|| = 1.
Suppose that n # m. For i,j € {—1,1} let Cj’: ={seC:s, =158y, =7} and note
that if z € C;, then

On ()0 (x) = ij.
Since A(C%) = 1/4 for 4,j € {~1,1}, we get
Busbn) = [ duduih= 3 /55 = 3 ijACh) =
ije{-1,1} ije{-11}

O]

Lemma 4.3.11. Lett € N. Let n € (0,1/2!710). Let ng be large enough so that for all
n > ng there exists k € N that

n k n
§<2—n<nand T <1

Let n > ng and k satisfy the above inequality. Then for all
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o Q€ A, such that \(Q) < n,
o F e A, for which there exists s € {—1,1} such that A()\I“E?SSD > 0.95,

o Z €A, such that)\(Z)<76’—i and Z C F,

there exists M C F\ (QU Z) such that

(a) M € A,
k
(b) A(M) = 55,
(¢) MU Z is (t,n)-semibalanced.

In the figure above, the lines indicating the position of the triangles forming Z and
M at each level go to the left as many times as to the right, which means that for every
r € N we have ¢, (M U Z) =0 (and so M U Z is (t,n)-semibalanced).

Proof. Let F' = F\ (QU Z) and fix s € {—1,1} such that

AE N (s))

() > 0.95.

In particular,
AF N (s))

A({s)
Put M = {M’ eA,: M'CF \NM)= Qﬁn} Since for M’ € M we have M' N7 = @.
It follows that @, (MU Z) = @mn(M') + om(2).
Define

> 0.9.

n

S(M) = > (pm(M'UZ)).
m=t+1

Choose a set M € M such that
S(M) = min{S(M") : M" € M}.

We will show, that M U Z is (t,n)-semibalanced. Namely, we will show, that
S(M) < Z—z This implies that for all n > m >t we have

lem(M U Z)[ </S(M) <

<

)

313

n
m
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while for m > n we have |p,,(M U Z)| = 0 (because Z,M € A,). Thus, M U Z is
(t,n)-semibalanced.
We need to show that

k n
S(M) < on g1 (4.1)
Indeed, if the above inequality holds, then
3 2
n nn n
S(M) < on gn—1 < 772n_1 T 29n-1 < n2’
The inequality (4.1) may be written as:
n n
S(M) = Y ea(ZD)en(MUZ)+ 3 on(M)pn(MUZ) <
m=t+1 m=t+1
< k S(M) i k[ n S(M)
2n 4 2n \ 2n—1 4 '
To prove it we will split it into two inequalities:
- k n S(M)
Y em(M)pn(MUZ) < o <2n1 S (4.2)
m=t+1
and
“ k S(M
> en@pn(Muz) < TN (4.3
m=t+1

We will prove the inequalities (4.2) and (4.3) with the help of four claims. The first
three are necessary to show the inequality (4.2) while the last one will prove inequality
(4.3).

In Claim 2 we make use of the minimality of S(M) analyzing the situation when we

change M by one atom of A,,.
Claim 2. For any x,y € {—1,1}" such that (x) C M and (y) C F'\ M

n n
n
D Tmem(MUZ) < og t+ } L ympm(M U Z), (4.4)
m=t+1 m=t+1

where x,, and y,, are the m-th terms of the sequences x and y respectively.

Proof of the claim. Let M' = (M \ (z)) U (y). We have

om(M') = / Smdh = / S — / S + / Smd
i ir @) )
1

= om(M)+ QTZ(ym — T).
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Since M minimizes S, we have S(M’') — S(M) > 0. Then

SM)=S(M) = 3 ((eml2) + n(M)? = (pm(2) + pm(M))?)

m=t+1

= Y (emM)? = om(M)? + 200 (2) (om(M') = o (M)
m=t+1

=Y (enM) = (M) (M) + (M) + 200(2))
m=t+1

" 1 1

3 et =) (5 om =)+ 200+ 260(2))

Multiplying the above by 2"~! and using the fact that (3, — z.,)? € {0,4} we get

0= 3 o) (o (om = 2n) + om (D) + 9n(2))

m=t+1
4
< Z ﬁ"‘(@/m_xm)(@m(M)‘f‘@m(Z))
m=t+1
n n
< ot X 1(ym — ) om (M U 2).
m=t+

O]

Let T: C — C be a function that swaps the sign of the coordinates from ¢ + 1 to n

given by the formula:

T(y)(i) =
Y y(i) if i ¢ (t,n].

Note that for A € Bor(C') we have ¢,,(AUT[A]) =0, where m € {t+1,...,n}.

{—y(i) if i € (,n],

Claim 3.
A(((F" N (s)) NTE" N (s)]) \ (M UT[M]))

> 0.75.

Proof of the claim. Since

MM) = o << 0
we have
MM UT[M]) < 02&

Since AE N (5)) o

A(s)) T
we have

A((F" N () NTF N (s)])

A() =0%

Therefore
AE VDTN WITI 5 o505 07
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It is clear that if y € (s) then T'(y) € (s). In the proof of the next claim we will

use an obvious observation that if )‘(;é?gs)» > 0.75 and AB A <>)>) > 0.25 then there exists

y € ANBN(s).

Claim 4. There exists y™ € {—1,1}" such that (y™M) C (F'\ M) NT[F'\ M] and

S(M)
i

n
Z y%@m(MUZ) =
m=t+1

Proof of the claim. Recall that S(M) = 7 _,. 1 om(M U Z)%. By Lemma 4.3.9 for
€=1/16 and

0 {cpm(MUZ) if m € (t,n],

0 it m € [0,1],

we have

n 2 1 2

M [ Sye{-1,1}": Z YmPm (M U Z) 2 — = .
m=t+1 3
Hence
An ({y e{-1,1}": Z Ympm(M U Z)| > }) > 0.25.

m=t+1

Now Claim 2 implies the existence of the desired y. O

Note that (F'\ M)NT[F'\ M] = T[(F'\ M)NT[F'\ M]]. So since (y™) C (F'\ M)N
T[F'\M] we also have T[(y™)] C (F'\M)NT[F'\M]. Moreover >_1" _, .1 yM,,,(MUZ) =
=S i1 T2 om (M U Z). Thus, by replacing y™ with T(y) if needed Claim 3

implies that
S(M)

n
Z y%gpm(MUZ) < -

(4.5)
m=t+1 4
From inequalities (4.4) and (4.5) for x as in Claim 1 we get
- S(M
> anpnMUZ) < b Y weanuz) < - YIS )

m=t+1 m=t+1

Let {2 :i e {1,...k}} be an enumeration of all z € {—1,1}" such that (x) C M.

ze{-1,1}" i=1
(x)CM

Since for all z € {—1,1}" and m < n we have @y, = 2" [,y 6mdA we conclude that
k

E:xgzz2"/‘5m¢x=2”¢muwy (4.7)
i=1 M

y (4.7) and (4.6) we obtain
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n
S Pon(Men(MUZ) = Y Zx ) om(M U Z) =
m=t+1 m=t+1i=1

353 m(MUZ) <k S(M) o
zzlmzt+1x - ) 2n—1_ 4 '

Multiplying both sides of the inequality (4.8) by 27" we get

Z i (M) pm(M U Z) < ;(2:1— SiM)>,

m=t+1
that is the inequality (4.2).
Now we will prove (4.3).

Claim 5.

S(M)

k
ZSOm SDmMUZ)<27 4

m=t+1

Proof of the claim. By the Cauchy-Schwarz inequality we have

> enDenuz) < |3 (som(zw S pm(MUZ)2 =
m=t+1

m=t+1 m=t+1

n

= | X (en(2)%/S(M).

m=t+1

By Lemma 4.3.10 the sequence (d,)nen is orthonormal in the Hilbert space Lo(C),
so by the Bessel inequality we get

n

> n@)? = Y (/ZémdA)QZm = (Lo ») -

m=t+1 m=t+1

((xz:0m))* < lIxzl13 = A(2).
m=t+1

Since A(Z) < n?/64, we have \/A(Z) < n/8 < k/2"*2 and so

> en(@ien(02) < N2 500 < 2 V2

m=t+1

Adding inequalities (4.2) and (4.3) side by side we get the following estimate

> pem(MUZ)?
m=t+1

\/S(M)+k:< n S(M))_k n
omn 2n—1

an 4 4 ~ onon-1’

which shows (4.1) and finishes the proof. O
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Lemma 4.3.12. Let B* C B be balanced Boolean subalgebras of Bor(C) containing
Clop(C) and let F be a finite subalgebra of B. Let P € FNB*. Lett € N, 0 > 0. Suppose
that for every A € F such that \(A) > 0 there is sa € {—1,1}" such that

AMAN(sa))
A((s4))
Then there is @ > 0 such that for any L, Q € B*, if max{\(L),A\(Q)} < 0 and LNP = &,
then there is M € B* such that

> 0.99.

(1) M (PUQ) =2,

(2) M(M) <9,

(3) VF € F (MUL)NF is (t,6)-semibalanced,
(4) VF € F F\(M UL) is (t,9)-semibalanced.

Proof. Let nn < min{d/(4|F|),1/2t¥19},0 < 7%/64 and let ng be large enough so that for
every n > ng

(5) there is k € N such that 2 < £ <,

(6) 325 <,

2

(1) T<&H-0.
Fix @ and L satisfying the hypothesis of the lemma. Denote by Hy the Boolean
algebra generated by F U {Q, L}. Since B is balanced, there is n > ng such that Hy is
(n,n)-balanced. Let H be the Boolean algebra generated by Hy U A,,. By Lemma 4.3.4

H is (n,n)-balanced.

Let h, be defined as in Lemma 4.3.5. By the same lemma, for F' € F we have

ABa(F) 0 (55)) _ AF 0 (s5)  A(FAR(F)) 2y
N ) (S T T
By Lemma 4.3.5 and (7)
n n? n?
A1) 0 i (F) < A(a(L) S ML) + L <9+ T 0= L.

By Lemma 4.3.11 (applied to Z = h,(L) Nhy,(E)) for every E € at(F) there is Mg € A,
such that

(a) Mg C hn(E)\ha(Q),
(b) A(Mp) <n <4/|F|,
(¢) Mg U (hn(L)Nhy(E)) is (t,/(4]F]))-semibalanced.

Put
Mo= |J Mg\Q,M = M\P.
Ecat(F)
Then M N (PUQ) = @ and A(M) < ¢. To show (3) and (4) fix FF € F and r > t.

Consider 2 cases.
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Case 1. r <n.

For every E € at(F) we have Mg € A, so hy,(Mg) = Mg. From (a) we get

Ecat(F)
= U (ha(Mp) 0 ha(E)\ha(Q) =
Eeat(F)
ECF

= U (Menha(B)Vha(Q) =

Ecat(F)
ECF

= U Menh(E)\(Q) = |J Mg
Ecat(F) Ecat(F)
ECF ECF

By Lemma 4.3.5 for any A € H we have
n
[er(A)] < lor(ha(A))] + AMALRL(A)) < lor(ha(A))] + .
Putting A = (MU L) N F and using (c) we get

r(MoUL) NP < [r(ha((MoUL) N F))] + 2 <

< Jor((hn(Mo) U hn(L)) O B (F))| + % _
- @r( U MEU(hn(L)mhn(E))> +% <
Ecat(F)
ECF
S Y 1ee(Mp U (L) N ()| + 2 <
Ecat(F)

ECF
o

P+ <
4r|F|  4n — 2r°

Case 2. r > n.

In this case, since H is (n,d/2)-balanced, we have

lor(MoUL)NF)[ < Y (Mo UL) N F N (s))] < 2%((@)% — %
se{-1,1}n

Hence
(MpUL)NF is <t, g) -semibalanced for F' € F. (8)
Since LN P = @ and M = M\ P, we get
(MUL)NF = (MyUL)N(F\P).
Since P € F we get that if F' € F, then F\P € F, so by (8) applied to F'\ P we get that

J
(MUL)NF is (t, 2) -semibalanced for F' € T, 9)
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which implies (3).
For (4) note that C\(F\(M U L)) = (C\F) U ((M UL)NF). Since C\F and
(M U L) N F are disjoint we have

|or (C\FN(M U L)))| < lr(C\F)| + [ (M U L) O F)].

Since H is (¢,0/2)-balanced and C\F € F C H we have |¢,.(C\F)| < §/(2r) and from
(9) we get that |, (M UL)NF)| <§/(2r). Hence

(e C\E\OTU L) < °,

so C\(F\(M UL)) is (t,0)-semibalanced. By Lemma 4.3.2 the set F\(M U L) is (t,9)-
semibalanced, which shows (4) and finishes the proof. O

Proof of Proposition 4.3.8. Denote by F the subalgebra of B generated by

{G,P}U | B UAp,.
n<k

Put

¢ — min {1(1)0 inf{A(A) : A € F,\(4) > 0}, 2—mk—k—1} . ()
Since B is balanced, there is t € N, ¢ > my, such that

F is (t,e)-balanced. (5)
By Lemma 4.3.3 for every A € F there is s4 € {—1, 1} such that

A(AN (s4))
A((s4))

By Lemma 4.3.6 and the assumption (B) of the proposition there is ¢ > 0 such that

> 0.99.

Vn < k VA € F(B,,G) VB € Bor(C)

(6)
AB) < 9o = AUB,A\B are (my,t,27")-balanced.

By Lemma 4.3.12 (applied to 6 = min {n, 0/2, 2‘mk—k_1}), there is 0 < 6§ < p/2 such
that for any L, Q € B*, if max{\(L),\(Q)} < 0 and LN P = &, then there is M € B*
satisfying
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In particular, the conditions (1) and (2) of the proposition are satisfied.
In order to show that such M satisfies (3), fix L, Q € B* such that L N P = & and
max{A(L),\(Q)} < 6. Then we have

AL UM) < ML)+ A(M) < 0/2+0/2 = o,
so by (6) for every n < k the family
F(B,,GULUM) is (my,t,2~")-balanced. (7)

Since A, ,B, CF for n < k and G € F, for every A € B,, and s € {—1,1}"" we
have (s) N ANG,A\G € F. Hence by (4), (5) and Lemma 4.2.5

(sYNANG,(s)NA\G are (t,27™ " !)-semibalanced. (8)
Since (s) N A € F, by (3’) and (4")
(sYNMAN(LUM),(s)NnA\(LU M) are (t,2~™ " 1)-semibalanced. (9)

Since LNP=MNP =g and G C P, the sets LUM and G are disjoint, so by (8) and
(9) for AeB,,s e {-1,1}"

(syNAN(GULUM),(s)NA\(GULUM) are (t,27"""")-semibalanced.
By the above, (7) and Lemma 4.2.5
F(B,,GULUM) is (my,,2™")-balanced,

which shows (3) and completes the proof. O

4.4 Extensions of countable balanced Boolean algebras

In this section, we will show how to enlarge a given countable balanced Boolean algebra
B to a balanced Boolean algebra B*, so that (B, B*, v) satisfies the property (G*), where
v is a normal sequence of measures on B. We will also show how to deal with finitely

many measures simultaneously, which will be important in the forcing construction.

Lemma 4.4.1. (Folklore) Suppose K is a compact Hausdorff space with an open basis
B that is closed under finite unions. Let v € M(K) and let M C M(K) be a finite set
of measures such that v 1 for every i € M. Then for every e > 0 there is X € B such
that |v|(X) < € and for every i € M we have |a|(K\X) < ¢.

Proof. First, we will show that the lemma holds when M = {p}. Since v we have
|7|L|zz], so there exists a Borel support A of |f|, such that K \ A is a Borel support of
|7]. By the regularity there is closed B C A such that |g|(B) > |x|(K) —e. We can find
a closed set D C K \ B such that |7|(D) > |7|(K) — e. Note that |g|(D) < e. Since
U = K\ D is an open superset of B, there are finitely many sets By,... By € B,B; CU
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for i < k, which cover B. Let X = ,<; Bi. Note that |u|(X) > |g|(K) — €, and
X CK\D,so|V|(X)<eand |g|(K\X) <e.

When M = {1, ... in}, by the first part of the proof for each pair (v, j1;) where i < n
we can find X; € B such that [7[(X;) < £ and [@;[(K\X;) < &. Then for X = Uy, Xi
we have [7[(X) < e and |f;|(K\X) < £ <e. O

Lemma 4.4.2. (Pelczynski)/[74, Lemma 5.3] Let (Un)nen be a bounded sequence of
Radon measures on a compact space K. Suppose there are pairwise disjoint Borel sets
(En)nen and ¢ > 0 such that v,(E,) > ¢ for every n € N. Then for every § > 0 there is
a subsequence (U, )nen and a sequence of pairwise disjoint open sets (Uy)ren such that
U, (Ug) > ¢ — 9 for every k € N.

We will use the following application of the above lemma, in which K is the Stone

space of a Boolean algebra.

Corollary 4.4.3. Let (vn)nen be a sequence of measures on B and (Ey,)nen be a sequence
of disjoint Borel sets in St(B). Let P € B be such that E, N [P] = & for every n € N.
Let ¢,§ > 0. If |p|(Ey) > ¢ for every n € N, then there exist a subsequence (v, )keN
and a sequence (Vi )ren of pairwise disjoint elements of B such that Vi N P = & and
|Un, |(Vie) > ¢ — 6 for all k € N.

The next lemma will let us build an antichain needed to satisfy the property (G).

Lemma 4.4.4. Let v = (vp)nen be a normal sequence of measures on a Boolean algebra
B C Bor(C). Let M be a finite set of positive measures on B and assume that (|vy|)nen
has a subsequence pointwise convergent to a measure Voo € M. Let d € N and ¢ > 0.
Let P € B be such that

Voo (P) < 0.1.

Then there are Hy, Hi € B and a,b > d such that

(1) Hy, Hi, P are pairwise disjoint,
(2) Vpe M u(HopU Hy) < g,

(8) M(HoUH;y) < ¢,

(4) |val(Ho), |vs|(H1) = 0.9.

Proof. We may assume that A [ B € M, so it is enough to show (1), (2) and (4).

Since vy is the pointwise limit of a sequence of probability measures, we have
Voo(C) = 1, and s0 oo (C\P) > 0.9. Hence there is § > 0 such that for infinitely many
n € N we have

lun| (C\P) > 0.9 + 6.

Since (7p)nen has pairwise disjoint Borel supports, there are pairwise disjoint sets
(En)nen C Bor(C) such that

|Un| (En\[P]) > 0.9+ 0
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for infinitely many n € N. By Corollary 4.4.3 there is an antichain (V});ey € B and a
subsequence (v, )ien such that V; N P = & and |vy,,|(V;) > 0.9 for every | € N. Since

(V1)ien is an antichain, we have for every u € M
lim p(V;) = 0.
l—o0

In particular, if 1, l2 are big enough, then we have u(V;, UVi,) < ¢ for every u € M,
so it is enough to put a = ny,,b = ny,, Hy = V;,, H1 =V}, where [; # [ are so big that
min {ng,,n, } > max{d,n}.

O

In the next two lemmas we describe how to pick a sequence of sets, whose union will
be a witness for the property (G*) for a given sequence of measures.

For the purpose of the construction under CH, in the following lemma it is enough
to take M = {vo}. The case when M consists of more than one measure will be used

in Section 4.5.

Lemma 4.4.5. Suppose we are given:

(A) natural numbers k,d € N,
(B) subalgebras B*,B C Bor(C') and finite subalgebras B, CB for n < k+ 1 such that

e B is balanced,

+ Clop(C) CB* C B,

(C) a normal sequence of measures (Vp)nen on B* and a finite set M of probability
measures on B* such that (|vn|)nen has a subsequence pointwise convergent to a
measure Voo € M,

(D) a strictly increasing sequence of natural numbers (my)n<k and sets G, H € B* such
that

o Vn <k F(B,, @) is (my,27"™)-balanced,
e VueM p(GUH)<0.1.

Then there are a,b > d;myy1 € N; G, Hy, H; € B* such that:

(1) mpy1 > my,

(2) Vn < k+1 FB,, GUG) is (myn,2")-balanced,
(8) Vue M un(GUG'UH U HyU Hy) < 0.1,

(4) H, Hy, Hy are pairwise disjoint,

(5) G N(GUHUH),) =2,

(6) GN(HyUH,) =2,

(1) Ival (Ho), Il (H) > 0.9,

(8) |va(G' N Hyp)| > 0.3.

Proof. Let E be the subalgebra of B generated by Bj1 U {G, H}. Since B is balanced,
by Remark 4.2.4 there is mg1 € N, mypy1 > my such that

. 1
E is (mkH, 2k:+1) -balanced.
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In particular,

o 1
F(Bi+1,G) is (mkH, 2k+1> -balanced. (9)
Put
=0.1— GUH).
3 max 1( ) (10)

For every u € M consider its Lebesgue decomposition (see [114, Theorem 6.10])
W= p1 + po, where pu; < A and po L. (11)
In particular (by [114, Theorem 6.11]) there is n > 0 such that
Yu e MVYAEB* MNA) <n = ui(A) < &/4. (12)

By (9), the first part of (D) and Proposition 4.3.8 (applied to P = GUH,G= C:')
there is # > 0 such that whenever L,Q € B* and max{A(L),\(Q)} < 6, there is
M1, q) € B* such that:

(13) ML N(GUHUQ) =2,
(14) A (M(LQ)) <mn,
(15) Vn < k+1F (IB%n, GULU M(L7Q)) is (my,,27")-balanced.

By (11) and Lemma 4.4.1 there is X € B* such that for every u € M
AX) < 0,p2(C\X) < £/4. (16)

By Lemma 4.4.4 (applied to ¢ = min {6 — A\(X),£/4}, P = GU H) there are a,b > d
and Hy, Hy € B* such that

A(Ho U Hy UX) <0,

.« Yue M p(HyU Hy) < £/4,

« HyNH, = (HyUH))N(GUH) =2,
|va|(Ho), |vp|(H1) > 0.9.

Let L € B* be such that
L C Hp and |vg(L)| > 0.3. (17)
Let M = M, gun,ux)- Then, in particular,
MN(XUHUGUHy UH,) =o. (18)

We put G’ = LU M.

We need to verify that these definitions satisfy conditions (1)-(8).
(1) follows directly from the choice of mg1. (2) follows from ((15)).
For (3) fix any u € M. By (12) and ((14)) we have

(M) < &/4.
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By (16) and (18) we have
ua(M) < €/4.

By (17)
u(L) < &/4.

Hence
() = u(M) + (L) = pa (M) + o (M) + (L) < 3¢/4.

Finally, from (10) we get
w(GUG'UHUHyUH,) = w(GUH) + u(G') + u(Ho U Hy) < 0.1 — € +36/4+6/4 = 0.1,

Conditions (4)-(7) follow directly from the choice of a, b, Hy, H1, G'.
(8) follows from (17) and the fact that G’ N Hp = L. O

Lemma 4.4.6. Let B* C B C Bor(C) be balanced countable Boolean algebras and
suppose that (Vp)nen is a normal sequence of measures on B*.

Then there exists a balanced countable Boolean algebra B' C Bor(C') such that B C B’
and (B*,B', (vn)nen) satisfies (G*).

Proof. Since B* is countable, the dual ball in C'(St(B*)) is metrizable and by the Banach-
Alaoglu theorem it is compact in the weak™ topology. Hence there is a subsequence
(I7n), Dnen of (|Un])nen that converges to a measure Vs in the weak* topology. In
particular, (|, |)nen is pointwise convergent to Veo.

Let us represent B as an increasing union of finite subalgebras

B = | Bn.
neN

Using Lemma 4.4.5 we construct by induction on k € N sequences (mg)ken, (ak)ken,
(bk)ken € N and (Gi)ken, (HY)ken, (HY)gen € B* such that

(mg)ken, (ar)ken, (bk)ken are strictly increasing,

2) Vk € NVn <k F (By,Ujcy Gi) is (mn, 27")-balanced,
3) Vk € N vag (Uner(Gn U HE UHT)) < 0.1,

{HE, HF } ey are pairwise disjoint,

(1)
(2)
(3)
(4)
(5) {Gk}ren are pairwise disjoint,
(6) Gy NH+# @ if and only if i = 0 and n = &,

(7) Vk €N |va|(HE), [vo, | (HT) = 0.9,

(8) Vk €N |1y, (G, N HE)| > 0.3.

Let k € NU {0} and suppose we have constructed (mp)n<k, (@n)n<k, (bn)n<k, (Gn)n<k,
(HY )n<ks (HT)n<k (if £ =0, then we assume that all of these sequences are empty). We
apply Lemma 4.4.5 to M = {voo}, G = Ui<k Gi, H= Ui<r(H{UH?) and d = max{a, by, }
(or G=H=goandd=1,if k= 0) to obtain mgy1, akr1 = a, b1 = b, Gy = G,
HY™ = Hy, HF! = Hy satisfying (1)-(8).
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Let
G = U G,

neN
and let B’ be the Boolean algebra generated by B U {G}. By (2) and Lemma 4.3.7 B’
is balanced. To see that (B*,B’, (v,)nen) satisfies (G*) we notice that by (6) for every
n € N we have G N H! = G, N H for 1 = 0,1, and so

o |Va, (GNHY)| = |va, (Gn N HF)| > 0.3,
e GNH} =2,
which together with (7) and (8) shows that the conditions (a)-(d) of Definition 4.2.14

are satisfied and it completes the proof. O

Properties of measures on a Boolean algebra A such as norm or disjointness of Borel
supports depend only on countably many elements of A. In particular, the following

lemma holds.

Lemma 4.4.7. LetB = |

Boolean algebras. Let (vy,)nen be a normal sequence of measures on B. Then there exists

a<w, Ba, where (By)a<w, is an increasing sequence of countable

a < wy such that for every B > o the sequence (v [ Bg)nen is normal.

The next theorem shows how to construct a Boolean algebra with the Grothendieck

property and without the Nikodym property under CH.

Theorem 4.4.8. (Talagrand, [128]) Assume CH. There exists a Boolean algebra with
the Grothendieck property, but without the Nikodym property.

Proof. By Proposition 4.2.8 and Proposition 4.2.13 it is enough to construct a balanced
Boolean algebra B C Bor(C') satisfying (G). We will define B as a union of a sequence of
countable subalgebras (Bg)a<w, of Bor(C'), which is constructed by induction.

First, using CH we fix an enumeration
a *
(v, Ba)a<w

of all pairs such that each B} is a countable subalgebra of Bor(C) and v* = (V) nen is
a normal sequence of measures on B},. We also require each such pair to appear cofinaly
often in the sequence (v%,B%)q<w, -

Successor stage: Suppose we have constructed B,. If B}, is not a subalgebra of B,,
then we put Byy; = B,. If B}, C B,, then by Lemma 4.4.6 there is a balanced Boolean
algebra B’ O B, such that (B}, B’, v®) satisfies (G*). We put By41 = B'.

If v is a limit ordinal then we put By = ;< Ba.

We will prove that B = U,

to show that for every normal sequence (vp,)nen of measures on B there is § < w; such

B, satisfies (G). By Proposition 4.2.15 it is enough

that the sequence (v, [ Bg)nen is normal and (Bg, B, (v, | Bg)nen) satisfies (G*). By
Lemma 4.4.7 there is a < wy such that for every 8 > « the sequence (v, [ Bg)nen is
normal. To finish the proof, pick 5 > « such that B3 = Bo C Bg and v =v | B, and
notice that by the construction (EE7BB+17 (vn | IB%?;)neN) satisfies (G*), which implies
that (Bg, B, (vn | Bg)nen) satisfies (G*). O
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4.5 Forcing

For the purpose of this section we identify Borel subsets of C' with their codes (with
respect to some absolute coding, see [69, Section 25]) i.e. whenever we say about the
same Borel sets in different models of ZFC we mean Borel sets coded by the same code.
If ¢ > wy, then the method from the previous section does not work, since it requires
extending a given Boolean algebra ¢ many times, while this method does not allow us
to enlarge uncountable Boolean algebras keeping them balanced. Instead, we define a
notion of forcing that adds to a given balanced algebra B a witness for (G*) for many
sequences of measures (chosen by a generic filter) on B simultaneously. However, it is
not possible to pick one extension that is suitable for every sequence, so we will iterate

wi such forcings and the final Boolean algebra will have cardinality w; < .

Definition 4.5.1. Let B C Bor(C) be a balanced countable Boolean algebra containing
Clop(C') and fix a representation B = |J,,cny By, where (B,,),en is an increasing sequence
of finite subalgebras of B. We define a forcing notion Py consisting of conditions of the

form

= (KP, (m])n<kr, (GE ) n<kr, (HE ) n<ir, MP),

(1)
(2) (mP)p<kr is a strictly increasing sequence of natural numbers,

(3) MP is a finite set of probability measures on B such that A [ B € MP,
(4)

(GP)p<ke and (HP),<» are sequences of elements of B such that

(1) GENGP = HP N HP = GENHP = & for n # 1,
(2) ( weiw(Gh U HE)) < 0.1 for all jr € MP,
(3) F (IB%n, Ui<kr G ) is (my,,27")—balanced for n < kP.

We put g < p, if

. k9> kP,

e mi =mb for n <KP,
e G =GP forn < kP,
o H1=HP for n < kP,
e M2 MP.

Lemma 4.5.2. Py is o-centered. In particular, Py satisfies c.c.c.

Proof. For p € Py define
f(p) = (K, (m})n<ir, (GF)n<kr, (HY )n<kr)-

If f(p) = f(q), then r < p,q and f(r) = f(p) = f(q), where

= (KP, (mb)n<kr, (GE)n<ir, (HE) n<pr, MP UMT) € Pp.
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In particular, for every x € f[Pg] the set f~!(x) is directed. Since B is countable,
f[Pg] is also countable, so Pp is a union of countably many directed sets. Hence Pg is

o-centered. O
The next few lemmas concern the basic properties of Pg.
Lemma 4.5.3. Let p € Py and k > kP. Then there is q € Pg,q < p such that k9 = k.

Proof. 1t is enough to show that there is such ¢ for k = kP + 1 and apply an inductive
argument. For this put G = Un<kr Ghs H= Un<ge HE. Since A | B, by the condition
(4c) of Definition 4.5.1 we have A(C\(G' U H)) > 0. Hence there is a normal sequence
(Un)nen of measures on B, whose supports are included in C\(G U H). We may also
assume that (|vy|)nen is pointwise convergent to a probability measure v4,. In particular,
we have

Voo (GUH) = lim lun|(GU H) = 0.

Let M = MP U {v}. By Lemma 4.4.5 there are m > myr and G’, Hy € B such that
q= (k, ((mﬁ)nﬁkpv m)? ((Gg)ngk% Gl)? ((Hg)nﬁkp7 HO)? Mp) € Pp.
We have ¢ < p. ]

Definition 4.5.4. Let us introduce the following notation for a balanced Boolean algebra
B C Bor(C') containing Clop(C'):

« G denotes the canonical name for a generic filter in Pg,

e Gisa Pg-name such that

PplFG= |J &%,
pEG,nEN

o B’ denotes a Pg-name such that
Pg IF B is the subalgebra of Bor(C) generated by B U {G},
e H , H,, for n € N denote Pg-names such that
Pg IF H = (H,)neny and Yn e N 3p € G H,, = HP.
Lemma 4.5.5. Let n € N and p € Py be such that kP > n. Then
Py l-GNH, B

and
plFGNH, =GN HP.
Proof. By the definitions of G, H,, and by (4a) from Definition 4.5.1 we have
Pgl-GNH,= |J GInHI= ] GinHL

q€G,leN qeG
ki>n,l ki1>n
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If ¢ and r are compatible and k%, k" > n, then G = G}, and H? = H, so the last union

above is in fact a union of one-element family consisting of a set from B. In particular,
PglFGNH, B

and
Pgl-peG = GNH,=GNH?
or equivalently
pl-GNH,=G:nH?.
O

In the following lemma we will make use of Lemma 4.4.5 in the case when M consists
of many probability measures. This is where the differences between our approach and

that of work [128] are crucial.

Lemma 4.5.6. Let B C Bor(C) be a balanced Boolean algebra containing Clop(C'). Let
p € Pg and v = (Vn)nen be a normal sequence of measures on B such that the sequence

(|vn|)nen is pointwise convergent on B to a measure voo € MP. Then

(1) plF Yk e N 3n,l >k |o,|(H;) > 0.9 and |7,(G N H;)| > 0.3,
(2) pl-Vk €N 3n,l >k |9,|(H;) > 0.9 and GN H = @

Proof. In the light of Lemma 4.5.5 it is enough to show that the sets
Dy ={q €Pp: k7> k,3In >k |v,|(H],) > 0.9 and |v,,(G}, N HY,)| > 0.3}

and
By ={q€Pg:k?>k,In>k |v,|(H{,) > 0.9 and G}, N H], = &}

are dense below p for every k € N.

First, we will show that Dy is dense below p. Pick any » < p. By Lemma 4.5.3 we
may assume that k" > k.

We apply Lemma 4.4.5 to M = M",G = Ui<kr Gr H = Ui<kr H] and d = k to
obtain m = myry1, a >k, G', Hy so that the conditions (1)-(8) from Lemma 4.4.5 are

satisfied. In particular:

(a) m > myr,

(b) G'NGI=HyNH =G NH =@ fori<k",

(c) ,u( i<k G’”UH’”)UG’UHO) < 0.1 for all p e M",

(d) F (]Bn, Ui<kr GT U G’) is (my,, 27 ")—balanced for n < k" + 1,
(e) |va|(Hp) > 0.9,

(6) |val(C' 1 Ho)| > 03,

It follows from (a)-(d) that

q= (K" +1,((m])ickr,m), (G})i<kr, G"), (H] )i<kr, Ho), M") € Py



88 4. Grothendieck vs Nikodym

and from (e), (f) that ¢ € Dy.
We show the density of E; in a similar way: the difference is that instead of Hy we
pick Hy such that

o |v,|(Hy) > 0.9,
e @'NH =02.

Directly from Lemma 4.5.5, Lemma 4.5.6 and Definition 4.2.14 we obtain

Proposition 4.5.7. Let B C Bor(C) be a balanced Boolean algebra that contains
Clop(C). Let p € P and v = (Vp)nen be a normal sequence of measures on B such that
the sequence (|vn|)nen is pointwise convergent to a measure Vso. Suppose that ve, € MP.
Then

plk (B, B, D) satisfies (G*).

Proposition 4.5.8. Suppose that B C Bor(C) is a balanced countable Boolean algebra
containing Clop(C). Then
Pg I B is balanced.

Proof. Since the property of being balanced is absolute between transitive models of
ZFC
VP = B is balanced.

In V2 for every n € N we define G,, = G?, for some p € G such that k” > n. Then
B’ is the Boolean algebra generated by B U {G}, where G = |J,,cy Gn- By Definition
4.5.1(4a,4c) the hypothesis of Lemma 4.3.7 is satisfied and so B’ is balanced. O

Definition 4.5.9. We define an iteration (P )<y, with finite supports and P,-names

B, for every a < w; by induction in the following way:

o Py is the trivial forcing and By = Clop(C),

e having constructed P, and IB%a we define
Pyt =Py IPBQ
and we pick a P,yi1-name Ba+1 such that
Poy1 IF Bay1 = B,

o if v is a limit ordinal, then we define P, as the iteration of (Pq)a< with finite

supports and we pick Ev so that
Py kB, = J Ba
a<y

We will identify each P, with the subset of PP,,, consisting of those p € Py, for which
p(B) = 1p for all § > «, where 1g denotes the maximal element of PEB'
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Lemma 4.5.10. P, is o-centered. In particular, P, satisfies c.c.c.

Proof. This follows from Lemma 4.5.2 and the fact that a finite support iteration of

length wy of o-centered forcings is o-centered [129, proof of Lemma 2]. O

Since P, satisfies c.c.c. the standard closure argument shows the following (cf. [40,
Lemma 5.3])

Lemma 4.5.11. Let v = (y)nen be a sequence such that
Py, IF (In)nen is a sequence of measures on Bwl.

Let
Cy={a<w P, IFv|B, eV}

Then Cy, is a closed and unbounded subset of wi.
Proposition 4.5.12. P,,, I+ By, is balanced and satisfies (G).

Proof. The fact that Py, I B,, is balanced follows directly from Proposition 4.5.8 and
the fact that increasing unions of balanced Boolean algebras are balanced.
To prove the second part of the proposition, by Proposition 4.2.15 it is enough to

show that for every sequence (i, )nen such that
Py, IF (n)nen is a normal sequence of measures on Bwl

we have

Py, IF Jacw, (Ba, By, | By) satisfies (G*).

Pick any p € P,,,. By Lemma 4.4.7 there is a; < w; and p; < p such that for every
B>
p1 IF (o, TBﬁ)neN is normal.

By Lemma 4.5.11 there are: 3 € Cy such that a1 < 3, p1 € VF8 and Pg-names e 7
for n € N such that

Pﬂ I 1‘/5 = (’)g)nEN = (Dn rﬁﬂ)nEN-
Without loss of generality by passing to a subsequence we may assume that there is g

such that

Ps I (|72])nen is pointwise convergent to a measure Uo.

Since p1(B) = 1g, there is po < p; such that
p2 | BIF e € MP2B).
By Proposition 4.5.7 we have
pa IF (B, Bai1,”) satisfies (G*)

and hence
p2 IF Jocwy (Iﬁ%a,]ﬂ%wl,z'/ [IB%Q) satisfies (G*)

which completes the proof. O
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In particular, by Proposition 4.2.8 and Proposition 4.2.13 we obtain

Corollary 4.5.13. P, IF there is a Boolean algebra of size wy with the Grothendieck
property but without the Nikodym property.

The existence of a Boolean algebra with the Grothendieck property of small cardinality
has influence on certain cardinal characteristics of the continuum. Below p denotes the
pseudointersection number, s is the splitting number and cov(M) is the covering number

of the ideal of meager sets in R.
Corollary 4.5.14. P, IFp =5 = cov(M) = w;.

Proof. Apply [122, Corollary 4.3]. O

Theorem 4.5.15. [t is consistent with ~CH that there is a Boolean algebra of size wq

with the Grothendieck property but without the Nikodym property.

Proof. Start with a model V' of ZFC satisfying ~CH. Since P,,, is o-centered, it preserves

cardinals and the value of the continuum, so we have
VB Ee=¢" > w =w.

By Corollary 4.5.13 in VF«1 there is a Boolean algebra with the Grothendieck property,
but without the Nikodym property. O

4.6 Final remarks

Let us start with a comment concerning differences between the original Talagrand’s
contruction and our approach. To obtain the Grothendieck property, Talagrand uses CH
to enumerate (in a sequence of length w;) all normalized sequences (v, )nen of measures
on countable subalgebras of Borel subsets of the Cantor set, for which there exists an
antichain (H,,)nen such that |vy,|(H,) > 0.95. Then for each such sequence he constructs
another antichain (G )nen satisfying the hypothesis of Lemma 4.3.7, such that for
G = U,en G we have

e V(G N Hy)| > 0.4 for infinitely many n € N,
e |vp(GN Hy)| < 0.1 for infinitely many n € N.

It follows that extending a given Boolean algebra with G keeps it balanced, and in the
extension the sequence (v, )nen satisfies a property similar to (G*) from Definition 4.2.14.
Thus, the final algebra has the Grothendieck property and does not have the Nikodym
property. The same approach was used in [125].

However, this technique applies only when we work with one sequence of measures at
a time. In our method, we construct a suitable antichain (H,),en along with (Gy,)nen,
which allows us to pick both the antichains in a generic way, making them working for
uncountably many sequences of measures simultaneously.

The method of construction we have described relies strongly on the fact that the

Boolean algebras we extend are countable.
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Question 4.6.1. Let B C Bor(C) be a balanced Boolean algebra of cardinality < ¢ and
v be a normal sequence of measures on B.
Does there exist a balanced Boolean algebra B C B’ C Bor(C) such that (B,B',v)

satisfies (G*)?

Positive answer for the above question would allow us to construct (by induction of
length ¢) a balanced Boolean algebra of size ¢. Thus, it would imply the positive answer

for the following question:

Question 4.6.2. Is there (in ZFC) a balanced Boolean algebra with the Grothendieck
property?

One may look for candidates for Boolean algebras with the Grothendieck and without

Nikodym property among maximal balanced Boolean algebras.

Question 4.6.3. Let B C Bor(C') be a maximal balanced Boolean algebra. Does B have
the Grothendieck property?






Chapter 5

The Calkin algebra in the Cohen

model

5.1 Introduction

By the classical Parovicenko theorem CH implies that every compact space of cardinality
at most ¢ is a continuous image of the remainder N* = AN\N of the Stone-Cech
compactification of the natural numbers. It follows that every space of type C'(K) of
density at most ¢ embeds into ¢ /cy = C(N*) as a C*-algebra. It is also well-known
that under CH the Banach space £ /cq is isometrically universal in the class of Banach
spaces of density at most ¢. On the other hand, due to a result of Brech and Koszmider
[20], none of the above statements holds in the Cohen model®.

For a separable Hilbert space H we denote by B(H) the C*-algebra of all bounded
operators on H and by K(H) the ideal of B(H) consisting of compact operators. The
quotient Q(H) = B(H)/K(H) is called the Calkin algebra and is considered to be the
non-commutative analogue of N* and ¢, /co (see [42, 43, 136]). In this chapter we will
focus on possible embeddings of C*-algebras of density ¢ into Q(¢2).

*-isomorphic copy of every separable C*-

It is well-known that Q(¢3) contains a
algebra. Under MA every C*-algebra of density strictly smaller than ¢ embeds into
Q(¢s) [47, Corollary C]. In [46] the authors proved that assuming CH the C*-algebra
Q(¥2) is c-universal (i.e. the density of Q(¢f2) equals ¢ and every C*-algebra of density at
most ¢ embeds into Q(¢2)). Vaccaro showed that if we assume OCA, then the class of
C*-algebras that embed into Q(¢2) is not closed under tensor products [133, Theorem
1.2], which implies that Q(¢2) is not c-universal. In the Cohen model, by another result
of Vaccaro [131, Corollary 2.5.5], in Q(¢2) there is no well-ordered strictly increasing
sequence of projections of length ws. Hence the abelian algebra generated by such a
sequence of projections does not embed into Q(f2), though its density equals wy < c.
It follows, that Q(¢2) is not c-universal in the Cohen model. Among other results, it

is worth mentioning that PFA implies that there exists a c-universal C*-algebra, while

! By the Cohen model we mean a model obtained from a model of CH by adding w2 Cohen reals.

93
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Q({2) is not c-universal, and it is consistent that there is no c-universal C*-algebra [46,
Corollary 3.2].

We will focus on the ¢-sum of infinitely many copies of the Calkin algebra i.e. the
algebra £, (Q(¢2)) consisting of bounded (in norm) sequences of elements of Q(¢2) with

pointwise multiplication and the norm given by

[[(@n)nenl| = sup [|lzn|-
neN

Our main result consists of a proof that in the Cohen model £, (Q(¢2)) is not isomorphic
to a *-subalgebra of Q(¢2) (which in particular gives another proof that Q(¢2) is not
c-universal in the Cohen model). Note that this is not covered by the mentioned result of
Vaccaro, since every strictly increasing well-ordered sequence of length we of projections
in £,(Q(¢2)) induces a strictly increasing sequence of projections in Q(¢2) of length
wo (namely, if (p®)q<w, IS a strictly increasing sequence of projections in o (Q(42)),
then p* = (p&)nen, where (p)a<w, 1S an increasing sequence of projections in Q(¢2) for

n € N, and there is n € N such that (p%)4<y, has we distinct values).

Our result may be seen as a non-commutative version of a theorem of [20], which says
that in the Cohen model £ (¢~ /cp) cannot be included isomorphically into £ /co as a
Banach space. On the other hand, CH implies that the Banach spaces £ (¢x/co) and
l~o/ o are isomorphic (this fact was proved by Drewnowski and Roberts and used to obtain
the primariness of the space o, /co under CH [37, Thoeorem 3.3]). The construction
of this isomorphism strongly relies on the result of Negrepontis that assuming CH the
closure of non-empty open F, subset of N* = SN\N is a retract of N* [97, Corollary 3.2].
It is not clear whether a non-commutative version of the Negrepontis theorem holds
under CH.

In [44] Farah compares the Calkin algebra with some coronas of the form Q(A®RK(f2)).
In particular, he shows that Q(¢3) is not isomorphic to the corona of the stabilization of
the Cuntz algebra i.e. Q(Os ® K(¢2)), though these algebras are not distinguishable
from the K-theoretical point of view. The problem of the existence of such isomorphisms
is important, since they may induce K-theory reversing automorphisms of Q(¢3) (such
automorphisms are not known to exist consistently). We apply the result about the
non-existence of an embedding of £, (Q(¢2)) into Q(¢2) to show that in the Cohen model
Q(¥2) is not isomorphic to Q(Q(¢2) ® K(¢2)). This should be compared with the fact that
the Banach spaces (oo ({oo/c0)/c0(lso/co) and log/co are not isomorphic in the Cohen
model [20], while they are isomorphic, if we assume CH [37, Proposition 4.4]. It is not
clear, whether this result does not follow from other known facts concerning rigidity of
Q(ly) (cf. [45, 132, 135]).
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5.2 Preliminaries

5.2.1 Operators on separable Hilbert spaces

Throughout the chapter by f2 we mean the separable complex Hilbert space consisting
of square-summable sequences (ay),en of complex numbers with the standard inner
product ((an)nen, (bn)neN) = 2nZy @nbn.

Recall that an element p of a C*-algebra A is a projection, if p = p? = p*. If
P € B({3), then P is a projection if and only if it is an orthogonal projection onto a
subspace of £5. On the set of all projections Proj(A) on A we introduce the ordering
given by p < ¢ if and only if p¢ = p. For P, R € Proj(B(f2)) we denote P <X Q, if
PQ— P € K(f3). Note that P <! @ if and only if 7(P) < 7(Q), where 7: B(f2) — Q(f2)

is the canonical quotient map.

Definition 5.2.1. Given an orthonormal sequence (ey)nen in £o we denote by E™ the

projection onto the closed subspace of ¢o spanned by (€;)i>n.
The following lemma follows from the proof of [23, Theorem I1.4.4].
Lemma 5.2.2. Let K € K(¢3). Let (en)nen be an orthonormal basis of £2. Then
lim [ KE®|| = lim |E@K] =o.

Lemma 5.2.3. Let K € K({3) and € > 0. Let (en)nen be an orthonormal basis of {s.
Suppose v, € B({3) for n € N are such that

1
vl € [1,1 4 €) and ||v, — E™ (v,)] < e
Then || K (vy)|| < € for large enough n € N.
Proof. By Lemma 5.2.2 we have lim,, o, | K E™n| = 0. Hence

1 n
1K (o)l = 1K (v = B (va)) + KE™ (v,)|| < SIEl+ A+ e)|| K ™| === 0.
O

5.2.2 Embedding cy(c) and (. (co(c))

For a set A by cp(A) we mean the algebra of (complex) sequences on A converging to
0 (i-e. (aa)aca € co(A), if for every € > 0 the set {a € A : |ay| < €} is finite) with
pointwise multiplication and the supremum norm. We put (aa)ic s = (@a)aca. If Ais
a C*-algebra, then (. (A) denotes the C*-algebra of bounded (in norm) sequences of
elements of A and cy(.A) denotes the subalgebra of /o (A) of sequences converging to 0
in norm.

We will need two lemmas on embedding co(¢) and £ (co(c)). Suitable embeddings are
described in [20, proofs of implications (b) — (¢) and (¢) — (e)] (those embeddings are

considered in the category of Banach spaces, but the same arguments give *-embeddings).
Lemma 5.2.4. There is a *-embedding of co(c) into log/co.

Lemma 5.2.5. There is a *~embedding of {o(co(c)) into oo (loo/co)/co(loo/co)-
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5.2.3 Set theory

In this chapter V' will denote a universe of sets satisfying CH and P will denote the

Cohen forcing adding wo reals i.e.

P = {p: dom(p) — {0,1} : dom(p) € [w2]~*}
with the ordering given by ¢ < p if and only if ¢ 2 p.

Definition 5.2.6. Let o: wy — wy be a permutation. We define the lifting of o as
the automorphism o: P — P given by o(p)(o(z)) = p(z) for p € P,z € dom(p). If
& = {(9;,p;) : i € I} is a P-name, then we denote o(&) = {(o(¢;),0(p;)) : i € I} (cf. [69,
p. 221)).

Note that if  is the canonical name for x € V', then for any permutation o: wo — wo

we have o(Z) = Z.

Definition 5.2.7. Let 0: ws — w2 be a permutation such that o[S1] = Sz, where
S1, 52 C wy. We say that p € P is (o, 51, S2)-symmetric, if o(p [ S1) =p | Sa.

Lemma 5.2.8. Let 51,52 C we and suppose o: wy — ws s a permutation such that
o[S1] = S2 and o | S1 N Sy = Id. Suppose p € P is (o, S1,S2)-symmetric and ¢ < p is
such that (dom(q)\dom(p)) N So C Sy. Let

r=qUoao(q | Sy).
Then r € P is a (0,51, S2)-symmetric condition.

Proof. First, note that r € P since if & € dom(g)Ndom(c (g | S1)), then either o € S1N.So
(and r(«) is well-defined by the hypothesis that o [ S; NSy = Id) or a € dom(p) N Sy,
and so r(«) is well-defined by the symmetry of p.

Now we will show that r is (o, S1,S2)-symmetric. It is clear from the definition
that supp(o(r [ S1)) = supp(r | S2). Fix a € dom(r) N S;. If & € dom(p), then
o(r)(a) = r(o(a)) by the symmetry of p. If a € dom(q)\dom(p), then we have
o(r)(a) = r(o(a)) from the equality defining r. O

Let us recall the definition of a nice name.

Definition 5.2.9. A P-name X is a nice name for a subset of M € V., if it is of the form
X = Uperr{m} x A, where each A,, is an antichain in P. The set {J,,c s Upea,, dom(p)
is called the support of X and is denoted by supp(X).

Note that since P satisfies c.c.c. every nice name for a subset of N has a countable

support.

Remark 5.2.10. If h is a nice name such that

PIF h: N = N is a function,
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then for every p € P and n € N there is ¢ < p and m € N such that

qIFh(n)=m

and dom(q)\dom(p) C supp(h).
We will need some basic facts concerning A-systems.

Definition 5.2.11. We say that a family of sets A is a A-system with root A, if for
every A, B € A we have AN B = A whenever A # B.

Lemma 5.2.12. [69, Theorem 9.19] Assume CH. Then for every family of countable
sets A of cardinality we there is a A-system B C A with |B| = ws.

Lemma 5.2.13. Assume CH. Suppose (Sa)a<w, S a sequence of pairwise disjoint
countable subsets of wy and (Ry)a<w, i a sequence of countable subsets of wy. Then

there are £, < wa such that £ #n and
S&ﬁRn:SnﬂRézg.

Proof. By Lemma 5.2.12 there is A € [wy]*? such that (R¢)eca is a A-system with root
A. The set A is countable, so there is B € [A]“? such that S¢e N A = @ for £ € B.
Pick any £ € B. Since R is countable, there is C' € [B]*? such that S, N R¢ = @ for
n € C. Since S¢ is countable and the sets (R, \A),cc are pairwise disjoint, we can pick
n € C\{¢{} such that Se N (R,\A) = @. It follows that S¢ " R, = @. O

Lemma 5.2.14. Suppose Ay, € [w2]“?, Spo € [we]” forn € N,a < wy are such that for
every n € N the family (Sn.a)aca, s a A-system with root A,,. Assume that for each
a € A, we have AN Sy o = Ay, where A =, ey An. Then for every § < wy there is
ve € WY such that

(a) v¢(n) € Ay, forn €N,
(b) for distinct ({,n),(n,m) € wa x N we have

(Sn,”/g(n)\An) N (Sm,%,(m)\Am) =4,

(C) 7£m7n:@f0T§777<W27§7é77'

Proof. We construct (y¢)e<w, by induction on & < wy and n € N. Fix £ < wp and n € N.

Suppose we have constructed v, for n < § and v¢(m) for m <n. Put § = sup ~,(n)
n<&,neN
and observe that |A,\(0 + 1)| = wa. The set

B= U Snam\A
(7,m)<iex(&m)
has cardinality at most w; and the family (S), o \A)a<w, consists of non-empty pairwise
disjoint sets, so there is § € A, \(d + 1) such that S, s N B = &. We put v¢(n) = 3. It

follows directly from the construction that the conditions (a)-(c) are satisfied. O
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5.3 Embedding /,-sums into the Calkin algebra

Every sequence of vectors in £5 is a sequence of sequences of complex numbers, and
every complex number is a pair of real numbers. Thus, by the standard argument we
may choose bijections defined in an absolute way, that identify the sets £ ~ (CNM)N ~
RY ~ NN ~ P(N). We will use such identification in the context of names for sequences
of vectors - in particular, under such identification, every v € (ZQ)N in V¥ is named by a

nice P-name ¢ in V. Since P is c.c.c. the support supp(?) is countable.

Lemma 5.3.1. Assume CH. Suppose A € [wa]“?, {Sa}aca is a A-system of distinct
countable sets with root A and for every a < wy we are given a nice P-name v, for
a sequence of vectors in ly such that supp(va) C Sa. Then there is C € [A]“? and

permutations 0q 5: w2 — wa such that

_ —1
° o-a75 - O‘,B,Cl{

o 04,8[Sa] = S,
e 0o | A=1d,

o 04,8(0a) =03
forall a, B € Cia # 5.

Proof. Without loss of generality we may assume that each S, is infinite. For each
a € A choose a permutation o, : wy — wy such that 04[Se] =Nand o [ A =05 [ A
for all a, 8 € A. Then for every o € N the name 0,(79,) is a nice P-name with the
support included in N. By CH there is only w; such names, so there is C' € [A]*“? such
that 04(0q) = og(vg) for o, € C. For o, € C,a < (B let 048 = aglaa. Then
00,8(0a) = O'EIO'Q(@OJ = 05105(05) =03 for o, f € C. Since 0, | A = 0g [ A we have
oap | A=1Id. If a > (3, then we define 0,3 = agé. O

Proposition 5.3.2. Suppose in the Cohen model VT we are given non-compact projec-
tions (Epa : (n,a) € N X ws) and (B, : v € wY) in B({l2) such that if v(n) = «, then
E, o <k B,. Then there are disjoint 1,72 € WY such that B,, B,, is non-compact.

Proof. For simplicity of the notation put € = 1/100. Denote by F' the subset of (o
consisting of all sequences of the form (a,, + ib,)nen, where a,, b, € Q are non-zero only
for finitely many n € N. Observe that F' is a countable dense subset of /5.

In V, for (n,a) € N x wy and v € w) let B, o, B, be P-names such that

e PIF E'nyoé and By are non-compact projections in B(¢s),
e if y(n) = a, then PI- B, , <* B,

For (n,a) € N X wy let é, o be a nice P-name for a countable sequence of vectors
from ¢5 and for [ € N let Eg)a be P-names such that

o PIFé,,4 is an orthonormal basis of En,a[&],

e PIF Eq(zl)a is the projection onto the closed subspace spanned by (é,,4/(%))i>i.
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In particular, P I+ E,W = Er(Ll()l
Since F' is dense in f3, for each (n,«) € N X wy there is a nice P-name v, o for a

countable sequence of vectors such that for every [ € N

1

5" (1)

Pl ona(l) € F, [[tna()ll € (1,14 €), [0n,a(l) = énaDll < o

Hence

P I om0 (1) = EQa(Bna()] < linal) = éna® + 1B (0na(l) = énaD)l < 7. (2)

For n € N, o € wy put

Sma = Supp(éma) U Supp(i)n,a).

Consider partition wy = U, ¢, Bn, where |B,| = wy and (By,)ne,, are pairwise disjoint.
Each S, is countable, so by Lemma 5.2.12, for each n € w there is a set A,, € [B,]*?
such that (Spa)aca, is a A-system with root A,. The set A =
so by a further thinning out of each A,, we may assume that for every a € A,, we have
ANSya = Ay

By Lemma 5.3.1 we may also assume that for each n € N and «, 5 € A,, there is a

new Ap is countable,

permutation oy, o g: w2 — wo such that

_ -1
* Onap = Un,,B,a’

d Jn[Sn,a] = Sn,,8>
® On,a,p I A, = Id,

® O-n7a)18(én7a) = én’ﬂ'
By Lemma 5.2.14 for every § < ws there is v¢ € wh such that

(a) ve(n) € Ay for n € N,
(b) for distinct (&, n), (n,m) € wa x N we have

( n,ye(n) \A ) ( myyn(m) \A ) a,

(¢) e Ny = for §,n <wa, & # .

For n € N, & < wo let Kn,§7 Ln7§ be such P-names that

Pl K, =E ~ By Boes Lnig = By

e (n) B

Ve - B%Enﬁg(n)'

Since P IF E,, <k B% we have

P I+ an is compact
and since P I- L, ¢ = (K,¢)*, we get that

P I+ ng is compact.
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By Lemma 5.2.2 there is a nice P-name hg such that

Pl he: N — N and V(n,a) € 3¢ VI > he(n)
l
1B o Kngll <& l|Ln B

n,7e(n n,ve(n)

3)

| <e.

Let Re = supp(he) and Sg = Upe, (S nve(n) \An). By (b) the sequence (S¢)e<w, consists

of pairwise disjoint subsets of ws. Since each S, is countable, S¢ is also countable

e(n)
for £ < wo.

By Lemma 5.2.13 there are &, < ws such that & # n and
S¢eNRy=5NR: =02
We will show that
P I ]!35%g B% is non-compact.

Suppose this is not the case. Then by Lemma 5.2.3, (1) and (2) there is p € P and
m € N such that

P2 | By By (b ey (D) < & (4)

Fix n € N such that dom(p) N (an{(n) U S n(n)) © Ay (such n exists, since by
(b) the sequence ((Spqe(n) U Snyy(n)) \An)nen consists of pairwise disjoint sets and
dom(p) is finite) and notice that p is (0 4, (n) 1y (n)s Snye(n)s Onyy (n))-Symmetric. Since
supp(h¢) = Re, by Remark 5.2.10 there is ¢¢ < p and k¢ € N such that

dom(ge)\dom(p) C Re and g¢ IF he(n) = ke.

Put
Pe = g Y One(m)n(m) (8 | Snire(m))-
By Lemma 5.2.8 we have pe € P and p¢ is (an%(n)m’(n), Shve(n)s S (n))-Symmetric
(it is also (an%(n)%(n), Sn%(n), Sn%(n))—symmetric, since O ye (n) oy (n) = a;}yn(n)%(n)).
By the same argument there is ¢;, < p¢ and &, € N such that
dom(gy,)\dom(p¢) € R, and ¢, IF hn(n) =ky

and
P = @Y Oy () e () (i | Sy ()

is an (., (n) e (n) s Sniyn(n)s Snoe(n))-Symmetric element of P.
Pick | > max{ke, k,,m, é} By (2) we have

PIHIED,, (1) O O] = ey (D4
B, ) e D) = (@) = 1= &

cSs

Since supp(v nve(n)

n%(n)) there is » < p, and v € F' such that

dom(r)\dom(p;) C Sy, 1 (n) and r Ik 0 = 0y, 4, () (1)

e(n
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Then
s=ru Un,'yg(n),’yn(n)(r I Sn,’yg(n))

is an (G (n) g (n) s Smive (n) s Sniy(n))-Symmetric element of P. From (5) we get
(1 y
r - ||E7(17),Y€(n)(v)H >1—e. (6)
Since v is a canonical name for an element of V' we have Ty (1) (n) (0) = v and since
8 < O e (n) iy (n) (1) We get
(1 o
sIHEY @) =1 e (7)
By the inequality
-« (1 v
Pik (o — B @I+ 1Y @) = [5]2 < (1+¢)?
and (7) we get that

sl ||o — BY @OP<(14e)?—(1—e)? =4e (8)

n,vn(n)
and hence
S 1B o B O = 1B ) = By (0 = Bl oy ) 2
> |ED, oy Ol = 1B, )@= B @)l > (9)
>1—e—||i— fl,)%(m(v)ﬂ >1-e-2/6>1/2.
On the other hand we have
SIE (1B By, BY. @) = 1By By, (8) = By By, (0= B ()] <
< Bae By, )] + 115 = B () @) < e+ 2V,

where the last inequality follows from (4) and (8). Hence

(l ‘(l) ; ; —

l . . . l
HETL)’Yg )(K"£ + B, Ws(n)Bvs)(Ln n+t Bstn,vn(n))Eé,)%(n)(U)” <

¢ l . : (1 “
<NEY o Bre B B o @O+ B, o Enebnn B @)1+
(
+HEHL§ o Breln E,SL(n)< >||+||Ew(n)K B, EY @) <
! ¢ :
1By By, B O+ 20+ )| L B+ 1+ B, Kl

By (3) and the fact that [ > max{ke, k,} (which holds since s I+ max{kg,kn} =
max{he¢(n), h,y(n)}) the last two terms of the above sum may be estimated by 3¢(1 + ).
From this and (10) we get

siE|EY BV @) <et2vE+3e(1+e) <1/2,

n,Ye(n) " nyyy(n

which is a contradiction with (9). O
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Theorem 5.3.3. In the Cohen model V¥ there is no *-embedding of loo(co(w2)) into
Q(l2). In particular, there is no *-embedding of Loo(Q(£2)) into Q(L2).

Proof. Assume that T': {oo(co(w2)) = Q(¥2) is a *-embedding. Let xpn o, Xy € loo(co(w2))
for n € N, < wa,v € w' be given by

Xn.a(m)(B) :{ 1, if (n,a) = (m, B)

0, otherwise

and
L, ify(m) =8

0, otherwise

X~ (m)(B) = {

Clearly xn,a, X~ are projections and if y(n) = a, then xp o < x5

Since *-embeddings preserve posets of projections, T'(xn,o) and T'(x,) are projec-
tions in Q(¢2) for n € Nya € wa,y € wh and T(xn.a) < T(xy) whenever v(n) = a.
By [43, Lemma 3.1.13] there are projections E, o, B, in B(f2) such that 7(E, ) =
T(Xna),®(By) = T(xy) for n € Nya € wy,y € Wy (here m: B(f2) — Q(f2) =
B(l3)/K(f2) denotes the quotient map). These projections satisfy the hypothesis of
Proposition 5.3.2, so there are disjoint 1,72 € w) such that B, B,, is non-compact,
which contradicts the fact that T'(x~,)T(X~,) = T (X X~2) = T'(0) = 0.

To see that there is no *-embedding of /o (Q(¢2)) into Q(¢2) we use the facts that
co(c) embeds into £ /co (Lemma 5.2.4) and fo,/co embeds into Q(¢2) (the natural
embedding is given by [(an)nen] — [A], where A € B(¢2), A((¢n)nen) = (ancn)nen for
(Cn)nen € f2 i.e. A is the infinite diagonal matrix with entries (ay,)nen on the diagonal),
which implies that £ (co(w2)) = loo(co(c)) embeds into £oo(Q(¢2)). O

Now we will show an application of this result in the context of corona algebras of

tensor products. Let us recall important definitions.

Definition 5.3.4. A C*-algebra M(A) DO A is called the multiplier algebra of a
C*-algebra A, if A is an essential ideal in M(A) (i.e. Aj\_/l(A) = {0}, where Ap = {x €
D : Ax = {0}}) and for every C*-algebra D containing A as an ideal the identity map
Id: A — B(A) has a unique extension to D with kernel .A3.

The quotient algebra Q(A) = M(A)/A is called the corona of A.

It is well-known that M(K(¢3)) = B(f2) and Q(K(¢3)) = Q(¢3). If X is a locally
compact Hausdorff space, then M (Cy(X)) = C(8X) and Q(Cy(X)) = C(X\X), and so
the multiplier algebra should be seen as the non-commutative analogue of the Stone-Cech
compactification of a topological space, and corona as the non-commutative analogue of
the Stone-Cech remainder. For more information on multiplier algebras and coronas see
[15] or [43].

We will use the characterization of multipliers algebras in terms of double centralizers.

Definition 5.3.5. A pair (L, R) of linear maps on a C*-algebra A is a double central-
izer of A, if xL(y) = R(x)y for all z,y € A.
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Lemma 5.3.6. [15, Theorem I1.7.3.4] If (L, R) is a double centralizer of a C*-algebra
A, then L, R are bounded operators and |L|| = ||R||. The set of all double centralizers

of A form a C*-algebra with operations

(L1, R1) + (L2, R2) = (L1 + Lo, R1 + Ra),
(L1, R1)(L2, Ry) = (LoL1, R R2),

(L, R)* = (R, L"),

(L, R)[F = (1L = [ R]-

This C*-algebra is isomorphic to M(A).

Recall that K(¢2) is a nuclear C*-algebra i.e. for every C*-algebra A there is a unique
tensor product A ® KC(l2).

Lemma 5.3.7. There is a *-embedding of loo(Yso/c0)/co(fso/co) into Q(la) @ K(l2).

Proof. Let I: {x/co — Q(f2) be the quotient of the diagonal embedding described in the
proof of Theorem 5.3.3. Then I induces an embedding Ij: ¢o(loo/co) — Q(l2) ® K(42).
Namely

IO((an)nGN)) = Z I(an) ® €n,n

neN
where a,, € {/co and ey, ., € K(£2) is given by

cm, ifl=n
enm((cr)ren) (1) = {

0, otherwise

for n,m,l € N and (¢,)nen € {2 i.€. €y, is the matrix with entry 1 at position (n,m)
and 0 at other positions (so called matrix unit).

Now fix A € loo(fo/c0), A = (an)nen. Consider operators L4, Ra: Q(f2) @ K(f2) —
Q(f3) ® K(¢3) defined by

LA(q & 6n,m) = I(an)q X €nm

RA(q ® 6n,m) = C]I(Gm) & Enm
i.e. Ly and Ry are multiplications by diagonal matrices (from the left and right side
respectively) with entries (a,)nen on the diagonal.

It is easy to check that (La,Ra) is a double centralizer of Q({2) ® K(¢2) and
TIno: loo(loo/co) — M(Q(¢2) ® K(£3)) given by Io(A) = (La,Ra) is a *-embedding.
Moreover, I (A) € Q(f2) ® K(¢2) if and only if A € ¢o(loo/cp). Thus,

J: los(loo /o) /co(loo/co) = Q(Q(l2) ® K(£2))
given by J([A]) = [loc(A)] is well-defined and is a *-embedding. O

Theorem 5.3.8. In the Cohen model VF there is no *-embedding of Q(Q(f2) @ K(f2))
into Q({2).
Proof. By Lemma 5.2.5 the algebra £« (co(c)) embeds into Lo (foo/c0)/co(foo/c0). In VF

we have ¢ = ws, so by Theorem 5.3.3 there is no embedding of ¢o ({0 /c0)/co(foo/ o)
into Q(¢2). Apply Lemma 5.3.7 to finish the proof. O
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