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Abstract

This Ph.D. thesis is concerned with the existence of entire solutions to
semilinear elliptic equations and is divided into two parts, dealing with un-
constrained and constrained problems respectively. Chapter 1 contains a
series of recalls about notions and properties used throughout this work and
lies before the aforementioned division into parts.

In Part I, we study existence and multiplicity results for equations of the
form

∇×∇×U = f(x,U), U : RN → RN ,

where N ≥ 3 and f = ∇F : RN × RN → RN is the gradient (with respect
to U) of a given nonlinear function F : RN × RN → R. Here, when N ≥ 4,
∇×∇×U is de�ned using the identity, valid when N = 3, ∇×∇×U = ∇(∇·
U)−∆U. Such problems are known as curl-curl problems and arise, when
N = 3, from the nonlinear Maxwell equations in absence of electric charges,
electric currents, and magnetization. The main issue is that the kernel of the
di�erential operator ∇×∇× consists of the subspace of gradient �elds and is
therefore in�nite-dimensional. Historically, two approaches have been used
to tackle curl-curl problems by means of variational methods and both make
use of divergence-free vector �elds. The reason is that ∇×∇×U = −∆U
for every divergence-free �eld U and the vector Laplacian is a di�erential
operator easier to handle.

In Chapter 2, we give an accurate physical derivation of curl-curl problems
and then survey important results throughout the last decades, from the �rst
works to the current days, including those illustrated in this Ph.D. thesis.

In Chapter 3, based on [83], we focus on the (physically relevant) case
N = 3. The nonlinearity F is controlled, from above and from below, by
a suitable nice Young function: in particular, Sobolev-supercritical at zero,
Sobolev-subcritical but superquadratic at in�nity, and satisfying the ∆2 and
∇2 conditions globally. Our approach makes use of a Helmholtz-type decom-
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position of the function space we work with into a divergence-free subspace
and a curl-free subspace (the aforementioned kernel), i.e., u = v + w with
∇ · v = ∇ × w = 0 and (v, w) uniquely determined; then we build a home-
omorphism from the former subspace to a certain topological submanifold
(of the whole space) that contains all the nontrivial solutions. This some-
how allows us to work only with the divergence-free subspace, although the
�curl-free� part must be taken care of; in fact, that is what causes the most
di�culties in the methods we use. We prove the existence of a least-energy
solution and, if f is odd, of in�nitely many distinct solutions. Unlike Chapter
4, we do not use any symmetries; in particular, we provide the �rst multi-
plicity result about curl-curl problems in unbounded domains without any
symmetry assumptions.

In Chapter 4, based on [51], we consider the general case N ≥ 3. Under
certain symmetry assumptions about the nonlinearity, we exploit suitable
group actions to reduce the curl-curl problem to the Schrödinger equation
with singular potential

−∆u+
a

|y|2
u = f̃(x, u), u : RN → R,

with x = (y, z) ∈ RK × RN−K , K = 2, and a = 1, studying as well the
general case 2 ≤ K < N and a > −(K/2 − 1)2. More in detail, we re-
quire that f(·, αw) = f̃(·, α)w for every α ∈ R and every w ∈ SN−1 and
that f̃(gx, ·) = f̃(x, ·) for a.e. x ∈ RN and every g ∈ SO(2) × {IN−2}.
Extending to the case of weak solutions a well-known equivalence property
that puts in a 1-to-1 correspondence the classical solutions to the two prob-
lems via the formula U(x) = u(x)/|y|(−x2, x1, 0), we prove new existence
results (nontrivial solutions, least-energy solutions relatively to the functions
with the same symmetry, in�nitely many distinct solutions) about both, in
the Sobolev-critical and -noncritical cases; in particular, we work with the
curl-curl equation in the former case, using the same symmetry machinery
to reduce ∇×∇×U to −∆U, and with the Schrödinger equation in the lat-
ter. The most prominent result is the existence, when N = 3, of a divergent
sequence of solutions in the critical case, obtained with the aid of another
group action, which restores compactness; this is the �rst multiplicity result
for curl-curl problems in unbounded domains in the Sobolev-critical case.
Concerning the existence, in the noncritical case, of a least-energy solution
and of in�nitely many distinct solutions, we exploit an abstract critical point
theory built in Chapter 3.
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In Part II, we look for least-energy solutions to autonomous Schrödinger
systems of the form{

−∆uj + λjuj = ∂jF (u)∫
RN u

2
j dx = ρ2

j

∀j ∈ {1, . . . , K}, u : RN → RK ,

where N,K ≥ 1, ρ = (ρ1, . . . , ρK) ∈]0,∞[K is given, and λ = (λ1, . . . , λK) ∈
RK is part of the unknown. Solutions to such problems are called normalized
due to the L2-constraints, which are what causes the quantity λ to appear as
a K-tuple of Lagrange multipliers. Equations of this type arise when seek-
ing standing wave solutions to similar time-dependent problems and come
from areas of Physics such as nonlinear optics and Bose�Einstein condensa-
tion. Their importance lies in the physical meaning of the masses (the L2

norms squared) and the fact that such quantities are conserved in time in
the corresponding evolution equations.

In Chapter 5, we introduce the problem, brie�y comment some seminal
papers and other results in the literature, and provide useful preliminary
properties.

Depending on the assumptions about F and, sometimes, on the value
of ρ, the associated energy functional exhibits di�erent behaviours: it can
be bounded from below for all, some, or no values of ρ and these cases are
known, respectively, as mass-subcritical, -critical, and -supercritical. The
�rst two are studied in Chapter 6, based on [99], while the last is studied in
Chapter 7, based on [82]. In both cases, we consider a minimizing sequence
for the energy functional and work out proper assumptions so that such a
sequence converges to a solution to the system. In the mass-supercritical
case, since the functional is unbounded from below, we restrict it to a nat-
ural manifold, given by a suitable linear combination of the Nehari and the
Pohoºaev identities to get rid of the unknown quantity λ, in order to recover
such boundedness. The outcome consists of a least-energy solution, relatively
to the functions with the same symmetry or in the general sense depending
on the structure of the nonlinearity.

The novelty of this approach consists of considering the L2(RN) balls{
u ∈ H1(RN)

∣∣ |u|2 ≤ ρj
}
, j ∈ {1, . . . , K}

instead of the L2(RN) spheres{
u ∈ H1(RN)

∣∣ |u|2 = ρj
}
, j ∈ {1, . . . , K}
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in order to work with a weakly closed subset and have, a priori, additional
information about the sign of the components of λ, which is due to the fact
that the constraints are given by inequalities and that the critical points we
obtain are minimizers.

When K ≥ 2, we need particular hypotheses about the nonlinearity in
order to make use of the Schwarz symmetric rearrangements; nevertheless,
we can still deal with rather generic functions, which is new about systems.

Finally, Chapter 8 contains new results and deals with normalized solu-
tions both to curl-curl problems and to nonautonomous Schrödinger equa-
tions with singular potential as in Chapter 4, but always with autonomous
nonlinearities. Such results are obtained combining the symmetry and the
equivalence from Chapter 4 with the outcomes from Chapters 6 and 7. In par-
ticular, the symmetry allows us to reduce the curl-curl problem to a vector-
valued autonomous Schrödinger equation, with a single L2-constraint and
which we study directly, while the equivalence provides analogous results
for the scalar-valued Schrödinger equation with singular potential. Again,
we obtain least-energy solutions relatively to the functions with the same
symmetry.
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Streszczenie

Niniejsza rozprawa doktorska dotyczy istnienia rozwi¡za« póªliniowych
równa« eliptycznych i jest podzielona na dwie cz¦±ci, dotycz¡ce odpowiednio
problemów bez ograniczenia i z ograniczeniem. Rozdziaª 1 zawiera szereg
odwoªa« do poj¦¢ i wªasno±ci u»ywanych w tej pracy i zaprezentowany jest
przed wspomnianym podziaªem na cz¦±ci.

W Cz¦±ci I badamy istnienie i wielokrotno±¢ rozwi¡za« równania postaci

∇×∇×U = f(x,U), U : RN → RN ,

gdzie N ≥ 3 oraz f = ∇F : RN × RN → RN jest gradientem (ze wzgl¦du na
U) danej nieliniowej funkcji F : RN×RN → R. Tutaj, gdy N ≥ 4, ∇×∇×U
jest zde�niowane przy u»yciu to»samo±ci ∇×∇×U = ∇(∇ ·U)−∆U za-
chodz¡cej, gdy N = 3. Takie problemy s¡ znane jako problemy curl-curl i
powstaj¡, gdy N = 3, z nieliniowych równa« Maxwella przy braku ªadunków
elektrycznych, pr¡dów elektrycznych i magnetyzacji. Gªówn¡ trudno±ci¡ jest
fakt, »e j¡dro operatora ró»niczkowego ∇×∇× skªada si¦ z podprzestrzeni
pól gradientowych i dlatego jest niesko«czenie wymiarowe. Historycznie rzecz
bior¡c, dwa podej±cia byªy stosowane do rozwi¡zywania problemów curl-curl
za pomoc¡ metod wariacyjnych i oba wykorzystywaªy bezdywergencyjne pola
wektorowe. Powodem byª fakt, »e ∇×∇×U = −∆U dla ka»dego pola bez-
dywergencyjnego U, a wektorowy Laplacian jest ªatwiejszym w stosowaniu
operatorem ró»niczkowym.

W rozdziale 2 podajemy dokªadne �zyczne wyprowadzenie problemu curl-
curl, a nast¦pnie przywoªujemy wa»ne wyniki z ostatnich dziesi¦cioleci, od
pierwszych prac do najnowszych wyników, w tym zilustrowanych w tej roz-
prawie doktorskiej.

W rozdziale 3 opartym na [83], skupiamy si¦ na �zycznie istotnym przy-
padku N = 3. Nieliniowo±¢ F jest kontrolowana od góry i od doªu przez
odpowiedni¡ regularn¡ (ang. nice) funkcj¦ Younga: w szczególno±ci nadkry-
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tyczn¡ w zerze, podkrytyczn¡ w niesko«czono±ci w sensie wykªadnika So-
bolewa, ale superkwadratow¡ w niesko«czono±ci i speªniaj¡c¡ globalne wa-
runki ∆2 i ∇2. Nasze podej±cie wykorzystuje dekompozycj¦ typu Helmholtza
przestrzeni funkcyjnej z któr¡ pracujemy, na podprzestrze« bezdywergen-
cyjn¡ i podprzestrze« bezwirow¡ (wspomniane j¡dro), tj. u = v + w, gdzie
∇ · v = ∇× w = 0 i para (v, w) jest jednoznacznie okre±lona; nast¦pnie bu-
dujemy homeomor�zm z poprzedniej podprzestrzeni do pewnej topologicz-
nej podrozmaito±ci (caªej przestrzeni) zawieraj¡cej wszystkie nietrywialne
rozwi¡zania. To w pewien sposób pozwala nam pracowa¢ tylko z bezdywer-
gencyjn¡ podprzestrzeni¡, chocia» trzeba zadba¢ o t¦ cz¦±¢ bezwirow¡. W
rzeczywisto±ci to wªa±nie powoduje najwi¦cej trudno±ci w stosowanych przez
nas metodach. Udowadniamy istnienie rozwi¡zania o najmniejszej energii
oraz, je±li f jest nieparzyste, istnienie niesko«czenie wielu ró»nych rozwi¡-
za«. W przeciwie«stwie do Rozdziaªu 4 nie u»ywamy »adnych symetrii; w
szczególno±ci podajemy pierwsze wyniki dotycz¡ce wielokrotno±ci rozwi¡za«
problemu curl-curl na nieograniczonej dziedzinie bez zªo»e« o symetrii.

W rozdziale 4 bazuj¡cym na [51], rozwa»ymy przypadek ogólny N ≥ 3.
Przy pewnych zaªo»eniach dotycz¡cych symetrii nieliniowo±ci, wykorzystu-
jemy odpowiednie dziaªania grupowe, aby zredukowa¢ problem curl-curl do
równania Schrödingera z potencjaªem osobliwym

−∆u+
a

|y|2
u = f̃(x, u), u : RN → R,

gdzie x = (y, z) ∈ RK × RN−K , K = 2 i a = 1, badaj¡c równie» przypa-
dek ogólny 2 ≤ K < N oraz a > −(K/2 − 1)2. Mówi¡c bardziej szcze-
góªowo, wymagamy, aby f(·, αw) = f̃(·, α)w dla ka»dego α ∈ R i ka»dego
w ∈ SN−1 oraz f̃(gx, ·) = f̃(x, ·) dla prawie wszystkich x ∈ RN i dla ka»-
dego g ∈ SO(2) × {IN−2}. Rozszerzaj¡c do przypadku sªabych rozwi¡za«
dobrze znan¡ równowa»no±¢ klasycznych rozwi¡za« obu problemów za po-
moc¡ wzoru U(x) = u(x)/|y|(−x2, x1, 0), dowodzimy nowych wyników ist-
nienia (rozwi¡zania nietrywialne, rozwi¡zania o najmniejszej energii w±ród
rozwi¡za« o tej samej symetrii, niesko«czenie wiele ró»nych rozwi¡za«) w
obu problemach, zarówno w przypadkach krytycznych jak i niekrytycznych
w sensie wykªadnika Sobolewa; w szczególno±ci pracujemy z równaniem curl-
curl w poprzednim przypadku, u»ywaj¡c tej samej maszynerii symetrii, aby
zredukowa¢ ∇×∇×U do −∆U oraz z równaniem Schrödingera w tej ostat-
niej sytuacji. Najbardziej znacz¡cym rezultatem jest istnienie, gdy N = 3,
rozbie»nego ci¡gu rozwi¡za« w krytycznym przypadku. Wynik ten uzyskamy
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za pomoc¡ innego dziaªania grupowego, które daje nam zwarto±¢ problemu;
to jest pierwszy wynik dotycz¡cy wielokrotno±ci rozwi¡za« problemu curl-
curl na nieograniczonej dziedzinie w wykªadnikiem krytycznym Sobolewa.
Odno±nie istnienia rozwi¡za« w niekrytycznym przypadku, rozwi¡zania o
najmniejszej energii oraz niesko«czenie wiele ró»nych rozwi¡za« uzyskujemy
wykorzystuj¡c abstrakcyjn¡ teori¦ punktów krytycznych zbudowan¡ w roz-
dziale 3.

W Cz¦±ci II szukamy rozwi¡za« o najmniejszej energii dla autonomicznego
ukªadu równa« Schrödingera w postaci{

−∆uj + λjuj = ∂jF (u)∫
RN u

2
j dx = ρ2

j

∀j ∈ {1, . . . , K}, u : RN → RK ,

gdzie N,K ≥ 1, ρ = (ρ1, . . . , ρK) ∈]0,∞[K jest dane, oraz λ = (λ1, . . . , λK) ∈
RK jest wielko±ci¡ nieznan¡. Rozwi¡zania takich problemów okre±lane s¡
jako unormowane ze wzgl¦du na ograniczenia L2, które powoduj¡, »e λ poja-
wia si¦ jakoK-krotka mno»ników Lagrange'a. Równania tego typu pojawiaj¡
si¦ podczas poszukiwania rozwi¡za« fali stoj¡cej dla podobnych problemów
zale»nych od czasu i pochodz¡ z takich dziedzin �zyki, jak nieliniowa optyka
i kondensacja Bosego-Einsteina. Ich waga polega na �zycznym znaczeniu
masy (normy L2 podniesionej do kwadratu) oraz fakcie, »e wielko±ci te s¡
zachowywane w czasie w odpowiednich równaniach ewolucji.

W rozdziale 5 wprowadzamy problem, krótko komentujemy niektóre no-
watorskie artykuªy i inne wyniki w literaturze oraz podajemy przydatne pre-
liminaria.

W zale»no±ci od zaªo»e« dotycz¡cych F , a czasami warto±ci ρ, powi¡zana
funkcja energetyczna wykazuje ró»ne zachowania: mo»e by¢ ograniczona od
doªu dla wszystkich, niektórych lub »adnych warto±ci ρ i te przypadki s¡
znane odpowiednio jako masowo podkrytyczne, -krytyczne i -nadkrytyczne.
Pierwsze dwa przypadki s¡ omówione w rozdziale 6 bazuj¡cym na pracy [99],
a ostatnie w rozdziale 7 bazuj¡ na [82]. W obu przypadkach rozwa»amy
ci¡g minimalizuj¡cy dla funkcjonaªu energii i wypracowujemy odpowiednie
zaªo»enia takie, aby ten ci¡g byª zbie»ny do rozwi¡zania ukªadu równa«. W
przypadku masowo nadkrytycznym funkcjonaª jest nieograniczony od doªu
i ograniczamy go do rozmaito±ci naturalnej, okre±lonej przez odpowiedni¡
liniow¡ kombinacj¦ to»samo±ci Nehariego i Pohoºaeva, aby pozby¢ si¦ nie-
znanej wielko±ci λ � wówczas uzyskujemy ograniczenie funkcjonaªu z doªu.
Wynik skªada si¦ z rozwi¡zania o najmniejszej energii w±ród funkcji o tej
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samej symetrii lub w ogólnym sensie w zale»no±ci od struktury nieliniowo±ci.
Nowo±¢ tego podej±cia polega na rozwa»eniu kul przestrzeni L2(RN){

u ∈ H1(RN)
∣∣ |u|2 ≤ ρj

}
, j ∈ {1, . . . , K}

zamiast sfer przestrzeni L2(RN){
u ∈ H1(RN)

∣∣ |u|2 = ρj
}
, j ∈ {1, . . . , K}

i pozwala pracowa¢ ze sªabo domkni¦tym podzbiorem i mie¢, a priori, do-
datkowe informacje o znaku skªadowych λ, które wynikaj¡ z faktu, »e ogra-
niczenia s¡ wyznaczane przez nierówno±ci, a punkty krytyczne, które otrzy-
mujemy, s¡ punktami minimalnymi.

Je±li K ≥ 2, to potrzebujemy konkretnych zaªo»e« dotycz¡cych nielinio-
wo±ci, aby skorzysta¢ z symetryzacji Schwarza; niemniej jednak nadal mo-
»emy zajmowa¢ si¦ raczej ogólnymi funkcjami, co jest nowo±ci¡ w przypadku
ukªadów.

Ostatecznie, Rozdziaª 8 zawiera nowe wyniki i dotyczy unormowanych
rozwi¡za« zarówno problemów curl-curl jak i nieautonomicznych równa«
Schrödingera z potencjaªem osobliwym, jak w rozdziale 4, jednak zawsze
z autonomicznymi nieliniowo±ciami. Takie wyniki uzyskuje si¦ ª¡cz¡c syme-
tri¦ oraz równowa»no±¢ z rozdziaªu 4 z wynikami z rozdziaªów 6 oraz 7. W
szczególno±ci symetria pozwala nam zredukowa¢ problem curl-curl do au-
tonomicznego równania Schrödingera z niewiadom¡ o warto±ciach wektoro-
wych z pojedynczym ograniczeniem L2, które badamy bezpo±rednio, podczas
gdy równowa»no±¢ zapewnia analogiczne wyniki dla równania Schrödingera
o warto±ci skalarnej z potencjaªem osobliwym. Ponownie otrzymujemy roz-
wi¡zania o najmniejszej energii w±ród rozwi¡za« o tej samej symetrii.
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Notations

The symbols · and × stand, respectively, for the inner product in RN ,
N ≥ 1 integer, and the cross product in R3. In particular, ∇ ·U stands for
the divergence ofU : RN → RN and∇×U stands for the curl ofU : R3 → R3.
The elements of the standard basis are denoted by ei, i ∈ {1, . . . , N}.

The space of matrices N × K is denoted by RN×K . When N = K,
IN ∈ RN×N stands for the identity matrix.

The closed semiline of nonnegative numbers [0,∞[ is sometimes denoted
by R+. If A ⊂ RN is a measurable set, |A| denotes its Lebesgue measure.

If α ∈ NN , N ≥ 1 integer, then the length of α is denoted by |α| :=∑N
i=1 αi. If, moreover, f is a function of class Ck, k ≥ |α|, then we denote

Dαf :=
∂|α|f

∂xα1
1 . . . ∂xαNN

.

N will always stand for the dimension of the space RN , the only exception
being the term `N -function' (Chapter 3), where it is simply part of the name
(short for `nice Young function'). 2∗ denotes the Sobolev critical exponent,
i.e., 2∗ = ∞ if N ∈ {1, 2} and 2∗ = 2N

N−2
if N ≥ 3. In Part II we deal with

the value 2# := 2 + 4
N

too.

If X is a topological space and A ⊂ X, then Å and A stand, respectively,
for the interior and the closure of A. When X is a metric space, the open,
resp. closed, ball with centre x ∈ X and radius ρ > 0 is denoted by B(x, ρ),
resp. B(x, ρ). When X is also a vector space and x = 0, we write B(0, ρ) =
Bρ and B(0, ρ) = Bρ; moreover, the sphere with centre 0 and radius ρ is
denoted by Sρ.

If X is a normed space, then its dual space is denoted by X ′. For x, y ∈ X
and T : X → R Fréchet di�erentiable, we denote the Fréchet di�erential of
T at x evaluated at y by T ′(x)(y).

If Ω ⊂ RN is an open subset, N ≥ 1 integer, then we denote by Cc(Ω) the
space of continuous functions with compact support contained in Ω. Likewise
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for C∞c (Ω).
If u is a real-valued function, then its positive and negative parts are

denoted, respectively, by u+ = max{u, 0} and u− = max{−u, 0}. If u : RN →
R is a measurable function, |u|p stands for the Lp(RN) norm of u, 1 ≤ p ≤ ∞.

Concerning sequences, we write xn for (xn)n≥1 and xn ∈ X for (xn)n≥1 ⊂
X. Sometimes we use superscripts instead of subscripts and write xn. More-
over, we will write limn, lim infn, lim supn for limn→∞, lim infn→∞, lim supn→∞.

If f is a function depending (also) on x, then the notation f ∈ O(x) means
that f(x, . . . )/|x| is essentially bounded. Similarly, if g is another, real-valued
function depending on x, the notation o

(
g(x)

)
stands for a quantity that

tends to zero when divided by g(x).
C will always stand for a positive constant, whose value is allowed to

change after an inequality symbol, e.g., `≤'.
Finally, concerning functions spaces, we will write, e.g., H1(RN ,RN)

or Lp(RN ,RN) in contexts involving single vector-valued functions (Part I,
Chapter 8) and H1(RN)K or Lp(RN)K in contexts involving K-tuples of
scalar-valued functions (Chapters 5�7).
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Chapter 1

Preliminaries

1.1 Sobolev spaces

Let N ≥ 1 be an integer and Ω ⊂ RN be open. If f ∈ C1(Ω) and
ϕ ∈ C∞c (Ω), then, in view of the integration-by-parts formula [49, Theorem
C.2], there holds∫

Ω

∂f

∂xi
ϕdx = −

∫
Ω

f
∂ϕ

∂xi
dx for every i ∈ {1, . . . , N}.

Analogously, if k ≥ 1 is an integer, α ∈ NN , |α| ≤ k, and f ∈ Ck(Ω), then∫
Ω

Dαfϕ dx = (−1)|α|
∫

Ω

fDαϕdx. (1.1.1)

Of course, the right-hand (resp. left-hand) side of (1.1.1) makes sense even
if merely f ∈ L1

loc(Ω) (resp. Dαf ∈ L1
loc(Ω)). This motivates us to give the

following de�nition.

De�nition 1.1.1. Let f, g ∈ L1
loc(Ω). We say that g is the α-th weak or

distributional derivative of f if and only if∫
Ω

gϕ dx = (−1)|α|
∫

Ω

fDαϕdx for every ϕ ∈ C∞c (Ω).

In such a case we write g =: Dαf .

With the aid of the notion of weak (or distributional) derivative we can
now introduce the Sobolev spaces.
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De�nition 1.1.2. Let k ≥ 1 an integer and 1 ≤ p ≤ ∞. We de�ne the
Sobolev space

W k,p(Ω) :=
{
f ∈ Lp(Ω)

∣∣ Dαf ∈ Lp(Ω) for all α ∈ NN with |α| ≤ k
}
.

Sobolev spaces are normed (in fact, Banach) spaces once endowed with
the following norm. If 1 ≤ p <∞, then for f ∈ W k,p(Ω) we de�ne

‖f‖Wk,p(Ω) :=

∑
|α|≤k

‖Dαf‖pLp(Ω)

1/p

;

if p =∞, then for f ∈ W k,∞(Ω) we de�ne

‖f‖Wk,∞(Ω) := max
|α|≤k
‖Dαf‖L∞(Ω).

If p = 2, then W k,2(Ω) is a Hilbert space with scalar product

(f |g)Wk,2(Ω) :=
∑
|α|≤k

∫
Ω

DαfDαg dx, f, g ∈ W k,2(Ω).

This explains the widely used notation W k,2(Ω) =: Hk(Ω). Part II strongly
deals with the space H1(RN).

An important subspace of W k,p(Ω) is the one denoted by W k,p
0 (Ω) and

de�ned as the closure of C∞c (Ω) with respect to the norm ‖ · ‖Wk,p(Ω). If

Ω = RN , then W k,p
0 (Ω) = W k,p(Ω).

Of course, there is no reason why the exponent p in De�nition 1.1.2 has
to be the same for all the derivatives. For example, if N ≥ 3 and k = 1, an
important space, which plays a major role in Part I, is

D1,2(RN) :=
{
f ∈ L2∗(RN)

∣∣ Dαf ∈ L2(RN) for all α ∈ NN with |α| ≤ 1
}
,

which can be equivalently de�ned as the completion of C∞c (RN) with respect
to the norm u 7→ |∇u|2.

Important results in functional analysis concern continuous and compact
embeddings of Sobolev spaces. Concerning the formers, we have as follows.

Theorem 1.1.3. Let Ω ⊂ RN be open with boundary of class C11, k ≥ 1
integer, and 1 ≤ p <∞.

1For the purpose of this work, it is enough to consider this case; however, the assumption
about the C1 regularity of the boundary can be weakened. Likewise for Theorem 1.1.5.
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• If kp < N , then

W k,p(Ω) ↪→ Lq(Ω) for all q ∈
[
p,

np

n−mp

]
.

• If kp = N , then

W k,p(Ω) ↪→ Lq(Ω) for all q ∈ [p,∞[;

If, moreover, p = 1, then

WN,1(Ω) ↪→ C(Ω) ∩ Lq(Ω) for all q ∈ [1,∞].

• If kp > N , then

W k,p(Ω) ↪→ C(Ω) ∩ Lq(Ω) for all q ∈ [p,∞].

Remark 1.1.4. If |Ω| < ∞, then the embeddings in Theorem 1.1.3 hold also
for q ∈ [1, p[.

As for compact embeddings (denoted by ↪→↪→), we have the following.

Theorem 1.1.5. Let Ω ⊂ RN be open and bounded with boundary of class
C1, k ≥ 1 integer, and 1 ≤ p <∞.

• If kp < N , then

W k,p(Ω) ↪→↪→ Lq(Ω) for all q ∈
[
1,

np

n−mp

[
.

• If kp = N , then

W k,p(Ω) ↪→↪→ Lq(Ω) for all q ∈ [1,∞[.

• If kp > N , then
W k,p(Ω) ↪→↪→ C(Ω).

Proposition 1.1.6. The embeddings in Theorems 1.1.3 and 1.1.5 hold with-
out any assumptions about ∂Ω provided W k,p(Ω) is replaced with W k,p

0 (Ω).

We conclude the �rst part of this section recalling that a much more
detailed version of all the previous results can be found in [2]. Finally, anal-
ogous properties hold for Sobolev spaces of the type W k,p(Ω,RK), K ≥ 1
integer, i.e., involving vector-valued functions.
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1.1.1 Compact embeddings in RN

As pointed out in Theorem 1.1.5, compact embeddings involvingW k,p(Ω)
holds only if |Ω| < ∞. If we want similar results in the whole RN , then we
need to consider special subspaces. We limit our discussion to H1(RN).

When N ≥ 2, let

Hr :=
{
u ∈ H1(RN)

∣∣ u = u(g·) for all g ∈ O(N)
}

be the subspace of H1(RN) consisting of radial functions. Next, following
[25], if N = 4 or N ≥ 6, �x 2 ≤ M ≤ N/2 such that N − 2M 6= 1 and
consider τ ∈ O(N) de�ned by

τ(x1, x2, x3) = (x2, x1, x3)

for every x = (x1, x2, x3) ∈ RM × RM × RN−2M = RN . De�ne

Hd :=
{
u ∈ H1(RN)

∣∣ u = u(g·) for all g ∈ O(M)×O(M)×O(N − 2M)
}

Hτ :=
{
u ∈ H1(RN)

∣∣ u = −u(τ ·)
}

and note that Hr ∩Hτ = {0}. Finally let

Hn := Hτ ∩ Hd,

which a fortiori does not contain any nontrivial radial functions. When
2M = N , we agree that the component x3 in the de�nition of τ and the group
O(N − 2M) in the de�nition of Hd do not appear. Then it is well known
that Hr and Hd are compactly embedded into Lp(RN) for every 2 < p < 2∗,
see, e.g., [68, Theorem III.1] or [129, Corollary 1.25] (concerning compact
embeddings of radial functions, the �rst proof of this result is due to Strauss
[108], see also [129, Corollary 1.26]). Observe that, unlike Theorem 1.1.5,
the embedding is not compact for p = 2. In Chapter 8, when N ≥ 4, we will
make use of a subspace similar to Hd, i.e.,

Hs :=
{
u ∈ H1(RN)

∣∣ u = u(g·) for all g ∈ O(2)×O(N − 2)
}
.

The same argument as for Hd proves that Hs embeds compactly into Lp(RN)
for every 2 < p < 2∗.

WhenN = 1, Hr = { u ∈ H1(R) | u(x) = u(−x) for a.e. x ∈ R } no longer
embeds compactly into Lp(R), 2 < p ≤ ∞. Nevertheless, bounded sequences
(in H1(R)) with additional assumptions are still precompact in Lp(R) in view
of the following result (cf. [38, Proposition 1.7.1]).
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Theorem 1.1.7. Let un ∈ Hr bounded. If N ≥ 2 or each un is a nonincreas-
ing function of |x|, then there exists u ∈ Hr such that, up to a subsequence,
un → u in Lp(RN) for every p ∈]2, 2∗[ (for every p ∈]2,∞] if N = 1).

1.2 Nemytskii operators and di�erentiable func-

tionals

We begin this section, whose content is based on [109, Appendix C] and
[129, Appendix A] with the following de�nition.

De�nition 1.2.1. Let N,K, ν ≥ 1 integers and Ω ⊂ RN open. A func-
tion f : Ω × RK → Rν is called a Carathéodory function if and only if it is
continuous in u ∈ RK for a.e. x ∈ Ω and measurable in x ∈ Ω for every
u ∈ RK .

Given a Carathéodory function f , we can de�ne the Nemytskii operator
associated with it as

Nf (u) := f
(
·, u(·)

)
for u : Ω → RK in a suitable function space. A �rst important result on
Nemytskii operators concerns their continuity, which depends on the growth
conditions of the functions they are associated with.

For p, q, r, s ∈ [1,∞[ de�ne the Banach spaces Lp(RN ,RK)∩Lq(RN ,RK)
and Lr(RN ,Rν) + Ls(RN ,Rν) with norms, respectively,

‖u‖p∧q := |u|p + |u|q
‖u‖r∨s := inf

{
|v|r + |w|s

∣∣ v ∈ Lr(RN ,Rν), w ∈ Ls(RN ,Rν), u = v + w
}

Theorem 1.2.2. If there exists C > 0 such that for a.e. x ∈ Ω and every
u ∈ RK

|f(x, u)| ≤ C(|u|p/r + |u|q/s),

then Nf : Lp(RN ,RK) ∩ Lq(RN ,RK)→ Lr(RN ,Rν) + Ls(RN ,Rν) is continu-
ous.

The notion of Nemytskii operator can be used to construct functionals
de�ned in function spaces. In general, the more regular f is, the more regular
the functional is as well. We recall that a functional I : X → R, where
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(X, ‖·‖) is a normed space, is said to be Fréchet-di�erentiable at some u ∈ X
if and only if there exists I ′(u) ∈ X ′ such that

lim
v→0

I(u+ v)− I(v)− I ′(u)(v)

‖v‖
= 0.

If such a map I ′(u) exists, it is called the Frechet di�erential of I at u.
Of course, I is said to be Fréchet-di�erentiable if and only if it is Fréchet-
di�erentiable at u for every u ∈ X. Moreover, we say that I is of class C1

(and we write I ∈ C1(X)) if and only if the map u ∈ X 7→ I ′(u) ∈ X ′ is
continuous.

Example 1.2.3. If X is a Hilbert space with scalar product (·|·), then the
functional ‖ · ‖2 : X → R is of class C1 and(

‖ · ‖2
)′

(u)(v) = 2(u|v) for every u, v ∈ X.
The next result is stated for Ω = RN because this is the only domain

treated in this Ph.D. thesis. Of course, analogous results for di�erent (e.g.,
bounded) domains do exist.

Theorem 1.2.4. Let F : RN×RK → R be di�erentiable in u ∈ RK and such
that ∇uF : RN×RK → RK is a Carathéodory function. If there exists C1 > 0
and, if N ∈ {1, 2}, p ≥ 2 such that for a.e. x ∈ RN and every u ∈ RK

|∇uF (x, u)| ≤ C1(|u|+ |u|2∗−1) if N ≥ 3

or
|∇uF (x, u)| ≤ C1(|u|+ |u|p−1) if N ∈ {1, 2},

then I : H1(RN)K → R de�ned as

I(u) :=

∫
RN
F
(
x, u(x)

)
dx

is of class C1 and

I ′(u)(v) =

∫
RN
∇uF

(
x, u(x)

)
· v(x) dx for every u, v ∈ H1(RN)K .

If, moreover, N ≥ 3 and there exists C2 > 0 such that for a.e. x ∈ RN and
every u ∈ RK

|∇uF (x, u)| ≤ C2|u|2
∗−1,

then I : D1,2(RN)K → R is of class C1 and

I ′(u)(v) =

∫
RN
∇uF

(
x, u(x)

)
· v(x) dx for every u, v ∈ D1,2(RN)K .
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1.3 Palais�Smale sequences, Cerami sequences,

and the mountain pass geometry

Let (X, ‖ · ‖) be a normed space, J ∈ C1(X), and c ∈ R. A Palais�
Smale sequence for J is a sequence xn ∈ X such that J(xn) is bounded and
limn J

′(xn) = 0. A Palais�Smale sequence (for J) at level c, (PS)c in short,
is a Palais�Smale sequence with the additional property that limn J(xn) = c.

Of course, a functional J needs not have any such sequences. When
(X, ‖ · ‖) is a Banach space, a su�cient hypothesis about J so that it does
have a Palais�Smale sequence at a speci�c level c is that it has the so-called
mountain pass geometry (cf. [5, 95]), i.e., there exist r > 0 and e ∈ X \ Br

such that
inf
Sr
J > J(0) ≥ J(e)

(see, e.g., [129, Theorem 1.15]). In this case, the value c is called themountain
pass level and has the minimax characterization

c = inf
σ∈Σ

max
t∈[0,1]

J
(
σ(t)

)
,

where
Σ := { σ ∈ C([0, 1], X) | σ(0) = 0 and σ(1) = e } .

This characterization makes evident that

max
t∈[0,1]

J(te) ≥ c ≥ inf
Sr
J.

This is important because it implies that, if x ∈ X is such that J(x) = c,
then x 6= 0. In particular, if X is some function space and x is a solution
to a certain di�erential equation, then such a solution is nontrivial (i.e., not
identically zero).

In most situations, it is enough to have a Palais�Smale sequence; however,
one can prove that, in fact, the mountain pass geometry yields the existence
of a Cerami sequence at the mountain pass level (c.f. [12, 40]). A Cerami
sequence (at level c ∈ R) is a Palais�Smale sequence xn ∈ X with the
additional property that limn ‖xn‖J ′(xn) = 0.

Finally, we recall an important concept related to Palais�Smale or Ce-
rami sequences, i.e., the Palais�Smale and Cerami conditions. In the same
framework as before, we say that the functional J satis�es the Palais�Smale
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condition, resp. Cerami condition, at level c if and only if every Palais�Smale,
resp. Cerami, sequence for J at level c has a (strongly) convergent subse-
quence. Likewise, we say that the functional J satis�es the Palais�Smale
condition, resp. Cerami condition, if and only if every Palais�Smale, resp.
Cerami, sequence for J has a convergent subsequence (equivalently, if and
only if it satis�es the Palais�Smale, resp. Cerami, condition at level c for
every c ∈ R).

1.4 Nehari and Pohoºaev identities

Let N,K ≥ 1 be integers and consider a solution u : RN → RK to the
equation

−∆u = ∇uF (x, u), u ∈ E (1.4.1)

under suitable assumptions about F (e.g., those of Theorem 1.2.4), where
E = H1(RN)K or E = D1,2(RN)K according to such assumptions. If we test
(1.4.1) with u itself (i.e., multiply both sides of (1.4.1) by u, integrate over
RN , and use the integration-by-parts formula), then we obtain the identity∫

RN
|∇u|2 −∇uF (x, u) · u dx = 0,

known in the literature as the Nehari identity. Consequently, every nontrivial
solution to (1.4.1) belongs to the Nehari manifold{

v ∈ E \ {0}
∣∣∣∣ ∫

RN
|∇v|2 −∇uF (x, v) · v dx = 0

}
.

Whether this set is a di�erentiable manifold depends on the regularity of F .
In particular, if ∇uF is merely a Carathéodory function, then it is only a
topological manifold.

Now, let J : E → R be the energy functional associated with (1.4.1), i.e.,
the functional whose critical points are the solutions to (1.4.1) and vice versa.
Explicitly,

J(u) =

∫
RN

1

2
|∇u|2 − F (x, u) dx.

At least heuristically, if u is a solution to (1.4.1) (hence a critical point of J),
then 1 is a critical point of the functional

t ∈]0,∞[→ J
(
u(t·)

)
∈ R,
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i.e., u satis�es the identity∫
RN

(N − 2)|∇u|2 − 2NF (u) dx = 0,

known in the literature as the Pohoºaev identity. In order to make the
argument rigorous, an intermediate step is to prove that any solution to
(1.4.1) lies in W 2,p

loc (RN) for every p < ∞, see, e.g., [30]2. This is standard
when K = 1, while the generic case is treated, e.g., in [35, Theorem 2.3]. As
a consequence, we obtain that every nontrivial solultion to (1.4.1) belongs to
the Pohoºaev manifold{

v ∈ E \ {0}
∣∣∣∣ ∫

RN
(N − 2)|∇v|2 − 2NF (v) dx = 0

}
.

1.5 Palais's principle of symmetric criticality

There are situations where considering a particular subspace of some
Sobolev space, consisting in the functions that enjoy a certain symmetry,
can bring remarkable advantages. This is the case for compact embeddings,
as seen in Subsection 1.1.1, or, as we will see in Chapter 4, to turn a dif-
ferential operator into another that is easier to handle. Nevertheless, it is
important to make sure that the supposed solution obtained this way is ac-
tually a solution to the problem investigated. In other words, we need to
make sure that a critical point of the energy functional restricted to a partic-
ular subspace is a critical point of the free functional. This is what happens
when, roughly speaking, the functional has the same symmetry as the one
that de�nes the subspace. This is known as Palais's principle of symmetric
criticality [90] and reads as follows.

Theorem 1.5.1. Let H be a Hilbert space, G a topological group acting iso-
metrically on H, and J ∈ C1(H) such that J(gx) = J(x) for every g ∈ G
and x ∈ H. De�ne HG := { x ∈ H | gx = x for all g ∈ G }. If x ∈ HG is a
critical point of J |HG , then it is a critical point of J .

Concerning this Ph.D. thesis, Theorem 1.5.1 is used �rst of all to recover
compactness: in Chapter 6, where we work with Hr or, if the nonlinearity F

2This reference deals only with the case N ≥ 3, but the argument holds for N ∈ {1, 2}
too, as observed, e.g., in [59].
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is even, Hn, and in Section 4.4, where we exploit a di�erent symmetry. It
is used also in Sections 4.2 and, again, 4.4 to reduce the curl-curl operator
∇×∇× to the vector Laplacian −∆.

1.6 Schwarz rearrangements

This section is based on [66, Chapter 3]. Let N ≥ 1 be integer. If A ⊂ RN

is measurable and |A| <∞, its Schwarz rearrangement is denoted by A∗ and
de�ned as the open ball3 centred at 0 having the same measure as A, i.e.,

A∗ := Br with r =
N |A|
|SN−1|

.

We say that a measurable function u : RN → R vanishes at in�nity if
and only if

∣∣{ x ∈ RN
∣∣ |u(x)| > t

}∣∣ < ∞ for every t > 0. In particular, u
vanishes at in�nity if it belongs to a Lebesgue space with �nite exponent. For
such a function, its Schwarz rearrangement is denoted by u∗ and de�ned as
follows. If u = χA is a characteristic function (for some measurable A ⊂ RN

with �nite measure), then

u∗ = χ∗A := χA∗ .

For a generic function u, instead, we de�ne

u∗(x) :=

∫ ∞
0

χ∗{|u|>t}(x) dt, x ∈ RN .

It is clear that u∗ is nonnegative, radial, and radially nonincreasing. More-
over, the following properties hold true.

Theorem 1.6.1. Let u : RN → R be a measurable function that vanishes at
in�nity.

• For every t > 0{
x ∈ RN

∣∣ u∗(x) > t
}

=
{
x ∈ RN

∣∣ |u(x)| > t
}∗
.

3One could use closed balls instead. With the choice of open balls, the characteristic
function χA∗ is lower semicontinuous.
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• If F : [0,∞[→ R is the di�erence of two monotone functions F1 and F2

such that Fi ◦ u ∈ L1(RN) for some i ∈ {1, 2} (in particular, if F is of
class C1 and F ◦ u ∈ L1(RN)), then∫

RN
F (|u|) dx =

∫
RN
F (u∗) dx.

• If u ∈ H1(RN), then∫
RN
|∇u∗|2 dx ≤

∫
RN
|∇u|2 dx.

A simple proof of the last property can be found in [65, Lemma 5].
Finally, if u = (u1, . . . , uK) : RN → RK is measurable and vanishes at

in�nity, with K ≥ 1 integer, we denote u∗ := (u∗1, . . . , u
∗
K).

1.7 Krasnosel'skji genus

Let (X, ‖ · ‖) be a Banach space and denote

A :=
{
A ⊂ X

∣∣ A = A = −A
}
.

For A ∈ A, A 6= ∅, de�ne by γ(A) the smallest positive integer k such that
there exists a continuous odd map h : A → Rk \ {0}. If no such k exists (in
particular, if 0 ∈ A), let γ(A) =∞. Finally, let γ(∅) = 0. γ(A) is called the
Krasnosel'skji genus of A.

The most important properties of the Krasnosel'skji genus are listed in
the following Proposition (cf. [109, Proposition II.5.4]).

Proposition 1.7.1. Let A,B ∈ A and h ∈ C(X,X) odd.

(i) γ(A) ≥ 0; γ(A) = 0 if and only if A = ∅.

(ii) If A ⊂ B, then γ(A) ≤ γ(B).

(iii) γ(A ∪B) ≤ γ(A) + γ(B).

(iv) γ(A) ≤ γ
(
h(A)

)
.

(v) If A is compact and 0 6∈ A, then γ(A) < ∞ and there exists a neigh-
bourhood V of A such that V ∈ A and γ(V ) = γ(A).

Remark 1.7.2. If A ⊂ X is a �nite nonempty collection of antipodal points,
then A ∈ A and γ(A) = 1.
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Part I

Unconstrained problems
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Chapter 2

Introduction to Part I

In Part I of this Ph.D. thesis, we study existence and multiplicity results
for curl-curl problems of the form

∇×∇×U = f(x,U), U : R3 → R3, (2.0.1)

where f = ∇F : R3×R3 → R3 is the gradient (with respect to U) of a given
nonlinear function F : R3×R3 → R. Problems as in (2.0.1) �nd their origins
in Maxwell's equations (in R3) in the di�erential form

∇×H = J + ∂tD (Ampère's Law)

∇ · D = ρ (Gauss's Electric Law)

∇× E = −∂tB (Faraday's Law)

∇ · B = 0 (Gauss's Magnetic Law)

(2.0.2)

where H,J ,D, E ,B : R3 × R → R3 are time-dependent vector �elds and
ρ : R3×R→ R is the electric charge density. In particular, H is the magnetic
intensity �eld, J the electric current intensity, D the electric displacement
�eld, E the electric �eld, and B the magnetic induction. We consider as well
the constitutive relations (still in R3){

D = εE + P
H = 1

µ
B −M,

(2.0.3)

where P ,M : R3 × R → R3 are, respectively, the polarization �eld (which
depends on E , in general nonlinearly) and the magnetization �eld, while
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ε, µ : R3 → R are, respectively, the permettivity and the permeability of the
material.

In order to derive (2.0.1) we make additional assumptions about the phys-
ical model. We begin by considering absence of electric charges (ρ = 0), elec-
tric currents (J = 0), and magnetization (M = 0). Then, plugging (2.0.3)
into (2.0.2) and di�erentiating with respect to the time variable we obtain1

∇×
(

1

µ
∇× E

)
+ ε∂2

t E = −∂2
tP .

Moreover, we assume that E and P are monochromatic waves, i.e., E(x, t) =
cos(ωt)E(x) and P(x, t) = cos(ωt)P (x) for some ω ∈ R and E,P : R3 → R3

(or, equivalently, E(x, t) = sin(ωt)E(x) and P(x, t) = sin(ωt)P (x)), which
leads to the time-harmonic Maxwell equation

∇×
(

1

µ
∇× E

)
− εω2E = ω2P.

Finally, if µ ≡ 1, ε ≡ 0, and we set U = E and f = ω2P , then we obtain
(2.0.1). Note that, if ε 6≡ 0, then we simply have an additional linear term of
the form V (x)U on the left-hand side of (2.0.1).

A di�erent derivation, still based on Maxwell's equations and � at the
same time � on the Born�Infeld theory, is provided in [29] in the magneto-
static case, i.e., when the magnetic �eld does not depend on time and the
electric �eld is identically 0. In this case, U stands for the gauge potential
of the magnetic �eld: ∇×U = B.

A major mathematical di�culty of (2.0.1) and similar curl-curl problems
is that the di�erential operator U 7→ ∇×∇×U has an in�nite-dimensional
kernel, i.e., the space of gradient vector �elds; this makes the associated
energy functional

U 7→
∫
R3

1

2
|∇ ×U|2 − F (x,U) dx

strongly inde�nite, i.e., unbounded from above and below (when F ≥ 0)
even on subspaces of �nite codimension and such that its critical points
have in�nite Morse index. Another issue is that the Fréchet di�erential of
the energy functional is not sequentially weak-to-weak* continuous, therefore

1We assume as well that the time and space derivatives can be switched.
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the limit point of a weakly convergent sequence needs not be a critical point
of the functional. Moreover, one has to struggle with the lack of compactness
because the problem is set in the whole space R3.

We underline that the aforementioned di�culties in dealing with curl-curl
problems � even in bounded domains � have given rise to several simpli�ca-
tions in the literature. The most widely used is the scalar or vector nonlinear
Schrödinger equation, where, e.g., one assumes that the term ∇(∇ · U) in
∇ × ∇ × U = ∇(∇ · U) − ∆U is negligible and can therefore be removed
from the equation, or uses the so-called slowly varying envelope approxima-
tion. Nevertheless, such approximations may produce non-physical solutions,
which do not describe the exact propagation of electromagnetic waves in
Maxwell's equations, as remarked, e.g., in [3, 42], whence the importance of
curl-curl problems from a physical point of view. As far as we know, the
�rst papers dealing with exact solutions to Maxwell's equations are [75,116],
where the problem is turned in an ODE and treated with ad hoc techniques.
The same approach is used in the series of papers [114,115,117�121].

To the best of our knowledge, the �rst work on (2.0.1) using variational
methods in R3 is due to Benci and Fortunato [29]: they consider the au-
tonomous case and a double-power type nonlinearity, i.e., F (x,U) = F (U) '
min{|U|q, |U|p} for some 2 < p < 6 < q. They introduce a series of brilliant
ideas which will be exploited later on by other authors for other curl-curl
problems, such as the splitting of the function space they work with into
a divergence-free subspace and a curl-free subspace and the restriction of
the energy functional to the aforementioned divergence-free subspace via a
�relative minimization� trick that makes use of the strict convexity of F .
Nontheless, such a paper contains a mistake: in order to recover compact-
ness, the authors work with O(3)-equivariant (radial) vector �elds, without
realizing that the subspace of O(3)-equivariant and divergence-free vector
�elds is nothing but the trivial space {0}.

The second attempt to tackle (2.0.1) is due to Azzollini, Benci, D'Aprile,
and Fortunato [8], once again with an autonomous double-power type non-
linearity. Their strategy consists of the use of two group actions in order to
reduce the curl-curl operator to the vector Laplace operator, which is easier
to handle. First, they consider the group action of SO := SO(2)× {1} on

D1,2(R3,R3) =
{
U ∈ L6(R3,R3)

∣∣ ∇U ∈ L2(R3,R3×3)
}

de�ned by
(gU)(x) := g−1U(gx) = gTU(gx), x ∈ R3 (2.0.4)
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for every g ∈ SO and every U ∈ D1,2(R3,R3), and the subspace Fix(SO)
consisting of the vector �elds U ∈ D1,2(R3,R3) which are invariant with re-
spect to this action. They prove (cf. [8, Lemma 1]) that every U ∈ Fix(SO)
decomposes as U = Uρ + Uτ + Uζ , where Uρ(x), Uτ (x), and Uζ(x) are the
orthogonal projections of U(x) onto span(x1, x2, 0), span(−x2, x1, 0), and
span(0, 0, 1) respectively for a.e. x = (x1, x2, x3) ∈ R3. Second, they intro-
duce the action

SU = S(Uρ + Uτ + Uζ) := −Uρ + Uτ −Uζ (2.0.5)

on Fix(SO) and consider the subspace

DF := {U ∈ Fix(SO) | U = SU } ,

i.e., U(x) = (x2
1 + x2

2)−1/2u(x)(−x2, x1, 0) for some SO-invariant u : R3 → R.
Since the divergence of every element of DF is identically 0, there holds
∇ × ∇ × U = ∇(∇ · U) − ∆U = −∆U for every U ∈ DF and so, using
Palais's principle of symmetric criticality [90] (Theorem 1.5.1), they reduce
(2.0.1) to

−∆U = f(U), U ∈ DF
and then use a Lions-type lemma as in [69,70] to obtain a nontrivial solution
via a constrained minimization argument in the spirit of [30].

The action S de�ned in (2.0.5) is also used by D'Aprile and Siciliano [46]
in a somewhat antipodal way, i.e., considering the subspace

{U ∈ Fix(SO) | U = −SU }

and obtaining solutions of the form

U(x) =
u(x)√
x2

1 + x2
2

x1

x2

0

+ v(x)

0
0
1


for some SO-invariant u, v : R3 → R. Since in this case the curl-curl operator
does not reduce to the vector Laplacian, they make use of the tools introduced
in [29] and then �nd a nontrivial solution similarly to [8].

The �rst work on a nonautonomous curl-curl problem and without the
use of any symmetry is by Bartsch and Mederski [18], where they investigate
one similar to (2.0.1) but on a bounded domain Ω ⊂ R3, pairing it with
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boundary conditions that model the case of a medium surrounded by a perfect
conductor (i.e., the electric �eld on the boundary of the medium is tangential
to it), obtaining the system{

∇×∇×U + λU = f(x,U) in Ω

ν ×U = 0 on ∂Ω,
(2.0.6)

with λ ≤ 0 and ν : ∂Ω→ S2 the outer normal unit vector. As in [29,46], the
authors split the function space they work with into a divergence-free part
and a curl-free part, but then, instead of using a constrained minimization
method, they adopt techniques from [122,123] that exploit a generalization of
the Nehari manifold, which needs not be of class C1. First of all, they split the
divergence-free subspace into two more subspaces, where the quadratic form
induced by the left-hand side of the di�erential equation in (2.0.6) is positive
de�nite and negative semide�nite respectively. Next, under some technical
assumptions about F , the generalized Nehari manifold (also known in the
literature as the Nehari�Pankov manifold) is proved to be homeomorphic to
the unit sphere in the subspace of divergence-free vector �elds where the
aforementioned quadratic form is positive de�nite, and this homeomorphism
is utilized as a counterpart of the one obtained with the �relative minimiza-
tion� trick from [29, 46]. In addition, since the Nehari�Pankov manifold is
a natural constraint, by a suitable minimization argument the authors �nd
a ground state solution, i.e., a notrivial solution with minimal energy, as
well as in�nitely many solutions with divergent energy. The advantage of
working in a bounded domain is that, despite the presence of the subspace of
curl-free vector �elds, which does not embed compactly in any �good� (e.g.,
Lebesgue) function space, a variant of the Palais�Smale condition is satis-
�ed, which provides some compactness in the aforementioned minimization
argument.

The same authors generalize in [19] their results by allowing also the
terms on the left-hand side of the di�erential equation in (2.0.6) to be nonau-
tonomous, obtaining the more generic system{

∇×
(
µ(x)−1∇×U

)
− V (x)U = f(x,U) in Ω

ν ×U = 0 on ∂Ω,

where now µ, V : Ω → R3×3 and µ(x), V (x) are symmetric positive de�nite
matrices. They relax other assumptions about F , including the ones that
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allow to build a homeomorphism between the Nehari�Pankov manifold and
the unit sphere in a suitable subspace; as a consequence, they build another
one between a larger manifold (i.e., containing the Nehari�Pankov one) and
the whole subspace of divergence-free vector �elds where a similar quadratic
form is positive de�nite, exploiting once again the trick from [29, 46] and
obtaining similar results to their previous work [18].

Returning to unbounded domains, the problem

∇×∇×U + V (x)U = f(x,U) in R3 (2.0.7)

is studied by Mederski in [78] with f 1-periodic in x along every direction
and V : R3 → R in a suitable intersection of Lebesgue spaces, V ≤ 0. Tools
from [18] and [46] are matched with the Z3-invariance of the problem with
V = 0 given by the periodicity of f . When V 6= 0, this invariance is lost and
a careful analysis of Palais�Smale sequences is needed, including a splitting
result for bounded sequences introduced in [46].

The version of (2.0.7) with the same symmetry as in [8] and F (x,U) =
Γ(x)|U|p/p, 2 < p < 6, is investigated by Bartsch, Dohnal, Plum, and Reichel
in [15], where they build a Nehari�Pankov manifold of class C1 and �nd a
nontrivial solution with minimal energy by minimizing the energy functional
constrained to it. They also consider the case F ≤ 0, �nding a least energy
solution at a negative level as a minimizer of the unconstrained energy func-
tional, and the radially symmetric case for V/Γ > 0, where the term ∇×U
vanishes and � consequently � (2.0.7) becomes an algebraic equation, with
explicit solutions

U(x) = s(|x|)
(
V (|x|)
Γ(|x|)

) 1
p−2 x

|x|
for some measurable s : ]0,∞[→ {±1}.

The �rst multiplicity result in unbounded domains without any symmetry
assumptions is due to Mederski, the author, and Szulkin [83], where they
obtain in�nitely many solutions and a least-energy solution to (2.0.7) for
V = 0. Some of the techniques are borrowed from [19], others are introduced
therein. They also generalize the double-power type nonlinearities of [8, 29,
46, 78] by means of N -functions and Orlicz spaces. For more details, see
Chapter 3 in this thesis.

In all the papers mentioned so far, except for [15] in the peculiar case
F ≤ 0, the Sobolev-critical exponent 6 (in dimension N = 3) is not dealt
with. The �rst results in this direction are due to Mederski [81], who considers

34



the curl-curl equivalent of the Brezis-Nirenberg problem on bounded domains
[36] {

∇×∇×U + λU = |U|4U in Ω

ν ×U = 0 on ∂Ω,
(2.0.8)

λ ≤ 0. His approach makes use of the same symmetry as in [8] together with
a compact perturbation relative to the case λ = 0, which leads to a series
of considerations on the di�erence between the energy functional associated
with (2.0.8) and the one when λ = 0. He also obtains additional results in the
Sobolev subcritical case about the continuity and the (strict) monotonicity
of the ground state energy map, i.e., the function that maps λ to the least
energy achieved by a nontrivial solution to (2.0.6).

The counterpart of (2.0.8) set in the whole space R3

∇×∇×U = |U|4U

is investigated by Mederski and Szulkin in [84], where they �nd a ground
state solution again with the aid of the Nehari�Pankov manifold. Additional
results in that paper concern optimal constants in Sobolev-type inequalities
involving the curl operator ∇×, in R3 or in bounded domains. In particu-
lar, they improve the results in [81] as they do not require any symmetry
assumptions.

Multiple entire solutions in the Sobolev-critical case are obtained, for the
�rst time, by Gaczkowski, Mederski, and the author in [51] combining the
symmetry introduced in [8] with another introduced in [47], which restores
compactness. They also extend rigorously an equivalence result, known for
the classical formulations, that relates the weak solutions to (2.0.1) with the
weak solutions to the Schrödinger equation with singular potential

−∆u+
u

x2
1 + x2

2

= f̃(x, u) in R3

under some assumptions relating f and f̃ . The noncritical case is dealt
with too. For more details, see Chapter 4 in this thesis. Similar equations
appear also in context that are not related to Maxwell's equations and curl-
curl problems. For instance, in [48, Theorem 3.9] they are the result of the
limiting problem for a nonlinear Schrödinger equation of critical growth with
an external magnetic �eld, while in [10] they are derived from Schrödinger
equations of the form

−∆v = g(|v|) v
|v|
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assuming that v(x) = u(x)eiθ(x1,x2), u ≥ 0, where θ(x1, x2) gives the angle of
the point (x1, x2) in the plane { y = (y1, y2, y3) ∈ R3 | y3 = 0 }.

In the end, we would like to mention the surveys about curl-curl problems
[20, 79] and the following two papers, which study cases that are not taken
into account in this thesis: [56], where di�erent symmetries are considered,
and [93], with asymptotically linear nonlinearities.
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Chapter 3

Maxwell's equations and absence

of symmetry

3.1 Statement of the results

In this chapter, based on [83], we study the curl-curl problem (2.0.1),
which for the reader's convenience we rename

∇×∇×U = ∇UF (x,U) =: f(x,U) in R3, (3.1.1)

without any hypotheses about the symmetry of the solutions to (3.1.1).
The nonlinearity is controlled by an N -function Φ: R→ [0,∞[ (cf. (F3)

below) which satis�es the following assumptions:

(N1) Φ satis�es the ∆2 and ∇2 conditions globally;

(N2) lim
t→0

Φ(t)

t6
= lim

t→±∞

Φ(t)

t6
= 0;

(N3) lim
t→±∞

Φ(t)

t2
=∞.

As a reference about N -functions, which will be rigorously introduced in
Section 3.2, we mention [96]. Note that in [83] it was additionally required
that Φ be strictly convex and of class C1.

Now we list our assumptions about the nonlinearity.
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(F1) F : R3×R3 → R is di�erentiable with respect toU ∈ R3 for a.e. x ∈ R3

and f : R3 × R3 → R3 is a Carathéodory function. Moreover, f is Z3-
periodic in x, i.e., f(x,U) = f(x + y,U) for every U ∈ R3 and a.e.
x ∈ R3 and y ∈ Z3.

(F2) F is uniformly strictly convex in U, i.e., for every compact K ⊂ (R3×
R3) \ { (U,U) | U ∈ R3 }

inf
x∈R3

(U,V)∈K

F (x,U) + F (x,V)

2
− F

(
x,

U + V

2

)
> 0.

(F3) There exist c1, c2 > 0 such that

|f(x,U)| ≤ c1Φ′(|U|) and F (x,U) ≥ c2Φ(|U|)

for every U ∈ R3 and a.e. x ∈ R3.

(F4) f(x,U) ·U ≥ 2F (x,U) for every U ∈ R3 and a.e. x ∈ R3.

(F5) For every U,V ∈ R3 and a.e. x ∈ R3 such that f(x,U) ·V = f(x,V) ·
U > 0

F (x,U)− F (x,V) ≤
(
f(x,U) ·U

)2 −
(
f(x,U) ·V

)2

2f(x,U) ·U
.

Under these assumptions, the energy functional de�ned as

E(U) =

∫
R3

1

2
|∇ ×U|2 − F (x,U) dx (3.1.2)

is well de�ned and of class C1 (see Proposition 3.2.6) in the space

D(curl,Φ) :=
{
U ∈ LΦ(R3,R3)

∣∣ ∇×U ∈ L2(R3,R3)
}
,

where

LΦ(R3,R3) =

{
U : R3 → R3 measurable

∣∣∣∣ ∫
R3

Φ(|U|) dx <∞
}
.

Note that, as observed in [77, Remark 3.3 (b)], if F, F̄ : R3 × R3 → R
satisfy (F1)�(F5), then so does F + F̄ . This is not trivial concerning (F5) as
it is not an additive assumption.
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We provide some examples for F . Let G : R3 × R → R be di�eren-
tiable in the second variable t, with g := ∂tG a Carathéodory function, �x
M ∈ GL(3,R), and de�ne F (x,U) := G(x, |MU|). If G(x, 0) = 0 and
t 7→ g(x, t)/t is nondecreasing for t > 0, then F satis�es (F4) (cf. [122]) and
(F5).

Now let Γ ∈ L∞(R3) be Z3-periodic, positive, and bounded away from
0 and let W ∈ C1(R) such that W (0) = W ′(0) = 0 and t 7→ W ′(t)/t is
nondecreasing for t > 0. If we de�ne F (x,U) := Γ(x)W (|MU|2), where
M is as before, then (F1), (F2), (F4), and (F5) hold. If we take W (t2) =(
(1+|t|q)p/q−1

)
/p orW (t2) = min{|t|p/p−1/p+1/q, |t|q/q}, then (F3) holds

too with Φ(t) = W (t2). Note that such Φ's are models for the double-power
type nonlinearities considered in [8, 29,46,78].

We observe the following: if W ′ is constant on [a, b] for some 0 < a < b <
∞, then (take for simplicity M as the identity matrix)

0 < F (x,U)− F (x,V) =

(
f(x,U) ·U

)2 −
(
f(x,U) ·V

)2

2f(x,U) ·U

for every U ∈ R3 and V ∈ span(U) such that a < |V| < |U| < b, therefore
the stronger variant of (F5) [78, (F5)] (see also [18, (F7)]) is no longer satis�ed
and we cannot make use of techniques relying on a minimization over the
Nehari�Pankov manifold

N :=
{
U ∈ D(curl,Φ) \ {0}

∣∣ E ′(U)(U) = E ′(U)(∇ϕ) = 0∀ϕ ∈ C∞c (R3)
}

as in [18, 78] (see also [122, 123]). Note that N needs not be a di�erentiable
manifold because in general E is only of class C1.

In addition, we allow nonlinearities that do not �t in the double-power
case. If

W (t2) =

{
1
2
(t2 − 1) ln(1 + |t|)− 1

4
t2 + 1

2
|t| if |t| > 1

ln 2
q

(|t|q − 1) + 1
4

if |t| ≤ 1

for some q > 6 and

f(x,U) =

{
Γ(x) ln(1 + |U|)U if |t| > 1

ln 2 Γ(x)|U|q−2U if |t| ≤ 1,
(3.1.3)
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then (F1)�(F5) hold, but F cannot be controlled by any N -function related
to the sum of two suitable Lebesgue spaces, as it is the case with a double-
power behaviour. Moreover, there exists no η > 2 such that F satis�es the
classical Ambrosetti-Rabinowitz condition [5]

f(x,U) ·U ≥ ηF (x,U) > 0

if |U| > 1.
Another example is given by F (x,U) = Γ(x)Φ(|U|), where Φ(0) = 0 and

Φ′(t) =


ln 2 t5

16 ln t
if |t| > 2

t if 1 ≤ |t| ≤ 2
t5

1−ln |t| if 0 < |t| < 1.

(3.1.4)

Once again, such F does not satisfy the Ambrosetti-Rabonowitz condition
for 1 < |U| < 2. Furthermore, Φ satis�es (N2), but

lim
t→±∞

Φ(t)

|t|p
= lim

t→0

Φ(t)

|t|q
=∞

for every 2 < p < 6 < q, which is not the case (concerning the limit at zero)
for a similar example given in [83, page 256], where limt→0 Φ(t)/|t|6+ε = 0
for su�ciently small ε > 0. We point out that, in the last two examples, it
is convenient to use Lemma 3.2.2 (i) to check (N1).

The main result of this chapter reads as follows.

Theorem 3.1.1. Assume that (F1)�(F5) hold.

(a) There exists a ground state solution to (3.1.1), i.e., U ∈ N such that
E ′(U) and

E(U) = inf
N
E.

(b) If, moreover, F is even in U, then there exists an in�nite sequence
Un ∈ N of geometrically distinct solutions to (3.1.1), i.e., (Z3 ∗Un) ∩
(Z3 ∗Um) = ∅ for every n 6= m, where

Z3 ∗U =
{
U(·+ z)

∣∣ z ∈ Z3
}
.
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Instead of working directly with N, we make use of a second subset of
D(curl,Φ), i.e.,

M :=
{
U ∈ D(curl,Φ)

∣∣ E(U)(∇ϕ) = 0∀ϕ ∈ C∞c (R3)
}
,

which clearly contains N. A very important property of M is that E ′ is
weak-to-weak* continuous when restricted to it, because it allows to �nd a
solution to (3.1.1) as a weak limit point of a Cerami sequence, which is later
proved to be a ground state solution.

3.2 Functional and Orlicz setting

In the �rst part of this section, we recall a series of basic facts about
N -functions and Orlicz spaces. Our discussion is based on [96].

A function Φ: R→ [0,∞[ is called anN -function (or nice Young function)
if and only if it is even, convex, and

Φ(t) = 0⇔ t = 0, lim
t→0

Φ(t)

t
= 0, lim

t→∞

Φ(t)

t
=∞.

Given an N -function Φ, we can de�ne a second N -function as

Ψ(t) = sup { s |t| − Φ(s) | s ≥ 0 } .

Ψ is called the complementary function to Φ and (Φ,Ψ) is called a comple-
mentary pair of N -functions. Recall from [96, Section 1.3] that Φ′ and Ψ′

exist a.e.1, Ψ′(t) = inf{s ≥ 0 : Φ′(s) > t} for t ≥ 0, and Ψ can be expressed
as

Ψ(t) =

∫ |t|
0

Ψ′(s) ds.

We recall from [96, Section 2.3] that Φ satis�es the ∆2 condition globally
(denoted Φ ∈ ∆2) if and only if there exists K > 1 such that for every t ∈ R

Φ(2t) ≤ KΦ(t)

(here 2 can be replaced by any constant a > 1), while Φ satis�es the ∇2

condition globally (denoted Φ ∈ ∇2) if and only if there exists K ′ > 1 such
that for every t ∈ R

Φ(K ′t) ≥ 2K ′Φ(t).

1In fact, Φ′ and Ψ′ exist everywhere if we de�ne them as the left (or right) derivatives.
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When the inequalities above hold for every su�ciently large |t|, we say that
Φ satis�es the ∆2 or ∇2 conditions locally.

The set

LΦ := LΦ(R3,R3) :=

{
U : R3 → R3 measurable

∣∣∣∣ ∫
R3

Φ(|U|) dx <∞
}

is called the Orlicz class relative to Φ and needs not be a vector space,
because it nees not be closed under moltiplication by a scalar. In order to
have a vector space, we need to consider the set

LΦ := LΦ(R3,R3) :=
{
U : R3 → R3 measurable

∣∣ ∃ a > 0 : aU ∈ LΦ
}
,

called the Orlicz space relative to Φ. The property of LΦ being a vector space
is related to Φ satisfying the ∆2 condition. More precisely, LΦ(R3,R3) =
LΦ(R3,R3) if and only if Φ ∈ ∆2 (cf. [96, Theorem III.I.2]).

Identifying functions equal a.e., LΦ becomes a Banach space (cf. [96,
Theorems III.II.3 and III.III.10]) if endowed with the norm

|U|Φ := inf

{
α > 0

∣∣∣∣ ∫
R3

Φ

(
|U|
α

)
dx ≤ 1

}
.

One can de�ne an equivalent norm (cf. [96, Proposition III.III.4]) as

|U|Φ,1 := sup

{ ∫
R3

|U| |V| dx
∣∣∣∣ V ∈ LΨ and

∫
R3

Ψ(|V|) dx ≤ 1

}
.

Here and in the sequel, Ψ stands for the complementary function to Φ.
Finally, if Φ ∈ ∆2, then L

Φ is separable (cf. [96, Theorem III.V.1]) and
its dual space is LΨ (cf. [96, Corollary IV.I.9]); if, moreover, Ψ ∈ ∆2, then
LΦ and LΨ are re�exive (cf. [96, Theorem IV.I.10]). As usual the equality
(LΦ)′ = LΨ is meant as an isometric isomorphism, where the norm on (LΦ)′

is induced in the standard way from the one in LΦ. However, if we consider
the norm | · |Φ in LΦ, then such an isometry holds if we consider the norm
| · |Ψ,1 in LΨ; similarly if we consider the norms | · |Φ,1 and | · |Ψ.

We point out that the results in [96] are given for scalar vector �elds.
Nonetheless, this is irrelevant in view of the following lemma. For Ω ⊂ R3

measurable de�ne

LΦ(Ω) :=

{
u : Ω→ R measurable

∣∣∣∣ ∫
Ω

Φ(|au|) dx <∞ for some a > 0

}
and, with a small abuse of notation, endow it with the norm | · |Φ de�ned as
before.
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Lemma 3.2.1. LΦ = LΦ(R3)3 and their norms are equivalent.

Proof. For U ∈ LΦ(R3)3 we use the norm |U|Φ,3 := maxi∈{1,2,3} |Ui|Φ, with
U = (U1,U2,U3). Since Φ is increasing on positive numbers, for every k > 0∫

R3

Φ

(
|Ui|
k

)
dx ≤

∫
R3

Φ

(
|U|
k

)
dx,

hence, if the second integral is less than 1, so is the �rst one. Taking the
in�mum over k > 0 we obtain |Ui|Φ ≤ |U|Φ for every i ∈ {1, 2, 3} and
|U|Φ,3 ≤ |U|Φ. In particular, LΦ(R3)3 ⊂ LΦ.

On the other hand, since Φ is convex,∫
R3

Φ

(
|U|
k

)
dx ≤ 1

3

3∑
i=1

∫
R3

Φ

(
3|Ui|
k

)
dx ≤

∫
R3

Φ

(
3 maxi=1,2,3 |Ui|

k

)
dx,

so |U|Φ ≤ 3 maxi=1,2,3 |Ui|Φ = 3|U|Φ,3 and, in particular, LΦ ⊂ LΦ(R3)3.

We conclude this series of recalls with the following properties.

Lemma 3.2.2. (i) The following are equivalent:

- Φ ∈ ∆2,

- there exists K > 1 such that tΦ′(t) ≤ KΦ(t) for every t ∈ R,
- there exists K ′ > 1 such that tΨ′(t) ≥ K ′Ψ(t) for every t ∈ R,
- Ψ ∈ ∇2.

(ii) For every U ∈ LΦ, V ∈ LΨ there holds∫
R3

|U||V| dx ≤ min{|U|Φ,1|V|Ψ, |U|Φ|V|Ψ,1}.

(iii) Let Un, U ∈ LΦ. Then |Un − U|Φ → 0 implies that
∫
R3 Φ(|Un −

U|) dx → 0. If Φ ∈ ∆2, then
∫
R3 Φ(|Un −U|) dx → 0 implies |Un −

U|Φ → 0.

(iv) Let X ⊂ LΦ. Then X is bounded if
{ ∫

R3 Φ(|U|) dx
∣∣ U ∈ X } is

bounded. If Φ ∈ ∆2, then the opposite implication holds.
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Proof. (i) follows from [96, Theorem II.III.3], (ii) follows from [96, Formula
(III.III.17)], (iii) follows from [96, Theorem III.IV.12], (iv) follows from [96,
Corollary III.IV.15].

From now on, we assume (F1)�(F5) and (N1)�(N3) hold and Φ denotes
the N -function mentioned in the assumption (F3).

We recall that D(curl,Φ) is the completion of C∞c (R3,R3) with respect to
the norm

‖U‖curl,Φ :=
√
|∇ ×U|22 + |U|2Φ.

The subspace of divergence-free vector �elds is de�ned as

V :=

{
U ∈ D(curl,Φ)

∣∣∣∣ ∫
R3

U · ∇ϕdx = 0 for every ϕ ∈ C∞c (R3)

}
= {U ∈ D(curl,Φ) | ∇ ·U = 0 } ,

where the divergence ofU is understood in the distributional sense. As usual,
let D := D1,2(R3,R3) be the closure of C∞c (R3,R3) with respect to the norm
‖U‖D = |∇U|2. Finally, let W be the closure of { ∇ϕ | ϕ ∈ C∞c (R3) } in LΦ.

Lemma 3.2.3. L6(R3,R3) is continuously embedded in LΦ.

Proof. In view of (N2), there exists C > 0 such that Φ(t) ≤ C|t|6 for every
t ∈ R, therefore we can conclude by Lemma 3.2.2 (iii).

The following Helmholtz decomposition holds.

Lemma 3.2.4. V and W are closed subspaces of D(curl,Φ) and

D(curl,Φ) = V ⊕W . (3.2.1)

Moreover, V ⊂ D and the norms ‖ · ‖D and ‖ · ‖curl,Φ are equivalent in V.

Proof. Let w ∈ W and ϕn ∈ C∞c (R3) such that |w − ∇ϕn|Φ → 0. Then for
every ψ ∈ C∞c (R3,R3)∫

R3

w · ∇ × ψ dx = lim
n

∫
R3

∇ϕn · ∇ × ψ dx = lim
n

∫
R3

∇× (∇ϕn) · ψ dx = 0

where we have used Lemma 3.2.2 (ii) and the fact that ∇× ψ ∈ LΨ. Hence
∇ × w = 0 in the sense of distributions and ‖w‖curl,Φ = |w|Φ. Therefore
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W is closed in D(curl,Φ); moreover, it is easily checked that V is closed in
D(curl,Φ).

Now, take any U ∈ D(curl,Φ) and ϕn ∈ C∞c (R3,R3) such that ϕn → U
in D(curl,Φ). Let ϕ2

n ∈ C∞(R3) be the Newtonian potential of ∇ · ϕn, i.e.,
ϕ2
n solves ∆ϕ2

n = ∇ · ϕn. Note that the derivative ∂iϕ
2
n is the Newtonian

potential of ∇ · ∂iϕn. Since ϕn ∈ C∞c (R3), then by [58, Proposition 1], ∇ϕ2
n

and ∇(∂iϕ
2
n) ∈ Lr(R3,R3) for every r ∈ ]1,∞[. Hence from Lemma 3.2.3

∇ϕ2
n ∈ L6(R3,R3) ⊂ LΦ

and ϕ1
n := ϕn −∇ϕ2

n ∈ LΦ. Moreover, ϕ1
n, ∂iϕ

1
n ∈ Lr(R3,R3). We also have

∇× ϕ1
n = ∇× ϕn and ∇ · ϕ1

n = 0 pointwise. Using these two equalities and
integrating by parts we obtain |∇ϕ1

n|2 = |∇ × ϕ1
n|2 = |∇ × ϕn|2. It follows

that for every m,n

|∇(ϕ1
n − ϕ1

m)|2 = |∇ × (ϕ1
n − ϕ1

m)|2 = |∇ × (ϕn − ϕm)|2 ≤ ‖ϕn − ϕm‖curl,Φ,

thus ϕ1
n is a Cauchy sequence in D. Let v := limn ϕ

1
n in D. Then∫

R3

v · ∇ϕdx = lim
n

∫
R3

ϕ1
n · ∇ϕdx = 0

for every ϕ ∈ C∞c (R3), hence ∇ · v = 0 and v ∈ V . Moreover,

|∇ × (ϕ1
n − v)|2 = |∇(ϕ1

n − v)|2 → 0,

so ϕ1
n → v in D(curl,Φ) and ∇ϕ2

n = ϕn − ϕ1
n → U − v in D(curl,Φ). Since

W is closed in D(curl,Φ), then U− v ∈ W and we get the decomposition

U = v + (U− v) ∈ V +W .

Now take U ∈ V ∩ W . Then ∇ × U = 0, so by [63, Lemma 1.1 (i)],
U = ∇ξ for some ξ ∈ W 1,6

loc (R3). Since ∇·U = 0, ξ is harmonic and therefore
so is U. Hence

0 = −
∫
R3

U ·∆U dx =

∫
R3

|∇U|2 dx

and so U = 0, thus V ∩W = {0} and we obtain (3.2.1).
The equivalence of norms follows from Lemma 3.2.3.
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In view of Lemmas 3.2.3 and 3.2.4, V is continuously embedded in LΦ.
We introduce a norm in V ×W by the formula

‖(v, w)‖ :=
√
‖v‖2

D + |w|2Φ.

We also de�ne a functional on V ×W that is the counterpart of E, de�ned
in V ⊕W = D(curl,Φ), as

J(v, w) :=

∫
R3

1

2
|∇v|2 − F (x, v + w) dx.

In order to prove that J ∈ C1(V ×W), we need the following result.

Lemma 3.2.5. There exists C > 0 such that for every t ∈ R

Ψ
(
Φ′(t)

)
≤ CΦ(t).

In particular, if U ∈ LΦ, then Φ′(|U|) ∈ LΨ.

Proof. Since Φ ∈ ∆2, from Lemma 3.2.2 (i) and [96, Theorem I.III.3] there
holds

Ψ
(
Φ′(t)

)
= tΦ′(t)− Φ(t) ≤ (K − 1)Φ(t).

Proposition 3.2.6. J ∈ C1(V ×W) and

J ′(v, w)(v′, w′) =

∫
R3

∇v · ∇v′ − f(x, v + w) · (v′ + w′) dx

for every v, v′ ∈ V and every w,w′ ∈ W.

Proof. From Lemma 3.2.3, the proof is complete if we prove that I ∈ C1(LΦ),
where I(U) :=

∫
R3 F (x,U) dx, and I ′(U)(V) =

∫
R3 f(x,U) ·V dx for every

U,V ∈ LΦ. Let U,V ∈ LΦ and t 6= 0 (we can assume |t| ≤ 1). Then

I(U)− I(U + tV)

t
=

1

t

∫
R3

F (x,U)− F (x,U + tV) dx

=

∫
R3

f(x,U + θtV) ·V dx

for some θ = θ(t) ∈ [0, 1]. Since f is a Charatéodory function, for a.e. x ∈ R3

lim
t→0

f
(
x,U(x) + θtV(x)

)
·V(x) = f

(
x,U(x)

)
·V(x).
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Moreover, from (F3) and the monotonicity of Φ′,

|f(x,U + θtV) ·V| ≤ c1Φ′(|U + θtV|)|V| ≤ c1Φ′(|U|+ |V|)|V| ∈ L1(R3)

owing to Lemmas 3.2.2 (ii) and 3.2.5. In view of the dominated convergence
theorem, I ′(U)(V) =

∫
R3 f(x,U) · V dx. In addition, the same argument

proves that, for a �xed U ∈ LΦ, the linear map

V ∈ LΦ 7→ I ′(U)(V) ∈ R

is continuous. Now we prove that I ′ ∈ C(LΦ, LΨ) (recall that LΨ ' (LΦ)′).
Let Un → U in LΦ. We want to prove that limn |f(·,Un) − f(·,U)|Ψ = 0,
or equivalently

lim
n

∣∣∣∣f(·,Un)− f(·,U)

2c1

∣∣∣∣
Ψ

= 0,

where c1 is the same as (F3). In view of Lemma 3.2.2 (iii), this is the same
as proving that

lim
n

∫
R3

Ψ

(∣∣∣∣f(·,Un)− f(·,U)

2c1

∣∣∣∣) dx = 0.

By the same classical argument used for Lebesgue spaces (see, e.g., [97, Proof
of Theorem 3.11]) together with Lemma 3.2.2 (iv), Un → U a.e. in R3 up to
a subsequence, hence Ψ

(
|f(·,Un)−f(x,U)|/(2c1)

)
→ 0 a.e. in R3. With the

intent to use again the dominated convergence theorem, from (F3), Lemma
3.2.5, and the convexity of Ψ we have

Ψ

(∣∣∣∣f(x,Un)− f(x,U)

2c1

∣∣∣∣) ≤ Ψ

(
Φ′(|Un|) + Φ′(|U|)

2

)
≤

Ψ
(
Φ′(|Un|)

)
+ Ψ

(
Φ′(|U|)

)
2

≤ Φ(|Un|) + Φ(|U|)
2

and

Φ(|Un|) ≤
Φ(2|Un −U|)

2
+

Φ(2|U|)
2

.

Finally, since Φ(2|Un − U|) → 0 in L1(R3), from [129, Lemma A.1] there
exists g ∈ L1(R3) such that Φ(2|Un −U|) ≤ g for every n.
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We conclude this section with the variational formulation of (3.1.1) and
showing the �equivalence� of the functionals E and J .

Proposition 3.2.7. If U = v+w ∈ V⊕W, then the following are equivalent:

(i) (v, w) is a critical point of J ;

(ii) U is a critical point of E;

(iii) U is a (weak) solution to (3.1.1).

Proof. For the �rst equivalence, let U′ = v′ + w′ ∈ V ⊕W . Then we have∫
R3

f(x, v + w) · (v′ + w′) dx =

∫
R3

f(x,U) ·U′ dx

and, since ∇× w = ∇× w′ = 0,∫
R3

∇× v · ∇ × v′ dx =

∫
R3

∇×U · ∇ ×U′ dx

so that ∫
R3

∇× v · ∇ × v′ dx =

∫
R3

f(x, v + w) · (v′ + w′) dx

⇔
∫
R3

∇×U · ∇ ×U′ dx =

∫
R3

f(x,U) ·U′ dx

and the conclusion follows from Lemma 3.2.4. For the second equivalence we
just need to observe that for every ϕ ∈ C∞c (R3,R3)∫

R3

∇×U · ∇ × ϕdx =

∫
R3

U · ∇ ×∇× ϕdx.

3.3 An abstract critical point theory

We recall the abstract setting from [18,19]. Let X be a re�exive Banach
space with norm ‖ · ‖ and a topological direct sum decomposition X =
X+ ⊕X−, where X+ is a Hilbert space with scalar product (·|·). For u ∈ X
we denote by u+ ∈ X+ and u− ∈ X− the corresponding summands such that
u = u+ +u−. We assume ‖u‖2 = ‖u+‖2 +‖u−‖2 = (u+|u+)+‖u−‖2 for every
u ∈ X. The topology T on X is de�ned as the product of the norm topology
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in X+ and the weak topology in X−. Thus un
T→ u is equivalent to u+

n → u+

and u−n ⇀ u−.
Let J : X → R be a functional of the form

J(u) =
1

2
‖u+‖2 − I(u)

for some I : X → R. The set

M := { u ∈ X | J ′(u)|X− = 0 } = { u ∈ X | I ′(u)|X− = 0 }

obviously contains all the critical points of J . Suppose the following assump-
tions hold.

(I1) I ∈ C1(X) and I(u) ≥ I(0) = 0 for every u ∈ X.

(I2) If un
T→ u, then lim infn I(un) ≥ I(u).

(I3) If un
T→ u and I(un)→ I(u), then un → u.

(I4) ‖u+‖+ I(u)→∞ as ‖u‖ → ∞.

(I5) If u ∈M, then I(u) < I(u+ v) for every v ∈ X− \ {0}.

Clearly, if a strictly convex functional I satis�es (I4), then (I2) and (I5)
hold. Observe that for every u ∈ X+ we de�ne m(u) ∈ M as the unique
global maximizer of J |u⊕X− . Note that m needs not be C1 and M needs
not be a di�erentiable manifold because I ′ is only required to be continuous.
Recall from [19] that J satis�es the (PS)Tc -condition onM if and only if each
(PS)c-sequence un ∈M has a subsequence converging in the T -topology. In
order to apply classical critical point theory to J ◦ m : X+ → R like the
mountain pass geometry we need some additional assumptions.

(I6) There exists r > 0 such that a := inf
u∈X+,‖u‖=r

J(u) > 0.

(I7)
I(tnun)

t2n
→∞ if tn →∞ and u+

n → u+ 6= 0.

According to [19, Theorem 4.4], if (I1)�(I7) hold and

cM := inf
γ∈Γ

max
t∈[0,1]

J
(
γ(t)

)
,
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where

Γ :=
{
γ ∈ C([0, 1],M)

∣∣ γ(0) = 0, ‖γ(1)+‖ > r, and J
(
γ(1)

)
< 0

}
,

then cM ≥ a > 0 and J has a (PS)cM-sequence un ∈ M. If, in addition,
J satis�es the (PS)TcM-condition in M, then cM is achieved by a critical
point of J . Since we look for solutions to (3.1.1) in R3 and not in a bounded
domain as in [19], the (PS)TcM-condition is no longer satis�ed. We consider
the set

N :=
{
u ∈ X \X−

∣∣ J ′(u)|Ru⊕X− = 0
}

=
{
u ∈M \X−

∣∣ J ′(u)(u) = 0
}
⊂M,

which clearly contains all the nontrivial critical points of J , and require the
following condition on I:

(I8)
t2 − 1

2
I ′(u)(u) + I(u)− I(tu+ v) ≤ 0 for every u ∈ N , t ≥ 0, v ∈ X−.

In [18,19] it was additionally assumed that the strict inequality holds if u 6=
tu+v. This stronger variant of (I8) implies that for every u+ ∈ X+ \{0} the
functional J has a unique critical point n(u+) on the half-space R+u+ +X−.
Moreover, n(u+) is a global maximizer of J on the space Ru+ +X−, the map

n :
{
u+ ∈ X+

∣∣ ‖u+‖ = 1
}
→ N

is a homeomorphism, the set N is a topological manifold, and it is enough to
look for critical points of J ◦ n. This is the approach of [122,123]. However,
if the weaker condition (I8) holds, this procedure cannot be repeated. In
particular, N needs not be a manifold. However, the following holds.

Lemma 3.3.1. If u ∈ N , then u is a (not necessarily unique) maximizer of
J on R+u+X−.

Proof. Let u ∈ N . In view of (I8), we get by explicit computations

J(tu+ v) = J(tu+ v)− J ′(u)

(
t2 − 1

2
u+ tv

)
≤ J(u)

for every t ≥ 0 and every v ∈ X−.
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Let
J := J ◦m : X+ → R.

Before proving the main results of this section, we recall the following prop-
erties from [19, Proof of Theorem 4.4]. Note that (I8) was not used there.

(i) For every u+ ∈ X+ there exists a unique u− ∈ X− such that m(u+) :=
u+ + u− ∈M. This m(u+) is the minimizer of I on u+ +X−.

(ii) m : X+ →M is a homeomorphism, its inverse being u ∈ M 7→ u+ ∈
X+.

(iii) J = J ◦m ∈ C1(X+,R).

(iv) J ′(u+) = J ′
(
m(u+)

)
|X+ : X+ → R for every u+ ∈ X+.

Property (i) was already discussed earlier. We will also need the following
property.

Lemma 3.3.2. Let Xk be a k-dimensional subspace of X+. Then J (u) →
−∞ whenever ‖u‖ → ∞ and u ∈ Xk.

Proof. It su�ces to show that each sequence u+
n ∈ Xk such that ‖u+

n ‖ → ∞
contains a subsequence along which J tends to −∞. Let u+

n = tnvn with
‖vn‖ = 1 and set m(u+

n ) = u+
n + u−n ∈ M. Then, passing to a subsequence

and using (I7), we obtain

J (tnvn)

t2n
=

1

2
−
I
(
tn(vn + u−n /tn)

)
t2n

→ −∞.

In view of (I4), it is clear that if un is a bounded Cerami sequence for
J , then m(un) ∈M is a bounded Cerami sequence for J . We introduce the
set N0 := { u ∈ X+ \ {0} | J ′(u)(u) = 0 }, i.e., the Nehari manifold for J .
Denote cN0 := infN0 J .

Theorem 3.3.3. Suppose J ∈ C1(X) satis�es (I1)�(I8). Then:

(a) cM ≥ a > 0 and J has a Cerami sequence un ∈ X+ at the level cM.

(b) cM = cN := infN J .
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Proof. (a) Set

Σ :=
{
σ ∈ C([0, 1], X+)

∣∣ σ(0) = 0, ‖σ(1)‖ > r,J (σ(1)) < 0
}
. (3.3.1)

Observe that J has the mountain pass geometry and Γ and Σ are related
as follows: if γ ∈ Γ, then γ+ ∈ Σ and J

(
γ(t)

)
= J

(
γ+(t)

)
; if σ ∈ Σ, then

m ◦ σ ∈ Γ and J
(
σ(t)

)
= J

(
m
(
σ(t)

))
. Hence the mountain pass value for

J is given by

cM = inf
σ∈Σ

max
t∈[0,1]

J
(
m
(
σ(t)

))
= inf

σ∈Σ
max
t∈[0,1]

J
(
σ(t)

)
≥ a > 0. (3.3.2)

The existence of a Cerami sequence un ∈ X+ for J at the level cM then
follows.

The map u 7→ m(u) is a homeomorphism between N0 and N and, since
J (u) = J

(
m(u)

)
, cN0 = cN . For u ∈ X+ \ {0}, consider J (tu), t > 0. From

Lemma 3.3.2, J (tu) → −∞ as t → ∞. Hence maxt>0 J (tu) ≥ a exists. If
t1u, t2u ∈ N0, then m(t1u),m(t2u) ∈ N , so from Lemma 3.3.1, J (t1u) =
J (t2u). Consequently, there exist 0 < tmin ≤ tmax such that J (tu) ∈ N0 if
and only if t ∈ [tmin, tmax] and J (tu) has the same value for those t. Hence
J ′(tu)(u) > 0 for 0 < t < tmin and J ′(tu)(u) < 0 for t > tmax. It follows that
X+ \ N0 consists of two connected components, hence each path in Σ must
intersect N0. Therefore cM ≥ cN0 . Since cN0 = infu∈X+\{0}maxt>0 J (tu),
(3.3.2) implies cM = cN0 = cN . Note in particular that J ≥ 0 on Br,
where r is given in (I6), so the condition ‖σ(1)‖ > r in the de�nition of Σ is
redundant because it must necessarily hold if J

(
σ(1)

)
< 0.

Since cN0 = cN = cM > 0, N0 is bounded away from 0 and hence closed
in X+, while N is bounded away from X− and hence closed in X.

For a topological group acting on X, denote the orbit of u ∈ X by G ∗ u,
i.e.,

G ∗ u := { gu | g ∈ G } .

A set A ⊂ X is called G-invariant if and only if gA ⊂ A for all g ∈ G.
J : X → R is called G-invariant and T : X → X ′ (or T : X → X) G-
equivariant if and only if J(gu) = J(u) and T (gu) = gT (u) for all g ∈ G,
u ∈ X.

In order to deal with multiplicity of critical points, assume that G is a
topological group such that
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(G) G acts on X by isometries and (G∗u)\{u} is bounded away from u for
every u 6= 0. Moreover, J is G-invariant and X+, X− are G-invariant.

Observe that M is G-invariant and m : X+ → M is G-equivariant if (G)
holds. In our application to (3.1.1) we have G = Z3 acting by translations.

Lemma 3.3.4. For all u, v ∈ X there exists d = du,v > 0 such that ‖gu −
hv‖ > d for every g, h ∈ G satisfying gu 6= hv. Moreover, du,v only depends
on the orbits of u and v.

Proof. Since gu 6= hv, u and v are not both 0 and we can assume u 6= 0. If
v ∈ G ∗ u, then g−1hv ∈ G ∗ u and the claim follows from (G). If v 6∈ G ∗ u,
then we can assume that v minimizes the distance from u to G ∗ v, thus it
su�ces to take d := 1

2
‖u− v‖. As for the last part, let ū = e1u and v̄ = e2v

for some e1, e2 ∈ G. If g, h ∈ G are such that gū 6= hv̄, then setting ḡ = ge1

and h̄ = he2 we have ḡu 6= h̄v and ‖gū− hv̄‖ = ‖ḡu− h̄v‖ > du,v.

We will use the notations

J β :=
{
u ∈ X+

∣∣ J (u) ≤ β
}
, Jα :=

{
u ∈ X+

∣∣ J (u) ≥ α
}
,

J β
α := Jα ∩ J β, K :=

{
u ∈ X+

∣∣ J ′(u) = 0
}
.

Since all the nontrivial critical points of J are in N , it follows from Theorem
3.3.3 that J (u) ≥ a for all u ∈ K \ {0}.

We introduce the following variant of the Cerami condition between the
levels α, β ∈ R, α ≤ β.

(M)βα (a) There exists Mβ
α > 0 such that lim supn ‖un‖ ≤ Mβ

α for every
un ∈ X+ satisfying (1 + ‖un‖)J ′(un)→ 0 and

α ≤ lim inf
n
J (un) ≤ lim sup

n
J (un) ≤ β.

(b) Suppose, in addition, that the number of critical orbits2 in J β
α

is �nite. Then there exists mβ
α > 0 such that if un, vn are two

sequences as above and there exists n0 ≥ 1 such that ‖un− vn‖ <
mβ
α for every n ≥ n0, then lim infn ‖un − vn‖ = 0.

Note that if J is even, then m is odd (hence J is even) andM is sym-
metric, i.e.,M = −M. Note also that (M)βα is a condition on J and not on
J . Our main multiplicity result reads as follows.

2A critical orbit is the orbit of a critical point.
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Theorem 3.3.5. Suppose J ∈ C1(X) satis�es (I1)�(I8) and dim(X+) =∞.

(a) If (M)cM+ε
0 holds for some ε > 0, then either cM is attained by a critical

point or there exists a sequence of critical values cn such that cn > cM
and cn → cM as n→∞.

(b) If (M)β0 holds for every β > 0 and J is even, then J has in�nitely many
distinct critical orbits.

By a standard argument (cf. [109, Lemma II.3.2], [129, Lemma 2.2]) we
can �nd a locally Lipschitz continuous pseudo-gradient vector �eld V : X+ \
K → X+ associated with J , i.e.,

‖V (u)‖ < 1

J ′(u)
(
V (u)

)
>

1

2
‖J ′(u)‖

for every u ∈ X+ \ K. Moreover, if J is even, then we can assume V is odd.
Let η : G → X+ \ K be the �ow de�ned by{

∂tη(t, u) = −V (η(t, u))

η(0, u) = u

where G := { (t, u) ∈ [0,∞[×(X+ \ K) | t < T (u) } and T (u) is the maximal
time of existence of η(·, u). Recall that J is decreasing along the trajectories
of η, i.e.

u ∈ X+ and 0 ≤ s < t < T (u)⇒ J
(
η(s, u)

)
> J

(
η(t, u)

)
.

We prove Theorem 3.3.5 by contradiction. From now on we assume:

There is a �nite number of distinct critical orbits {G ∗ u | u ∈ K }.

Lemma 3.3.6. Suppose (M)β0 holds for some β > 0 and let u ∈ J β
0 \K. Then

either limt→T (u)− η(t, u) exists and belongs to K or limt→T (u)− J (η(t, u)) =
−∞. In the latter case, T (u) =∞.

Proof. Suppose T (u) <∞ and let 0 ≤ s < t < T (u). Then

‖η(t, u)− η(s, u)‖ ≤
∫ t

s

∥∥V (η(τ, u)
)∥∥ dτ ≤ t− s.
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Hence the limit exists and, if it were not a critical point, then η(·, u) could
be extended for t > T (u).

Suppose now T (u) = ∞ and J
(
η(·, u)

)
is bounded from below. We

distinguish three cases:

(i) t 7→ η(t, u) is bounded,

(ii) t 7→ η(t, u) is unbounded but ‖η(t, u)‖ 6→ ∞,

(iii) ‖η(t, u)‖ → ∞.

(i) We follow an argument in [122]. We will show that for every ε > 0
there exists tε > 0 such that ‖η(tε, u) − η(t, u)‖ < ε for all t ≥ tε (this
implies limt→∞ η(t, u) exists and so, as before, it is a critical point). Ar-
guing by contradiction, we can �nd ε ∈ ]0,mβ

0/2[, R > 0 and tn → ∞
such that ‖η(tn, u)‖ ≤ R and ‖η(tn, u) − η(tn+1, u)‖ = ε for all n. Let
t1n be the smallest t ∈ ]tn, tn+1[ such that ‖η(tn, u) − η(t1n, u)‖ = ε/3 and
t2n the largest t ∈ ]t1n, tn+1[ such that ‖η(tn+1, u) − η(t2n, u)‖ = ε/3. Set
κn := min

{
‖J ′

(
η(t, u)

)
‖
∣∣ t ∈ [tn, t

1
n]
}
> 0. Then

ε

3
= ‖η(t1n, u)− η(tn, u)‖ ≤

∫ t1n

tn

∥∥V (η(t, u)
)∥∥ dt ≤ t1n − tn

≤ 2

κn

∫ t1n

tn

J ′
(
η(t, u)

)(
V
(
η(t, u)

))
dt =

2

κn

(
J
(
η(tn, u)

)
− J

(
η(t1n, u)

))
.

Since J (η(tn, u)) − J (η(t1n, u)) → 0, also κn → 0, hence we can choose
s1
n ∈ [tn, t

1
n] such that, if un := η(s1

n, u), then J ′(u−n )→ 0. Since ‖η(s1
n, u)‖ is

bounded, un is a Cerami sequence. A similar argument shows the existence
of vn := η(s2

n, u), s2
n ∈ [t2n, tn+1], such that J ′(vn)→ 0. Hence

ε

3
≤ lim inf

n
‖un − vn‖ ≤ lim sup

n
‖un − vn‖ ≤ ε+

2

3
ε < mβ

0 ,

a contradiction to (M)β0 (b).
(ii) Observe that there are no Cerami sequences in X+ \BMβ

0
at any level

α ∈ [0, β] according to (M)β0 (a). Since η(t, u) is unbounded but ‖η(t, u)‖ 6→
∞, there exists R > Mβ

0 such that η(t, u) ∈ BR for arbitrarily large t > 0.
Then we can �nd tn, t

1
n so that tn → ∞, ‖η(tn, u)‖ = R + 1 and t1n is the
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smallest t > tn with ‖η(t, u)‖ = R. We can also assume that ‖η(s, u)‖ ≤ R+1
for s ∈ [tn, t

1
n]. Let κn be as above. Then

1 ≤ ‖η(t1n, u)− η(tn, u)‖ ≤ 2

κn

(
J
(
η(tn, u)

)
− J

(
η(t1n, u)

))
and hence κn → 0. So we see that there exists un := η(s1

n, u), s1
n ∈ [tn, t

1
n],

such that R ≤ ‖un‖ ≤ R+ 1 and J ′(un)→ 0. Thus we have found a Cerami
sequence in X+ \B(0,Mβ

0 ) which is impossible. This shows that case (ii) can
never occur.

(iii) There exist R0 > 0 and δ > 0 such that ‖J ′(v)‖ ≥ δ/‖v‖ when-
ever ‖v‖ ≥ R0 and v ∈ J β

0 , because otherwise there exists an unbounded
Cerami sequence. Choose t0 > 0 so that ‖η(t, u)‖ ≥ R0 and J

(
η(t0, u)

)
−

J
(
η(t, u)

)
≤ δ/8 for t ≥ t0. For n � 1 let tn ≥ t0 be the smallest t such

that ‖η(t, u)‖ = n and let κn := min
{
‖J ′

(
η(t, u)

)
‖
∣∣ t ∈ [t0, tn]

}
. From the

choice of tn,

κn ≥ min
t∈[t0,tn]

δ

‖η(t, u)‖
=

δ

‖η(tn, u)‖
.

It follows from the same argument as above that for n� 1

1

2
‖η(tn, u)‖ ≤ ‖η(tn, u)− η(t0, u)‖ ≤ 2

κn

(
J
(
η(t0, u)

)
− J

(
η(tn, u)

))
≤ 2

δ
‖η(tn, u)‖

(
J
(
η(t0, u)

)
− J

(
η(tn, u)

))
≤ 1

4
‖η(tn, u)‖.

This is a contradiction and hence also case (iii) can be ruled out.

Let A := { A ⊂ X+ | A = −A and A is compact },

H :=
{
h : X+ → X+ odd homeomorphism

∣∣ J (h(u)
)
≤ J (u)∀u ∈ X+

}
,

and for A ∈ A set
i∗(A) := min

h∈H
γ
(
h(A) ∩ Sr

)
where r is as in (I6) and γ is the Krasnosel'skii genus. This is a variant of
Benci's pseudoindex [12, 28] and the following properties are adapted from
[103, Lemma 2.16].

Lemma 3.3.7. Let A,B ∈ A.

(i) If A ⊂ B, then i∗(A) ≤ i∗(B).
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(ii) i∗(A ∪B) ≤ i∗(A) + γ(B).

(iii) If g ∈ H, then i∗(A) ≤ i∗
(
g(A)

)
.

(iv) For every k-dimensional subspace Xk ⊂ X+ there exists R0 > 0 such
that i∗(Xk ∩BR) ≥ k if R ≥ R0.

Proof. (i) It follows immediately from the properties of the Krasnosel'skii
genus.

(ii) For every h ∈ H

i∗(A ∪B) ≤ γ
(
h(A ∪B) ∩ Sr

)
= γ

((
h(A) ∪ h(B)

)
∩ Sr

)
≤ γ

(
h(A) ∩ Sr

)
+ γ
(
h(B)

)
= γ

(
h(A) ∩ Sr

)
+ γ(B)

where in the last equality we used that h is a homeomorphism. Taking the
minimum over all h ∈ H on the right-hand side we obtain the conclusion.

(iii) Since J
(
g(u)

)
≤ J (u) for all u ∈ X+, h ◦ g ∈ H if h ∈ H. Hence

{ h ◦ g | h ∈ H } ⊂ H and therefore

min
h∈H

γ
(
h(A) ∩ Sr

)
≤ min

h∈H
γ
(
(h ◦ g)(A) ∩ Sr

)
.

(iv) Since the statement is obviously true for k = 0, we can assume that
k ≥ 1. From Lemma 3.3.2, J (u) < 0 on Xk \ BR if R is su�ciently large.
Let D := Xk ∩ BR. Suppose by contradiction that i∗(D) < k and choose
h ∈ H such that γ

(
h(D) ∩ Sr

)
< k.

If k = 1, then γ
(
h(D) ∩ Sr

)
= 0, i.e., h(D) ∩ Sr = ∅. Therefore either

‖h(u)‖ < r for every u ∈ D or ‖h(u)‖ > r for every u ∈ D. Since h(0) = 0,
the latter is ruled out. If u ∈ ∂D = Xk ∩ SR, recalling that J (v) ≥ 0 for
every v ∈ Br, we then have 0 ≤ J

(
h(u)

)
≤ J (u) < 0, a contradiction.

If k ≥ 2, �x an odd mapping

f : h(D) ∩ Sr → Rk−1 \ {0}.

Let U := h−1(Br ∩X+)∩Xk. There follows that U ⊂ D \∂D and hence U is
an open and bounded neighbourhood of 0 in Xk. If u ∈ ∂U , then h(u) ∈ Sr
and therefore f ◦ h|∂U : ∂U → Rk−1 \ {0}, contradicting the Borsuk-Ulam
theorem [109, Proposition II.5.2], [129, Theorem D.17].
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Proof of Theorem 3.3.5. (a) Suppose that J has no critical values in [cM, cM+
ε0] for some ε0 ∈ ]0, ε]. Thus J has only the trivial critical point 0 in
J cM+ε0 . Take u ∈ J cM+ε0 and observe that, from Lemma 3.3.6, either
limt→T (u)− η(t, u) = 0 or limt→T (u)− J

(
η(t, u)

)
= −∞. Hence we may de�ne

the entrance time map e : J cM+ε0 → [0,∞[ by the formula

e(u) := inf
{
t ∈ [0, T (u)[

∣∣ J (η(t, u)
)
≤ cM/2

}
.

Take any σ ∈ Σ such that

J
(
σ(t)

)
< cM + ε0 for all t ∈ [0, 1],

where Σ is given by (3.3.1). Since e is continuous, σ̃(t) := η
(
e
(
σ(t)

)
, σ(t)

)
is

a continuous path in X+ such that J
(
σ̃(1)

)
≤ J

(
σ(1)

)
< 0. Hence σ̃ ∈ Σ

and
cM = inf

σ′∈Σ
sup
t∈[0,1]

J
(
σ′(t)

)
≤ sup

t∈[0,1]

J
(
σ̃(t)

)
≤ cM/2.

The obtained contradiction proves that either cM is a critical value or for
every ε0 ∈ ]0, ε] there exists a critical value in ]cM, cM + ε0].

(b) Take β ≥ a and let

Kβ := { u ∈ K | J (u) = β } .

Since there are �nitely many critical orbits, there exists ε0 > 0 such that

K ∩ J β+ε0
β−ε0 = Kβ.

In view of Lemma 3.3.4, there exists δ ∈ ]0,mβ+ε0
0 [ such that B(u, δ) ∩

B(v, δ) = ∅ for every u, v ∈ Kβ, u 6= v. We show there exists ε ∈ ]0, ε0[
such that

lim
t→T (u)−

J
(
η(t, u)

)
< β − ε for every u ∈ J β+ε

β−ε \B(Kβ, δ). (3.3.3)

We assume Kβ 6= ∅, the other case being trivial. Consider the set

A0 :=

{
u ∈ J β+ε0

β−ε0 \B(Kβ, δ)
∣∣∣∣ lim
t→T (u)−

η(t, u) ∈ Kβ
}
.

For every u ∈ A0 we de�ne

t0(u) := inf
{
t ∈ [0, T (u)[

∣∣ η(s, u) ∈ B(Kβ, δ) for all s > t
}
,

t(u) := inf
{
t ∈ [t0(u), T (u)[

∣∣ η(t, u) ∈ B(Kβ, δ/2)
}
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and note that 0 ≤ t0(u) < t(u) < T (u). There holds

δ

2
≤
∥∥η(t0(u), u

)
− η
(
t(u), u

)∥∥ ≤ ∫ t(u)

t0(u)

∥∥V (η(s, u)
)∥∥ ds

≤ t(u)− t0(u).

(3.3.4)

Let
ρ := inf

{ ∥∥J ′(η(t, u)
)∥∥ ∣∣ u ∈ A0, t ∈ [t0(u), t(u)]

}
.

If ρ = 0 then we �nd un ∈ A0 and tn ∈ ]t0(un), t(un)[ such that

J ′
(
η(tn, un)

)
→ 0 as n→∞.

Since tn > t0(un), we have η(tn, un) ∈ B(Kβ, δ) and passing to a subsequence
we can �nd u0 ∈ Kβ and gn ∈ G such that

gnη(tn, un) ∈ B(u0, δ).

Since tn < t(un), we see that

gnη(tn, un) /∈ B(Kβ, δ/2).

Let wn := u0, vn := gnη(tn, un). Then wn and vn are two Cerami sequences
such that δ/2 ≤ ‖vn − wn‖ ≤ δ < mβ+ε0

0 , a contradiction. Therefore ρ > 0
and we take

ε < min
{
ε0,

δρ

8

}
.

Now let u ∈ J β+ε
β−ε \B(Kβ, δ) and suppose by contradiction that

lim
t→T (u)−

J
(
η(t, u)

)
≥ β − ε, (3.3.5)

which owing to Lemma 3.3.6 yields limt→T (u)− η(t, u) ∈ Kβ, i.e., u ∈ A0.
Since

J
(
η
(
t(u), u

))
− J

(
η
(
t0(u), u

))
= −

∫ t(u)

t0(u)

J ′
(
η(s, u)

)(
V
(
η(s, u)

))
ds

≤ −1

2

∫ t(u)

t0(u)

∥∥J ′(η(s, u)
)∥∥ ds,
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we obtain using (3.3.4)

lim
t→T (u)−

J
(
η(t, u)

)
≤ J

(
η
(
t(u), u

))
≤ β + ε− 1

2

∫ t(u)

t0(u)

∥∥J ′(η(s, u)
)∥∥ ds

≤ β + ε− δρ

4
< β − ε.

This contradicts (3.3.5), hence (3.3.3) holds.
De�ne

βk := inf
A∈A, i∗(A)≥k

max
u∈A
J (u), k = 1, 2, . . .

and note that from Lemma 3.3.7 all the βk are well de�ned, �nite, and
a ≤ β1 ≤ β2 ≤ . . . . Let β = βk for some k ≥ 1. If the set Kβ is nonempty,
then it is discrete and we can order its elements in pairs ±uj and let the map
φ : Kβ → R \ {0} be given by φ(±uj) = ±1. From the choice of δ we can
extend φ to B(Kβ, δ), whence

γ
(
B(Kβ, δ)

)
= γ(Kβ) ≤ 1.

Choose ε > 0 such that (3.3.3) holds. Take Lipschitz continuous cuto�
functions χ, ξ such that χ = 0 in B(Kβ, δ/4), χ = 1 in X+ \ B(Kβ, δ/2),
ξ = 1 in J β+ε

β−ε , and ξ = 0 in X+ \ U , where U is an open neighbourhood of

J β+ε
β−ε with K ∩ U = Kβ. Let η̃ : R×X+ → X+ be the �ow given by{

∂tη̃(t, u) = −χ
(
η̃(t, u)

)
ξ
(
η̃(t, u)

)
V
(
η̃(t, u)

)
η̃(0, u) = u.

Then η̃(t, u) = η(t, u) as long as t ≥ 0 and η̃(t, u) ∈ J β+ε
β−ε \B(Kβ, δ/2). Using

(3.3.3) we can de�ne the entrance time map e : J β+ε \B(Kβ, δ)→ [0,∞[ as

e(u) := inf
{
t ∈ [0,∞[

∣∣ J (η̃(t, u)
)
≤ β − ε

}
.

It is standard to show that e is continuous and even. Take any A ∈ A such
that i∗(A) ≥ k and J (u) ≤ β + ε for u ∈ A. Let T := maxu∈A e(u) <∞ (A
is compact). Set h := η̃(T, ·) and note that h ∈ H and

h
(
A \B(Kβ, δ)

)
⊂ J β−ε.

Therefore

i∗
(
A \B(Kβ, δ)

)
≤ i∗

(
h
(
A \B(Kβ, δ)

))
≤ k − 1
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and

k ≤ i∗(A) ≤ γ
(
B(Kβ, δ) ∩ A

)
+ i∗

(
A \B(Kβ, δ)

)
≤ γ(Kβ) + k − 1. (3.3.6)

Thus Kβ 6= ∅ and, since γ(Kβ) ≤ 1, we conclude γ(Kβ) = 1. If βk = βk+1 for
some k ≥ 1, then (3.3.6) implies γ(Kβk) ≥ 2, a contradiction. Hence we get
an in�nite sequence β1 < β2 < · · · of critical values which contradicts our
assumption that K consists of a �nite number of distinct orbits.

3.4 Properties of the energy functional

We recall that (N1)�(N3) and (F1)�(F5) hold, that Φ is the same N -
function as in (F3) and that Ψ is its complementary function. We will check
that assumptions (I1)�(I8) are satis�ed in order to apply Theorems 3.3.3 and
3.3.5.

De�ne

M := { (v, w) ∈ V ×W | J ′(v, w)(0, ψ) = 0 for every ψ ∈ W }

and the Nehari�Pankov manifold for J

N := { (v, w) ∈M | u 6= 0 and J ′(v, w)(v, w) = 0 } .

Observe that U = v+w ∈ N if and only if (v, w) ∈ N . Moreover, N contains
all the nontrivial critical points of J .

Proposition 3.4.1. If (v̄, w̄) ∈ V ×W then

J(tv̄, tw̄ + ψ)− J ′(v̄, w̄)

(
t2 − 1

2
v̄,
t2 − 1

2
w̄ + tψ

)
≤ J(v̄, w̄)

for every ψ ∈ W and t ≥ 0.

Proof. Let (v̄, w̄) ∈ V ×W , ψ ∈ W , t ≥ 0. We de�ne

D(t, ψ) := J(tv̄, tw̄ + ψ)− J(v̄, w̄)− J ′(v̄, w̄)

(
t2 − 1

2
v̄,
t2 − 1

2
w̄ + tψ

)
and observe that

D(t, ψ) =

∫
R3

f(x, v̄ + w̄) ·
(
t2 − 1

2
(v̄ + w̄) + tψ

)
+F (x, v̄ + w̄)− F

(
x, t(v̄ + w̄) + ψ

)
dx.
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For �xed x, v, w ∈ R3, de�ne the map φ : [0,∞[×R3 → R as follows:

φ(t, ψ) := f(x, v+w)·
(
t2 − 1

2
(v + w) + tψ

)
+F (x, v+w)−F

(
x, t(v+w)+ψ

)
.

We prove that φ(t, ψ) ≤ 0 for all t ≥ 0 and all ψ ∈ R3. This is clear if
v + w = 0, thus let v + w 6= 0 and de�ne ζ := t(v + w) + ψ. From (F4) we
have

φ(t, ψ) ≤ f(x, v + w) ·
(
t2 − 1

2
(v + w) + t

(
ζ − t(v + w)

))
+

1

2
f(x, v + w) · (v + w)− F (x, ζ)

= − 1

2
t2f(x, v + w) · (v + w) + tf(x, v + w) · ζ − A|ζ|2

+ A|ζ|2 − F (x, ζ).

If A > 0 is large enough, then the quadratic form (in t and ζ) above is
negative de�nite. Moreover, A|ζ|2−F (x, ζ) is bounded from above owing to
the superquadraticity of F implied by (F3) and (N3). Hence φ(t, ψ)→ −∞
as t + |ψ| → ∞ and φ attains its maximum at some (t, ψ) with t ≥ 0. If
t = 0, then φ(t, ψ) = φ(0, ψ) ≤ 0. If t > 0, then

∂tφ(t, ψ) = f(x, v + w) ·
(
t(v + w) + ψ

)
− f

(
x, t(v + w) + ψ

)
· (v + w) = 0,

∇ψφ(t, ψ) = tf(x, v + w)− f(x, t(v + w) + ψ) = 0.

Using the latter equation in the former, we see that both terms in the former
are positive (because f(x, v + w) · (v + w) > 0 from (F3 and (F4)) and
f(x, v + w) · ψ = 0. This and (F5) imply

φ(t, ψ) =
t2 − 1

2
f(x, v + w) · (v + w) + F (x, v + w)− F

(
x, t(v + w) + ψ

)
≤ 0.

Consider I : LΦ → R and I : LΦ ×W → R given by

I(v, w) := I(v + w) :=

∫
R3

F (x, v + w) dx for (v, w) ∈ LΦ ×W . (3.4.1)

I and I are of class C1 and strictly convex in view of Proposition 3.2.6 and
(F2) respectively. We need a variant for sequences in LΦ of the Brezis-Lieb
lemma [34].
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Lemma 3.4.2. Let Un ∈ LΦ bounded such that Un → U a.e. in R3. Then

lim
n

∫
R3

F (x,Un)− F (x,Un −U) dx =

∫
R3

F (x,U) dx.

Proof. Note that∫
R3

F (x,Un)− F (x,Un −U) dx =

∫
R3

∫ 1

0

d

dt
F (x,Un −U + tU) dtdx

=

∫ 1

0

∫
R3

f(x,Un −U + tU) ·U dxdt

and f(x,Un −U + tU) is bounded in LΨ owing to (F3) and Lemmas 3.2.2
(iv) and 3.2.5. Thus for every Ω ⊂ R3∫

Ω

|f(x,Un −U + tU) ·U| dx ≤ |f(x,Un −U + tU)|Ψ|UχΩ|Φ. (3.4.2)

From [96, De�nition III.IV.2, Corollary III.IV.5 and Theorem III.IV.14], the
space LΦ has an absolutely continuous norm (cf. [96, De�nition III.I.13]), so
(3.4.2) yields that for every ε > 0 there exists δ > 0 such that, if |Ω| < δ,
then ∫

Ω

|f(x,Un −U + tU) ·U| dx < ε

for every n, i.e., f(x,Un−U+ tU) ·U is uniformly integrable. Using (3.4.2)
once more we see that for every ε > 0 there exists Ω ⊂ R3 with |Ω| < ∞
such that ∫

R3\Ω
f(x,Un −U + tU) ·U dx < ε.

As a matter of fact, since Φ ◦ |U| ∈ L1(R3), there exists a sequence Ωn ⊂ R3

such that each Ωn has �nite measure and

lim
n

∫
R3

Φ(|U|)χR3\Ωn dx = lim
n

∫
R3

Φ(|U|χR3\Ωn) dx = 0,

where in the �rst equality we used that Φ(t) = 0 ⇔ t = 0. In view of (N1)
and Lemma 3.2.2 (iii), this yelds limn |UχR3\Ωn|Φ = 0, hence Ω exists as
claimed and f(x,Un −U + tU) ·U is tight. Since Un → U a.e. on R3, it
follows from Vitali's convergence theorem that∫

R3

F (x,Un)− F (x,Un −U) dx→
∫ 1

0

∫
R3

f(x, tU) ·U dxdt

=

∫
R3

F (x,U) dx.
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Now we can prove the following result.

Lemma 3.4.3. If Un ⇀ U in LΦ and I(Un)→ I(U), then Un → U in LΦ.

Proof. We show that Un → U a.e. in R3 up to a subsequence. Since
I(Un)→ I(U), we have

lim
n

∫
R3

F (x,Un) dx =

∫
R3

F (x,U) dx. (3.4.3)

Then from (F2) we infer that for every 0 < r ≤ R

mr,R := inf
x,u1,u2∈R3

r≤|u1−u2|
|u1|,|u2|≤R

1

2

(
F (x, u1) + F (x, u2)

)
− F

(
x,
u1 + u2

2

)
> 0. (3.4.4)

Observe that from (3.4.3), Fatou's lemma, and the convexity of F there holds

0 ≤ lim sup
n

∫
R3

1

2

(
F (x,Un) + F (x,U)

)
− F

(
x,

Un + U

2

)
dx ≤ 0.

Therefore, setting

Ωn :=
{
x ∈ R3

∣∣ |Un −U| ≥ r and |Un|, |U| ≤ R
}
,

from (3.4.4) we have

|Ωn|mr,R ≤
∫
R3

1

2

(
F (x,Un) + F (x,U)

)
− F

(
x,

Un + U

2

)
dx,

thus |Ωn| → 0 as n→∞. Since 0 < r ≤ R are arbitrarily chosen, we deduce

Un → U a.e. in R3.

In view of Lemma 3.4.2, we obtain∫
R3

F (x,Un) dx−
∫
R3

F (x,Un −U) dx→
∫
R3

F (x,U) dx

and hence ∫
R3

F (x,Un −U) dx→ 0.

From (F3) and Lemma 3.2.2 (iii), we get |Un −U|Φ → 0.
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Proposition 3.4.4. Conditions (I1)�(I8) are satis�ed and there is a Cerami
sequence (vn, wn) ∈M at level cN , where

cN := inf
(v,w)∈N

J(v, w) > 0.

Proof. Setting X := V ×W , X+ := V × {0}, and X− := {0} × V we check
the assumptions (I1)�(I8) for the functional J : X → R given by

J(v, w) =
1

2
‖v‖2

D − I(v, w)

(cf. (3.1.2) and (3.4.1)). Recall that ‖(v, w)‖2 = ‖v‖2
D+ |w|2Φ. The convexity

and di�erentiability of I, (F3), and Lemma 3.4.3 yield the following.

(I1) I|V×W ∈ C1(V × W ,R) and I(v, w) ≥ I(0, 0) = 0 for every (v, w) ∈
V ×W .

(I2) If vn → v in V and wn ⇀ w in W , then lim inf
n

I(vn, wn) ≥ I(v, w).

(I3) If vn → v in V , wn ⇀ w inW , and I(vn, wn)→ I(v, w), then (vn, wn)→
(u,w).

Moreover,

(I6) There exists r > 0 such that inf‖v‖D=r J(v, 0) > 0.

As a matter of fact, from (F3) and (N2) there exist C > 0 (cf. the proof of
Lemma 3.2.3) such that for any v ∈ V

J(v, 0) = ‖v‖2
D −

∫
R3

F (x, v) dx ≥ ‖v‖2
D − C

∫
R3

|v|6 dx ≥ ‖v‖2
D − C‖v‖6

D,

thus (I6) is satis�ed taking r su�ciently small. Note that

(I4) ‖v‖D + I(v, w)→∞ as ‖(v, w)‖ → ∞.

To see this, let ‖(vn, wn)‖ → ∞. If ‖vn‖D →∞, then we are done; otherwise,
up to a subsequence ‖vn‖D is bounded and, a fortiori, so is |vn|Φ. This yields
|vn + wn|Φ ≥ |wn|Φ − |vn|Φ →∞. Using (F3) and Lemma 3.2.2 (iv) we have

I(vn, wn) ≥ c2

∫
R3

Φ(|vn + wn|) dx→∞.

This, together with the uniform strict convexity of F , implies
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(I5) If (v, w) ∈M, then I(v, w) < I(v, w + ψ) for every ψ ∈ W \ {0}.

Next, we prove

(I7) I
(
tn(vn, wn)

)
/t2n →∞ if tn →∞ and vn → v for some v 6= 0.

Observe that from (F3)

I
(
tn(vn, wn)

)
t2n

=

∫
R3

F
(
x, tn(vn + wn)

)
t2n

dx

≥ c2

∫
R3

Φ(tn|vn + wn|)
t2n

dx

= c2

∫
R3

Φ(tn|vn + wn|)
t2n|vn + wn|2

|vn + wn|2 dx.

(3.4.5)

Take R0 > 0 such that v 6= 0 in L2(BR0). In view of (N3), there exists C > 0
such that

CΦ(t) ≥ t2 for t ≥ 1.

Then, writing

BR =
(
BR ∩ {|vn + wn| ≥ 1}

)
∪
(
BR ∩ {|vn + wn| < 1}

)
,

we have ∫
BR

|vn + wn|2 dx ≤ C

∫
R3

Φ(tn|vn + wn|)
t2n

dx+ |BR| (3.4.6)

and I
(
tn(vn, wn)

)
/t2n → ∞ (up to a subsequence) if vn + wn is unbounded

in L2(BR,R3) for some R ≥ R0. Now, suppose that vn + wn is bounded in
L2(BR,R3) for every R ≥ R0. We can assume passing to a subsequence that
vn → v a.e. and wn ⇀ w in L2

loc(R3,R3) for some w. Given ε > 0, let

Ωn :=
{
x ∈ R3

∣∣ |vn(x) + wn(x)| ≥ ε
}
. (3.4.7)

We claim that there exists ε > 0 such that lim supn |Ωn| > 0. Arguing by
contradiction, suppose |Ωn| → 0 for every ε. Then vn + wn → 0 in measure,
so up to a subsequence vn +wn → 0 a.e., hence wn → −v a.e. and wn ⇀ −v
in L2

loc(R3,R3). Since ∇ × wn = 0 in the distributional sense, the same is
true of v, thus there exists ξ ∈ H1

loc(R3) such that v = ∇ξ due to [63, Lemma
1.1 (i)]. As ∇ · (∇ξ) = ∇ · v = 0, it follows that ξ is harmonic and so is v.
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Recalling that v ∈ D, we obtain v = 0 as in the proof of Lemma 3.2.4. This
is a contradiction. Taking ε in (3.4.7) such that lim supn |Ωn| > 0, we obtain∫

R3

Φ(tn|vn + wn|)
t2n|vn + wn|2

|vn + wn|2 dx ≥
∫

Ωn

Φ(tn|vn + wn|)
t2n|vn + wn|2

|vn + wn|2 dx→∞.

Finally, Proposition 3.4.1 shows that

(I8)'
t2 − 1

2
I ′(v, w)(v, w) + tI ′(v, w)(0, ψ) + I(v, w) − I(tv, tw + ψ) ≤ 0 for

every t ≥ 0, v ∈ V , and w,ψ ∈ W ,

which is a stronger version of (I8).
Applying Theorem 3.3.3 we conclude.

Since there is no compact embedding of V into LΦ, we cannot expect that
the Palais�Smale or Cerami conditions are satis�ed. We need the following
variant of Lions's lemma.

Lemma 3.4.5. Suppose that vn ∈ D is bounded and for some R >
√

3

lim
n

sup
y∈Z3

∫
B(y,R)

|vn|2 dx = 0. (3.4.8)

Then

lim
n

∫
R3

Φ(|vn|) dx = 0.

Proof. This follows from [76, Lemma 1.5] since Φ satis�es (N2). Note that
we can take the supremum over Z3 in (3.4.8) because the radius R is greater
than the length of the diagonal of the unitary cube in R3.

We collect further properties of I.

Lemma 3.4.6. (a) For every v ∈ LΦ there exists a unique w(v) ∈ W such
that

I
(
v, w(v)

)
= min

w∈W
I(v, w). (3.4.9)

Moreover, w : LΦ →W is continuous.
(b) w maps bounded sets into bounded sets and w(0) = 0.
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Proof. (a) Let v ∈ LΦ. Since w ∈ W 7→ I(v, w) ∈ R is continuous, strictly
convex, and coercive, there exists a unique w(v) ∈ W such that (3.4.9) holds.
We show that the map w : LΦ →W is continuous. Let vn → v in LΦ. Since

0 ≤ I
(
vn, w(vn)

)
≤ I(vn, 0), (3.4.10)

w(vn) is bounded and we may assume w(vn) ⇀ w0 for some w0 ∈ W . Observe
that by the (sequential) lower semicontinuity of I we get

I
(
v, w(v)

)
≤ I(v, w0) ≤ lim inf

n
I
(
vn, w(vn)

)
≤ lim sup

n
I
(
vn, w(vn)

)
≤ lim

n
I
(
vn, w(v)

)
= I
(
v, w(v)

)
,

hence w(v) = w0 from the uniqueness of w(v), and from Lemma 3.4.3 we
have vn + w(vn)→ v + w(v) in LΦ, which yields w(vn)→ w(v) in W .

(b) This follows from (3.4.10), (F3), and Lemma 3.2.2 (iv).

Let m(v) :=
(
v, w(v)

)
∈M for v ∈ V . Then, in view of Lemma 3.4.6 (a),

m : V → M is continuous. The following lemma implies that every Cerami
sequence of J inM and every Cerami sequence of J ◦m are bounded.

Lemma 3.4.7. If β > 0 and vn ∈ V are such that J
(
m(vn)

)
≤ β and

limn(1 + ‖vn‖)(J ◦m)′(vn) = 0, then vn is bounded.

Proof. Let us write m(vn) = (vn, wn) ∈ M and suppose by contradiction
limn ‖(vn, wn)‖ = ∞. Since wn = w(vn), ‖(vn, wn)‖ → ∞ if and only if
‖vn‖D →∞. Let v̄n := vn/‖vn‖D and w̄n := wn/‖vn‖D. Assume

lim
n

sup
y∈Z3

∫
B(y,R)

|v̄n|2 dx = 0

for some �xed R >
√

3. From Lemma 3.4.5, limn

∫
R3 Φ(|v̄n|) dx = 0 and we

obtain a contradiction: recalling that J ′(vn, wn)(0, wn) = 0, Proposition 3.4.1
with tn = s/‖vn‖D and ψn = −tnwn implies that for every s > 0

β ≥ lim sup
n

J(vn, wn)

≥ lim sup
n

J(sv̄n, 0)− lim
n
J ′(vn, wn)

(
t2n − 1

2
vn,−

t2n + 1

2
wn

)
= lim sup

n
J(sv̄n, 0)

(F3)

≥ s2

2
− lim

n
c1

∫
R3

Φ(s|v̄n|) dx =
s2

2
,
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which is impossible. Hence lim infn
∫
B(yn,R)

|v̄n|2 dx > 0, where yn ∈ Z3

maximizes y ∈ Z3 7→
∫
B(y,R)

|v̄n|2 dx ∈ R. SinceM and J are invariant with

respect to Z3-translations, we may assume that∫
BR

|v̄n|2 dx ≥ c > 0

for some constant c and every n� 1. This implies that, up to a subsequence,
v̄n ⇀ v̄ 6= 0 in D, v̄n → v̄ in L2

loc(R3,R3) and v̄n → v̄ a.e. in R3 for some
v̄ ∈ D. From (F4),

2J(vn, wn)− J ′(vn, wn)(vn, wn) =

∫
R3

f(x, vn + wn) · (vn + wn) dx

− 2

∫
R3

F (x, vn + wn) dx ≥ 0,

so J(vn, wn) is bounded from below and, using (F3),

α ≤ J(vn, wn)

‖vn‖2
D
≤ 1

2
‖v̄n‖2

D − c2

∫
R3

Φ(|vn + wn|)
|vn + wn|2

|v̄n + w̄n|2 dx

for some α ∈ R. Hence it su�ces to show that the integral on the right-hand
side above tends to ∞. We can argue as in the proof of (I7) in Proposition
3.4.4. In particular, (3.4.6) holds with v̄n + w̄n instead of vn +wn and ‖vn‖D
instead of tn and, if Ωn is as in (3.4.7) (again, with vn + wn replaced with
v̄n + w̄n), then limn |Ωn| > 0 along a subsequence.

Corollary 3.4.8. Let β > 0. There existsMβ > 0 such that for every vn ∈ V
satisfying 0 ≤ lim infn J

(
m(vn)

)
≤ lim supn J

(
m(vn)

)
≤ β and limn(1 +

‖vn‖)J ′
(
m(vn)

)
= 0 there holds lim supn ‖vn‖ ≤Mβ.

Proof. If no �nite bound Mβ exists, for every k there exists a sequence vkn ∈
X satisfying the assumptions above and such that lim supn ‖vkn‖ ≥ k. In
particular, there exists n(k) such that −1/k < J

(
m(vkn(k))

)
< β+ 1/k, which

yields 0 ≤ lim infk J
(
m(vkn(k))

)
≤ lim supk J

(
m(vkn(k))

)
≤ β. In the same way

we prove limk

(
1 + ‖vkn(k)‖

)
(J ◦ m)′

(
vkn(k)

)
= 0 and lim supk ‖vkn(k)‖ = ∞, a

contradiction.
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3.4.1 Weak-to-weak* continuity

Lemma 3.4.9. If Ω ⊂ R3 is a Lipschitz domain with �nite measure, then
H1(Ω) is compactly embedded in LΦ(Ω).

Proof. Suppose un ⇀ 0 in H1(Ω). Then un ⇀ 0 in L6(Ω) and un → 0 in
L2(Ω) and, up to a subsequence, a.e. in Ω. From (N2), for every ε > 0 there
exists Cε such that Φ(t) ≤ εt6 for t > Cε, whence∫

Ω

Φ(|un|) dx =

∫
Ω∩{|un|≤Cε}

Φ(|un|) dx+

∫
Ω∩{|un|>Cε}

Φ(|un|) dx

≤
∫

Ω∩{|un|≤Cε}
Φ(|un|) dx+ ε sup

k
|uk|66.

From the dominated convergence theorem and since ε is arbitrary, we have∫
Ω

Φ(|un|) dx→ 0 and, due to Lemma 3.2.2 (iii), |un|Φ → 0.

Proposition 3.4.10. If vn ⇀ v in D, then w(vn) ⇀ w(v) in W and, after
passing to a subsequence, w(vn)→ w(v) a.e. in R3.

Proof. It follows from the de�nition (3.4.9) of w(v) that∫
R3

f
(
x, vn+w(vn)

)
·z dx = 0 =

∫
R3

f
(
x, v+w(v)

)
·z dx ∀z ∈ W . (3.4.11)

Since vn is bounded, so is w(vn) from Lemma 3.4.6 (b), hence we can assume
w(vn) ⇀ w0 for some w0. In addition, since vn → v in L2

loc(R3,R3), vn → v
a.e. after passing to a subsequence.

Let Ω ⊂ R3 be bounded and let ζ ∈ C∞c (R3), 0 ≤ ζ ≤ 1, such that ζ = 1
in Ω. From (F3) and Lemmas 3.2.2 (ii), 3.2.5, and 3.4.9, there exist C > 0
such that

0 ≤
∫
R3

∣∣f(x, vn + w(vn)
)∣∣ |vn − v| ζ dx

≤ C
∣∣Φ′(|vn + w(vn)|

)∣∣
Ψ
|(vn − v)ζ|Φ → 0.

(3.4.12)

Choose R > 0 such that suppζ ⊂ BR. In view of (N3), w(vn) is bounded
in L2(BR,R3). As a matter of fact, w(vn)χ{|w(vn)|<1} is of course bounded in
L2(BR,R3), while∫

BR∩{|w(vn)|≥1}
|w(vn)|2 dx ≤ C

∫
BR∩{|w(vn)|≥1}

Φ(|w(vn)|) dx ≤ C
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for some C > 0. From [63, Lemma 1.1 (i)], there exists ξn ∈ H1(BR) such
that w(vn) = ∇ξn. We can assume

∫
BR
ξn dx = 0, so that from the Poincaré

inequality
‖ξn‖H1(BR) ≤ C|∇ξn|L2(BR) ≤ C

for some C > 0. Hence in view of Lemma 3.4.9, up to a subsequence, ξn → ξ
in LΦ(BR) for some ξ ∈ H1(BR). Similarly as in (3.4.12), we have

lim
n

∫
R3

∣∣f(x, vn + w(vn)
)∣∣ |∇ζ| |ξn − ξ| dx = 0. (3.4.13)

The limits in (3.4.12) and (3.4.13) are 0 also if f
(
x, vn + w(vn)

)
is replaced

with f(x, v +∇ξ). Combining (3.4.11)�(3.4.13) we obtain∫
R3

(
f
(
x, vn+w(vn)

)
−f(x, v+∇ξ)

)
·
(
vn−v+w(vn)−∇ξ

)
ζ dx→ 0, (3.4.14)

where we have taken z = ∇
(
(ξn−ξ)ζ

)
in (3.4.11). We prove that vn+w(vn)→

v +∇ξ a.e. in Ω. The convexity of F implies that

F

(
x,

U1 + U2

2

)
≥ F (x,U1) + f(x,U1) · U2 −U1

2

and

F

(
x,

U1 + U2

2

)
≥ F (x,U2) + f(x,U2) · U1 −U2

2
.

Summing these inequalities and using (F2), we obtain that for every 0 < r ≤
R and every |U1 −U2| ≥ r, |U1|, |U2| ≤ R

mr,R ≤
1

2

(
F (x,U1) + F (x,U2)

)
− F

(
x,

U1 + U2

2

)
≤ 1

4

(
f(x,U1)− f(x,U2)

)
· (U1 −U2)

where mr,R is de�ned in (3.4.4). Since ζ = 1 in Ω, it follows from (3.4.14)
that vn + w(vn)→ v +∇ξ a.e. in Ω as claimed. Since w(vn) ⇀ w0, we have
w0 = ∇ξ and by the usual diagonal procedure we obtain a.e. convergence
to v + w0 in R3. Take any w ∈ W and observe that by Vitali's convergence
theorem

0 =

∫
R3

〈f(x, vn + w(vn)), w〉 dx→
∫
R3

〈f(x, v + w0), w〉 dx.

The uniqueness of w(v) (see Lemma 3.4.6) implies that w0 = w(v).
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Although in general J ′ is not (sequentially) weak-to-weak∗ continuous,
it is so for sequences on the topological manifold M. Obviously, the same
regularity holds for E ′ and M.

Corollary 3.4.11. If (vn, wn) ∈M and (vn, wn) ⇀ (v0, w0) in V ×W, then
J ′(vn, wn) ⇀ J ′(v0, w0), i.e.,

J ′(vn, wn)(φ, ψ)→ J ′(v0, w0)(φ, ψ)

for every (φ, ψ) ∈ V ×W.

Proof. From Lemma 3.4.6 (a) we get wn = w(vn). In view of Proposition
3.4.10, we may assume vn + wn → v0 + w0 a.e. in R3 (where w0 = w(v0)).
For (φ, ψ) ∈ V ×W we have

J ′(vn, wn)(φ, ψ)− J ′(v0, w0)(φ, ψ) =

∫
R3

(∇vn −∇v0) · ∇φ dx

−
∫
R3

(
f(x, vn + wn)− f(x, u0 + w0)

)
· (φ+ ψ) dx.

Arguing as in the proof of Lemma 3.4.2, we prove that(
f(x, vn + wn)− f(x, u0 + w0)

)
· (φ+ ψ)

is uniformly integrable and tight, hence from Vitali's convergence theorem

J ′(vn, wn)(φ, ψ)→ J ′(v0, w0)(φ, ψ).

3.5 Proof of Theorem 3.1.1

Recall that the group G := Z3 acts isometrically by translations on X =
V ×W and J is Z3-invariant. Let

K := { v ∈ V | (J ◦m)′(u) = 0 }

and suppose that K consists of a �nite number of distinct orbits. It is clear
that Z3 satis�es the condition (G) in Section 3.3. Then, in view of Lemma
3.3.4,

κ := inf
{
‖v − v′‖D

∣∣ J ′(m(v)
)

= J ′
(
m(v′)

)
= 0 and v 6= v′

}
> 0.
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Lemma 3.5.1. Let β ≥ cN and suppose that K has a �nite number of dis-
tinct orbits. If un, vn ∈ V are two Cerami sequences for J ◦ m such that
0 ≤ lim infn J

(
m(un)

)
≤ lim supn J

(
m(un)

)
≤ β, 0 ≤ lim infn J

(
m(vn)

)
≤

lim supn J
(
m(vn)

)
≤ β and lim infn ‖un−vn‖D < κ, then limn ‖un−vn‖D = 0.

Proof. Let m(un) = (un, w
1
n), m(vn) = (vn, w

2
n). From Lemma 3.4.7, m(un)

and m(vn) are bounded. We �rst consider the case

lim
n
|un − vn|Φ = 0 (3.5.1)

and prove that
lim
n
‖un − vn‖D = 0. (3.5.2)

From (F3) and Lemmas 3.2.2 (ii) and 3.2.5 we have

‖un − vn‖2
D = J ′

(
m(un)

)
(un − vn, 0)− J ′

(
m(vn)

)
(un − vn, 0)

+

∫
R3

(
f
(
x,m(un)

)
− f

(
x,m(vn)

))
· (un − vn) dx ≤

≤ o(1) +

∫
R3

(∣∣f(x,m(un)
)∣∣+

∣∣f(x,m(vn)
)∣∣)|un − vn| dx

≤ o(1) + c1

∫
R3

(
Φ′
(
|m(un)|

)
+ Φ′

(
|m(vn)|

))
|un − vn| dx

≤ o(1) + C
(∣∣Φ′(|m(un)|

)∣∣
Ψ

+
∣∣Φ′(|m(vn)|

)∣∣
Ψ

)
|un − vn|Φ → 0

which gives (3.5.2).
Suppose now (3.5.1) does not hold. From Lemmas 3.2.2 (iii) and 3.4.5, for

a �xed R >
√

3 there exist ε > 0 and yn ∈ Z3 such that, up to a subsequence,∫
B(yn,R)

|un − vn|2 dx ≥ ε (3.5.3)

(cf. the proof of Lemma 3.4.7). As J is Z3-invariant, we can assume yn = 0.
Since m(un) and m(vn) are bounded, up to a subsequence

(un, w
1
n) ⇀ (u,w1) and (vn, w

2
n) ⇀ (v, w2) in V ×W (3.5.4)

for some (u,w1), (v, w2) ∈ V ×W . Since un → u and vn → v in L2
loc(R3,R3),

u 6= v according to (3.5.3). From Corollary 3.4.11 and (3.5.4) we infer that

J ′(u,w1) = J ′(v, w2) = 0.
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Thus
lim inf

n
‖un − vn‖D ≥ ‖u− v‖D ≥ κ

which is a contradiction.

Proof of Theorem 3.1.1. (a) The existence of a Cerami sequence (vn, wn) ∈
M at the level cN follows from Proposition 3.4.4; this sequence is bounded
due to Lemma 3.4.7. Similarly as in the proof of Lemma 3.5.1 we �nd v ∈
V \ {0} such that (vn, wn) ⇀ (v, w), (vn, wn) → (v, w) a.e. in R3 (both
along a subsequence), and J ′(v, w) = 0 (with w = w(v)). More precisely,
if |vn|Φ → 0, then (3.5.2) with un = 0 holds by the same argument. This
is impossible because J

(
m(vn)

)
→ cN > 0. Hence (3.5.3) with un = 0 is

satis�ed and we can assume, up to translating by yn, that
∫
BR
|vn|2 dx ≥ ε,

whence v 6= 0. From Fatou's lemma and (F4),

cN = lim
n
J(vn, wn) = lim

n
J(vn, wn)− 1

2
J ′(vn, wn)(vn, wn)

≥ J(v, w)− 1

2
J ′(v, w)(v, w) = J (v, w).

Since (v, w) ∈ N , J(v, w) = cN and U = v + w solves (3.1.1) due to Propo-
sition 3.2.7.

Note that here we have not assumed K has �nitely many distinct orbits.
(b) In order to complete the proof we use directly Theorem 3.3.5 (b). That

(I1)�(I8) are satis�ed and (M)β0 holds for all β > 0 follows from Proposition
3.4.4, Corollary 3.4.8, and Lemma 3.5.1.
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Chapter 4

Maxwell's and nonautonomous

Schrödinger equations with

cylindrical symmetry

4.1 Statement of the results

In this chapter, based on [51], we study the curl-curl equation

∇×∇×U = h(x,U) in RN (4.1.1)

and the (scalar) Schrödinger equation

−∆u+
a

r2
u = f(x, u) in RN (4.1.2)

under cylindrical symmetry, see respectively the de�nitions of DF and XSO
below. Here N ≥ 3 (whereas [51] deals with (4.1.1) exclusively in the case
N = 3), a is greater than a certain value a0 ∈ ]−∞, 0], and r is the Euclidean
norm of the �rst K components of the point x = (y, z) ∈ RK ×RN−K = RN ,
2 ≤ K < N , i.e.

r2 = r2
y = r2

x =
K∑
i=1

y2
i =

K∑
i=1

x2
i .

Of course, the curl operator ∇× is naturally de�ned only in dimension N =
31, therefore, in order to �nd a suitable counterpart in higher dimensions, we

1The curl operator is de�ned as well in dimension N = 2 considering R2 as a subspace
of R3, but we do not take this case into account because this chapter deals only with
problems in dimension N ≥ 3.
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use the identity

∇×∇×U = ∇(∇ ·U)−∆U, U ∈ C2(R3,R3). (4.1.3)

Since its right-hand side is de�ned for every dimension, we de�ne the curl-curl
operator in dimension N ≥ 3 using (4.1.3). As a consequence, ifU,V : RN →
RN are two functions with square-integrable gradients, we de�ne as well∫

RN
∇×U · ∇ ×V dx :=

∫
RN
∇U · ∇V −∇ ·U∇ ·V dx,

where, with a small abuse of notation, we used · for both the scalar product in
RN×N ' RN2

and in RN (in the latter context also to indicate the divergence
operator). Note that we only de�ned the objects ∇×∇×U and

∫
RN ∇×U ·

∇ ×V dx, not ∇×U, but this is enough to study (4.1.1). A generalization
of ∇×U, on the other hand, is given in [84, Section 3].

The main result in Section 4.2 consists of the extension of the following
equivalence result between solutions to (4.1.1) and (4.1.2) to the case of
weak solutions, i.e., critical points of the corresponding energy functionals,
de�ned in suitable Sobolev spaces; this is done in Theorem 4.2.1. Suppose
u ∈ C2(RN) is such that u(g̃x) = u(x) for every x ∈ RN and every g ∈ SO(2),
where

g̃ :=

(
g 0
0 IN−2

)
∈ SO(N),

and de�ne U(x) := u(x)/|(x1, x2)|(−x2, x1, 0). Suppose additionally that
h(x, αw) = f(x, α)w for w = |(ξ1, ξ2)|−1(−ξ2, ξ1, 0), ξ2

1 + ξ2
2 > 0, and α ∈ R.

Then by explicit computations one can prove that U is divergence-free and,
moreover, u solves (pointwise) (4.1.2) with a = 1 in RN

∗ := RN \{x2
1 +x2

2 = 0}
if and only if U solves (pointwise) (4.1.1) in RN

∗ .
Recall that D1,2(RN) is the completion of C∞c (RN) with respect to the

usual norm |∇u|2 and de�ne analogously D1,2(RN ,RN). Moreover, let

X :=

{
u ∈ D1,2(RN)

∣∣∣∣ ∫
RN

u2

r2
dx <∞

}
and de�ne XSO as the subspace of X consisting of the functions invariant
under the usual action of SO := SO(K) × {IN−K} ⊂ SO(N). Note that
this is equivalent to requiring that such functions be invariant under the
action of O(K)×{IN−K} because for every ξ1, ξ2 ∈ Sν−1, ν ≥ 2, there exists
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g ∈ SO(ν) such that ξ2 = gξ1. X is a Hilbert space once endowed with the
scalar product

(u, v) ∈ X ×X 7→
∫
RN
∇u · ∇v +

uv

r2
dx ∈ R.

Notice that, if K > 2, then∫
RN

|u|2

r2
dx ≤

(
2

K − 2

)2 ∫
RN
|∇u|2 dx

for every u ∈ D1,2(RN), see [11], so X and D1,2(RN) coincide. If K = 2,
then C∞c (RN) 6⊂ X because the quantity ϕ2/r2 needs not be integrable for
ϕ ∈ C∞c (RN). If a > −(K−2

2
)2, then we can de�ne an equivalent norm in X

as

‖u‖ :=

√∫
RN
|∇u|2 +

a

r2
u2 dx.

De�ne the functionals E : D1,2(RN ,RN)→ R and J : D1,2(RN)→ R as

J(u) =

∫
RN

1

2

(
|∇u|2 +

a

r2
u2
)
− F (x, u) dx

E(U) =

∫
RN

1

2
|∇ ×U|2 −H(x,U) dx,

where F (x, u) :=
∫ u

0
f(x, t) dt and H(x,U) :=

∫ 1

0
h(x, tU) ·U dx. The �rst

set of assumptions about f are as follows.

(F1) f : RN×R→ R is a Carathéodory function such that f(gx, u) = f(x, u)
for every g ∈ SO, a.e. x ∈ RN , and every u ∈ R. Moreover f is
ZN−K-periodic in the last N − K components of x, i.e., f(x, u) =
f
(
x+ (0, ξ), u

)
for every u ∈ R, a.e. x ∈ RN , and a.e. ξ ∈ ZN−K .

(F2) lim
u→0

f(x, u)

|u|2∗−1
= lim
|u|→∞

f(x, u)

|u|2∗−1
= 0 uniformly with respect to x ∈ RN .

(F3) lim
|u|→∞

F (x, u)

|u|2
=∞ uniformly with respect to x ∈ RN .

(F4) u 7→ f(x, u)

|u|
is nondecreasing on ]−∞, 0[ and ]0,∞[ for a.e. x ∈ RN .
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It is straightforward to check that J is invariant under the action of SO
and (cf. [8, Section 2]) E is invariant under the action de�ned in (2.0.4). The
�rst result in this chapter concerns the existence of solutions to (4.1.2) and
reads as follows.

Theorem 4.1.1. Suppose that a > −
(
K−2

2

)2
and (F1)�(F4) hold. Then

there exists a ground state solution u to (4.1.2) in XSO. If, in addition, f is
odd in u, then u is nonnegative and (4.1.2) has in�nitely many geometrically
distinct solutions in XSO.

By ground state solution in XSO we mean a nontrivial solution that min-
imizes J over all the nontrivial solutions in XSO. It needs not be a ground
state solution in the general sense, i.e., minimizing J over all the nontrivial
solutions in X. Two solutions are called geometrically distinct if and only
if one cannot be obtained via a translation of the other in the last N − K
variables by a vector in ZN−K .

Observe that (F4) implies f(x, u)u ≥ 2F (x, u) ≥ 0. When f does not
depend on y, however, we can consider sign-changing nonlinearities under
the following weaker variant of the Ambrosetti-Rabinowitz condition [5]:

(F5) There exists γ > 2 and u0 ∈ R such that f(z, u)u ≥ γF (z, u) for a.e.
z ∈ RN−K and every u ∈ R and ess infz∈RN−K F (z, u0) > 0.

In this di�erent setting we can prove the existence of a nontrivial solution
to (4.1.2).

Theorem 4.1.2. Suppose that a > −
(
K−2

2

)2
, (F1)�(F2) and (F5) hold, and

f does not depend on y. Then there exists a nontrivial solution u to (4.1.2)
in XSO.

Observe that, in Theorems 4.1.1 or 4.1.2, every solution ū can be supposed
to be nonnegative if f(x, u) ≥ 0 for x ∈ RN and u ≤ 0 because

0 ≥ −‖ū−‖2 =

∫
RN
∇ū · ∇ū− +

a

r2
ūū− dx =

∫
RN
f(z, ū)ū− dx

=

∫
RN
f(z,−ū−)ū− dx ≥ 0,

i.e., ū− = 0 and ū = ū+ ≥ 0.
We recall that, if f does not depend on x and a = 1, then Badiale,

Benci, and Rolando [10] found a nontrivial and nonnegative solution to (4.1.2)
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under more restrictive assumptions than in Theorem 4.1.2; in particular (cf.
assumption (f1) therein), they assumed the double-power behaviour |f(u)| ≤
C min{|u|p−1, |u|q−1} for u ∈ R, some constant C > 0, and 2 < p < 2∗ < q.
For example, they cannot deal with nonlinearities such as (3.1.3) or (3.1.4)
(where U ∈ R3 is replaced with u ∈ R), not even in the autonomous case
Γ ≡ 1 or replacing f with fχ[0,∞[. On the other hand, we admit such
nonlinearities in Theorem 4.1.1 if Γ ∈ L∞(RN) is positive, bounded away
from 0, ZN−K-periodic in the last N − K variables, and SO-invariant. If,
moreover, Γ does not depend on y, then Theorem 4.1.2 admits nonlinearities
as in (3.1.4), also if f(x, u) is replaced with f(x, u)χ{u≥0} (which is not allowed
in Theorem 4.1.1 due to (F3)). Finally, as previously mentioned, Theorem
4.1.2 admits sign-changing nonlinearities.

When K = 2, combining the equivalence result provided by Theorem
4.2.1 with Theorems 4.1.1 and 4.1.2, we can prove the following, as long as
h : RN × RN → RN satis�es

h(·, 0) = 0 and h(·, αw) = f(·, α)w for all α ∈ R and w ∈ SN−1. (4.1.4)

Note that (4.1.4) implies h and f are odd the second variable:

h(x,U) = f(x, 1)U = −f(x, 1)(−U) = −h(x,−U),

f(x,−α) = p
(
f(x,−α)e1

)
= p
(
h(x,−αe1)

)
= p
(
−f(x, α)e1

)
= −f(x, α),

where p is the orthogonal projection onto the �rst axis.
Let F be the space of the vector �elds U : RN → RN such that

U(x) =
u(x)

r

−x2

x1

0

 (4.1.5)

for some SO-invariant u : RN → R, where 0 ∈ RN−2, and de�ne DF :=
D1,2(RN ,RN) ∩ F .

Corollary 4.1.3. Suppose that K = 2 and h satis�es (4.1.4).

(a) If (F1)�(F4) hold, then (4.1.1) has in�nitely many geometrically dis-
tinct solutions in DF , one of which is a ground state solution in DF .

(b) If (F1)�(F2), (F5) hold and h does not depend on y, then (4.1.1) has
a nontrivial solution U ∈ DF .
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Simiarly as before, by ground state solution in DF we mean a nontrivial
solution that minimizes E over all the nontrivial solutions in DF ; also the
de�nition of geometrically distinct solutions easily adapts to (4.1.1).

Now we consider the problems (4.1.1) and (4.1.2) in the Sobolev-critical
case, so from now till the end of this section we assume K = 2 and

h(x,U) = |U|2∗−2U and f(x, u) = |u|2∗−2u.

Of course Theorems 4.1.1 or 4.1.2 no longer apply because (F2) does not hold.
We recall that Badiale, Guida, and Rolando [9] found a ground state solution
in XSO to (4.1.1) for a > 0 (but without further restrictions on K ≥ 2); an
immediate consequence of this and Theorem 4.2.1 is the following.

Corollary 4.1.4. There exists a ground state solution in DF to

∇×∇×U = |U|2∗−2U in RN . (4.1.6)

The main results of this chapter in the Sobolev-critical case concern the
existence of unbounded sequences of solutions. In order to achieve them, we
need to recover compactness and the �rst step in this direction is to introduce
this de�nition. From now on, we additionally assume N = 3.

De�nition 4.1.5. For g1, g2 ∈ SO(2) we denote g =
(
g1 0
0 g2

)
≡ (g1, g2) ∈

SO(2) × SO(2). We say that U ∈ D1,2(R3,R3) is SO(2 × 2)-symmetric if
and only if for every g1, g2 ∈ SO(2) and a.e. x ∈ R3

U
(
π
(
gπ−1(x)

))
ψ
(
π
(
gπ−1(x)

)) =
g̃1U(x)

ψ(x)
,

where ψ(x) =
√

2
1+|x|2 , π : S3\{Q} → R3 is the stereographic projection, and

Q = (1, 0, 0, 0) is the north pole.

For further remarks on De�nition 4.1.5 and the symmetry introduced
therein see Subsection 4.1.1. The subspace of D1,2(R3,R3) consisting of
SO(2 × 2)-symmetric vector �elds is denoted DSO(2×2). Now we can state
our main results in the Sobolev-critical case.

Theorem 4.1.6. There exists a sequence Un ∈ DSO(2×2) of solutions to
(4.1.6) such that limnE(Un) =∞ and each Un is of the form (4.1.5).
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Clearly the property limnE(Un) = ∞ implies that the solutions Un are
geometrically distinct (up to a subsequence), as E is invariant under trans-
lations. Once again, we exploit Theorem 4.2.1 to have as follows.

Corollary 4.1.7. There exists a sequence un ∈ XSO of solutions to

−∆u+
u

r2
= u5 in R3

such that limn J(un) =∞ and each |un| is satis�es∣∣∣un(π(gπ−1(x)
))∣∣∣

ψ
(
π
(
gπ−1(x)

)) =
|un(x)|
ψ(x)

for every g1, g2 ∈ SO(2) and a.e. x ∈ R3.

Observe that Theorem 4.2.1 is used in Corollaries 4.1.3 and 4.1.4 to build
solutions to (4.1.1) from solutions to (4.1.2), while it is used in Corollary
4.1.7 to build solutions to (4.1.2) from solutions to (4.1.1).

4.1.1 Remarks on De�nition 4.1.5

As previously said, the symmetry de�ned in De�nition 4.1.5 is used to
restore compactness in the whole R3 in the Sobolev-critical case. To the best
of our knowledge, the �rst who faced this issue was Ding [47], who proved
the existence of in�nitely many sign-changing solutions to

−∆u = |u|2∗−2u, u ∈ D1,2(RN). (4.1.7)

His approach is as follows: �rst, he proves that the solutions to (4.1.7) are
in 1-to-1 correspondence with the solutions to

−∆gv +
N(N − 2)

4
v = |v|2∗−2v, v ∈ H1(SN) (4.1.8)

via the stereographic projection and the conformal map ψ, i.e., v ∈ H1(SN)
solves (4.1.8) if and only if u = (v ◦ π−1)ψ ∈ D1,2(RN) solves (4.1.7); the
symbol ∆g in (4.1.8) stands for the Laplace-Beltrami operator [6,89]. Then,
he introduces a group action in H1(SN) such that the subspace consisting of
the functions invariant with respect to this action is compactly embedded in

81



L2∗(SN). More in details, for k ≥ m ≥ 2 integers such that N + 1 = k + m,
he considers the action of O(k)×O(m) ⊂ O(N + 1) de�ned as

(g1, g2)v(ξ) := v(g1ξ1, g2ξ2)

for g1 ∈ O(k), g2 ∈ O(m), v ∈ H1(SN), and SN 3 ξ = (ξ1, ξ2) ∈ Rk × Rm.
Ding, therefore, �leaves� the Euclidean space RN and works on the sphere

SN , where the de�nition of the group action is more straightforward. If one
decides to work directly in RN , then the action of O(k)×O(m) on H1(SN)
must be adapted to D1,2(RN). This was done by Clapp and Pistoia [44]: if
v ∈ H1(SN) is such that

v(g1ξ1, g2ξ2) = v(ξ)

for every g1 ∈ O(k), every g2 ∈ O(m), and a.e. ξ ∈ SN , and if we de�ne
u(x) = ψ(x)v

(
π−1(x)

)
, then u ∈ D1,2(RN) satis�es

ψ(x)

ψ
(
π
(
gπ−1(x)

))u(π(gπ−1(x)
))

= u(x)

for every g =
(
g1 0
0 g2

)
≡ (g1, g2) ∈ O(k) × O(m) and a.e. x ∈ RN , see [44,

Section 3].
Both [47] and [44] deal with scalar-valued functions. Although the argu-

ments seem to be valid also for vector-valued functions, the case studied in
Section 4.4 is slightly more delicate because we need to combine this action,
developed for the Laplace operator, with those de�ned in (2.0.4) and (2.0.5),
which allow to reduce the curl-curl operator to the vector Laplacian. This
is the reason why we introduce the symmetry from De�nition 4.1.5, which
matches well with that induced from (2.0.4) and (2.0.5), cf. Lemma 4.4.1.

4.2 An equivalence result

Throughout this section we have K = 2. The reason is that it is straight-
forward to generalize the decomposition of Fix(SO) given in [8, Lemma 1]
and recalled in Chapter 2 to the case N ≥ 3 (cf. Lemma 4.2.3), but not
to the case 2 ≤ K < N . Another di�culty is that SO(ν) is not abelian if
ν ≥ 3.
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We recall that for g ∈ SO(2) we denote

g̃ =

(
g 0
0 IN−2

)
∈ SO(N)

and SO = { g̃ | g ∈ SO(2) }; moreover, Fix(SO) ⊂ D1,2(RN ,RN) is the
subspace of the vector �elds invariant under the action de�ned in (2.0.4). We
recall also that DF = D1,2(RN ,RN) ∩ F , where F is the space of the vector
�elds U : RN → RN that satisfy (4.1.5) for some SO-invariant u : RN → R.
Note that DF is a closed subspace of D1,2(RN ,RN) and that DF ⊂ Fix(SO).
Finally, we recall the notation x = (y, z) ∈ R2 × RN−2 = RN .

The main result in this section reads as follows.

Theorem 4.2.1. Assume f satisfy (F1) and there exists C > 0 such that
|f(x, u)| ≤ C|u|2∗−1 for a.e. x ∈ RN and every u ∈ R; assume also that
h satisfy (4.1.4). Suppose that U and u satisfy (4.1.5) for a.e. x ∈ RN .
Then U ∈ DF if and only if u ∈ XSO and, in such a case, ∇ ·U = 0 and
J(u) = E(U). Moreover, u ∈ XSO is a solution to (4.1.2) with a = 1 if and
only if U ∈ DF is a solution to (4.1.1).

Lemma 4.2.2. If U ∈ Fix(SO), then there exists Un ∈ C∞c (RN ,RN) ∩
Fix(SO) such that limn |∇Un −∇U|2 = 0.

Proof. Since U ∈ D1,2(RN ,RN), there exists Vn ∈ C∞c (RN ,RN) such that
limn |∇Vn −∇U|2 = 0. Let

Un(x) :=

∫
SO
g−1Vn(gx) dµ(g) =

∫
SO
gTVn(gx) dµ(g),

where µ is the Haar measure of SO (note that SO is compact).
For every e ∈ SO we have

Un(ex) =

∫
SO
gTVn(gex) dµ(g) = e

∫
SO
g′TVn(g′x) dµ(g′) = eUn(x),

i.e., Un ∈ Fix(SO). Moreover, Un ∈ C∞c (RN ,RN) because so does Vn.
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First we prove that |Un−U|2∗ → 0. From Jensen's inequality there holds

|Un −U|2∗2∗ =

∫
RN

∣∣∣∣∫
SO
gTVn(gx)−U(x) dµ(g)

∣∣∣∣2∗ dx
≤
∫
SO

∫
RN

∣∣gTVn(gx)−U(x)
∣∣2∗ dx dµ(g)

=

∫
SO

∫
RN

∣∣gTVn(gx)− gTU(gx)
∣∣2∗ dx dµ(g)

=

∫
SO

∫
RN
|Vn(gx)−U(gx)|2

∗
dx dµ(g)

=

∫
SO
|Vn −U|2∗2∗ dµ(g) = |Vn −U|2∗2∗ → 0.

Finally, Un is a Cauchy sequence in D1,2(RN ,RN) because, similarly as be-
fore,

|∇Un −∇Um|2 ≤ |∇Vn −∇Vm|2 → 0,

hence Un → U in D1,2(RN .RN).

The following result was proved in [8, Lemma 1] for N = 3. Its general-
ization to the case N ≥ 3 is easy, but we include such a proof for the reader's
convenience. Recall that RN

∗ = RN \ {x2
1 + x2

2 = 0}.

Lemma 4.2.3. For every U ∈ Fix(SO) there exist Uρ,Uτ ,Uζ,i ∈ Fix(SO),
i ∈ {3, . . . , N}, such that for every x ∈ RN

∗ at which U(x) is de�ned

• Uρ(x) is the orthogonal projection of U(x) onto span{(x1, x2, 0)},

• Uτ (x) is the orthogonal projection of U(x) onto span{(−x2, x1, 0)},

• Uζ,i(x) is the orthogonal projection of U(x) onto span{ei},

and ∇Uρ(x),∇Uτ (x),∇Uζ,i(x) are pairwise orthogonal in RN×N ' RN2
,

i ∈ {3, . . . , N}. In particular, U = Uρ + Uτ +
∑N

i=3 Uζ,i.

Proof. ForU ∈ Fix(SO) we writeU = (U1, . . . ,UN). For x ∈ RN
∗ letUρ(x),

84



Uτ (x), and Uζ,i(x) be the orthogonal projections as in the statement. Then

Uρ(x) = Uρ(x)

x1

x2

0

 =
x1U1(x) + x2U2(x)

r2

x1

x2

0

 ,

Uτ (x) = Uτ (x)

−x2

x1

0

 =
−x2U1(x) + x1U2(x)

r2

−x2

x1

0

 ,

Uζ,i(x) = Uζ,i(x)ei = Ui(x)ei.

We prove that Uρ, Uτ , and Uζ,i are SO-invariant. This is trivial for Uζ,i
because i ≥ 3; moreover, note that

Uρ(x) =
1

r2

(
U1(x) U2(x)

)(x1

x2

)
,

Uτ (x) =
1

r2

(
U1(x) U2(x)

)(0 −1
1 0

)(
x1

x2

)
,

therefore, exploiting that SO(2) is abelian,

Uρ(g̃x) =
1

r2

(
U1(x) U2(x)

)
gTg

(
x1

x2

)
=

1

r2

(
U1(x) U2(x)

)(x1

x2

)
= Uρ(x),

Uτ (g̃x) =
1

r2

(
U1(x) U2(x)

)
gTg

(
0 −1
1 0

)(
x1

x2

)
=

1

r2

(
U1(x) U2(x)

)(0 −1
1 0

)(
x1

x2

)
= Uτ (x)

for every g ∈ SO(2) and a.e. x ∈ RN .
Now we prove that Uρ,Uτ ,Uζ,i ∈ D1,2(RN ,RN). From their very de�ni-

tion, Uρ,Uτ ,Uζ,i ∈ L6(RN ,RN) ∩H1
loc(RN

∗ ,RN). In what follows we denote
by ∂jUρ|RN∗ the partial derivative along xj of Uρ in RN

∗ in the sense of dis-
tributions and by ∂jUρ the function de�ned a.e. in RN that represents it,
i.e. ∫

RN
∂jUρ|RN∗ · ϕdx = −

∫
RN

Uρ · ∂jϕdx (4.2.1)
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for every ϕ ∈ C∞c (RN
∗ ,RN); similar notations are used for Uτ and Uζ,i. With

a small abuse of notation, the symbol · will stand for the scalar product both
in RN and in RN×N ' RN2

.
It is obvious that for every i, j ∈ {3, . . . , N} and a.e. x ∈ RN

∇Uζ,i(x) · ∇Uζ,j(x) = ∇Uζ,i(x) · ∇Uρ(x) = ∇Uζ,i(x) · ∇Uτ (x) = 0.

Moreover, by explicit computations,

∇Uρ(x) · ∇Uτ (x) =∇[Uρ(x)x2] · ∇[Uτ (x)x1]−∇[Uρ(x)x1] · ∇[Uτ (x)x2]

=x2Uτ (x)∂1Uρ(x) + x1Uρ(x)∂2Uτ (x)

− x1Uτ (x)∂2Uρ(x)− x2Uρ(x)∂1Uτ (x) = 0,

where the last equality follows from the fact that the SO-invariance of Uρ
implies x1∂2Uρ = x2∂1Uρ (and likewise for Uτ ).

This yields

|∇U|2 = |∇Uρ|2 + |∇Uτ |2 +
N∑
i=3

|∇Uζ,i|2 a.e. in RN ,

whence for every i ∈ {3, . . . , N} and every j ∈ {1, . . . , N}

∂jUρ, ∂jUτ , ∂jUζ,i ∈ L2(RN ,RN),

hence the proof will be complete once we show that ∂jUρ|RN∗ coincide with
the distributional derivative (along xj) of Uρ in RN , i.e., (4.2.1) holds for
every ϕ ∈ C∞c (RN ,RN), and likewise for Uτ and Uζ,i. For ε > 0 consider
ηε ∈ C∞(RN ,R) such that

ηε(x) = 0 for |r| ≤ ε

2
, ηε(x) = 1 for r ≥ ε, 0 ≤ ηε ≤ 1, |∇ηε| ≤

4

ε
.

Let ϕ ∈ C∞c (RN ,RN) and set ϕε := ηεϕ ∈ C∞c (RN
∗ ,RN). There holds∫

RN
∂jUρ · ϕε dx = −

∫
RN

Uρ · ∂jϕε dx

= −
∫
RN
ηεUρ · ∂jϕdx−

∫
RN
∂jηεUρ · ϕ.

(4.2.2)
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From the dominated convergence theorem,

lim
ε→0+

∫
RN
∂jUρ · ϕε dx =

∫
RN
∂jUρ|RN∗ · ϕdx

lim
ε→0+

∫
RN
ηεUρ · ∂jϕdx =

∫
RN

Uρ · ∂jϕdx.
(4.2.3)

Let R > 0 such that ϕ(x) = 0 for |x| ≥ R and set Ωε := BR ∩ {r < ε} and
observe that |Ωε| ≤ Cε2 for some C > 0 depending only on N and R, thus∣∣∣∣∫

RN
∂jηεUρ · ϕdx

∣∣∣∣ ≤ ‖ϕ‖∞4

ε

∫
Ωε

|Uρ| dx

≤ ‖ϕ‖∞
4

ε
|Ωε|

N+2
2N |Uρ|2∗ → 0

(4.2.4)

as ε → 0+. Letting ε → 0+ in (4.2.2) and using (4.2.3) and (4.2.4) we have
the desired result. Finally, similar computations hold for Uτ and Uζ,i.

Let

H :=
{
U : RN → RN

∣∣ U(x) = O(y) uniformly in z as y → 0
}
.

Proposition 4.2.4. There holds

DF = Cc(RN ,RN) ∩ C∞(RN
∗ ,RN) ∩H ∩DF ,

where the closure is taken in D1,2(RN ,RN).

Proof. The inclusion `⊃' is obvious since DF is closed. Now let U ∈ DF .
Since U ∈ Fix(SO), in view of Lemma 4.2.2 there exists Un ∈ C∞0 (RN ,RN)∩
Fix(SO) such that Un = (Un

1 , . . . ,U
n
N)→ U in D1,2(RN ,RN).

For every n, letUn
ρ ,U

n
τ ,U

n
ζ,i ∈ D1,2(RN ,RN)∩Fix(SO) de�ned in Lemma

4.2.3 and associated with Un, i.e.

• Un
ρ(x) is the projection of Un(x) onto span{(x1, x2, 0)},

• Un
τ (x) is the projection of Un(x) onto span{(−x2, x1, 0)},

• Un
ζ,i(x) is the projection of Un(x) onto span{ei}.
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In particular, Un
ρ ,U

n
τ ,U

n
ζ,i ∈ C∞(RN

∗ ,RN), they vanish outside a su�ciently
large ball in RN (in fact, Un

ζ,i ∈ C∞c (RN ,RN)) and Un(x) = Un
ρ(x)+Un

τ (x)+
Un
ζ,i(x) for every x ∈ RN

∗ . Moreover, ∇Un
ρ(x), ∇Un

τ (x), ∇Un
ζ,i(x) are pair-

wise orthogonal in RN×N ' RN2
for every x ∈ RN

∗ .
This implies that Un

τ → U in D1,2(RN ,RN), hence we are only left to
prove that Un

τ ∈ Cc(RN ,RN) ∩H.
Since Un ∈ Fix(SO), for every g ∈ SO(2) and every z ∈ RN−2

g̃Un(0, 0, z) = Un
(
g̃(0, 0, z)

)
= Un(0, 0, z),

which yields Un
1 (0, 0, z) = Un

2 (0, 0, z) = 0 (just take g = −I2). Moreover,

Un
ρ(x) =

Un · (x1, x2, 0)

|(x1, x2)|2

x1

x2

0

 and Un
τ (x) =

Un · (−x2, x1, 0)

|(x1, x2)|2

−x2

x1

0

 ,

therefore, from the uniform continuity of Un,

lim
y→0

Un
ρ(x) = lim

y→0
Un
τ (x) = 0

uniformly with respect to z ∈ RN−2. Hence we can extend Un
ρ and Un

τ

to RN by setting them equal to 0 on {0} × {0} × RN−2 and obtain that
Un
ρ ,U

n
τ ∈ Cc(RN ,RN) and Un(x) = Un

ρ(x) + Un
τ (x) +

∑N
i=3 U

n
ζ,i(x) for every

x ∈ RN .
To prove that Un

ρ + Un
τ ∈ H, �rst we notice that Un

ρ + Un
τ = Un −∑N

i=3 U
n
ζ,i ∈ C∞c (R3,R3) and, using Taylor's expansion,(

Un −
N∑
i=3

Un
ζ,i

)
(x) =

(
Un −

N∑
i=3

Un
ζ,i

)
(0, z)

+

[
∇

(
Un −

N∑
i=3

Un
ζ,i

)
(0, z)

] (
y 0

)
+ o(y)

=

[
∇

(
Un −

N∑
i=3

Un
ζ,i

)
(0, z)

] (
y 0

)
+ o(y)

as y → 0, thus Un
ρ + Un

τ ∈ H. Finally, note that |Un
τ | ≤ |Un

ρ + Un
τ |, whence

Un
τ ∈ H.
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From now on, u : RN → R and U : RN → RN are two functions satisfying
(4.1.5). An obvious consequence is that |u| = |U|.
Lemma 4.2.5. U ∈ DF if and only if u ∈ XSO; in such a case, ∇ ·U = 0.
If, moreover, f satis�es the assumptions of Theorem 4.2.1 and h(x, αw) =
f(x, α)w for α ∈ R and w = |(ξ1, ξ2)|−1(−ξ2, ξ1, 0), ξ2

1 + ξ2
2 > 0, then J(u) =

E(U).

Proof. Suppose that u ∈ XSO. We show that the pointwise gradient a.e. of
U = (U1,U2, 0) in RN is also the distributional gradient of U in RN . As a
matter of fact, for ∂1U1 we have ∫

RN
u(x)

−x2√
x2

1 + x2
2

∂1ϕ(x) dx

=

∫
RN

(
∂1u(x)

x2√
x2

1 + x2
2

− u(x)
x1x2

(x2
1 + x2

2)3/2

)
ϕ(x) dx

= −
∫
RN
∂1

(
u(x)

−x2√
x2

1 + x2
2

)
ϕ(x) dx <∞

for every ϕ ∈ C∞c (RN) because

∫
RN
u(x)

x1x2

(x2
1 + x2

2)3/2
ϕ(x) dx <∞ for u ∈ X.

For ∂1U2 similarly we get ∫
RN
u(x)

x1√
x2

1 + x2
2

∂1ϕ(x) dx

= −
∫
RN

(
∂1u(x)

x1√
x2

1 + x2
2

+ u(x)

(
1√

x2
1 + x2

2

− x2
1

(x2
1 + x2

2)3/2

))
ϕ(x) dx

= −
∫
RN
∂1

(
u(x)

x1√
x2

1 + x2
2

)
ϕ(x) dx <∞

for every ϕ ∈ C∞c (RN). The remaining cases are similar.
Now observe that U ∈ L2∗(RN ,RN) ∩ F . Moreover,

∂1U1 = ∂1u
x2√
x2

1 + x2
2

− u x1x2

(x2
1 + x2

2)3/2
∈ L2(RN)

and

∂1U2 = −∂1u
x1√
x2

1 + x2
2

− u

(
1√

x2
1 + x2

2

− x2
1

(x2
1 + x2

2)3/2

)
∈ L2(RN)
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because u ∈ X. Again, the remaining cases are similar and we infer U ∈ DF .
Now suppose that U ∈ DF and, due to Proposition 4.2.4, let Bn ∈

Cc(RN ,RN) ∩ C∞(RN
∗ ,RN) ∩ H ∩ DF such that limn |∇Bn − ∇U|2 = 0 and

let bn : RN → R be SO-invariant such that Bn and bn satisfy (4.1.5).
We prove that bn ∈ XSO. Of course bn ∈ C∞(RN

∗ ) and, since |Bn| = |bn|,
bn ∈ Cc(RN) ⊂ L2∗(RN) and bn(x) = O(y) uniformly with respect to z as
y → 0, therefore ∫

RN

b2
n

r2
dx <∞.

Moreover, ∇Bn ∈ L2(RN ,RN×N), where

∇Bn(x) =
1√

x2
1 + x2

2

−x2

x1

0

∇bn(x)T +
bn(x)

(x2
1 + x2

2)3/2

x1x2 −x2
1 0

x2
2 −x1x2 0

0 0 0


and the second summand above is square-integrable because∣∣∣∣∣∣ 1

(x2
1 + x2

2)3/2

x1x2 −x2
1 0

x2
2 −x1x2 0

0 0 0

∣∣∣∣∣∣
RN×N

=
1

(x2
1 + x2

2)3/2

∣∣∣∣∣
x1

x2

0

(x2 −x1 0
) ∣∣∣∣∣

RN×N
=

1√
x2

1 + x2
2

,

where | · |RN×N stands for the matrix norm in RN×N . It follows that ∇bn ∈
L2(RN ,RN), thus bn ∈ XSO.

Since limn |bn − u|2∗ = limn |Bn −U|2∗ = 0, it is enough to prove that bn
is a Cauchy sequence in X, therefore we compute

‖bn − bm‖2 =

∫
RN
∇(bn − bm) · ∇(bn − bm) +

(bn − bm)(bn − bm)

r2
dx

=

∫
RN
∇(Bn −Bm) · ∇(Bn −Bm) dx = |∇(Bn −Bm)|22 → 0

as n,m→∞.
Next, since u ∈ XSO, as in the �rst part we have that the pointwise

divergence a.e. ofU is also the distributional divergence ofU, hence∇·U = 0
follows from explicit computations

Finally, observe that if u ∈ XSO and U ∈ DF satisfy (4.1.5), then ‖u‖2 =
|∇U|22 = |∇ ×U|22 and F

(
x, u(x)

)
= H

(
x,U(x)

)
for a.e. x ∈ RN .
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Note that J is invariant under the action of SO and E is invariant under
the action de�ned in (2.0.4): the former is trivial, while a proof of the latter
can be found in [8, Section 2].

Proof of Theorem 4.2.1. The �rst part follows directly from Lemma 4.2.5.
As in [8, Proposition 1], we have that DF = {U ∈ Fix(SO) | SU = U } and
that E(SU) = E(U) for every U ∈ Fix(SO), where S is de�ned in (2.0.5).

Finally, ifV ∈ DF and v ∈ XSO satisfy (4.1.5), then arguing as in Lemma
4.2.5 there holds∫

RN
∇×U · ∇ ×V dx =

∫
RN
∇U · ∇V dx =

∫
RN
∇u · ∇v +

uv

r2
dx

and ∫
R3

h
(
x,U(x)

)
·V(x) dx =

∫
RN
h

(
x,
u

r

( −x2
x1
0

))
· v(x)

r

( −x2
x1
0

)
dx

=

∫
RN
f (x, u(x))

1

r

( −x2
x1
0

)
· v(x)

r

( −x2
x1
0

)
dx

=

∫
RN
f
(
x, u(x)

)
v(x) dx,

thus the conclusion follows from Theorem 1.5.1.

4.3 The Sobolev noncritical case

In this section, we prove Theorems 4.1.1 and 4.1.2. Throughout this
section we assume f satis�es (F1) and (F2). The following lemma is proved
in [76, Proposition A.2].

Lemma 4.3.1. Suppose that un ∈ D1,2(RN) is bounded and SO-invariant
and for every R > 0

lim
n

sup
z∈RN−K

∫
B((0,z),R)

u2
n dx = 0. (4.3.1)

Then

lim
n

∫
RN

Φ(un) dx = 0

for every continuous function Φ: R→ [0,∞[ such that

lim
s→0

Φ(s)

|s|2∗
= lim
|s|→∞

Φ(s)

|s|2∗
= 0. (4.3.2)
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We need the following results as well.

Lemma 4.3.2. Let 1 ≤ p ≤ 2∗ ≤ q <∞. If u ∈ L2∗(RN), then

|uχ{|u|≤1}|qq, |uχ{|u|>1}|pp ≤ |u|2
∗

2∗ .

Proof. There holds∫
RN
|u|qχ{|u|≤1} dx ≤

∫
RN
|u|2∗χ{|u|≤1} dx ≤ |u|2

∗

2∗

and ∫
RN
|u|pχ{|u|>1} dx ≤

∫
RN
|u|2∗χ{|u|>1} dx ≤ |u|2

∗

2∗ .

Lemma 4.3.3. Suppose that un, vn ∈ D1,2(RN) are bounded and SO-invariant
and that un satis�es (4.3.1) for every R > 0. Then

lim
n

∫
RN
|f(x, vn)un| dx = 0.

Proof. Let 1 < p < 2∗ < q < ∞, de�ne Φ(t) :=
∫ |t|

0
min{sp−1, sq−1} ds, and

note that Φ satis�es (4.3.2). (F2) implies that for every ε > 0 there exists
Cε > 0 such that for every t ∈ R and a.e. x ∈ RN we have |f(x, t)| ≤
ε|t|2∗−1 + Cε|Φ′(t)|. Moreover∫

RN
|Φ′(vn)un| dx =

∫
RN
|Φ′(vn)un|χ{|un|>1} dx+

∫
RN
|Φ′(vn)un|χ{|un|≤1} dx

=: An +Bn.

Concerning the �rst integral An, Lemmas 4.3.1 and 4.3.2 imply that, for some
C > 0,

An =

∫
RN
|vn|p−1χ{|vn|>1}|un|χ{|un|>1} dx+

∫
RN
|vn|q−1χ{|vn|≤1}|un|χ{|un|>1} dx

≤
(
|vnχ{|vn|>1}|p−1

p +
∣∣|vn|q−1χ{|vn|≤1}

∣∣
(p−1)/p

)
|unχ{|un|>1}|p

≤ C
(
|vnχ{|vn|>1}|p−1

p + |vnχ{|vn|≤1}|q(p−1)/p
q

)(∫
RN

Φ(un) dx

) 1
p

≤ C sup
k
‖vk‖

2∗(p−1)
p

(∫
RN

Φ(un) dx

) 1
p

→ 0
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because
(
|vn|q−1

) p
p−1χ{|vn|≤1} ≤ |vn|qχ{|vn|≤1}.

Similar computations hold for the second integral Bn, therefore we have

lim sup
n

∫
RN
|f(x, vn)un| dx ≤ ε sup

k
|vk|2

∗−1
2∗ sup

k
|uk|2

∗

2∗

and conclude letting ε→ 0+.

In order to prove Theorem 4.1.1 we aim to use the abstract critical point
theory from Section 3.3, in particular Theorems 3.3.3 and 3.3.5 (b). We need
to prove that assumptions (I1)�(I8), (G), and (M)β0 for every β > 0 are
satis�ed. For simplicity, we set

I(u) :=

∫
RN
F (x, u) dx for u ∈ XSO,

while
N := { u ∈ XSO \ {0} | J ′(u)u = 0 }

is the Nehari manifold. Such conditions in our setting read as follows.

(I1) I ∈ C1(XSO) and I(u) ≥ I(0) = 0 for every u ∈ XSO.

(I2) If un → u, then lim infn I(un) ≥ I(u).

(I3) If un → u and I(un)→ I(u), then un → u.

(I4) ‖u‖+ I(u)→∞ as ‖u‖ → ∞.

(I6) There exists δ > 0 such that inf
u∈XSO,‖u‖=δ

J(u) > 0.

(I7) If tn →∞ and un → u0 6= 0, then
I(un)

t2n
→∞.

(I8)
t2 − 1

2
I ′(u)u+ I(u)− I(tu) ≤ 0 for every u ∈ N and every t ≥ 0.

(G) ZN−K acts on XSO by isometries and (ZN−K ∗u)\{u} is bounded away
from u for every u ∈ XO. Moreover J is ZN−K-invariant and XSO is
ZN−K-invariant.

(M)β0 (a) There exists Mβ > 0 such that lim supn ‖un‖ ≤ Mβ for every
un ∈ XSO such that 0 ≤ lim infn J(un) ≤ lim supn J(un) ≤ β and
limn(1 + ‖un‖)J ′(un) = 0.
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(b) If J has �nitely many critical orbits, then there exists mβ > 0
such that, if un, vn ∈ XSO are as above and there exists n0 ≥ 1
such that ‖un− vn‖ < mβ for n ≥ n0, then lim infn ‖un− vn‖ = 0.

We omitted (I5) because it is an empty condition. The action of ZN−K on
XSO is given as follows: z ∗u(x) := u

(
x+ (0, z)

)
for z ∈ ZN−K and u ∈ XSO.

ZN−K ∗ u is called the orbit of u and if, in addition, u is a critical point of J ,
then ZN−K ∗ u is a critical orbit.

Note that (I1)�(I4) and (G) are obviously satis�ed (recall that (F4) im-
plies F ≥ 0), while (I6)�(I8) and (M)β0 will be veri�ed in the next lemmas.
We begin with (I6)�(I8).

Lemma 4.3.4. (a) There exists δ0 > 0 such that for every 0 < δ < δ0

inf { J(u) | u ∈ XSO and ‖u‖ = δ } > 0

(b) Suppose f satis�es (F3). If tn →∞ and un → u0 ∈ XSO \ {0}, then

lim
n

1

t2n

∫
RN
F (x, tnun) dx =∞.

(c) Suppose f satis�es (F4). For every u ∈ XSO and every t ≥ 0

t2 − 1

2

∫
RN
f(x, u)u dx+

∫
RN
F (x, u) dx−

∫
RN
F (x, tu) dx ≤ 0.

Proof. (a) From (F2) and the embeddings X ↪→ D1,2(RN) ↪→ L2∗(RN), there
exists C > 0 such that for every u ∈ XSO∫

RN
F (x, u) dx ≤ C|u|2∗2∗ ≤ C‖u‖2∗ ,

whence

J(u) ≥ 1

2
‖u‖2 − C‖u‖2∗

and the statement holds true for δ0 � 1.
(b) Since XSO is locally compactly embedded into L2(RN), up to a sub-

sequence un → u0 a.e. in RN . Moreover, there exists ε > 0 such that
lim supn |Ωn| > 0, where Ωn :=

{
x ∈ RN

∣∣ ‖un(x)‖ ≥ ε
}
, for otherwise

94



un → 0 in measure and consequently, up to a subsequence, a.e. in RN .
From (F3)

1

t2n

∫
RN
F (x, tnun) dx =

∫
RN

F (x, tnun)

t2n|un|2
|un|2 dx ≥ ε2

∫
Ωn

F (x, tnun)

t2n|un|2
dx→∞

as n→∞.
(c) For �xed x ∈ RN and u ∈ R we prove that φ(t) ≤ 0 for every t ≥ 0,

where

φ(t) :=
t2 − 1

2
f(x, u)u+ F (x, u)− F (x, tu).

This is trivial for u = 0, so suppose u 6= 0. Note that φ(1) = 0, so it is enough
to prove that φ is nondecreasing on [0, 1] and nonincreasing on [1,∞[. This
is the case in view of (F4) and because

φ′(t) = tf(x, u)u− f(x, tu)u = t|u|u
(
f(x, u)

|u|
− f(x, tu)

|tu|

)
for t > 0, therefore φ(t) ≤ 0 for every t ≥ 0 as φ ∈ C1([0,∞[).

The following lemma shows that (M)β0 holds for every β > 0.

Lemma 4.3.5. Suppose f satis�es (F3) and (F4).

(a) For every β > 0 there exists Mβ > 0 such that lim supn ‖un‖ ≤ Mβ

for every un ⊂ XSO such that J(un) ≤ β for n � 1 and limn(1 +
‖un‖)J ′(un) = 0.

(b) If the number of critical orbits of J is �nite, then there exists κ > 0
such that, if un, vn ∈ XSO are as above for some β > 0 and there exists
n0 ≥ 1 such that ‖un − vn‖ < κ for n ≥ n0, then limn ‖un − vn‖ = 0.

Proof. (a) Let un ∈ XO as in the assumptions. Suppose that un is unbounded
and de�ne ūn := un/‖un‖. Passing to a subsequence we can assume that
limn ‖un‖ =∞. Similarly to the proof of Lemma 4.3.3, for every ε > 0 there
exists Cε > 0 such that∫

RN
F (x, ūn) dx ≤ ε|ūn|2

∗

2∗ + CεΦ(ūn),
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where Φ is de�ned therein. If ūn satis�es (4.3.1) for every R > 0 (hence the
same holds for sūn, s ≥ 0), then in view of Lemma 4.3.1

lim sup
n

∫
RN
F (x, sūn) dx ≤ εs2 lim sup

n
|ūn|2

∗

2∗

for every ε > 0, hence limn

∫
RN F (x, sūn) dx = 0. Then applying Lemma

4.3.4 (c) with u = un and t = s/‖un‖ we obtain, up to a subsequence, that
for every s ≥ 0

β ≥ lim sup
n

J(un) ≥ lim sup
n

J(sūn)− lim
n

t2n − 1

2
J ′(un)un

= lim sup
n

J(sūn) ≥ s2

2
− lim

n

∫
RN
F (x, sūn) dx =

s2

2
,

a contradiction. Hence limn

∫
B((0,zn),R)

|ūn|2 dx > 0 up to a subsequence for

someR >
√
N −K and zn ⊂ ZN−K , where zn maximizes z 7→

∫
B((0,z),R)

|un|2 dx.
Exploiting the ZN−K-invariance, we can assume that∫

BR

|ūn|2 dx ≥ c

for n� 1 and some c > 0.
There follows that there exists ū ∈ XSO \ {0} such that, up to a subse-

quence, ūn ⇀ ū in X and ūn → ū in L2
loc(RN) and a.e. in RN .

From (F4), 2J(un)− J ′(un)un =
∫
RN f(x, un)un − 2F (x, un) dx ≥ 0, thus

J(un) is bounded and due to (F3) we obtain

o(1) =
J(un)

‖un‖2
≤ 1

2
−
∫
RN

F (x, un)

|un|2
|ūn|2 dx→ −∞,

which is a contradiction. This shows that un is indeed bounded. If by
contradiction there exists no upper bound Mβ, then for every k ∈ N there
exists ukn ∈ XSO as in the statement such that lim supn ‖ukn‖ > k. Then,
as in Corollary 3.4.8, it is easy to build a subsequence ukn(k) ∈ XSO that is
unbounded, again a contradiction.

(b) Assume that there are �nitely many critical orbits of J . From (G) we
easily see that

κ := inf
{
‖u− v‖ : u 6= v and J ′(u) = J ′(v) = 0

}
> 0.
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Let un, vn be as in the statement. In view of (a), they are bounded. If∫
RN f(x, un)(un−vn) dx or

∫
RN f(x, vn)(un−vn) dx do not converge to 0, then

in view of Lemma 4.3.3 and the ZN−K-invariance there exist R >
√
N −K

and ε > 0 such that ∫
BR

|un − vn|2 dx ≥ ε.

We can assume that un ⇀ u and vn ⇀ v in X, so u 6= v. Hence J ′(u) =
J ′(v) = 0 and consequently

lim inf
n
‖un − vn‖ ≥ ‖u− v‖ ≥ κ,

in contrast with the assumptions.
Therefore it follows that

lim
n

∫
RN
f(x, un)(un − vn) dx = lim

n

∫
RN
f(x, vn)(un − vn) dx = 0

and, �nally,

‖un − vn‖2 = J ′(un)(un − vn)− J ′(vn)(un − vn)

+

∫
RN

(
f(x, un)− f(x, vn)

)
(un − vn) dx→ 0.

Proof of Theorem 4.1.1. Note thatN contains all the nontrivial critical points
of J . Applying Theorem 3.3.3 we obtain a Cerami sequence un ∈ XSO at
the level c := infN J > 0. Lemma 4.3.5(a) implies that there exists u ∈ XSO
such that un ⇀ u up to a subsequence, thus J ′(u) = 0.

If by contradiction
∫
RN f(x, un)un dx → 0, then similarly to the proof of

Lemma 4.3.5 (b) we infer that un → 0, in contrast with J(un) → c. Hence,
again similarly to the proof of Lemma 4.3.5 (b), u 6= 0.

Fatou's Lemma and (F4) imply

c = lim
n
J(un) = lim

n
J(un)− 1

2
J ′(un)un = lim

n

∫
RN

1

2
f(x, un)un − F (x, un) dx

≥
∫
RN

1

2
f(x, u)u− F (x, u) dx = J(u)− 1

2
J ′(u)u = J(u) ≥ c.

Now assume f is odd in u, which implies that J is even. The existence
of in�nitely many geometrically distinct critical points of J follows directly
from Theorem 3.3.5 (b). As for the fact that the ground state solution is
nonnegative, since J(v) = J(|v|) and J ′(v)v = J ′(|v|)|v| for every v ∈ XSO,
we obtain that |u| is again a ground state solution.
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Lemma 4.3.6. Suppose that f does not depend on y and satis�es (F5). Then
there exists w ∈ XSO such that

∫
RN F (z, w) dx > 1

2

∫
RN |∇zw|2 dx.

Proof. For every R ≥ 3 we de�ne a continuous function φR : R → R such
that φR(t) = 0 for |t| < 1 and for |t| > R + 1, φR(t) = u0 for 2 ≤ |t| ≤ R
and φR is a�ne for 1 ≤ |t| ≤ 2 and for R ≤ |t| ≤ R + 1. Then let wR(x) :=
φR(|y|)φR(|z|). Observe that wR ∈ XSO and there exist constants C1, C2 > 0
such that ∫

RN
F (z, wR) dx ≥C1R

N ess inf
z∈RN−K

F (z, u0)

− C2R
N−1 sup

R≤|u|≤R+1

ess sup
z∈RN−K

F (z, u)

− C2 sup
1≤|u|≤2

ess sup
z∈RN−K

F (z, u)

and ∫
RN
|∇zw|2 ≤ C2R

N−1.

Then the statement holds true for R� 1.

Proof of Theorem 4.1.2. First we prove that J has the mountain pass geom-
etry. Let w ∈ XSO as in Lemma 4.3.6. From Lemma 4.3.4 (a), there exists
0 < δ < ‖w‖ such that inf { J(u) | u ∈ XO and ‖u‖ = δ } > 0. Moreover, for
every λ > 0 we have

J
(
w(λ·, ·)

)
=

1

2λK−2

∫
RN
|∇yw|2 +

a

r2
|w|2 dx

+
1

λK

∫
RN

1

2
|∇zw|2 − F (z, w) dx→ −∞

as λ→ 0+. Consequently, the existence of a Palais�Smale sequence un ∈ X
for J |XSO at the mountain pass level c > 0 follows. Such a sequence is
bounded because (F5) holds: for every n� 1

c+ 1 + ‖un‖ ≥ J(un)− 1

γ
J ′(un)(un)

=

(
1

2
− 1

γ

)
‖un‖2 +

∫
RN

1

γ
f(un)un − F (un) dx ≥

(
1

2
− 1

γ

)
‖un‖2.

Now, suppose by contradiction that (4.3.1) holds for every R > 0. Fix
R >

√
N −K such that (4.3.1) holds with the supremum being taken over
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ZN−K . Since F and (z, u) 7→ f(z, u)u satisfy (4.3.2) uniformly with respect
to z ∈ RN−K , from Lemma 4.3.1 and arguing as in Lemma 4.3.3 we obtain

c = lim
n
J(un)− 1

2
J ′(un)un = lim

n

∫
RN

1

2
f(z, un)un − F (z, un) dx = 0,

which is a contradiction. Then there exist R >
√
N −K and ε > 0 such

that, up to a subsequence, ∫
B((0,zn),R)

u2
n dx ≥ ε (4.3.3)

where zn ∈ ZN−K maximizes z 7→
∫
B((0,z),R)

|un|2 dx. Since J is invariant

with respect to ZN−K translations, up to replacing un with un(· − zn) we
can suppose that zn = 0. Since un is bounded, there exists u ∈ XSO such
that un ⇀ u in X, which in turn implies that J ′(u) = 0 and that un → u in
L2
(
BR

)
and a.e. in RN ; in particular, u 6= 0 because (4.3.3) holds.

Proof of Corollary 4.1.3. The proof follows from Theorems 4.1.1, 4.1.2 and
4.2.1.

4.4 The Sobolev critical case

In this section, we prove Theorem 4.1.6; moreover, not only do we assume
K = 2 (for the same reasons as in Section 4.2) but we also assume N = 3
(which a fortiori forces us to have K = 2). The reason is that in Lemma
4.4.3 below we make use of the explicit structure of SO(2), i.e.

SO(2) =

{(
cosα − sinα
sinα cosα

) ∣∣∣∣ α ∈ R
}
.

We recall that throughout this section 2∗ = 6,

E(U) =
1

2

∫
R3

|∇ ×U|2 dx− 1

6

∫
R3

|U|6 dx,

J(u) =
1

2

∫
R3

|∇u|2 +
u2

r2
dx− 1

6

∫
R3

u6 dx.

The only exception to the restriction N = 3 is Corollary 4.1.4, which we
prove here.
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Proof of Corollary 4.1.4. The proof follows from [9, Theorem 1] and Theo-
rem 4.2.1.

Let π : S3 \ {Q} → R3 be the stereographic projection, where Q =
(0, 0, 0, 1) is the north pole, and let

ψ : x ∈ R3 7→

√
2

|x|2 + 1
∈ R.

Explicitly,

π(ξ) =
1

1− ξ4

(ξ1, ξ2, ξ3), ξ = (ξ1, ξ2, ξ3, ξ4),

π−1(x) =
1

|x|2 + 1
(2x1, 2x2, 2x3, |x|2 − 1), x = (x1, x2, x3).

Recall that g̃ =
(
g 0
0 1

)
for g ∈ SO(2), SO = { g̃ | g ∈ SO(2) }, and

DSO(2×2) is the subspace of D1,2(R3,R3) of SO(2×2)-symmetric vector �elds
according to De�nition 4.1.5.

Lemma 4.4.1. DSO(2×2) ⊂ Fix(SO).

Proof. Let g1 ∈ SO(2) and de�ne g := (g1, I2) ∈ SO(2)× SO(2). Note that

gπ−1(x) = π−1(g̃1x)

for every x ∈ R3, therefore

g̃1U(x) =
ψ(x)

ψ
(
π
(
gπ−1(x)

))U(π(gπ−1(x)
))

=
ψ(x)

ψ(g̃1x)
U(g̃1x) = U(g̃1x).

Lemma 4.4.2. The embedding DSO(2×2) ↪→ L6(R3,R3) is compact.

Proof. For every U ∈ DSO(2×2) de�ne V(ξ) := U(π(ξ))
ψ(π(ξ))

for ξ ∈ S3 \ {Q}.
Note that V ∈ H1(S3,R3) and, similarly as in [44, Lemma 3.1], |∇U|2 =
‖V‖H1(S3,R3) and |U|6 = ‖V‖L6(R3,R3), where

‖V‖2
H1(S3,R3) =

∫
S3
|∇gV|2 +

3

4
|V|2 dVg
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is the norm in H1(S3,R3) and ∇g is the gradient on S3 [6, 89]. Therefore
U 7→ V is an isometric isomorphism between D1,2(R3,R3) and H1(S3,R3)
and between L6(R3,R3) and L6(S3,R3). Note that, since U is SO(2 × 2)-
symmetric, thenV(gξ) = g̃1V(ξ) for every g = (g1, g2) ∈ SO(2)×SO(2) and,
consequently, |V| is SO(2)× SO(2)-invariant, or equivalently O(2)×O(2)-
invariant.

Let Un ∈ DSO(2×2) such that Un ⇀ 0 in DO(2×2). Then Vn ⇀ 0 in
H1(S3,R3) and, up to a subsequence, V → 0 a.e. in S3; this implies that
|Vn| ⇀ 0 in H1(S3) and so, in view of [47, Lemma 5], |Vn| → 0 in L6(S3).
Hence Vn → 0 in L6(S3,R3) and so Un → 0 in L6(R3,R3).

For U ∈ Fix(SO) recall from Lemma 4.2.3 the de�nition of Uρ, Uτ , and
Uζ,i, i ∈ {3, . . . , N}.

Lemma 4.4.3. If U ∈ DSO(2×2), then Uρ,Uτ ,Uζ ∈ DSO(2×2).

Proof. We �rst prove that Uτ ∈ DSO(2×2). Let αi ∈ R, gi =
(

cosαi − sinαi
sinαi cosαi

)
∈

SO(2), i ∈ {1, 2}, and set g =
(
g1 0
0 g2

)
. We want to prove that

ψ(x)

ψ
(
π
(
gπ−1(x)

))Uτ

(
π
(
gπ−1(x)

))
= g̃1Uτ (x) (4.4.1)

provided
ψ(x)

ψ
(
π
(
gπ−1(x)

))U(π(gπ−1(x)
))

= g̃1U(x).

We compute the two sides of (4.4.1) separately. We use the convention
that R3 = R3×1 and treat the scalar product in R3 as matrix multiplication.

As for the right-hand side we have

g̃1Uτ (x) =
g̃1

( −x2
x1
0

)
UT (x)

( −x2
x1
0

)
x2

1 + x2
2

=

( −x2 cosα1−x1 sinα1
−x2 sinα1+x1 cosα1

0

)
UT (x)

( −x2
x1
0

)
x2

1 + x2
2

=
−x2U1(x) + x1U2(x)

x2
1 + x2

2

( −x2 cosα1−x1 sinα1
−x2 sinα1+x1 cosα1

0

)
.

101



Let us write π =
(
π1
π2
π3

)
. As for the left-hand side we have

ψ(x)

ψ
(
π
(
gπ−1(x)

))Uτ

(
π
(
gπ−1(x)

))

=
ψ(x)

ψ
(
π
(
gπ−1(x)

))
(
−π2(gπ−1(x))

π1(gπ−1(x))
0

)
UT
(
π
(
gπ−1(x)

))( −π2(gπ−1(x))

π1(gπ−1(x))
0

)
π2

1

(
gπ−1(x)

)
+ π2

2

(
gπ−1(x)

)

=

(
−π2(gπ−1(x))

π1(gπ−1(x))
0

)
UT (x)g̃1

T

(
−π2(gπ−1(x))

π1(gπ−1(x))
0

)
π2

1

(
gπ−1(x)

)
+ π2

2

(
gπ−1(x)

) .

Let us compute

gπ−1(x) =
1

|x|2 + 1

(
2x1 cosα1−2x2 sinα1
2x1 sinα1+2x2 cosα1

2x3 cosα2−(|x|2−1) sinα2

2x3 sinα2+(|x|2−1) cosα2

)
,

π
(
gπ−1(x)

)
=

1

|x|2 + 1− 2x3 sinα2 ∓ (|x|2 − 1) cosα2

(
2x1 cosα1−2x2 sinα1
2x1 sinα1+2x2 cosα1

2x3 cosα2−(|x|2−1) sinα2

)
,

UT (x)g̃1
T =

(
U1(x) cosα1−U2(x) sinα1

U1(x) sinα1+U2(x) cosα1

U3(x)

)T
,

UT (x)g̃1
T

(
−π2(gπ−1(x))

π1(gπ−1(x))
0

)
=

2
(
−x2U1(x) + x1U2(x)

)
|x|2 + 1− 2x3 sinα2 − (|x|2 − 1) cosα2

,

and

π2
1

(
gπ−1(x)

)
+ π2

2

(
gπ−1(x)

)
=

4x2
1 + 4x2

2(
|x|2 + 1− 2x3 sinα2 − (|x|2 + 1) cosα2

)2 ,

so for the left-hand side we have(
−π2(gπ−1(x))

π1(gπ−1(x))
0

)
UT (x)g̃1

T

(
−π2(gπ−1(x))

π1(gπ−1(x))
0

)
π2

1

(
gπ−1(x)

)
+ π2

2

(
gπ−1(x)

)
=
−x2U1(x) + x1U2(x)

x2
1 + x2

2

( −x2 cosα1−x1 sinα1
−x2 sinα1+x1 cosα1

0

)
and (4.4.1) holds.

Similar computations hold for Uρ, so Uρ ∈ DSO(2×2). Finally, Uζ =
U−Uρ −Uτ ∈ DSO(2×2).
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Note that E|DF = L|DF in view of Lemma 4.2.5, where L : D1,2(R3,R3)→
R is de�ned as

L(U) :=
1

2

∫
R3

|∇U|2 dx− 1

6

∫
R3

|U|6 dx.

We set Y := DSO(2×2) ∩ F .

Lemma 4.4.4. Y is in�nite dimensional.

Proof. Let e =
(

0 −1
1 0

)
∈ SO(2) and let X , resp. Z, be the subspace of

DSO(2×2) consisting in the vector �elds U such that

U(x) =
u(x)

r

x1

x2

0

 , resp. U(x) = u(x)

0
0
1

 ,

for some SO-invariant u : R3 → R. In order to prove that Y is in�nite
dimensional, we build an isomorphism between X and Y and an isomorphism
between X and Z. The conclusion will follow from the fact that DSO(2×2) is
in�nite dimensional and that, in view of Lemmas 4.2.3 and 4.4.3, we get the
decomposition DSO(2×2) = X ⊕ Y ⊕ Z.

For every U ∈ X de�ne Ũ(x) := U(ẽx). It is clear that Ũ ∈ Y and that

U 7→ Ũ is an isomorphism.
Now consider U ∈ X and let u : R3 → R be SO-invariant such that

U(x) = u(x)
r

(
x1
x2
0

)
. De�ne U(x) := u(x)

(
0
0
1

)
. By similar arguments to those

used in the proof of Lemma 4.2.5 it is easy to check that U ∈ D1,2(R3,R3).
Finally, explicit computations show that U is SO(2 × 2)-symmetric (hence
U ∈ Z) and trivially U 7→ U is an isomorphism.

Proof of Theorem 4.1.6. Lemma 4.4.1 implies that Y ⊂ DF ; moreover, Y
is closed in D1,2(R3,R3) and in�nite dimensional by Lemma 4.4.4. Since
U 7→ U

ψ
◦ π is a linear isometry between D1,2(R3,R3) and H1(S3,R3) and

between L6(R3,R3) and L6(S3,R3), one easily checks that E|DF is invariant
under the action of SO(2× 2). Hence every U ∈ Y is a solution to (4.1.6) if
and only if it is a critical point of E|Y owing to Theorem 1.5.1.

We want to make use of [95, Theorem 9.12]. From the embeddings Y ⊂
D1,2(R3,R3) ⊂ L6(R3,R3), there exists δ > 0 such that

inf { E(U) | U ∈ Y and |∇U|2 = δ } > 0
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(cf. the proof of Lemma 4.3.4 (a)). In addition, if Y ⊂ Y is a �nite di-
mensional subspace, then the norms |∇(·)|2 and | · |6 are equivalent in Y ,
thus there exists R = R(Y ) > 0 such that E(U) ≤ 0 for every U ∈ Y with
|U|6 ≥ R. We are only left to prove that E|Y satis�es the Palais�Smale
condition at every positive level, therefore let Un ∈ Y be a Palais�Smale
sequence for E|Y at some c > 0. Similarly to the proof of Theorem 4.1.2
we prove that Un is bounded, hence there exists U ∈ Y such that, up to a
subsequence,

Un ⇀ U in D1,2(R3,R3) (4.4.2)

and, in view of Lemma 4.4.2,

Un → U in L6(R3,R3). (4.4.3)

Since limnE|′Y(Un) = 0, from (4.4.2) and (4.4.3) we obtain

0 = lim
n
E ′(Un)(U) = |∇U|22 − |U|66 (4.4.4)

and, since Un is bounded,

0 = lim
n
E ′(Un)(Un) = lim

n
|∇Un|22 − |U|66. (4.4.5)

From (4.4.4) and (4.4.5) we have limn |∇Un|2 = |∇U|2, which, together with
(4.4.2), yields limnUn = U in D1,2(R3,R3).

Proof of Corollary 4.1.7. It follows from Theorems 4.1.6 and 4.2.1.
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Part II

Constrained problems
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Chapter 5

Introduction to Part II

In Part II of this Ph.D. thesis, we study the existence of least energy
solutions to the Schrödinger system

−∆u1 + λ1u1 = ∂1F (u)

. . .

−∆uK + λKuK = ∂KF (u)

in RN (5.0.1)

paired with the constraint∫
RN
u2
j dx = ρ2

j ∀j ∈ {1, . . . , K}, (5.0.2)

where N,K ≥ 1, ρ1, . . . , ρK > 0 are given, (λ1, . . . , λK) ∈ RK , and F : RN →
R is a nonlinear function. Problems as in (5.0.1) appear when one seeks
standing wave solutions Φ(x, t) =

(
e−iλ1tu1(x), . . . , e−iλKtuK(x)

)
to the time

dependent Schrödinger system

i
∂Φ

∂t
−∆Φ = g(|Φ|)Φ (5.0.3)

(in which case one has F (u) = F (|u|)) for some u = (u1, . . . , uK) : RN → RK

and (λ1, . . . , λK) ∈ RK .
An important feature of (5.0.1) is that the values λj are part of the

unknown, being the Lagrange multipliers associated with the L2-constraint
(5.0.2). Solutions to (5.0.1)�(5.0.2) or similar problems are known in the
literature as normalized solutions and have raised much interest in the last
decades. The importance of such constraints is due to quantities related to
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solutions to (5.0.3) that are conserved in time (see, e.g., [38, 39]), i.e., the
energy

J(u) :=

∫
RN

1

2
|∇u|2 − F (u) dx =

∫
RN

1

2

K∑
j=1

|∇uj|2 − F (u) dx (5.0.4)

and the masses ∫
RN
u2
j dx, j ∈ {1, . . . , K}.

Moreover, the masses have a precise physical meaning: they represent the
power supplies in nonlinear optics [4, 102] and the total number of atoms in
Bose�Einstein condensation [67,92].

When K = 1 and

F (u) =
1

p
|u|p, 2 < p < 2∗, p 6= 2# := 2 +

4

N
,

one can solve (5.0.1) with λ = λ1 �xed (e.g., λ = 1) and then, denoting by
u such a solution, consider proper α, µ > 0 such that αu(µ·) solves (5.0.1)�
(5.0.2) for some λ′ ∈ R.

Concerning the problem when λ is �xed, the situation appears to be rather
understood, at least in the case of K = 2, positive solutions, and F of power
type. In this direction, we refer to [13,14,41,71�74,98,101,106,107,126,127],
see also the references therein.

As for the case when λ is part of the unknown and F is not homogeneous
orK ≥ 2, much depends on whether the energy functional J : H1(RN)K → R
restricted to

S :=

{
u ∈ H1(RN)K

∣∣∣∣ ∫
RN
u2
j dx = ρ2

j ∀j ∈ {1, . . . , K}
}
, (5.0.5)

where J(u) is de�ned in (5.0.4), is bounded from below or not. Such a
property depends on F , which is not surprising, and on ρ = (ρ1, . . . , ρk),
which is possibly less expected. In the literature, the case when J is bounded
from below for every ρ is known as mass-subcritical or L2-subcritical, while
the case when J is unbounded from below for every ρ is know as mass-
supercritical or L2-supercritical. The case when the behaviour of J from
below actually depends on the parameter ρ is referred to as mass-critical or
L2-critical. If F is of power type, then these three cases correspond to the
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exponent 2 < p < 2∗ being, respectively, less than, greater than, or equal to
the threshold value 2#.

The simplest case, hence the �rst that was investigated, is the mass-
subcritical one, because solutions can be looked for as global minimizers of
J |S . This is the strategy adopted by Stuart [112], for the scalar case K = 1,
and Lions [70], for the general case K ≥ 1: the former exploits tools from
bifurcation theory (hence giving results also about this topic) from previous
work of his [110, 111, 113], the latter provides necessary and su�cient con-
ditions for minimizing sequences of J |S to converge (in particular, su�cient
conditions for infS J to be achieved) and then discusses when such equiv-
alent conditions hold. In fact, Lions deals with the mass-critical case too,
because one of the su�cient conditions for infS J to be achieved is that ρ is
large (cf. [70, p. 299]). More precisely, he always requires a mass-subcritical
behaviour at in�nity lim|u|→∞ F (u)/|u|2# = 0, but the assumption of a mass-
subcritical behaviour at zero limu→0 F (u)/|u|2# =∞ can be traded with the
mass being large, together with other hypotheses.

Concerning the mass-supercritical (nonhomogeneous) case, the �rst work
is, to the best of our knowledge, by Jeanjean [59]. Unable to apply a di-
rect minimization method, he �nds a solution exploiting the mountain pass
geometry of the energy functional together with a characterization of the
mountain pass level and a splitting result (or, when N ≥ 2, the compact
embedding of radial functions H1

rad(RN) ⊂ Lp(RN), 2 < p < 2∗).
After these seminal results, the �eld of normalized solutions raised more

and more interest in the PDE community and much work on it has been
done, studying single equations and systems, in bounded domains and in all
of RN , using the most various techniques. It is impossible, or at the very least
extremely audacious and demanding, to keep track of all the developments
had in four decades of Mathematics, therefore we will limit ourselves to some
relevant papers. As for single equations in RN we mention [1, 21, 22, 24, 26,
27,32,33,37,39,43,60,61,99,104,105], while concerning systems of equations
in RN we mention [16, 17, 21�23, 54, 55, 82, 85, 87, 99, 100]. In particular,
[21�24, 55, 61] deal with the issue of multiple solutions. Problems as (5.0.1)
but in bounded domains are investigated in [50, 86, 91] (single equations)
and [87,88,125] (systems).

A common di�culty when studying (5.0.1)�(5.0.2) is that the embedding
H1(RN) ↪→ L2(RN) is not compact, as remarked in Subsection 1.1.1, not even
when considering particular subspaces, which implies that a weak limit point
of a sequence in S needs not belong to S. This issue, which is of course closely
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related to the strong convergence of such sequences, is also connected with
the sign of the components uj of the limit point and/or of the corresponding
Lagrange multipliers λj. Such issues have usually been investigated with
more or less involved tools such as the strict subadditivity and monotonicity
of the ground state energy map [60, 61, 64, 104] or additional properties of
Palais�Smale sequences [17, 59, 60, 104] (roughly speaking, the ground state
energy map associates ρ with the least possible energy that a solution to
(5.0.1)�(5.0.2) can have and is de�ned rigorously in Sections 6.3 and 7.3). In
addition, in the mass-supercritical setting, several of the papers mentioned so
far make use of a complex topological argument by Ghoussoub [52] based on
the σ-homotopy stable family of compact subsets ofM (such a set is de�ned
in (5.0.7)).

Here we propose a new, simpler approach, which overcomes both the issue
of the strong convergence in L2(RN) and that of the elaborate tools used to
deal with it. This approach was introduced by Bieganowski and Mederski [32]
for K = 1 in the mass-supercritical regime, then extended to the case K ≥ 1
by Mederski and the author [82]; it was also adapted to the mass-(sub)critical
setting by the author [99].

Instead of considering the set S, we take into account

D :=

{
u ∈ H1(RN)K

∣∣∣∣ ∫
RN
u2
j dx ≤ ρ2

j ∀j ∈ {1, . . . , K}
}
. (5.0.6)

Clearly, S ⊂ D; moreover, S = ∂D if K = 1 and S ( ∂D if K ≥ 2 because
in this case

∂D =
K⋃
j=1

D1 × · · · × Dj−1 × Sj ×Dj+1 × · · · × DK ,

with the obvious de�nitions

Dj :=

{
u ∈ H1(RN)

∣∣∣∣ ∫
RN
u2 dx ≤ ρ2

j

}
,

Sj :=

{
u ∈ H1(RN)

∣∣∣∣ ∫
RN
u2 dx = ρ2

j

}
,

which, in our approach, is what makes the di�erence between the casesK = 1
and K ≥ 2.

From the lower semicontinuity of the norm, it is clear that every weak
limit point of a sequence in D stays in D. In the mass-subcritical case, as
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well as in the mass-critical one under additional assumptions, the functional
J |D is still bounded from below and we easily obtain a minimizer; this is the
case studied in Chapter 6. The price to pay, of course, is that we need to
prove that such a minimizer actually belongs to S, which requires further
assumptions when K ≥ 2; nonetheless, this is still more direct than the
arguments used in most of the papers previously mentioned.

In the mass-superctitical setting, dealt with in Chapter 7, the functional
J |D is a fortiori unbounded from below, hence additional tools are called for
in order to still obtain least energy solutions. It is possible to prove (see
Section 7.1 for more details) that, if (λ, u) is a nontrivial solution to (5.0.1),
then u belongs to the set

M :=

{
u ∈ H1(RN)K \ {0}

∣∣∣∣ ∫
RN
|∇u|2 dx =

N

2

∫
RN
H(u) dx

}
, (5.0.7)

where H(u) := ∇F (u) · u − 2F (u), therefore it makes sense to consider the
functional J |M∩D. Fortunately, this functional is bounded from below and
we can apply a constrained minimization argument to obtain a minimizer.
Under mild assumptions,M is shown to be a natural constraint in the sense
that every minimizer of J |M∩D is in fact a critical point of J |D. As in the
mass-subcritical and -critical cases, we need to prove that the minimizer
we have obtained lies in S and this is done under further hypotheses. The
di�erence is that M is not weakly closed, therefore, when we consider a
(weakly convergent) minimizing sequence of J |M∩D, we need to project the
limit point ontoM again and make sure such a projection belongs to D.

A second advantage of working with D instead of S is that the Lagrange
multipliers λj are nonnegative. This result is based on Clarke [45] and basi-
cally relies on two facts: the critical points we consider areminimizers (of J |D
in the mass-subcritical and -critical cases, of J |M∩D in the mass-supercritical
case) and the set D is de�ned via inequalities. There are at least two reasons
why this is an advantage: the �rst is that the sign of the Lagrange multipliers
has often to do with important aspects, as previously remarked, and indeed
we do make use of such information also in our proofs; the second is that,
in case one wants to prove the strict positivity, the case λj = 0 for every
j ∈ {1, . . . , K} is easier to rule out than the case λj ≤ 0. In addition, the
strict positivity is important from non-mathematical points of view too, as
there are situations in physics, e.g., concerning the eigenvalues of equations
describing the behaviour of ideal gases, where the chemical potentials λi of
the standing waves have to be positive, see, e.g., [67, 92].
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Since the nonnegativity of λj is used both in Chapter 6 and 7, we state
and prove the aforementioned result in this introductory chapter.

Proposition 5.0.1. Let H be a real Hilbert space and f, φj, ψk ∈ C1(H),
j ∈ {1, . . . ,m}, k ∈ {1, . . . , n}. Suppose that for every

x ∈
m⋂
j=1

φ−1
j (0) ∩

n⋂
k=1

ψ−1
k (0)

the di�erential (
φ′j(x), ψ′k(x)

)
1≤j≤m,1≤k≤n : H → Rm+n

is surjective. If x̄ ∈ H minimizes f over

{ x ∈ E | φj(x) ≤ 0 ∀j = 1, . . . ,m and ψk(x) = 0 ∀k = 1, . . . , n } ,

then there exist (λj)
m
j=1 ∈ [0,∞[m and (σk)

n
k=1 ∈ Rn such that

f ′(x̄) +
m∑
j=1

λjφ
′
j(x̄) +

n∑
k=1

σkψ
′
k(x̄) = 0.

Proof. From [45, Theorem 1, Corollary 1] there exist τ ≥ 0, (λj)
m
j=1 ∈

[0,∞[m, and (σk)
n
k=1 ∈ Rn, not all zero, such that

τf ′(x̄) +
m∑
j=1

λjφ
′
j(x̄) +

n∑
k=1

σkψ
′
k(x̄) = 0. (5.0.8)

If τ > 0, then we can divide both sides of (5.0.8) by τ and, up to relabelling
λj and σk, conclude the proof, hence assume by contradiction that τ = 0, i.e.

m∑
j=1

λjφ
′
j(x̄) +

n∑
k=1

σkψ
′
k(x̄) = 0. (5.0.9)

If φj(x̄) < 0 for some j ∈ {1, . . . ,m}, then of course λj = 0, hence, up
to considering a (possibly empty) subset of {1, . . . ,m} in (5.0.9), we can
assume that φ1(x̄) = · · · = φm0(x̄) = 0 and λm0+1 = · · · = λm = 0 for some
0 ≤ m0 ≤ m, where m0 = 0 denotes that λj = 0 for all j ∈ {1, . . . ,m} and
m0 = m denotes φj(x̄) = 0 for all j ∈ {1, . . . ,m}. Then the di�erential(

φ′1(x̄), . . . , φ′m0
(x̄), ψ′1(x̄), . . . , ψ′n(x̄)

)
: E → Rm0+n
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is surjective and so, for every j ∈ {1, . . . ,m0} (resp. k ∈ {1, . . . , n}), there ex-
ists y ∈ H such that φ′j(x̄)(y) 6= 0, φ′i(x̄)(y) = 0 for every i ∈ {1, . . . ,m0}\{j}
and ψ′k(x̄)(y) = 0 for every k ∈ {1, . . . , n} (resp. ψ′k(x̄)(y) 6= 0, ψ′i(x̄)(y) = 0
for every i ∈ {1, . . . , n} \ {k} and φ′j(x̄)(y) = 0 for every j ∈ {1, . . . ,m0}).
This and (5.0.9) imply λj = 0 for every j ∈ {1, . . . ,m0} and σk = 0 for every
k ∈ {1, . . . , n}, a contradiction.

Note that both the statement of Proposition 5.0.1 and its proof remain
valid if the functions ψk's are removed from them.

Finally, we conclude this chapter recalling the Gagliardo�Nirenberg inter-
polation inequality (in a less generic form, which however is enough for our
purposes), which plays a basic role in Chapters 6 and 7.

Theorem 5.0.2. Let p ∈]2,∞[ if N ∈ {1, 2} or p ∈]2, 2∗] if N ≥ 3. Then
there exists CN,p > 0 such that

|u|p ≤ CN,p|∇u|δp2 |u|
1−δp
2 for all u ∈ H1(RN),

where δp := N

(
1

2
− 1

p

)
.

Observe that, in Theorem 5.0.2,

δpp


< 2 if p < 2#,

= 2 if p = 2#,

> 2 if p > 2#.
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Chapter 6

Autonomous Schrödinger

equations in the mass-critical and

-subcritical cases

6.1 Statement of the results

In this chapter, based on [99], we study the problem
−∆uj + λjuj = ∂jF (u)∫
RN u

2
j dx = ρ2

j

(λj, uj) ∈ R×H1(RN)

j ∈ {1, . . . , K} (6.1.1)

with N ≥ 1 and 1 ≤ K < 2#. Here ρ = (ρ1, . . . , ρK) ∈]0,∞[K is pre-
scribed, while (λ, u) = (λ1, . . . , λK , u1, . . . uK) is the unknown. The nonlin-
earity F satis�es the following assumptions, which correspond to the mass-
(sub)critical case.

(F0) F ∈ C1(RK), F ≥ 0, and there exists S > 0 such that |∇F (u)| ≤
S(|u|+ |u|2∗−1) for every u ∈ RK .

(F1) η∞ := lim sup
|u|→∞

F (u)

|u|2#
<∞.

(F2) lim
u→0

F (u)

|u|2
= 0.
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(F3) η0 := lim inf
u→0

F (u)

|u|2#
> 0.

In (F3) the case η0 = ∞ is allowed. Let us recall that the functional
J : H1(RN)K → R de�ned in (5.0.4) is well de�ned and of class C1 in view
of (F0). When N ≥ 5 and K ≥ 2 (in fact, K = 2 because K < 2#), we
consider the following assumption for a function f : [0,∞[→ [0,∞[.

(P) There exists q ≤ N/(N − 2) such that lim inft→0+ f(t)/tq > 0.

We choose to tackle problem (6.1.1) by means of relative compactness
in the Lp(RN) norm, 2 < p < 2∗, of bounded sequences in H1(RN), while a
di�erent strategy will be used in Chapter 7. WhenN ≥ 2, let H be a subspace
of H1(RN) that embeds compactly into Lp(RN) for every p ∈]2, 2∗[ and such
that every critical point of J |HK is a critical point of J . In particular, the role
of H will be played by either Hr or, if F is even, Hn (recall their de�nitions
from Subsection 1.1.1). When N = 1, in the spirit of Theorem 1.1.7 we
will always take H = Hr. Since we deal with minimizing sequences, if F is
even, then we can replace each element of such a sequence with its Schwarz
rearrangement and still obtain a minimizing sequence.

Recalling the de�nitions of S and D, given in (5.0.5) and (5.0.6) respec-
tively, we de�ne

S := S ∩ H and D := D ∩ H

and we will write Sr, Dr (resp. Sn, Dn) when H = Hr (resp. H = Hn). Our
main results read as follows.

Theorem 6.1.1. Assume that K = 1, (F0)�(F3) hold, and

2η∞ρ
4/NC

2#
N,2#

< 1, (6.1.2)

2η0ρ
4/NC

2#
N,2#

> 1. (6.1.3)

(a) If N ≥ 2, then there exists a solution (λ, u) ∈]0,∞[×Sr to (6.1.1)
such that J(u) = infDr

J < 0. If, moreover, η0 = ∞, then the same holds
replacing Sr and Dr with S and D respectively.

(b) If F is even, then there exists a ground state solution (λ, u) ∈]0,∞[×Sr

to (6.1.1) such that J(u) < 0 and u is nonnegative, radially nonincreasing,
and of class C2.
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Since, as we will see later (cf. Lemma 6.2.1), J |D is bounded from below,
by ground state solution to (6.1.1) we mean a solution (λ, u) such that J(u) =
minD J . Note that this is more than just requiring J(u) = minS J , which,
on the other hand, appears as a more �natural� condition. As for nonradial
solutions, we have as follows.

Proposition 6.1.2. If N = 4 or N ≥ 6, K = 1, F is even, (F0)�(F3) and
(6.1.2) hold, and η0 = ∞, then there exists a solution (µ, v) ∈]0,∞[×Sn to
(6.1.1) such that J(v) = infDn

J < 0.

Note that under the assumptions of Proposition 6.1.2 there exist two
distinct solutions to (6.1.1): (λ, u) ∈]0,∞[×Sr, which is also a ground state
solution, and (µ, v) ∈]0,∞[×Sn.

When K ≥ 2, |ρ| replaces ρ in (6.1.2) and (6.1.3). In this case the
following holds.

Theorem 6.1.3. Assume that 2 ≤ K < 2#, (F0)�(F3) and (6.1.2)�(6.1.3)
hold, L ≥ 1 is an integer, and for every ` ∈ {1, . . . , L} and every j ∈
{1, . . . , K} there exist Fj, F̃j,` ∈ C1(R) even, nonnegative, and nondecreasing

on [0,∞[ such that F̃j,`(0) = 0 and

F (u) =
K∑
j=1

Fj(uj) +
L∑
`=1

K∏
j=1

F̃j,`(uj).

If 1 ≤ N ≤ 4 or if N ≥ 5 and each F ′j|[0,∞[ satis�es (P) (not necessarily with
the same q), then there exists a ground state solution (λ, u) ∈]0,∞[K×Sr

to (6.1.1) such that J(u) < 0 and each component of u is positive, radially
nonincreasing, and of class C2.

It is clear that a necessary condition for (6.1.2) and (6.1.3) to hold si-
multaneously is that η0 > η∞. This is what holds in the L2-subcritical case,
where η0 =∞ and η∞ = 0. At the same time it rules out the L2-critical case
when F is of power type. On the one hand, since (6.1.1) does have a solution
with F (u) = |u|2#/2# for one speci�c value of ρ, we know that the conditions
in Theorems 6.1.1 or 6.1.3 are not sharp, at least to ensure an existence result
for some ρ; on the other hand, if (6.1.2) and (6.1.3) both hold, then we can
�nd a ground state solution to (6.1.1) for uncountably many values of ρ even
when the behaviour of F is L2-critical both at zero and at in�nity. Observe
also that η0 =∞ is a necessary condition for Theorem 6.1.3 to hold if N ≥ 5.
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The restriction K < 2# is actually a necessary condition arising from

(F3) and the fact that F̃j,k(t) = o(t) as t → 0 for every k ∈ {1, . . . , L} and
j ∈ {1, . . . , K}, in turn owing to that F̃j,k is even and di�erentiable at 0.

We provide some examples for F , beginning with the case K = 1. A �rst
model for the nonlinearity is

F (u) =
ν

2#

|u|2# +
ν̄

p
|u|p

for some ν ≥ 0, ν̄ > 0 and 2 < p < 2#, in which case one has η0 = ∞ and
η∞ = ν/2#. A second model is a sort of counterpart of the �rst one, i.e.,

F (u) =

∫ |u|
0

min{t2# , tp} dt (6.1.4)

with 2 < p < 2#, in which case one has η0 = 1/2# and η∞ = 0.
Now de�ne F ∗ : [0,∞[→ R by F ∗(0) = 0 and

F ∗(t) =



− t2

ln t
if 0 < t < 1

2
b
2

(
(b+ 2)t− 1

2
− b

2

)
if 1

2
≤ t ≤ 1

−t2 + 2ct− 1− b
4
(b+ 1) if 1 < t ≤ c

F ∗(2c− t) if c < t ≤ 2c

0 if t > 2c

with b = 1/ ln 2 and c = b(b + 2)/4 + 1 and let F (u) := F ∗(|u|). Then
(F0)�(F3) hold with η0 =∞ and η∞ = 0. One can also modify the previous
example in order to have η0 <∞ by de�ning

F ∗(t) =



t
2#

2#
if 0 ≤ t ≤ 1

t− 1 + 1
2#

if 1 < t < 2

−t2 + 5t− 5 + 1
2#

if 2 ≤ t ≤ 5
2

F ∗(5− t) if 5
2
< t < 5

0 if t ≥ 5.

Notice that, in both examples, F ∗ is not monotone, therefore such examples
do not suit the case K ≥ 2. Finally, for the case when both η∞ and η0 are
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�nite and positive, an example is

F (u) =


|u|2#

2#
if 0 ≤ |u| ≤ 1

|u| − 1 + 1
2#

if 1 < |u| < 2
|u|2#

2
2#−1

2#
+ 1− 1

2#
if |u| ≥ 2.

(6.1.5)

Concerning the case K ≥ 2, similarly as before a model for the nonlin-
earity is

F (u) =
K∑
j=1

(
νj
2#

|uj|2# +
ν̄j
pj
|uj|pj

)
+ α

K∏
j=1

|uj|rj + β
K∏
j=1

|uj|r̄j

for some νj, α, β ≥ 0, ν̄j > 0, rj, r̄j > 1, and 2 < pj < 2# such that α+β > 01,∑K
j=1 rj = 2#, and 2 <

∑K
j=1 r̄j < 2#. When N ≥ 5 (which implies K = 2),

we need to add the term

ν̃1

q1

|u1|q1 +
ν̃2

q2

|u2|q2 , 2 < q1, q2 ≤
2N − 2

N − 2
, ν̃1, ν̃2 > 0,

(then we can allow ν̄j = 0). In this case, again one has η0 =∞. If α = 0, then
η∞ = maxj=1,...,K νj/2#; if K = 2, α > 0, and νj = 0 for every j ∈ {1, 2},
then η∞ = α

√
rr11 r

r2
2 /2

2#
# (see Subsection 6.1.1 for more details on such

computations).

Finally, one can take Fj and F̃j,k as in (6.1.4) or (6.1.5), with additional
restrictions on Fj similarly as before if N ≥ 5.

6.1.1 Some explicit computations

Proposition 6.1.4. Let K ≥ 2 and νj ≥ 0, j ∈ {1, . . . , K}, and de�ne

F (u) =
K∑
j=1

νj|uj|2# .

Then lim sup
|u|→∞

F (u)

|u|2#
= max

j=1,...,K
νj.

1Of course, the case α = β = 0 is still allowed, but then the system (6.1.1) is uncoupled.
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Proof. By taking uj = 0 for every j ∈ {1, . . . , K} but one we easily obtain

lim sup
|u|→∞

F (u)

|u|2#
≥ max

j=1,...,K
νj. Since F (u) ≤ max

j=1,...,K
νj

K∑
j=1

|uj|2# , it su�ces to

prove that for every u ∈ RK(
|u1|2# + · · ·+ |uK |2#

)1/2# ≤
(
u2

1 + · · ·+ u2
K

)1/2
.

To this aim, we will prove that the function ϕ : ]0,∞[→]0,∞[ is decreasing,
where ϕ(t) := (bt1 + · · ·+ btK)1/t for some b1, . . . , bK > 0. From

ϕ′(t) = ϕ(t)

(
bt1 ln b1 + · · ·+ btK ln bK

t(bt1 + · · ·+ btK)
− 1

t2
ln(bt1 + · · ·+ btK)

)
we have that ϕ′(t) < 0 is equivalent to

bt1 ln(bt1 + · · ·+ btK) + · · ·+ btK ln(bt1 + · · ·+ btK) > bt1 ln bt1 + · · ·+ btK ln btK ,

which is true because ln is increasing.

Proposition 6.1.5. Let r1, r2 > 1 such that r1 + r2 = 2# and de�ne

F (u) = |u1|r1|u2|r2 .

Then lim sup
|u|→∞

F (u)

|u|2#
=
√
rr11 r

r2
2 /2

2#
# .

Proof. Observe that, for u2 6= 0,
F (u)

|u|2#
= ϕ

(
|u1|
|u2|

)
, with ϕ(t) :=

tr1

(t2 + 1)2#
.

Since maxϕ = ϕ

(√
r1

r2

)
=

√
rr11 r

r2
2

2
2#
#

, there holds

√
rr11 r

r2
2

2
2#
#

≥ lim sup
|u|→∞

F (u)

|u|2#
≥ lim sup

u1=
√
r1/r2u2

|u2|→∞

F (u)

|u|2#
=

√
rr11 r

r2
2

2
2#
#

.

6.2 Proof of the results

Henceforth, we will always assume that (F0) holds and we will make use
of it without explicit mention.
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6.2.1 The scalar case K = 1

Lemma 6.2.1. If (F0)�(F2) and (6.1.2) hold, then J |D is coercive and
bounded from below.

Proof. From (F1) and (F2), for every ε > 0 there exists cε > 0 such that
F (u) ≤ cεu

2 + (ε + η∞)|u|2# for every u ∈ R. In view of Theorem 5.0.2, for
every u ∈ D we have

J(u) ≥ 1

2
|∇u|22 − cε|u|22 − (ε+ η∞)|u|2#2#

≥ 1

2
|∇u|22 − cερ2 − (ε+ η∞)ρ4/NC

2#
N,2#
|∇u|22

=

(
1

2
− (ε+ η∞)ρ4/NC

2#
N,2#

)
|∇u|22 − cερ2,

hence the statement holds true for su�ciently small ε.

Remark 6.2.2. Lemma 6.2.1 still holds for K ≥ 2 because
∣∣|u|∣∣

r
= |u|r,

1 ≤ r ≤ ∞, and
∣∣∇|u|∣∣

2
≤ |∇u|2, hence one can use Theorem 5.0.2 with |u|.

For u ∈ H1(RN) \ {0} and s > 0 let s ? u(x) := sN/2u(sx). Note that
|u|2 = |s ? u|2.

Lemma 6.2.3. If (F0), (F3), and (6.1.3) hold, then infDr
J < 0. If, more-

over, η0 =∞, then infD J < 0.

Proof. Fix u ∈ D \ {0} and note that

J(s ? u) = s2

∫
RN

1

2
|∇u|2 − F (sN/2u)

(sN/2)2#
dx.

If η0 =∞, then lim
s→0+

∫
RN

F (sN/2u)

(sN/2)2#
dx =∞. If η0 <∞, then

lim sup
s→0+

∫
RN

1

2
|∇u|2 − F (sN/2u)

(sN/2)2#
dx ≤

∫
RN

1

2
|∇u|2 − η0|u|2# dx,

hence the statement holds true if u ∈ Dr and

1

2

∫
RN
|∇u|2 dx < η0

∫
RN
|u|2# dx. (6.2.1)
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Let w ∈ Hr be the unique positive radial solution to −∆v + 2
N
v = v2#−1 in

RN [62]. Then (cf. [128]) w is such that

|w|4/N2 =
2#

2C
2#
N,2#

and equality holds in the Gagliardo�Nirenberg interpolation inequality (The-
orem 5.0.2). If we de�ne u(x) := w(tx) for some t > 0, then u ∈ Dr and
(6.2.1) become, respectively,

|w|22 ≤ a2tN and t2|∇w|22 < 2η0|w|
2#
2#
. (6.2.2)

Now, with the help of the properties of w, it is easy to check by direct

computations that (6.2.2) holds if and only if t ∈

[ √
1 + 2/N

a2/NC
1+2/N
N,2#

,
√

2#η0

[
.

Remark 6.2.4. Lemma 6.2.3 still holds for K ≥ 2 because, if we set W ∈
H1(RN)K as W = (w/

√
K, . . . , w/

√
K), then |W |p = |w|p, 2 ≤ p ≤ 2∗,

and |∇W |2 = |∇w|2, therefore we can de�ne u(x) := W (tx) and conclude
likewise.

Lemma 6.2.5. Assume that (F0)�(F2) and (6.1.2) hold.
(a) If N ≥ 2, then infD J is achieved.
(b) If F is even, then infDr

J is achieved and minDr
J = minD J .

Proof. Let un ∈ D such that limn J(un) = infD J . In view of Lemma 6.2.1
there exists u ∈ D such that, up to a subsequence, un ⇀ u in H1(RN) and
un → u a.e. in RN as n→∞.

(a) Since N ≥ 2, then un → u in L2#(RN) and limn

∫
RN F (un) dx =∫

RN F (u) dx due to (F1), (F2) and [34, Theorem 1], whence

inf
D
J = lim

n
J(un) ≥ J(u) ≥ inf

D
J.

(b) Since F is even, choosing H = Hr we can replace un with its Schwarz
rearrangement u∗n and we obtain another minimizing sequence for J |Dr

with
the additional property that each u∗n is radially nonincreasing. Then from
Theorem 1.1.7 we infer again that un → u in L2#(RN) and conclude as in
point (a). As for the last part, let vn ∈ D such that limn J(vn) = infD J .
Then, similarly as before,

inf
D
J ← J(vn) ≥ J(v∗n) ≥ min

Dr

J ≥ inf
D
J.
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Proof of Theorem 6.1.1. (a) In view of Lemmas 6.2.3 and 6.2.5 there exists
u ∈ D (if η0 <∞, then necessarily D = Dr) such that J(u) = infD J < 0. In
Proposition 5.0.1 (the version without the functions ψk's) we putm = K = 1,
H = H, f = J , and φ = φ1 = | · |22 − ρ2. Then there exists λ ≥ 0 such that

−∆u+ λu = F ′(u).

Note that λ = 0 if u ∈ D̊. Assume by contradiction that λ = 0. Since u
satis�es the Pohoºaev identity

(N − 2)

∫
RN
|∇u|2 dx = 2N

∫
RN
F (u) dx

we have 0 > J(u) = |∇u|22/N , which is impossible, hence (λ, u) solves (6.1.1).
(b) Since F is even, the argument of the proof of Lemma 6.2.5 yields that

the minimizer u of J |Dr
obtained in point (a) is nonnegative and radially

nonincreasing and that (λ, u) is a ground state solution. Since u ∈ W 2,p
loc (RN)

for every p < ∞ (cf. Section 1.4), we can use the argument of [30, Lemma
1] and obtain u ∈ C2(RN).

Remark 6.2.6. In the assumptions of Theorem 6.1.1, every minimizer of J |D
lies in S.

Proposition 6.2.7. Let the assumptions of Theorem 6.1.1 (b) hold and let
(λ, u) be given therein. If F is nondecreasing on [0,∞[, then u > 0. If,
moreover, there exists t0 > 0 such that F ′(t) ≤ λt for every t ∈ [0, t0] and
F ′(t) > λt for every t ∈]t0,∞[, then u is radially decreasing.

Proof. The �rst part follows from the maximum principle [49, Lemma IX.V.1].
Assume by contradiction that u is constant in the annulus A := {r1 < |x| <
r2} for some r2 > r1 > 0. Then 0 = −∆u = F ′(u)−λu in A and so −∆u ≤ 0
in Ω := {|x| > r1} because u is radially nonincreasing. At the same time u
attains its maximum over Ω at every point of A. This is impossible because
u|Ω is not constant.

Proof of Proposition 6.1.2. The argument is the same as in the proof of The-
orem 6.1.1 (a) with H = Hn.
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6.2.2 The vectorial case K ≥ 2

We begin this section with the equivalent of Theorem 6.1.1 (a) for K ≥ 2.
Note that we can only ensure that the minimizer u belongs to ∂D, while we
need more assumptions in order that u ∈ S; in particular, we do not know if
we can make use of the Schwarz rearrangements, which is also what prevents
us from dealing with the case N = 1.

Proposition 6.2.8. If N ≥ 2 and (F0)�(F3) and (6.1.2)�(6.1.3) hold, then
there exists (λ, u) ∈ [0,∞[K×∂Dr such that maxj=1,...,K λj > 0, J(u) =
infDr

J < 0, and for every j ∈ {1, . . . , K}

−∆uj + λjuj = ∂jF (u).

If, moreover, η0 =∞, then the same holds replacing Dr with D.

Proof. Owing to Remarks 6.2.2 and 6.2.4, Lemmas 6.2.1, 6.2.3, and 6.2.5
(a) still hold for K ≥ 2. Then we proceed as in the proof of Theorem 6.1.1
(a).

Note that Proposition 6.2.8 is valid for every K ≥ 2. The next result is
inspired from [53].

Lemma 6.2.9. Let f : [0,∞[→ [0,∞[ be a continuous function that satis�es
(P) and such that f(t) > 0 if t > 0. Then the problem

−∆u ≥ f(u)

u ≥ 0

u ∈ C2(RN) ∩ L∞(RN)

(6.2.3)

does not admit positive solutions.

Proof. We can assume q > 1. If u is a solution to (6.2.3), then there exists
C = C(u) > 0 such that f

(
u(x)

)
≥ Cuq(x) for every x ∈ RN . Then we

argue as in [94, Proof of Theorem 8.4] and obtain u = 0.

Lemma 6.2.10. Let L be a positive integer and, for every ` ∈ {1, . . . , L},
let k(`) ≥ 2 be an integer as well. De�ne k̄ := max`=1,...,L k(`). For ev-

ery ` ∈ {1, . . . , L} and every j ∈ {1, . . . , k(`)} let F̃j,` : [0,∞[→ [0,∞[ be

nondecreasing and de�ne F̃ : Rk̄ → R as

F̃ (u) =
L∑
`=1

k(`)∏
j=1

F̃j,`(|uij |), 1 ≤ i1 < · · · < ik(`) ≤ k̄.
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For every ` ∈ {1, . . . , L} and every j ∈ {1, . . . , k(`)} assume that F̃j,` is in-

creasing or that it is continuous with F̃j,`(0) = 0. Then for every measurable
u : RN → Rk̄ that vanishes at in�nity there holds∫

RN
F̃ (u) dx ≤

∫
RN
F̃ (u∗) dx.

Proof. By linearity, we can suppose L = 1 and relabel k(1) = k̄ = k and

F̃j,1 = F̃j. Assume preliminarily that each F̃j is increasing. From [66, Theo-
rem 1.13] we have∫

RN

k∏
j=1

F̃j(|uj|) dx =

∫
RN

k∏
j=1

∫ ∞
0

χ{F̃j(|uj |)>tj}(x) dtj dx

=

∫ ∞
0

· · ·
∫ ∞

0

∫
RN

k∏
j=1

χ{F̃j(|uj |)>tj}(x) dx dt1 · · · dtk

and similarly∫
RN

k∏
j=1

F̃j(u
∗
j) dx =

∫ ∞
0

· · ·
∫ ∞

0

∫
RN

k∏
j=1

χ{F̃j(u∗j )>tj}(x) dx dt1 · · · dtk

=

∫ ∞
0

· · ·
∫ ∞

0

∫
RN

k∏
j=1

χ{F̃j(|uj |)>tj}∗(x) dx dt1 · · · dtk

because

{F̃j(u∗j) > tj} = {u∗j > F̃−1
j (tj)} = {|uj| > F̃−1

j (tj)}∗ = {F̃j(|uj|) > tj}∗,

therefore it su�ces to prove that, for every A1, . . . , Ak ⊂ RN measurable
with �nite measure,∫

RN

k∏
j=1

χAj(x) dx ≤
∫
RN

k∏
j=1

χA∗j (x) dx,

i.e., | ∩kj=1 Aj| ≤ | ∩kj=1 A
∗
j |.

Up to relabelling the sets, we can assume that |A1| ≤ · · · ≤ |Ak|, whence
A∗1 ⊂ · · · ⊂ A∗k and so | ∩kj=1 Aj| ≤ |A1| = |A∗1| = | ∩kj=1 A

∗
j |.
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Now assume that some F̃j's are continuous with F̃j(0) = 0. We want to

prove that, as in the previous case, {F̃j(u∗j) > tj} = {F̃j(|uj|) > tj}∗. Since

F̃j : [0,∞[→ [0,∞[ is nondecreasing and F̃j(0) = 0, following, e.g., [96, p. 10]

we can de�ne the generalized inverse function F̃−1
j : [0,∞[→ [0,∞[ as

F̃−1
j (t) := inf{s > 0 : F̃j(s) > t}.

Then it su�ces to prove that {F̃j(v) > t} = {v > F̃−1
j (t)} for every t > 0

and every measurable v : RN → [0,∞[ that vanishes at in�nity. Observe that

F̃−1
j (t) = ∞ if t ≥ F̃j

(
v(x)

)
for every x ∈ RN and, in that case, both sets

above equal the empty set, hence we can assume that t < ess sup F̃j ◦ v.
Let x ∈ RN such that F̃j

(
v(x)

)
> t. Since F̃j is continuous and F̃j(0) = 0,

there exists s > 0 such that t < F̃j(s) < F̃j
(
v(x)

)
. Then F̃−1

j (t) ≤ s and,

since F̃j is nondecreasing, s < v(x). Now let x ∈ RN such that v(x) > F̃−1
j (t).

From the properties of in�ma, there exists s > 0 such that F̃j(s) > t and

v(x) ≥ s. Since F̃j is nondecreasing, F̃j
(
v(x)

)
≥ F̃j(s).

Proposition 6.2.11. Assume that (F0)�(F3) and (6.1.2)�(6.1.3) hold and
let L ≥ 1 and 2 ≤ k(`) ≤ K be integers, ` ∈ {1, . . . , L}. If, for every

` ∈ {1, . . . , L} and every j ∈ {1, . . . , k(`)}, there exist Fj, F̃j,` ∈ C1(R) even,

nonnegative, and nondecreasing on [0,∞[ such that F̃j,`(0) = 0, F ′j|[0,∞[ sat-
is�es (P) (not necessarily with the same q) if N ≥ 5, and

F (u) =
K∑
j=1

Fj(uj) +
L∑
`=1

k(`)∏
j=1

F̃j,`(uij), 1 ≤ i1 < · · · < ik(`) ≤ K,

then there exists (λ, u) ∈ [0,∞[K×∂Dr such that maxj=1,...,K λj > 0, J(u) =
infDr

J = infD J < 0, and for every j ∈ {1, . . . , K}

−∆uj + λjuj = ∂jF (u).

Moreover, for every j ∈ {1, . . . , K}, either uj = 0 or |uj|2 = ρj. In the latter
case, λj > 0 and uj is positive, radially nonincreasing, and of class C2.

Proof. Owing to Remarks 6.2.2 and 6.2.4 and Lemma 6.2.10, Lemmas 6.2.1,
6.2.3, and 6.2.5 (b) still hold for K ≥ 2. Moreover, u ∈ W 2,p

loc (RN)K for all
p < ∞ (cf. Section 1.4), therefore we can argue as in the proof of Theo-
rem 6.1.1 (b) and obtain that there exists (λ, u) ∈ [0,∞[K×∂Dr such that
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maxj=1,...,K λj > 0, u ∈ C2(RN)K , J(u) = infDr
J = infD J < 0, and for every

j ∈ {1, . . . , K} there holds uj ≥ 0, uj is radially nonincreasing, and

−∆uj + λjuj = ∂jF (u).

Let j ∈ {1, . . . , K} such that λj = 0 (which, in particular, is the case if
|uj|2 < ρj), which yields −∆uj ≥ F ′j(uj) ≥ 0. If N ∈ {3, 4}, then uj ∈
L

N
N−2 (RN) and so uj = 0 from [57, Theorem A.2]. If N ≥ 5, then uj = 0 from

Lemma 6.2.9. That uj > 0 follows from the maximum principle [49, Lemma
IX.V.1].

Proof of Theorem 6.1.3. In view of Proposition 6.2.11 we only need to prove
that uj 6= 0 for every j ∈ {1, . . . , K} (recall that uj = 0 if λj = 0). Assume
by contradiction that it does not hold. Up to changing the order, we can
suppose that uK = 0. For every j ∈ {1, . . . , K} de�ne

Jj(w) =

∫
RN

1

2
|∇w|2 − Fj(w) dx, w ∈ H1(RN)

and

Dr(j) =

{
w ∈ Hr

∣∣∣∣ ∫
RN
w2 dx ≤ ρ2

j

}
.

Of course, −∆uj + λjuj = F ′j(uj) and, from Lemmas 6.2.1 and 6.2.3, −∞ <
cj := infDr(j) Jj < 0 for every j ∈ {1, . . . , K}. Moreover,

J(u) =
K−1∑
j=1

Jj(uj) ≥
K−1∑
j=1

cj.

Since F̃j,` ≥ 0 for every j ∈ {1, . . . , K} and ` ∈ {1, . . . , L}, we have J(w) ≤∑K
j=1 Jj(wj) for every w = (w1, . . . , wK) ∈ H1(RN)K , thus

K∑
j=1

cj ≥ inf
Dr

J = J(u) ≥
K−1∑
j=1

cj,

whence cK ≥ 0, a contradiction.

Remark 6.2.12. In Theorem 6.1.3 we cannot allow more k(`)'s as in Propo-
sition 6.2.11 because, in that case, we no longer know whether J(u) =∑K−1

j=1 Jj(uj) when uK = 0 and the proof above does not apply. Never-
theless, it applies to rule out the case uj = 0 for all j ∈ {1, . . . , k(`)} but
one, for every ` ∈ {1, . . . , L}.
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Remark 6.2.13. In the assumptions of Theorem 6.1.3, every minimizer of J |Dr

with nonnegative components belongs to Sr.

6.3 On the ground state energy map

In this section, for ρ = (ρ1, . . . , ρK) ∈]0,∞[K we denote explicitly

S(ρ) :=
{
u ∈ H1(RN)K

∣∣ |uj|2 = ρj for every j ∈ {1, . . . , K}
}

D(ρ) :=
{
u ∈ H1(RN)K

∣∣ |uj|2 ≤ ρj for every j ∈ {1, . . . , K}
}

m(ρ) := inf { J(u) | u ∈ D(ρ) } .

Proposition 6.3.1. Assume that (F0) is satis�ed and let A be the subset of
]0,∞[K where (6.1.2) and (6.1.3) both hold. We have as follows.

(i) m : ]0,∞[K→ R∪{−∞} is nonincreasing, i.e., if 0 < ρj ≤ ρ̄j for every
j ∈ {1, . . . , K}, then m(ρ) ≥ m(ρ̄).

(ii) Assume (F1)�(F3) are satis�ed. If F is even (when K = 1) or as in
Proposition 6.2.11 (when K ≥ 2), then m|A is continuous.

(iii) If (F1)�(F3) are satis�ed and η0 =∞, then lim
|ρ|→0+

m(ρ) = 0.

(iv) If (F3) is satis�ed and η∞ = 0, then lim
ρj→∞
j=1,...,K

m(ρ) = −∞; in particular,

lim
ρ→∞

m(ρ) = −∞ if K = 1.

(v) If, for all ρ ∈ A, there exists a minimizer of J |D(ρ) and every minimizer
of J |D(ρ) belongs to S(ρ), then m|A is decreasing, i.e., if 0 < ρj ≤ ρ̄j
for every j ∈ {1, . . . , K} and ρk < ρ̄k for some k ∈ {1, . . . , K}, then
m(ρ) > m(ρ̄). The same holds true if, for all ρ ∈ A, there exists a
minimizer of J |D(ρ) with nonnegative components and every minimizer
of J |D(ρ) with nonnegative components belongs to S(ρ).

Proof. (i) It is obvious from the de�nition of m.
(ii) Note preliminarily that, under these assumptions, for every ρ ∈ A

there exists a minimizer of J |D(ρ). Let ρn, ρ ∈ A such that ρn → ρ (note
that A is open). Let un ∈ D(ρn) such that J(un) = m(ρn) ≤ m(ρ/2). Up
to replacing un with (un)∗, we can assume un ∈ Hr. Since u

n ∈ D(2ρ), from
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Lemma 6.2.1 and Remark 6.2.2 there exists u ∈ D(ρ) such that un ⇀ u up
to a subsequence, whence arguing as in Lemma 6.2.5

m(ρ) ≤ J(u) ≤ lim inf
n

J(un) = lim inf
n

m(ρn). (6.3.1)

Next, let v ∈ D(ρ) such that J(v) = m(ρ) and de�ne vn := (ρnj vj/ρj)
K
j=1 ∈

D(ρn). Then vn → v and so

m(ρ) = J(v) = lim
n
J(vn) ≥ lim sup

n
m(ρn). (6.3.2)

The continuity of m follows from (6.3.1) and (6.3.2).
(iii) Note that (6.1.2) holds for every su�ciently small ρ. Fix ε > 0. Let

A 3 ρn → 0 and un ∈ D(ρn) such that J(un) ≤ m(ρn) + ε. In particular,
un → 0 in L2(RN)K and un ∈ D(ρ̃) for some ρ̃ ∈]0,∞[K , therefore un is
bounded in H1(RN)K due to Lemma 6.2.1 and Remark 6.2.2. This, together
with (F1), (F2), and Theorem 5.0.2, yields

∫
RN F (un) dx→ 0, which implies

lim infn J(un) = lim infn |∇un|22/2 ≥ 0, whence, in view also of Lemma 6.2.3
and Remark 6.2.4, 0 ≥ lim supnm(ρn) ≥ lim infnm(ρn) ≥ −ε. Letting
ε→ 0+ we conclude.

(iv) Note that (6.1.3) holds for every su�ciently large ρ. Fix ρ ∈ A, u ∈
D(ρ)\{0} and note that

∫
RN F (u) dx > 0 from (F3). For every j ∈ {1, . . . , K}

let ρnj →∞ and denote an := maxj=1,...,K ρj/ρ
n
j and u

n(x) := u(a
2/N
n x). Then

limn an = 0, un ∈ D(ρn), and

m(ρn) ≤ J(un) =
1

a2
n

(
a4/N
n

∫
RN

1

2
|∇u|2 dx−

∫
RN
F (u) dx

)
→ −∞.

(v) Let ρ, ρ̄ ∈ A as in the statement. Clearly m(ρ) ≥ m(ρ̄) from item (i).
If m(ρ) = m(ρ̄), then there exists u ∈ S(ρ) ⊂ D(ρ̄) \ S(ρ̄) such that J(u) =
m(ρ) = m(ρ̄), which is impossible. The same argument applies to the version
of item (v) that involves minimizers with nonnegative components.

Remark 6.3.2. (a) If we assume N ≥ 2 instead of F even or as in Proposition
6.2.11, then Proposition 6.3.1 (ii) remains valid if m(ρ) is replaced with
inf { J(u) | u ∈ Hr and |uj|2 ≤ ρj for all j ∈ {1, . . . , K} }.

(b) The assumptions of Proposition 6.3.1 (v) are satis�ed by those of
Theorem 6.1.1 (b) or Theorem 6.1.3. Similarly as in point (a), if m(ρ) is
replaced with inf { J(u) | u ∈ Hr and |uj|2 ≤ ρj for all j ∈ {1, . . . , K} }, then
the assumptions of Proposition 6.3.1 (v) are satis�ed by those of Theorem
6.1.1 (a).

127



Chapter 7

Autonomous Schrödinger

equations in the

mass-supercritical case

7.1 Preliminaries and statement of the results

In this chapter, based on [82], we study problem 6.1.1 together with the
auxiliary problem

−∆uj + λjuj = ∂jF (u)∫
RN u

2
j dx ≤ ρ2

j

(λj, uj) ∈ R×H1(RN)

j ∈ {1, . . . , K} (7.1.1)

with N ≥ 3 and K ≥ 1. As in Chapter 6, ρ = (ρ1, . . . , ρK) ∈]0,∞[K is
prescribed and (λ, u) = (λ1, . . . , λK , u1, . . . , uK) is the unknown. Denoting
f := ∇F ,H(u) := f(u)·u−2F (u) for u ∈ RK , and h := ∇H, the assumptions
about the nonlinearity correspond to the mass-supercritical case and are as
follows.

(F0) f and h are continuous and there exists S > 0 such that |f(u)|+|h(u)| ≤
S(|u|+ |u|2∗−1).

(F1) η := lim sup
u→0

F (u)

|u|2#
<∞.

(F2) lim
|u|→∞

F (u)

|u|2#
=∞.
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(F3) lim
|u|→∞

F (u)

|u|2∗
= 0.

(F4) 2#H(u) ≤ h(u) · u.

(F5) (2# − 2)F ≤ H ≤ (2∗ − 2)F .

(F6) There exists ζ ∈ RN such that H(ζ) > 0.

Note that (F5) implies F,H ≥ 0 and that, if (F2) and (F5) hold, then so does
(F6). Let us recall the de�nitions of J , S, D, andM given by, respectively,
(5.0.4), (5.0.5), (5.0.6), and (5.0.7); in particular, let us provide a motive for
the setM. Clearly, if (λ, u) ∈ RK ×H1(RN)K is such that

−∆uj + λjuj = ∂jF for every j ∈ {1, . . . , K},

then it satis�es the Nehari identity∫
RN
|∇u|2 +

K∑
j=1

λju
2
j −∇F (u) · u dx = 0. (7.1.2)

Moreover, since, in that case, u ∈ W 2,p
loc (RN)K for every p < ∞ (cf. Section

1.4), (λ, u) satis�es also the Pohoºaev identity∫
RN
|∇u|2 +

2∗

2

K∑
j=1

λ2
ju

2
j − 2∗F (u) dx = 0. (7.1.3)

By a suitable linear combination of (7.1.2) and (7.1.3) we can get rid of the
unknown quantity λ and have that every solution satis�es

M(u) :=

∫
RN
|∇u|2 − N

2
H(u) dx = 0,

so thatM =
{
u ∈ H1(RN)K \ {0}

∣∣M(u) = 0
}
. Recall also that J and M

are well de�ned and of class C1 from (F0). Moreover, it is easily checked that
M 6= ∅; as a matter of fact, for every u ∈ H1(RN)K such that

∫
RN H(u) dx >

0 let us de�ne

R := Ru :=

√
N
∫
RN H(u) dx

2
∫
RN |∇u|2 dx

> 0

so that u(R·) ∈ M. Now, in view of (F6) and arguing as in [30, page 325],
for every r > 0 there exists w ∈ H1

0 (Br)∩L∞(Br) such that
∫
RN H(u) dx > 0.

In fact, we have the following.
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Proposition 7.1.1. If (F0) and (F6) hold, then M ⊂ H1(RN)K is a sub-
manifold of class C1 and codimension 1.

Proof. Let u ∈ H1(RN)K such that M ′(u) = 0, i.e., u solves −∆u = N
4
h(u).

Then u satis�es the Pohoºaev identity
∫
RN |∇u|

2 − N2

2(N−2)
H(u) dx = 0. If

M(u) = 0, then we infer |∇u|2 = 0.

We introduce the following relation:

Let f1, f2 : RK → R. Then f1 � f2 if and only if f1 ≤ f2 and for every
ε > 0 there exists u ∈ RK , |u| < ε, such that f1(u) < f2(u).

For better outcomes we will need a stronger variant of (F4), denoted (F4,�),
where the inequality ≤ is replaced with �.

The �rst result, which concerns the auxiliary problem (7.1.1), reads as
follows.

Theorem 7.1.2. Suppose (F0)�(F5) hold and

2∗C2N
N,2N

η|ρ|4/N < 1. (7.1.4)

(a) There exists u ∈M∩D such that J(u) = infM∩D J . Moreover, u is a
K-tuple of radial, nonnegative, and radially nonincreasing functions provided
that F is of the form

F (u) =
K∑
j=1

Fj(uj) +
L∑
`=1

β`

K∏
j=1

|uj|rj,` , (7.1.5)

where L ≥ 1, Fj : R → [0,∞) is even, rj,` > 1 or rj,` = 0, β` ≥ 0, 2# ≤∑K
j=1 rj,` < 2∗, and for every ` there exists j1 6= j2 such that rj1,`, rj2,` > 1.

(b) If, moreover, (F4,�) holds, then u is of class C2 and there exists
λ ∈ [0,∞[K such that (λ, u) is a ground state solution to (7.1.1).

Since J |S is unbounded from below, by ground state solution to (7.1.1) we
mean a solution (λ, u) such that J(u) = minM∩D J . Likewise, by ground state
solution to (6.1.1) we mean a solution (λ, u) such that J(u) = minM∩D J .
Note that, similarly to Chapter 6, this is more than just requiring the �more
natural� condition J(u) = minM∩S J .

From on, when we say that F is of the form (7.1.5), we also mean the
additional conditions on Fj, β`, and rj,` listed in Theorem 7.1.2 (a); in addi-
tion, when K = 1, we agree that β` = 0 for all ` ∈ {1, . . . , L}. Observe that

130



F of the form (7.1.5) satis�es (F4) if and only if each Fj satis�es the scalar
variant of (F4) for all j ∈ {1, . . . , K}. If, in addition, Fj satis�es (F4,�) for
some j, then F satis�es (F4,�) as well.

More can be said if N ∈ {3, 4}.
Theorem 7.1.3. Assume that (F0)�(F3), (F4,�), (F5), and (7.1.4) are
satis�ed, F is of the form (7.1.5), and N ∈ {3, 4}. Then there exist u ∈
M∩∂D of class C2 and λ ∈ [0,∞[K such that (u, λ) is a ground state solution
to (7.1.1) and each uj is radial, nonnegative, and radially nonincreasing.
Moreover, for every j ∈ {1, . . . , K} either uj = 0 or |uj|2 = ρj and, if
uj 6= 0, then λj > 0 and uj > 0. In particular, if u ∈ S, then λ ∈]0,∞[K

and (λ, u) is a ground state solution to (6.1.1).

If K = 2, L = 1, and the coe�cient of the coupling term is large, then
we �nd ground state solutions to (6.1.1).

Theorem 7.1.4. Assume that (F0)�(F3), (F4,�), (F5), and (7.1.4) are
satis�ed, N ∈ {3, 4}, K = 2, and L = 1. If F is of the form (7.1.5), each
Fj is nondecreasing, and r1,1 + r2,1 > 2#, then for every su�ciently large
β1 > 0 there exist u ∈ M∩ S of class C2 and λ ∈]0,∞[2 such that (λ, u) is
a ground state solution to (6.1.1) and u1, u2 are positive, radial, and radially
nonincreasing.

Regarding possible examples of scalar functions F1, F2 we refer to (E1)�
(E4) in [32]; in particular, we can deal with

Fj(u) =
µj
pj
|uj|pj +

νj
2#

|uj|2# , µj, νj > 0, j ∈ {1, 2},

where η = max{ν1, ν2}/2# > 0 due to Proposition 6.1.4.

7.2 Proof of the results

We begin this section with two preliminary lemmas, whose proofs are
omitted because the reasoning is the same as for the scalar case K = 1,
provided in [32, Lemma 2.1] and [80, Theorem 1.4] respectively.

Lemma 7.2.1. Let F1, F2 ∈ C(RK) and assume there exists C > 0 such that
|F1(u)| + |F2(u)| ≤ C(|u|2 + |u|2∗) for every u ∈ RK. Then F1 � F2 if and
only if F1 ≤ F2 and for every u ∈ H1(RN)K \ {0}∫

RN
F1(u)− F2(u) dx < 0.
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Lemma 7.2.2. Let un ∈ H1(RN)K be bounded. Then there exist sequences
(ũi)∞i=0 ⊂ H1(RN)K and (yi,n)∞i=0 ⊂ RN such that y0,n = 0, limn |yi,n−yj,n| =
0 if i 6= j, and for every i ≥ 0 and every G : RN → [0,∞[ of class C1 such
that

lim
u→0

G(u)

|u|2
= lim
|u|→∞

G(u)

|u|2∗
= 0

there holds

un(·+ yi,n) ⇀ ũi as n→∞ (7.2.1)

lim
n

∫
RN
|∇un|2 dx =

i∑
j=0

∫
RN
|∇ũj|2 dx+ lim

n

∫
RN
|∇vi,n|2 dx (7.2.2)

lim sup
n

∫
RN
G(un) dx =

∞∑
i=0

∫
RN
G(ũi) dx, (7.2.3)

where vi,n(x) := un(x)−
∑i

j=0 ũ
j(x− yj,n).

Henceforth, we will always assume that (F0) holds and we will make use
of it without explicit mention. Recall also that (F6) holds if both (F2) and
(F5) do.

Lemma 7.2.3. Assume that (F0), (F1), (F5), (F6), and (7.1.4) hold. Then
inf
{
|∇u|22

∣∣ u ∈M∩D } > 0.

Proof. From Theorem 5.0.2, for every ε > 0 there exists cε such that for
every u ∈M∩D

|∇u|22 =
N

2

∫
RN
H(u) dx ≤ 2∗

(
cε|u|2

∗

2∗ + (ε+ η)|u|2N2N

)
= 2∗

(
cε
∣∣|u|∣∣2∗

2∗
+ (ε+ η)

∣∣|u|∣∣2N
2N

)
≤ 2∗

(
cεC

2∗

N,2∗

∣∣∇|u|∣∣2∗
2

+ (ε+ η)C2N
N,2N
|ρ|4/N

∣∣∇|u|∣∣2
2

)
≤ 2∗

(
cεC

2∗

N,2∗|∇u|2
∗

2 + (ε+ η)C2N
N,2N
|ρ|4/N |∇u|22

)
i.e.

0 ≤ 2∗cεC
2∗

N,2∗|∇u|2
∗

2 +
(
2∗(ε+ η)C2N

N,2N
|ρ|4/N − 1

)
|∇u|22

Taking ε su�ciently small so that

2∗(ε+ η)C2N
N,2N
|ρ|4/N < 1

we conclude.
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Similarly to Chapter 6, for u ∈ H1(RN)K \{0} and s > 0 de�ne s?u(x) :=
sN/2u(sx) and ϕ(s) := J(s ? u). Recall that |s ? u|2 = |u|2.

Lemma 7.2.4. Assume that (F0)�(F2), (F4), and (F5) hold and let u ∈
H1(RN)K \ {0} such that

η <
|∇u|22
2|u|2#2#

. (7.2.4)

Then there exist a = a(u) > 0 and b = b(u) ≥ a such that each s ∈ [a, b] is a
global maximizer for ϕ and ϕ is increasing on ]0, a[ and decreasing on ]b,∞[.
Moreover s ? u ∈ M if and only if s ∈ [a, b], M(s ? u) > 0 if and only if
s ∈]0, a[ and M(s ? u) < 0 is and only if s > b. If (F4,�) holds, then a = b.

Note that (7.1.4) implies (7.2.4) provided that u ∈ D.

Proof. Notice that from (F1)

ϕ(s) =

∫
RN

s2

2
|∇u|2 − F (sN/2u)

sN
dx→ 0

as s → 0+, while from (F2) lims→∞ ϕ(s) = −∞. From (F1) for every ε > 0
there exists cε > 0 such that

F (u) ≤ (ε+ η)|u|2# + cε|u|2
∗
,

therefore,

ϕ(s) ≥ s2
(∫

RN

1

2
|∇u|2 − (η + ε)|u|2# dx

)
− cεs2∗

∫
RN
|u|2∗ dx > 0

for su�ciently small ε and s. It follows that there exists an interval [a, b] ⊂
]0,∞[ such that ϕ|[a,b] = maxϕ. Moreover

ϕ′(s) = s

∫
RN
|∇u|2 − N

2

H(sN/2u)

sN+2
dx

and the function

s ∈]0,∞[7→
∫
RN

H(sN/2u)

sN+2
dx

is nondecreasing (resp. increasing) due to (F4) (resp. (F4,�) and Lemma
7.2.1) and tends to ∞ as s → ∞ due to (F2) and (F5). There follows that
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ϕ′(s) > 0 if s ∈ (0, a) and ϕ′(s) < 0 if s > b and that a = b if (F4,�) holds.
Finally, observe that

sϕ′(s) =

∫
RN
s2|∇u|2 − N

2

H(sN/2u)

sN
dx = M(s ? u).

Lemma 7.2.5. If (F0)�(F2), (F4), (F5), and (7.1.4) are veri�ed, then J is
coercive onM∩D.

Proof. First of all, note that, if u ∈M, then due to (F5)

J(u) = J(u)− 1

2
M(u) =

∫
RN

N

4
H(u)− F (u) dx ≥ 0

and so, a fortiori, J is nonegative on M∩ D. Let un ∈ M ∩ D such that
‖un‖ → ∞, i.e., limn |∇un|2 =∞, and de�ne

sn := |∇un|−1
2 > 0 and wn := sn ? u

n.

Note that sn → 0, |wnj |2 = |unj |2 ≤ ρj for j ∈ {1, . . . , K}, and |∇wn|2 = 1, in
particular wn is bounded in H1(RN)K . Suppose by contradiction that

lim sup
n

max
y∈RN

∫
B(y,1)

|wn|2 dx > 0.

Then there exist yn ∈ RN and w ∈ H1(RN)K such that, up to a subsequence,
wn(· + yn) ⇀ w 6= 0 in H1(RN)K and wn(· + yn) → w a.e. in RN . Thus,
owing to (F2),

0 ≤ J(un)

|∇un|22
≤ 1

2
−
∫
RN

F (un)

|∇un|22
dx =

1

2
− sN+2

n

∫
RN
F
(
un(snx)

)
dx

=
1

2
− sN+2

n

∫
RN
F (s−N/2n wn) =

1

2
−
∫
RN

F (s
−N/2
n wn)

|s−N/2n wn|2#
|wn|2# dx

=
1

2
−
∫
RN

F
(
s
−N/2
n wn(x+ yn)

)
|s−N/2n wn(x+ yn)|2#

|wn(x+ yn)|2# dx→ −∞.

It follows that

lim
n

max
y∈RN

∫
B(y,1)

|wn|2 dx = 0
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and so, from [70, Lemma I.1], wn → 0 in L2N (RN)K . Since

s−1
n ? wn = un ∈M,

Lemma 7.2.4 yields

J(un) = J(s−1
n ? wn) ≥ J(s ? wn) =

s2

2
− sN

∫
RN
F
(
sN/2wn(sx)

)
dx

for every s > 0. Taking into account that

lim
n

∫
RN
F
(
sN/2wn(sx)

)
dx = 0,

we have that lim infn J(un) ≥ s2/2 for every s > 0, i.e., limn J(un) =∞.

Lemma 7.2.6. If (F0)�(F2), (F4), (F5), and (7.1.4) are veri�ed, then
infM∩D J > 0.

Proof. We prove that there exists α > 0 such that

|∇u|2 ≤ α⇒ J(u) ≥ |∇u|
2
2

2N
. (7.2.5)

From Theorem 5.0.2 and (7.1.4), for every ε > 0 there exists cε > 0 such that∫
RN
F (u) dx ≤ cεC

2∗

N,2∗ |∇u|2
∗

2 + (ε+ η)C2N
N,2N
|ρ|4/N |∇u|22

≤
(
cεC

2∗

N,2∗|∇u|2
∗−2

2 + εC2N
N,2N
|ρ|4/N +

1

2
− 1

N

)
|∇u|22.

Choosing

ε =
1

4NC
2#
N,2#
|ρ|4/N

and α =
1

(4NcεC2∗
N,2∗)

1
2∗−2

we obtain, provided |∇u|2 ≤ α,∫
RN
F (u) dx ≤

(
1

2
− 1

2N

)
|∇u|22
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and so J(u) ≥ |∇u|
2
2

2N
. Now take u ∈ M ∩ D and α > 0 such that (7.2.5)

holds and de�ne
s :=

α

|∇u|2
and w := s ? u.

Clearly |wj|2 = |uj|2 ≤ ρj for j ∈ {1, . . . , K} and |∇w|2 = α, whence in view
of Lemma 7.2.4

J(u) ≥ J(w) ≥ |∇w|
2
2

2N
=

α2

2N
> 0.

Lemma 7.2.7. If (F0)�(F5) and (7.1.4) hold, then infM∩D J is attained.

Proof. Let un ∈ M ∩ D such that limn J(un) = infM∩D J . Then un is
bounded due to Lemma 7.2.5 and, in view of Lemma 7.2.2, we �nd (ũi)∞i=0 ⊂
H1(RN)K and (yi,nn )∞i=0 ⊂ RN such that (7.2.1)�(7.2.3) hold. Let

I := {i ≥ 0 : ũi 6= 0}

and suppose by contradiction that I = ∅. Then, since un ∈ M ∩ D, there
holds

lim
n

∫
RN
|∇un| dx = lim

n

N

2

∫
RN
H(un) dx = 0

owing to (7.2.3), which contradicts Lemma 7.2.3. Now we prove that

N

2

∫
RN
H(ũi) dx ≥

∫
RN
|∇ũi|2 dx (7.2.6)

for some i ∈ I. Assume by contradiction that

N

2

∫
RN
H(ũi) dx <

∫
RN
|∇ũi|2 dx

for every i ∈ I. Then from (7.2.2) and (7.2.3) we have

lim sup
n

N

2

∫
RN
H(un) dx = lim sup

n

∫
RN
|∇un|2 ≥

∞∑
i=0

∫
RN
|∇ũi|2

>

∞∑
i=0

N

2

∫
RN
H(ũi) dx = lim sup

n

N

2

∫
RN
H(un) dx,
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a contradiction. Let ũ = ũi satisfy (7.2.6) for some i ∈ I. Then there exists
R > 0 such that ũ(R·) ∈ M and again from (7.2.6) we indeed know that
R ≥ 1, whence ũ(R·) ∈ D. Hence Fatou's Lemma yields

inf
M∩D

J ≤ J
(
ũ(R·)

)
= J

(
ũ(R·)

)
− 1

2
M
(
ũ(R·)

)
dx

=
1

RN

∫
RN

N

4
H(ũ)− F (ũ) dx ≤ lim inf

n

∫
RN

N

4
H(un)− F (un) dx

= lim inf
n

J(un)− 1

2
M(un) = lim inf

n
J(un) = inf

M∩D
J,

i.e., R = 1 and J(ũ) = infM∩D J .

Lemma 7.2.8. Assume that (F0)�(F5) and (7.1.4) are veri�ed and F is of
the form (7.1.5). Then infM∩D J is attained by a K-tuple of radial, nonneg-
ative and radially nonincreasing functions.

Proof. Let ũ ∈ M ∩ D such that J(ũ) = infM∩D J be given by Lemma
7.2.7. For simplicity, let us denote, for every j = 1, . . . , K, uj := ũ∗j and
u := (u1, . . . , uK). Let a = a(u) be determined by Lemma 7.2.4. Since

M(1 ? u) = M(u) ≤M(ũ) = 0,

in view of Lemma 7.2.4 we have that a ≤ 1 and, consequently, M(a ? ũ) ≥ 0.
Let

d :=
N

2
max
`=1,...,L

(
K∑
j=1

rj,` − 2

)
≥ 2.
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Then, from Lemma 6.2.10,

inf
M∩D

J ≤ J(a ? u) = J(a ? u)− 1

d
M(a ? u)

=

∫
RN

K∑
j=1

a2

(
1

2
− 1

d

)
|∇ui|2 +

1

aN

(
N

2d
Hj(a

N/2uj)− Fj(aN/2uj)
)
dx

− 1

aN

L∑
`=1

β`

(
1− 1

d

( K∑
j=1

rj,` − 2

)) K∏
j=1

|aN/2uj|rj,`

≤
∫
RN

K∑
j=1

a2

(
1

2
− 1

d

)
|∇ũj|2 +

1

aN

(
N

2d
Hj(a

N/2ũj)− Fj(aN/2ũj)
)
dx

− 1

aN

L∑
`=1

β`

(
1− 1

d

( K∑
j=1

rj,` − 2

)) K∏
j=1

|aN/2ũj|rj,`

= J(a ? ũ)− 1

d
M(a ? ũ) ≤ J(a ? ũ) ≤ J(ũ) = inf

M∩D
J,

i.e., J(a ? u) = infM∩D J .

Lemma 7.2.9. (a) Assume that (F0)�(F3), (F4,�), (F5), and (7.1.4) hold
and let u ∈M∩D such that J(u) = infM∩D J and uj is radial, nonnegative,
and radially nonincreasing for every j ∈ {1, . . . , K}. Then u is of class C2.

(b) If, in addition, N ∈ {3, 4} and F is of the form (7.1.5), then u ∈ ∂D.
Moreover, for every j ∈ {1, . . . , K} either uj = 0 or |uj|2 = ρj.

Proof. (a) In Proposition 5.0.1 we put m = K, n = 1, H = H1(RN)K ,
f = J , φj = | · |22 − ρ2

j for all 1 ≤ j ≤ K, and ψ1 = M . Then there exist
(λ1, . . . , λK) ∈ [0,∞[K and σ ∈ R such that

− (1− 2σ)∆uj + λjuj = ∂jF (u)− σN
2
∂jH(u) (7.2.7)

for every i ∈ {1, . . . , K} and u satis�es the Nehari identity∫
RN

(1− 2σ)|∇u|2 +
K∑
j=1

λju
2
j + σ

N

2
h(u) · u− f(u) · u dx = 0. (7.2.8)
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If σ = 1/2, then (F4,�), (F5), and (7.2.8) yield

0 ≥
∫
RN

N

4
h(u) · u− f(u) · u dx =

∫
RN

N

4
h(u) · u−H(u)− 2F (u) dx

>

∫
RN

N

2
H(u)− 2F (u) dx ≥ 0,

a contradiction. Hence σ 6= 1/2 and u satis�es also the Pohoºaev identity∫
RN

(1− 2σ)|∇u|2 +
2∗

2

K∑
j=1

λju
2
j + 2∗

(
σ
N

2
H(u)− F (u)

)
dx = 0. (7.2.9)

Combining (7.2.8) and (7.2.9) we obtain

(1− 2σ)

∫
RN
|∇u|2 dx+

N

2

∫
RN
σN

(
1

2
h(u) · u−H(u)

)
−H(u) dx = 0

and, using the fact that u ∈M,

(1− 2σ)

∫
RN
H(u) dx+

∫
RN
σN

(
1

2
h(u) · u−H(u)

)
−H(u) dx = 0,

that is,

σ

∫
RN
h(u) · u− 2#H(u) dx = 0,

which together with (F4,�) yields σ = 0. Since u ∈ W 2,p
loc (RN)K for all

p <∞, we can argue as in the proof of [30, Lemma 1] and have that u is of
class C2.

(b) Suppose by contradiction that λ1 = · · · = λK = 0, which is the case
when |uj| < ρj for every j. From (7.2.8) and (7.2.9) (with σ = 0) there
follows ∫

RN
f(u) · u− 2∗F (u) dx = 0. (7.2.10)

In view of (F5)
2∗F

(
u(x)

)
= f

(
u(x)

)
· u(x) (7.2.11)

for all x ∈ RN . Since Fj satis�es the scalar variant of (F5), 2∗Fj
(
uj(x)

)
≥

fj
(
uj(x)

)
uj(x) for every j ∈ {1, . . . , K} and note that

2∗
L∑
`=1

β`

K∏
j=1

|uj(x)|rj,` ≥
L∑
`=1

β`

K∑
k=1

rk,`

K∏
j=1

|uj(x)|rj,` ,
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hence, from (7.2.11), the equalities above are actually equalities. On the
other hand, for every ` ∈ {1, . . . , L},

∑K
j=1 rj,` < 2∗, which yields β` = 0 or∏K

j=1 |uj(x)|rj,` = 0 for every x ∈ RN , thus

2∗Fj
(
uj(x)

)
= fj

(
uj(x)

)
uj(x)

for every j ∈ {1, . . . , K} and every x ∈ RN .
Now �x j ∈ {1, . . . , K} such that uj 6= 0. Since uj ∈ H1(RN), there exists

an open interval I ⊂ R such that 0 ∈ I and 2∗Fj(s) = fj(s)s for s ∈ I. Then
Fj(s) = c|s|2∗ for some c > 0, s ∈ I, and uj ≥ 0 solves −∆uj = 2∗c|uj|2

∗−2uj.
Hence uj is an Aubin�Talenti instanton, up to scaling and translations, which
is not L2-integrable because N ∈ {3, 4}, see [7, 124].

Suppose that there exists ν ∈ {1, . . . , K − 1} such that, up to changing
the order, |uj|2 < ρj for every j ∈ {1, . . . , ν} and |uj|2 = ρj for every j ∈ {ν+
1, . . . , K}. Arguing as before, there exist 0 = λ1 = · · · = λν ≤ λν+1, . . . , λK
such that {

−∆uj = ∂jF (u), j ∈ {1, . . . , ν}
−∆uj + λjuj = ∂jF (u), j ∈ {ν + 1, . . . , K}.

Since Fj satis�es the scalar variant of (F5), s ∈]0,∞[ 7→ Fj(s)/s
2# ∈ R is

nondecreasing, hence Fj is nondecreasing as well for all j. Then, the �rst
ν equations in the system above yield −∆uj ≥ 0 for j ∈ {1, . . . , ν}. Since

u ∈ L
N
N−2 (RN)K as N ∈ {3, 4}, [57, Lemma A.2] implies uj = 0 for every

j ∈ {1, . . . , ν}. Notice we have proved that λj = 0 implies uj = 0, hence, in
particular, λj > 0 for every j ∈ {ν + 1, . . . , K}.

Remark 7.2.10. We point out that, if (F0)�(F3), (F4,�), (F5), and (7.1.4)
hold, u ∈ M∩D, and J(u) = infM∩D J , then we can show that u ∈ ∂D for
any dimension N ≥ 3 provided that H � (2∗ − 2)F holds. As a matter of
fact, observe that (7.2.10) contradicts H � (2∗−2)F and Lemma 7.2.1. This
gives a somewhat alternative proof of Lemma 7.2.9 (b).

Proof of Theorem 7.1.2. Point (a) follows from Lemmas 7.2.7 and 7.2.8. Now
we prove point (b). From Lemma 7.2.9 (a), u is of class C2, while from
Proposition 5.0.1 there exist (λ1, . . . , λK) ∈ [0,∞[K and σ ∈ R such that
(7.2.7) holds and σ = 0 as in the proof of Lemma 7.2.9 (a).
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Proof of Theorem 7.1.3. It follows from Lemma 7.2.9 (b), Theorem 7.1.2 (b),
and the maximum principle [49, Lemma IX.V.1] (the implication uj 6= 0 ⇒
λj > 0 is proved as in the proof of Lemma 7.2.9 (b)).

Lemma 7.2.11. Suppose that K = 2, L = 1 and the assumptions in Lemma
7.2.9 (b) hold. If r1,1 + r2,1 > 2N and β1 is su�ciently large, then u ∈ S.

Proof. Since L = 1, we denote β1, r1,1, r2,1 by β, r1, r2 respectively. Suppose
by contradiction that u1 = 0 or u2 = 0, say u1 = 0, which implies that
|u2|2 = ρ2. We want to �nd a suitable w ∈ S such that

J(a ? w) < inf
M∩D

J, (7.2.12)

where a = a(w) is de�ned in Lemma 7.2.4 (note that a(w) = b(w) because
(F4,�) holds), which is impossible. First we show that infM∩D J does not
depend on β. Consider the functional

J∗ : v ∈ H1(RN) 7→
∫
RN

1

2
|∇v|2 − F2(v) dx ∈ R

and the sets

D∗ :=

{
v ∈ H1(RN)

∣∣∣∣ ∫
RN
v2 dx ≤ ρ2

2

}
,

M∗ :=

{
v ∈ H1(RN) \ {0}

∣∣∣∣ ∫
RN
|∇v|2 dx =

N

2

∫
RN
H2(v)

}
.

Observe that J(0, v) = J∗(v) for v ∈ H1(RN). Moreover, (0, v) ∈ D if and
only if v ∈ D∗, and (0, v) ∈M if and only if v ∈M∗. In particular,

inf
M∩D

J = J(0, u2) = J∗(u2) ≥ inf
M∗∩D∗

J∗

= inf { J(0, v) | (0, v) ∈M∩D } ≥ inf
M∩D

J,

i.e., infM∩D J = infM∗∩D∗ J∗, and the claim follows because J∗, D∗, andM∗
do not depend on β.

In view of Theorem 7.1.3 for K = 1, there exists v̄ ∈M∗∩∂D∗ such that

J∗(v̄) = inf
M∗∩D∗

J∗ = inf
M∩D

J = inf
M∗∩∂D∗

J∗.
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Note that v̄ does not depend on β. De�ne w = (w1, w2) :=
(
ρ1
ρ2
v̄, v̄
)
. From

Lemma 7.2.4, a = aβ is implicitly de�ned by∫
RN
|∇w|2 dx =

N

2

∫
RN

F ′1(a
N/2
β w1)a

N/2
β w1 − 2F1(a

N/2
β w1)

aN+2
β

+
F ′2(a

N/2
β w2)a

N/2
β w2 − 2F2(a

N/2
β w2)

aN+2
β

+ β(r1 + r2 − 2)a
N(r1+r2−2)/2−2
β wr11 w

r2
2 dx

≥ β(r1 + r2 − 2)a
N(r1+r2−2)/2−2
β

N

2

∫
RN
wr11 w

r2
2 dx,

hence there exist C > 0 not depending on β such that

0 < βa
N(r1+r2−2)/2−2
β ≤ C, (7.2.13)

whence
lim
β→∞

aβ = 0. (7.2.14)

Since aβ ? w ∈M, we have from (F5)

J(aβ ? w) =

∫
RN

N

4
H(aβ ? w)− F (aβ ? w) dx ≤ 2

N − 2

∫
RN
F (aβ ? w) dx

=
2

N − 2

∫
RN

F1(a
N/2
β w1) + F2(a

N/2
β w2)

aNβ
dx

+
2βa

N(r1+r2−2)/2
β

N − 2

∫
RN
wr11 w

r2
2 dx,

therefore (7.2.12) holds true for su�ciently large β owing to (F1), (7.2.13),
and (7.2.14).

Remark 7.2.12. The proof of Lemma 7.2.11 shows that, under the assump-
tions of Theorem 7.1.4, every ground state solution (λ, u) to (7.1.1) is such
that u ∈ S, hence a ground state solution to (6.1.1).

Proof of Theorem 7.1.4. It follows directly from Lemma 7.2.11 and Theorem
7.1.3.
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7.3 On the ground state energy map

In this section, for ρ = (ρ1, . . . , ρK) ∈]0,∞[K we denote explicitly

S(ρ) :=
{
u ∈ H1(RN)K

∣∣ |uj|2 = ρj for every j ∈ {1, . . . , K}
}

D(ρ) :=
{
u ∈ H1(RN)K

∣∣ |uj|2 ≤ ρj for every j ∈ {1, . . . , K}
}

m(ρ) := inf { J(u) | u ∈M∩D(ρ) } .

Proposition 7.3.1. Assume that (F0) is satis�ed and let A be the subset of
]0,∞[K where (7.1.4) holds. Then m : ]0,∞[K→ R∪{−∞} is nonincreasing
and. If (F0)�(F5) are satis�ed, then m|A is continuous and

lim
|ρ|→0+

m(ρ) =∞.

If (F0)�(F5) are satis�ed and every ground state solution to (7.1.1) belongs
to S(ρ) (e.g., if the assumptions of Theorem 7.1.4 are satis�ed), then m|A is
decreasing.

Here, `nonincreasing' and `decreasing' have the same meaning as in Propo-
sition 6.3.1.

Proof. The monotonicity of m is obvious. Fix ρ ∈ A and let A 3 ρn → ρ
(note that A is open). Let un ∈M∩D(ρn) ⊂M∩D(2ρ) such that J(un) =
m(ρn) ≤ m(ρ/2). In view of Lemma 7.2.5, un is bounded and so, arguing as
in Lemma 7.2.7, there exists u ∈ D(ρ) \ {0} such that, up to subsequences
and translations, un ⇀ u in H1(RN)K , un → u a.e. in RN , and R ≥ 1, where
R = Ru > 0 is such that u(R·) ∈M. Fatou's Lemma and (F4) yield

m(ρ) ≤ J
(
u(R·)

)
=

1

RN

∫
RN

N

4
H(u)− F (u) dx ≤

∫
RN

N

4
H(u)− F (u) dx

≤ lim inf
n

∫
RN

N

4
H(un)− F (un) dx = lim inf

n
J(un) = lim inf

n
m(ρn).

Now let w ∈ M∩D(ρ) such that J(w) = m(ρ). Denote wni := ρni wi/ρi and
consider wn = (wn1 , . . . , w

n
K) ∈ D(ρn). Due to Lemma 7.2.4, for every n there

exists sn > 0 such that sn ? w
n ∈M. Note that

N

2

∫
RN

H
(
s
N/2
n (ρn1w1/ρ1, . . . , ρ

n
KwK/ρK)

)
sN+2
n

dx

=

∫
RN
|∇wn|2 dx→

∫
RN
|∇w|2 dx.

(7.3.1)
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If lim supn sn =∞, then from (F2) and (F5) the left-hand side of (7.3.1) tends
to ∞ up to a subsequence, which is a contradiction. If lim infn sn = 0, then
from (F1), (F3), (F5) and (7.1.4) and arguing as in Lemma 7.2.3 we obtain
that the limit superior of the left-hand side of (7.3.1) is less than |∇w|22,
which is again a contradiction. There follows that, up to a subsequence,
sn → s for some s > 0 and s ? w ∈M. In view of Lemma 7.2.4,

lim sup
n

m(ρn) ≤ lim
n
J(sn ? wn) = J(s ? w) = J(w) = m(ρ)

and the continuity of m|A is proved.
Let ρn → 0+ and un ∈ M ∩ D(ρn) such that J(un) = m(ρn). Denote

sn := |∇un|−1
2 and wn := sn?u

n and note that s−1
n ?wn = un ∈M, |∇wn|2 = 1

and
|wn|22 = |un|22 = |ρn|2 → 0

as n→∞. In particular wn is bounded in L2∗(RN)K and so

|wn|2# ≤ |wn|
2

N+2

2 |wn|
N
N+2

2∗ → 0

as n→∞. Then, in view of (F1) and (F3), for every s > 0

lim
n

∫
RN

F (sN/2wn)

s−N
dx = 0

and, consequently,

J(un) = J(s−1
n ? wn) ≥ J(s ? wn) =

s2

2
−
∫
RN

F (sN/2wn)

s−N
dx =

s2

2
+ o(1),

whence limn J(un) =∞.
The last part is proved similarly to Proposition 6.3.1 (v).
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Chapter 8

Maxwell's and nonautonomous

Schrödinger equations

8.1 Introduction and statement of the results

In this chapter, we provide a new outcome that somewhat joins Part I
and the previous chapters of Part II together, i.e., we prove the existence of
solutions to the problem

∇×∇×U + λU = g(U)∫
RN |U|

2 dx = ρ2

(λ,U) ∈ R×H1(RN ,RN)

(8.1.1)

with N ≥ 3, where, as usual, ρ > 0 is prescribed and (λ,U) is the unknown.
The proof is carried out in two steps: �rst, we use the same machinery as

in Chapter 4 to reduce the di�erential operator in (8.1.1) to −∆ under suit-
able symmetry assumptions about g, then we utilize the results in Chapters 6
or 7 in the case K = 1, which is possible because the function U : RN → RN

in (8.1.1) is treated as a single vector-valued function rather than an N -tuple
of scalar-valued ones (i.e., we have a single L2-constraint) and so (8.1.1) is
formally equivalent to its scalar counterpart. Moreover, by an equivalence
result in the spirit of Theorem 4.2.1, we also obtain solutions to the problem

−∆u+ u
|y|2 + λu = f(u)∫

RN u
2 dx = ρ2

(λ, u) ∈ R×
(
H1(RN) ∩X

)
,

(8.1.2)
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where x = (y, z) ∈ R2 × RN−2 and X is the same as in Section 4.1.
Recall, again from Section 4.1, the condition (4.1.4) (where h is replaced

with g), the de�nitions of SO and F , and de�ne F (u) :=
∫ u

0
f(t) dt, G(U) :=∫ 1

0
g(tU) ·U dt, HF := H1(RN ,RN) ∩ F , and

DF :=

{
U ∈ HF

∣∣∣∣ ∫
RN
|U|2 dx ≤ ρ2

}
,

SF :=

{
U ∈ HF

∣∣∣∣ ∫
RN
|U|2 dx = ρ2

}
= ∂DF .

We recall as well the de�nitions of Hr and Hs from Subsection 1.1.1 and
introduce

H∗r =
{
U ∈ H1(RN ,RN)

∣∣ eU = U(e·) for all e ∈ SO(N)
}
,

H∗s =
{
U ∈ H1(RN ,RN)

∣∣ eU = U(e·) for all e ∈ SO(2)× SO(N − 2)
}
.

Finally, adapting the de�nitions from previous chapters to this context, we
de�ne

E : U ∈ HF 7→
∫
RN

1

2
|∇ ×U|2 −G(U) dx ∈ R,

M :=

{
U ∈ HF \ {0}

∣∣∣∣ ∫
RN
|∇ ×U|2 dx =

N

2

∫
RN
H(U) dx

}
,

where H(w) = g(w) ·w− 2G(w), w ∈ RN . Our results about (8.1.1) read as
follows. We begin with the mass-(sub)critical case.

Theorem 8.1.1. If N ≥ 4, g satis�es (4.1.4), F satis�es (F0)�(F3) from
Chapter 6, (6.1.2) holds, and η0 =∞, then there exist λ > 0 and U ∈ SF∩H∗s
such that (λ,U) is a solution to (8.1.1) and E(U) =infDF∩H∗s E < 0.

We have no results about H∗r because H∗r ∩ F = {0}. It follows from
the fact that each function in H∗r ∩ F is both divergence-free, from Lemma
4.2.5, and curl-free, from [15, Theorem 1.1]1, therefore trivial as it belongs
to D1,2(RN ,RN). As a consequence, Theorem 8.1.1 does not work for N =
3 because we cannot use SO(3) to recover compactness, which makes it
physically irrelevant. As for the mass-supercritical case, the following holds.

1In this reference, O(3) is used, but the argument perfectly applies to SO(N), N ≥ 3.
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Theorem 8.1.2. If g satis�es (4.1.4), F satis�es (F0)�(F3), (F4,�), (F5)
from Chapter 7, H � (2∗ − 2)F , and (7.1.4) hold, then there exist λ > 0
and U ∈ M ∩ SF such that (λ,U) is a solution to (8.1.1) and E(U) =
infM∩DF E > 0.

Concerning (8.1.2), recall from Section 4.1 the de�nition of XSO and
de�ne HSO := XSO ∩H1(RN) and

DSO :=

{
u ∈ HSO

∣∣∣∣ ∫
RN
u2 dx ≤ ρ2

}
,

SSO :=

{
u ∈ HSO

∣∣∣∣ ∫
RN
u2 dx = ρ2

}
= ∂DSO,

Q :=

{
u ∈ HSO

∣∣∣∣ ∫
RN
|∇u|2 +

u2

|y|2
− N

2
f(u)u+NF (u) dx = 0

}
.

Theorem 8.1.3. (a) Assume N = 4 or N ≥ 6. If F is even and satis�es
(F0)�(F3) from Chapter 6, η0 = ∞, and (6.1.2) holds, then there exist λ >
0 and u ∈ SSO ∩ Hs such that (λ, u) is a solution to (8.1.2) and J(u) =
infDSO∩Hs

J < 0.
(b) If F is even and satis�es (F0)�(F3), (F4,�), (F5) from Chapter 7,

H � (2∗ − 2)F , and (7.1.4) hold, then there exist λ > 0 and u ∈ Q ∩ SSO
such that (λ, u) is a solution to (8.1.2) and J(u) = infQ∩DSO J > 0.

8.2 Proof of the results

We begin with some results analogous to those from Section 4.2. Let
U : RN → RN and u : RN → R satisfy (4.1.5), λ ∈ R, and ρ > 0. It is
obvious that U ∈ H∗s if and only if u ∈ Hs. Although the nonlinearities in
(8.1.1) and (8.1.2) are autonomous, for the sake of completeness we state the
following theorem for functions f and g which depend also on x.

Theorem 8.2.1. Assume f : RN × R → R is a Carathéodory function and
there exists C > 0 such that f(ex, u) = f(x, u) and |f(x, u)| ≤ C(|u|+|u|2∗−1)
for every e ∈ SO, a.e. x ∈ RN , and every u ∈ R; let also g satisfy (4.1.4).
Then U ∈ HF if and only if u ∈ HSO and, in such a case, ∇ ·U = 0 and
E(U) = J(u). Moreover, (λ,U) is a solution to (8.1.1) if and only if (λ, u)
is a solution to (8.1.2).
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When N = 3, this follows from [31, Theorem 1.1], while the generalization
to the case N ≥ 3 is trivial in view of Lemma 4.2.3. In particular, one has
|U| = |u|, |∇ × U|2 = |∇U|2 = |∇u|2,

∫
RN G(U) dx =

∫
RN F (u) dx, and∫

RN g(U) · U dx =
∫
RN f(u)u dx, which immediately implies the following

property.

Proposition 8.2.2. Assume f : R→ R is continuous and there exists C > 0
such that |f(u)| ≤ C(|u|+ |u|2∗−1) for every u ∈ R; let also g satisfy (4.1.4).
Then U ∈M if and only if u ∈ Q.

Remark 8.2.3. The setQ is obtained as the counterpart ofM for the problem
(8.1.2). Nonetheless, one can obtain it directly from the Nehari and Pohoºaev
identities corresponding to (8.1.2). As a matter of fact, arguing as in Section
1.4, if (λ, u) is such that

−∆u+
u

|y|2
+ λu = f(u) in RN ,

then it clearly satis�es the Nehari identity∫
RN
|∇u|2 +

u2

|y|2
+ λu2 dx =

∫
RN
f(u)u dx. (8.2.1)

In addition, if u ∈ W 2,p
loc (RN) for every p <∞ (or, in general, arguing heuris-

tically), then 1 is a critical point of the functional

t ∈]0,∞[ 7→ J
(
u(t·)

)
+
λ

2

∫
RN
u2(tx) dx ∈ R,

i.e., after explicit computations,∫
RN

(N − 2)

(
|∇u|2 +

u2

|y|2

)
+ λNu2 − 2NF (u) dx. (8.2.2)

Finally, as in Section 7.1, combining linearly (8.2.1) and (8.2.2), we obtain∫
RN
|∇u|2 +

u2

|y|2
− N

2
f(u)u+NF (u) dx = 0.

Now we prove the main results of this chapter. Since the proofs are
similar to those from Chapters 6 and 7, they are just sketched. Recall Palais's
principle of symmetric criticality (Theorem 1.5.1) and that ∇ × ∇ × U =
−∆U for every U ∈ HF due to Theorem 8.2.1.
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Proof of Theorem 8.1.1. We prove as in Lemma 6.2.1 (see also Remark 6.2.2)
that E|DF∩H∗s is coercive (and bounded from below) and consider a minimiz-
ing sequence Un ∈ DF ∩ H∗s for E|DF∩H∗s , which is therefore bounded and,
up to a subsequence, Un ⇀ U in H1(RN ,RN) for some U ∈ DF ∩ H∗s .
Then, as in Lemma 6.2.5, we have that

∫
RN G(Un) dx →

∫
RN G(U) dx and

so E(U) = infDF∩H∗s E. Moreover, as in Lemma 6.2.3, E(s ? V) < 0 for
V ∈ DF ∩H∗s \{0} and 0 < s� 1, thus E(U) < 0. Finally, as in the proof of
Theorem 6.1.1, there exists λ ≥ 0 such that ∇×∇×U+ λU = g(U) in RN

and, if λ = 0, then E(U) ≥ 0, hence λ > 0 and, consequently, U ∈ SF ∩ H∗s ,
i.e., (λ,U) is a solution to (8.1.1).

Proof of Theorem 8.1.2. We prove as in Lemma 7.2.5 that E|M∩DF is coer-
cive and consider a minimizing sequence Un ∈ M∩DF for E|M∩DF , which
is therefore bounded. Then, as in Lemma 7.2.7, we have that Un ⇀ U
up to subsequences and translations for some U ∈ M ∩ DF such that
E(U) = infM∩DF E. Moreover, E(U) > 0 arguing as in Lemma 7.2.6.
Next, a similar argument to Lemma 7.2.9 and Remark 7.2.10 yields that
U ∈ ∂DF = SF and there exists λ > 0 such that ∇×∇×U + λU = g(U),
i.e., (λ,U) is a solution to (8.1.1).

Proof of Theorem 8.1.3. It follows from Theorem 8.2.1 and either Theorem
8.1.1 (item (a)) or Theorem 8.1.2 and Proposition 8.2.2 (item (b)).

Remark 8.2.4. Assume f and g are as in Proposition 8.2.2 and let (λ, u) ∈
R×HSO be a solution to (8.1.2). If we de�ne U from u using (4.1.5), then,
in virtue of Theorem 8.2.1 and Lemma 4.2.5 respectively, (λ,U) ∈ R×HF is
a solution to (8.1.1) and ∇×∇×U = −∆U. Consequently, (λ,U) satis�es
the Pohoºaev identity (corresponding to (8.1.1))∫

RN
|∇ ×U|2 dx =

N

N − 2

∫
RN

2G(U)− λ|U|2 dx

and so, again from the same arguments as in Theorem 8.2.1, (λ, u) satis�es
(8.2.2). This last property is de�nitely not trivial because, due to the singular
term u/|y|2, a solution ũ ∈ H1(RN)∩X to the di�erential equation in (8.1.2)
(for some λ ∈ R) needs not belong to W 2,p

loc (RN) for every p <∞.
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