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Abstract

In this dissertation we investigate connections of Harmonic Analysis and Geometric Mea-
sure Theory. The thesis contains results which concern systematic development of the the-
ory of s-Riesz sets, i.e. a notion introduced in [69] in the context of the study of the regularity
of vector-valued measures.

Chapter 1 contains an introduction to the topic of the dissertation and describes research
methodology. In Chapter 2 we discuss selected classical results concerning connections of
Harmonic Analysis and Geometric Measure Theory.

The original results presented in the dissertation come from the following three
preprints:

• R. Ayoush, M. Wojciechowski, On dimension and regularity of vector-valued measures
under Fourier analytic constraints, preprint, submitted.

• R. Ayoush, D. Stolyarov, M. Wojciechowski, Hausdor� dimension of measures with
arithmetically restricted spectrum, accepted in Annales Academiæ Scientiarum Fen-
nicæ Mathematica

• R. Ayoush, M. Wojciechowski, Microlocal approach to the Hausdor� dimension of mea-
sures, preprint, submitted.

These preprints are the essential part of Chapters 3-5 (respectively).

In Chapter 3 we focus on the problem proposed in [69], concerning the study of the
regularity of vector measures subordinated to a bundle φ : Rn \ {0} → G(k,Cn), i.e.
measures whose Fourier-Stieltjes transform satisfy µ̂(ξ) ∈ φ(ξ) for ξ 6= 0. The theorems
presented there extend the main result of the paper [69] (see Theorem 3 therein) and are
also related to results from [5] (Theorem 1.3. and Corollary 1.4. therein).

Chapter 4 contains a new method of estimating the lower Hausdor� dimension of mea-
sures based on arithmetical properties of elements of their spectra. It applies to the classical
problem of estimating Hausdor� dimension of Riesz products, i.e. measures of the form

µa,q =
∞∏
k=0

(
1 + a cos(2πqkx)

)
, (1)

where q > 3 is an integer and a ∈ [−1, 1]. Our results, for su�ciently big q’s and |a|
su�ciently close to 1, improve bounds already known from [37], [65], [26], [9].
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In Chapter 5 we present connections of Hausdor� dimension with Microlocal Analysis.
We prove a criterion which gives an estimate of Hausdor� dimension based on the knowl-
edge about the wave front set of a measure. This criterion is applied to Radon measures
on the complex sphere and gives results which generalize classical theorems concerning
regularity of pluriharmonic measures, due to Aleksandrov and Forelli, proved in [3] and
[31].

Keywords: Fourier transform, Hausdor� dimension, recti�ability, Harmonic Analysis of
measures, Riesz products, wave front set, pluriharmonic measures

AMS 2020 Subject Classi�cation: 28A33, 28B05, 28A78, 31C10, 33C55, 42B10, 43A90
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Streszczenie

Niniejsza praca podejmuje tematykę związków analizy harmonicznej z geometryczną
teorią miary. Stanowi próbę systematycznego rozwinięcia teorii tzw. zbiorów s-Riesza,
pojęcia wprowadzonego w pracy [69] w kontekście badania regularności miar
wektorowych.

Rozdział 1 stanowi wprowadzenie do tematyki doktoratu i zawiera opis stosowanej
metodologii. W Rozdziale 2 wprowadzono podstawowe de�nicje, a także omówiono
wybrane klasyczne wyniki dotyczące związków analizy harmonicznej z geometryczną
teorią miary.

Rezultaty zaprezentowane w pracy doktorskiej pochodzą z trzech prac:

• R. Ayoush, M. Wojciechowski, On dimension and regularity of vector-valued measures
under Fourier analytic constraints, preprint, wysłano.

• R. Ayoush, D. Stolyarov, M. Wojciechowski, Hausdor� dimension of measures with
arithmetically restricted spectrum, zaakceptowano w Annales Academiæ Scientiarum
Fennicæ Mathematica

• R. Ayoush, M. Wojciechowski, Microlocal approach to the Hausdor� dimension of
measures, preprint, wysłano.

Stanowią one zasadniczą część Rozdziałów 3-5 (odpowiednio).

W rozdziale 3 koncentrujemy się na problemie postawionym w [69], dotyczącym badania
regularności miar wektorowych stowarzyszonych z wiązką φ : Rn \ {0} → G(k,Cn), tj.
miar spełniających równość µ̂(ξ) ∈ φ(ξ) dla ξ 6= 0. Zamieszczone tutaj rezultaty stanowią
rozszerzenie głównego wyniku pracy [69] (Twierdzenie 3 tamże), a także nawiązują do
rezultatów z artykułu [5] (Twierdzenie 1.3. i Wniosek 1.4. tamże).

Rozdział 4 zawiera nową metodę szacowania wymiaru Hausdor�a miar na podstawie
arytmetycznych własności elementów spektrum. Znajduje ona swoje zastosowanie w
klasycznym problemie szacowania wymiaru Hausdor�a produktów Riesza, tj. miar
postaci

µa,q =
∞∏
k=0

(
1 + a cos(2πqkx)

)
, (2)

gdzie q > 3 jest liczbą całkowitą i a ∈ [−1, 1]. Uzyskane wyniki, dla dostatecznie dużych q
i |a| bliskich 1, poprawiają oszacowania wymiaru produktów Riesza znane z prac [37],
[65], [26], [9].

W rozdziale 5 zaprezentowano związki wymiaru Hausdor�a z analizą mikrolokalną.
Udowodniono kryterium dające oszacowanie wymiaru Hausdor�a na podstawie wiedzy o
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zbiorze frontu falowego miary. Dzięki jego zastosowaniu dla miar Radona na sferze
zespolonej uzyskujemy wyniki, które uogólniają klasyczne twierdzenia o regularności
miar pluriharmonicznych, pochodzące of Aleksandrova i Forelliego, udowodnione w [3] i
[31].
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Chapter 1

Introduction

In this dissertation we investigate applications of Harmonic Analysis of measures to the
study of their Hausdor� dimension. Its main results are theorems which give descriptions
of singular sets of measures (i.e. sets which are charged by their singular parts), mainly
the lower bounds of their dimension, based on various properties of the Fourier-Stieltjes
transform. They can be classi�ed as the so-called uncertainty principles (cf. [52]), i.e. theo-
rems establishing impossibility of simultaneous sharp localization of a distribution and its
Fourier transform.

Our results refer directly to the structural descriptions of the spaces of analytic func-
tions. This (perhaps non-obvious) origin is explained by the following question which is
the leitmotiv of our considerations: Consider a characterization of some Hardy space. How
regular objects would we get if we weakened some symmetry assumptions from this character-
ization? The spectrum of answers for this question depends on the type of the Hardy space
that we deal with. In the end, its solution requires �nding examples or descriptions of the
so-called s-Riesz sets. This notion was introduced in the paper [69], as an extension of the
idea from the brothers’ Riesz theorem to the case of singular measures.

Theorem 1.1 (F. and M. Riesz theorem, [68], cf. also [61], [16], [63], [20], [50]). Let µ ∈
M(T) be a be a �nite complex Borel measure such that µ̂(n) = 0 for n < 0. Then µ is
absolutely continuous with respect to the Lebesgue measure on T.

Measures described by the theorem above are boundary values of functions fromH1(D)
and for this reason are called analytic measures. It is natural to drop the analyticity assump-
tion and ask for examples of sets other than negative integers which compel absolute con-
tinuity of measures. To the best of the author’s knowledge, this was done �rst by Y. Meyer,
who in the seminal paper [60] introduced the notion of Riesz sets and studied properties of
this class. For the group Rn, his de�nition translates as follows:

De�nition 1.2. We say that a closed set A ⊂ Rn is a Riesz set, if any �nite Borel-regular
measure µ ∈ M(Rn), such that supp(µ̂) ⊂ A, is absolutely continuous with respect to the
n–dimensional Lebesgue measure.
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The original de�nition was proposed for measures on locally compact abelian groups.
In the literature, authors in some contexts study stronger versions which, instead of being
absolutely continuous, requires from measures belonging to a suitable H1.

In [69], the authors extended this idea in a quantitative way, by taking into considera-
tions the lower Hausdor� dimension of measures (cf. [27]):
De�nition 1.3. For any (scalar or vector) Radon measure µ on Rn, we de�ne its lower Haus-
dor� dimension by the following equality:

dimH(µ) = inf{α : there exists a Borel set E such that dimHE 6 α and µ(E) 6= 0}.

De�nition 1.4. ([69]) We say that a closed set A ⊂ Rn is an s-Riesz set if dimH(µ) > s for
any �nite, Borel-regular µ such that supp(µ̂) ⊂ A.

The aim of the research presented in this dissertation was to develop the theory of s-
Riesz sets in a systematic way. We often draw inspiration from the existing theory con-
cerning the theorem of F. and M. Riesz. This theorem has numerous generalizations, in the
Euclidean case as well as going in completely di�erent directions. Let us recall those which
are the most important for us.

Multidimensional analog of F. and M. Riesz theorem. In the paper [70] a very general class
of Riesz sets was constructed:
De�nition 1.5 ([70]). Let us �x some ε > 0. We say that a set F ⊂ Rn is ε-asymmetric if

∀x∈F F ∩B(−x, ε|x|) = ∅. (1.1)

Theorem 1.6 ( [70], Theorem 0.3.). If a set F ⊂ Rn is ε-asymmetric for some ε > 0, then it
is a Riesz set.

Analogous theorem is also true for measures on Tn.

Multiplier characterization of the space H1(Rn). Theorem of Uchiyama (see [78]), apart
from giving a constructive Fe�erman-Stein decomposition of BMO(Rn), provides the an-
swer to the question about the form of invariant operators which describe the spaceH1(Rn).
Theorem 1.7. Suppose that θ1(ξ), . . . , θn(ξ) ∈ C∞(Sn−1) and let us denote Kθif =
F−1(θi(

ξ
|ξ|)F(f)). Then, the inequality

1

C
‖f‖H1 6

n∑
i=1

‖Kθif‖L1 6 C‖f‖H1

holds for some constant C if and only if

rank

[
θ1(ξ) θ2(ξ) . . . θn(ξ)
θ1(−ξ) θ2(−ξ) . . . θn(−ξ)

]
≡ 2 (1.2)

for ξ ∈ Sn−1.
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Equality (1.2), which (similarly as (1.1)) generalizes the assumption from the brothers’
Riesz theorem, will be called further strong antisymmetry. Conditions (1.1) and (1.2) have
also counterparts in other contexts, in particular in the ones mentioned below.

Characterization of a martingaleH1. In the paper [45], S. Janson proved a theorem which
gives a necessary and su�cient condition for a certain family of martingale transforms to
describe the martingale Hardy space with respect to the q–regular �ltration (each atom
splits into q subatoms with equal masses, which naturally induces the tree structure and
relations of being a ’child’ or a ’parent’ among atoms). Those speci�c martingale transforms
(see the third section in [45] for the details and strict de�nitions) are de�ned by matrices
q × q acting on the space

Cq
0 =

{
v ∈ Cq :

q−1∑
i=0

vi = 0
}
.

Namely, if A is such a matrix and {fn} is a martingale, then (because of the presence of the
tree structure) the local martingale di�erences (which we call the restrictions of martingale
di�erences to parents of atoms) are in natural correspondence with vectors from Cq

0, and
the martingale transform TA{fn} is given by the action of A on those vectors. To de�ne
TAf , we identify f with the martingale generated by f via conditional expectations.

Theorem 1.8 (Janson, Theorem 4 in [45]). H1 = {f ∈ L1 : TAif ∈ L1 for i = 1, . . . ,m}
if and only if A1, . . . , Am do not have a common real eigenvector, i.e. an eigenvector from

Rq
0 =

{
v ∈ Rq :

q−1∑
i=0

vi = 0
}
.

Moreover, after imposing additional invariant structure on the local martingale di�er-
ences, this theorem is in full analogy with the theorem of Uchiyama and may be regarded
as its full-�edged model. In particular, in this context, the strong antisymmetry translates
to the mentioned constraint on the common eigenvectors (see the discussion in [45], p.149).

Amicrolocal theorem of F. andM. Riesz. In the paper [11], Brummelhuis proved, that if the
wave front set of a measure does not contain a line (i.e. is antisymmetric), then this measure
belongs to the local Hardy-Goldberg space (Theorem 1.4. in [11]). This trick enabled him to
use the functional calculus of pseudodi�erential operators to prove an analogue of brothers’
Riesz theorem for the measures on the complex sphere, and so to construct Riesz sets with
respect to U(n)-invariant subspaces of complex spherical harmonics (Theorem 2.1. in [11]).
He also obtained results concerning regularity of boundary values of certain di�erential
equations (Theorem 3.1. therein).

Next chapters of this work draw inspiration from the mentioned examples to varying
degrees. Before we explain those parallels in a more precise way, let us mention, that apart
from Fourier-analytic techniques we help ourselves also with the methods of Geometric
Measure Theory. Their recapitulation is the essential part of the second chapter.
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The considerations of the third chapter address the problem proposed in [69]. More
speci�cally, the authors of the mentioned paper asked for dimensional estimates for vector-
valued measures whose Fourier transform takes values in a bundle φ : Rn\{0} → G(k,E),
which is 0-homogeneous (see De�nition 3.1 and De�nition 3.2 for the details), assuming
some structural properties of this bundle. This question is inspired by the classical the-
ory of BV functions (see [4], Chapter 3), i.e. it asks whether dimensional bounds known
for gradients of functions form BV are true in a more general Fourier setting. Classical
proofs of dimension estimates and recti�ability of BV -gradients are based on de Giorgi
characterization of sets with �nite perimeter and the coarea formula, hence they cannot
be immediately and very far generalized. We describe there a Fourier-analytic approach to
some of those �ne properties which works even in the absence of the fundamentals from
the classical theory of functions with bounded variation. Structural assumptions that we
impose on bundles heuristically correspond to the weakened assumption from Uchiyama’s
theorem. The most important for us are the following two such conditions:⋂

v∈G(2,E)

span{φ(V \ {0})} = {0} (1.3)

and ⋂
ξ∈Rn\{0}

φ(ξ) = {0}. (1.4)

The �rst one leads to an improvement of a dimension bound for generalized gradient mea-
sures from [69] and the second is connected with a new method of proving recti�ability
of singular sets, based on the Besicovitch-Federer projection theorem. A classical example
which satis�es (1.3) is ∇f , where f ∈ BV (R3) (see Example 3.45), while condition (1.4) is
satis�ed by divergence-free measures (see Example 3.49).

In the fourth chapter we give a new construction of s–Riesz sets for positive measures,
based on arithmetical properties of elements of their spectra. This theorem is proved by an
adaptation of ideas from a result for martingale transforms, proved in [7], which is formu-
lated in the setting of Janson’s theorem. In comparison with Janson’s theorem, the men-
tioned result solves a similar problem allowing presence of real vectors of some special type
in the space of admissible martingale di�erences. Brie�y speaking (see Section 1.3. in [7] for
the details), it says that if µ is a C`-valued measure de�ned on the boundary of an in�nite
q-regular tree and generates a martingale for which the set

cl{v ∈ Rql
0 : v is a local martingale di�erence} (1.5)

does not contain matrices of the form

(q− 1,−1, . . . ,−1)⊗ a, (−1, q− 1, . . . ,−1)⊗ a, . . . , (−1,−1, . . . , q− 1)⊗ a, ∀a ∈ R`,

then dimH(µ) > c > 0. The asumption of this theorem is in a direct correspondence
with 1.4, in particular, both of them provide ’separation’ from Dirac delta measures. We
apply the method from this theorem, in the case of positive scalar measures, to improve
numerical lower bounds of the Hausdor� dimension of certain class of Riesz products. From
the quantitative point of view, our goal is to estimate the constant c, which depends on

4



the set (1.5), in the case of a speci�c backwards martingale whose martingale di�erences
depend on the Fourier transform. Moreover, as a corollary we show that, for a �xed q,
among integers which belong to the spectrum of a su�ciently singular measure, we can
�nd a number whose one of divisors has any desired residue modulo q. We also obtain a
quantitative form of this principle.

The �fth chapter is devoted to the techniques from Microlocal Analysis and contains a
short recollection of basic facts from this theory. We extend there the method of Brummel-
huis, whose point lies in microlocalizing spectral properties of measures, for dealing with
Hausdor� dimension estimates. The main result of this development is a theorem which
provides a bound for lower Hausdor� dimension in terms of the size of the wave front set
(the assumption of size replaces the antisymmetry from Brummelhuis’ theorem). We apply
it to obtain a far-reaching generalization of the Aleksandrov-Forelli theorem about regular-
ity of pluriharmonic measures.

1.0.1 Summary of the results and formal remarks

Below the main original results obtained in this dissertation are listed.

Chapter 3 : Theorem 3.7, Theorem 3.8

Chapter 4 : Theorem 4.2, Theorem 4.3,Proposition 4.5, Proposition 4.6, Theorem 4.25,
Corollary 4.27

Chapter 5 : Theorem 5.2, Theorem 5.6

Theorems from Chapter 3 concerning the recti�able dimension are strengthened ver-
sions of theorems proved in the author’s master’s thesis and are obtained with similar
proofs. Theorem 3.41 was also noticed in the author’s master’s thesis. Chapter 5 contains
an appendix which is not present in the original article.
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Chapter 2

Harmonic Analysis and Dimension
Theory

The purpose of this chapter is to �x the method of measuring the level of singularity of mea-
sures. We give the de�nition of the Hausdor� dimension of sets and measures and compare
it with other notions of the dimension such as the Fourier dimension and the energy di-
mension. We also present some classical applications of Fourier analysis to the dimension
theory which motivate some of the methods used in further parts of this dissertation. In
our presentation we follow the classical textbooks by Falconer and Mattila ([22], [57], [58]).

2.1 Various dimensions of measures and sets

The Hausdor� measure is a central notion in Geometric Measure Theory. It is a generaliza-
tion of the surface measure on manifolds which allows to develop analytic theory even on
rough sets such as fractals. We construct it in the following way:
De�nition 2.1. Let A ⊂ Rn, 0 6 s 6 n and 0 6 δ 6 +∞. Let

Hs
δ(A) := inf

{ ∞∑
j=1

(diamEj)
s : A ⊂

∞⋃
j=0

Ej, diamEj 6 δ
}
. (2.1)

The limit
lim
δ→0+

Hs
δ(A) (2.2)

is called the s-dimensional Hausdor� measure of A.

The above limit exists and is a well de�ned function for all subsets of Rn. It is an outer
measure. What is more, it is a metric measure, which implies that its restriction to the family
of Borel sets is a countably additive measure. The familyHs allows to de�ne the dimension
of sets in the following way:

6



De�nition 2.2. For any subset A ⊂ Rn we de�ne its Hausdor� dimension by

dimHA := sup{s : Hs(A) > 0} = sup{s : Hs(A) =∞} =

inf{s : Hs(A) <∞} = inf{s : Hs(A) = 0}. (2.3)

In parallel to the above, it is possible to introduce the lower and upper Hausdor� dimen-
sion of a measure (cf. [27] and Chapter 10 in [22]).
De�nition 2.3. By the lower Hausdor� dimension of a non-zero (scalar or vector) measure µ
we understand

dimH(µ) = inf{α : ∃F - Borel set, µ(F ) 6= 0, dimH F 6 α}. (2.4)

Upper Hausdor� dimension of a measure is de�ned by

dimH(µ) = inf{α : ∃F - Borel set, |µ|(Rn \ F ) = 0, dimH F = α}. (2.5)

Remark 2.4. Because we are mainly interested in the lower Hausdor� dimension, we hence-
forth will be writing dimH(µ) instead of dimH(µ)

It turns out that the Hausdor� dimension can be determined from the knowledge about
the local growth of a measure. This possibility is expessed by the following facts
De�nition 2.5. The local lower and upper Hausdor� dimensions of a measure µ ∈ M+(Rn)
at point x ∈ Rn are given (respectively) by

Dµ(x) := lim inf
r→0

log(µ(B(x, r)))

log r
(2.6)

and

Dµ(x) := lim sup
r→0

log(µ(B(x, r)))

log r
. (2.7)

Theorem 2.6 (Proposition 10.2. and Proposition 10.3. in [22]). Let µ ∈M+(Rn) then

dimH(µ) = sup{s : Dµ(x) > s for µ- almost every x} (2.8)

and
dimH(µ) = inf{s : Dµ(x) 6 s for µ- almost every x}. (2.9)

The idea behind this theorem has its counterpart in the potential theory, which in turn
gives a direct link to the Fourier analysis.
De�nition 2.7. For a measure µ ∈ M+(Rn) and 0 < t < n we de�ne its t-energy by the
following formula

It(µ) :=

∫
Rn

∫
Rn
|x− y|−tdµ(x)dµ(y). (2.10)

The energy (Sobolev) dimension of µ is given by

dime(µ) := sup{t ∈ [0, n] : It(µ) <∞}. (2.11)
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Theorem 2.8 (Frostman-type lemma, cf. Section 4.3 in [23]). For any µ ∈M+(Rn) we have

dime(µ) 6 dimH(µ). (2.12)

The above follows, for example, from the proof of Theorem 4.13. in [23],

Theorem 2.9 (Energy formula, cf. Theorem 3.10. in [58]). Let µ ∈M+(Rn) and 0 < t < n.
Then

It(µ) = c(n, t)

∫
Rn
|µ̂(ξ)|2|ξ|t−ndξ. (2.13)

The method of estimating energy integrals may be also used to prove the Mastrand’s
projection theorem (see the next section); for examples of other applications see Chapter 6
and Chapter 7 in [58].

The inequality in Theorem 2.8 may be in general strict. The existence of a suitable
example is provided by the probabilistic model built on the so-called Riesz product measure
(see Proposition 3.4. in [37], and [26]). We will investigate such measures in Chapter 4 .

Let us also mention that the potential-theoretic approach may be adapted for complex
measures ([39]). Moreover, the energy formula can be generalized also on measures de�ned
on manifolds ([38]). In particular, there is a version for spherical harmonics ([40]).

A very important role in Fourier analysis is played by even more restrictive type of
the dimension, the so-called Fourier dimension. In contrast to the previously mentioned
dimensions, this notion takes into account not only concentration properties, but also mea-
sures how sets (or supports of measures) are structurized in certain arithmetical sense. In
particular, it shows how quickly those sets generate Rn as a group.

De�nition 2.10. For a closed set A ⊂ Rn we de�ne its Fourier dimension by

dimF (A) := sup{s ∈ [0, n] : µ̂(ξ) . |ξ|−s/2, µ ∈M+(A)}. (2.14)

De�nition 2.11. For µ ∈M(Rn) the number

dimF (µ) := sup{s ∈ [0, n] : |µ̂(ξ)| . |ξ|−s/2 ∀ξ∈Rn\{0}} (2.15)

is called the Fourier dimension of µ.

Corollary 2.12. For µ ∈M(Rn) we have

dimF (µ) 6 dime(µ). (2.16)

Sets whose Fourier and Hausdor� dimensions are equal are called Salem sets (see [51],
[48], [21], [55], [53], [8], [36]). In Chapter 3 we use some of their basic properties.
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For certain types of measures, instead of estimating Riesz integrals, it is more convenient
to study asymptotic growth behaviour of their Poisson or Gauss-Weierstrass integrals. This
method was presented in [80]. We conclude this section with an example of a theorem
from that paper. Let µ ∈ M(Rn) and P (x, t) = 2|Sn|−1t(‖x‖2 + t2)−

n+1
2 where (x, t) ∈

Rn × [0,+∞] and |Sn| denotes the area of n-dimensional unit sphere. Let us de�ne

u(x, t) = P ∗ µ(x, t) =

∫
Rn
P (x− y, t) dµ(y).

Theorem 2.13 (Theorem 5 (ii), [80]). Let µ ∈M(Rn), u = P ∗µ, s ∈ [0, n], and let A ⊂ Rn

be a Borel set, σ-�nite with respect toHs such that

lim
t→0

tn−su(x, t) = 0

for µ-a.e. x ∈ A. Then µ(A) = 0.

A variant of this method was used in [71] for investigating �ne properties of plurihar-
monic measures.

In a recent preprint [74], the author obtained a dimensional estimate for vector-valued
measures by an application of Harnack-type inequalities to the Gauss-Weierstrass extension
of a measure. This result, in particular, gives an alternative approach to the dimension
bound obtained for PDE-constrainted measures in [5]. The method from [5] exploits certain
compactness phenomenon which occurs outside the so-called wave cones connected with
a di�erential equation (see Example 3.48 for the de�nition).

We remark that, especially in Dynamical Systems and Fractal Geometry, there is an
extensive research concerning other notions of dimension of a measure, such as packing,
Minkowski and Assouad dimension of a measure and relations between them (see Chapter
10 in [22], [23], [33], [24], [41], [27], [59] and references therein).

2.2 Other interactions of Fourier Analysis and Geometric Measure
Theory

It only takes to verify the de�nition to see that the Hausdor� dimension cannot be increased
by Lipschitz maps, in particular by orthogonal projections. One of the most elegant results
belonging to both eponymous theories is the celebrated Mastrand’s projection theorem. It
says that (for a reasonable set of parameters) the Hausdor� dimension is generically pre-
served by projections.
Theorem 2.14 (Theorem I and II in [56]). Let A ⊂ Rn be a Borel set such that dimHA = s.

• If s 6 1, then
dimH(Πspan{e}(A)) = s (2.17)
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forHn−1-almost all e ∈ Sn−1.

• If s > 1, then
H1(Πspan{e}(A)) > 0 (2.18)

forHn−1-almost all e ∈ Sn−1.

The proof exploits the fact that there is an easy formula for the Fourier transform of a
projected measure. This observation asserts about great utility of theorems which involve
projections of sets. In further chapters, to prove recti�ability of singular sets of various
measures, we make a use of this observation and the Besicovitch-Federer projection theo-
rem:

De�nition 2.15. A set E ⊂ Rn is called k-recti�able, if there exist Lipschitz functions fi :
Rk → Rn, i = 1, 2, ..., such that

Hk(E \
∞⋃
i=1

fi(Rk)) = 0.

A set F ⊂ Rn is called purely k-unrecti�able ifHk(F ∩ E) = 0 for every k-recti�able E.

Theorem 2.16 (Theorem 18.1 in [57]). Let A ⊂ Rn be a Borel set with Hk(A) < ∞, where
k < n is an integer. Then:

• A is k-recti�able if and only if Hk(ΠV (B)) > 0 for almost all V ∈ G(k,Rn) (with
respect to the natural measure on the Grassmannian) for any measurable B ⊂ A with
Hk(B) > 0.

• A is purely k-unrecti�able if and only ifHk(ΠV (A)) = 0 for almost all V ∈ G(k,Rn)
(with respect to the natural measure on the Grassmannian).

There is also one important theorem, which is neither used nor improved in this thesis,
but plays for us a role of an important motivating example. It relates the local growth
condition and the Fourier dimension of measures to arithmetical properties of its support.

Theorem 2.17 ([55], Theorem 1.2.). Suppose that E ⊂ T supports a measure µ ∈ M+(T)
and the following conditions are satis�ed

• µ([x, x+ ε]) 6 C1ε
α,

• |µ̂(k)| 6 C2(1− α)−B|k|−β2 for k 6= 0,

where 0 < α < 1 and 2
3
< β 6 1. If α > 1− ε0 for some ε0 = ε0(C1, C2, B, β) small enough,

then E contains a 3-term arithmetic progression.
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The �rst assumption is a variant of the so-called α-Frostman condtion and says in par-
ticular that dimH(µ) > α. The theorem above gives a hint that the Hausdor� dimension
may depend not only on the decay of Fourier transform, but also on some arithmetical prop-
erties. Inspired by this, in Chapter 4 we prove a theorem which gives a dimension estimate
taking into account only divisibility properties of elements of the spectrum of measures.

Our goal was to collect facts and theorems which, in our judgement, are useful for the
practical goal of dimension estimates, and so we have not mentioned many important appli-
cations of Harmonic analysis to the Dimension Theory. In particular, we have not discussed
the Kakeya problem which is a central problem in this �eld. For the detailed informations
on this topic the reader is refered to the survey article [49].
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Chapter 3

On dimension and regularity of
vector-valued measures

In this chapter we quantify the notion of antisymmetry of the Fourier transform of cer-
tain vector-valued measures. The introduced scale is related to the condition appearing
in Uchiyama’s theorem and is used to give a lower bound for the recti�able dimension of
those measures. Moreover, we obtain an estimate of the lower Hausdor� dimension assum-
ing certain more restrictive version (in the structural sense) of the 2-wave cone condition for
PDE-constrainted measures, extending its applications to a more general Fourier analytic
setting. The chapter contains also a theorem concerning regularity: we prove that elements
of considered class vanish on 1-purely unrecti�able sets of �niteH1-measure.

3.1 Preliminaries and motivation

Geometric structure and dimensional properties of distributional gradients of functions
from BV (Rn) are well studied and widely applied (cf. [1], [2], [4], [64]). It is known,
for example, that their lower Hausdor� dimension is at least n− 1 and that it is an optimal
bound. Moreover, those measures cannot charge (n − 1)-purely unrecti�able sets of �nite
Hn−1 measure (see Lemma 3.76 and Theorem 3.78 in [4]). For the class of bundle measures,
introduced in [69], we can consider analogous problems.

De�nition 3.1. By G(m,E) let us denote the Grassmannian of m-dimensional subspaces of
some �xed, d-dimensional complex vector space E. We call a bundle any continuous function
φ : Rn\{0} → G(m,E). If additionally φ(aξ) = φ(ξ) for any positive a, then we refer to it
as a homogeneous bundle.

This setting gives a possibility to de�ne bundle measures by imposing Fourier analytic
rigidity conditions:
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De�nition 3.2. For any homogeneous bundle φ, by Mφ(Rn, E) we denote the set of �nite,
Borel regular and non-zero vector measures, taking values in E and satisfying µ̂(ξ) ∈ φ(ξ)
for each ξ 6= 0. We say that a vector-valued measure µ ∈ M(Rn, E) is subordinated to φ, if
µ ∈Mφ(Rn, E).

The above de�nition generalizes the mentioned example of gradient measures. Indeed,
if f ∈ BV (Rn) then ∇̂f(ξ) = 2πiξf̂(ξ), so ∇f ∈ Mφ(Rn,Cn) for a particular bundle
φ(ξ) = spanC{ξ}. Moreover, this formalism subsumes the case of measures with gener-
alized bounded variation, i.e. the measures which are de�ned similarly to BV -gradients,
with ∇ replaced by a homogeneous di�erential operator (see Section 3.4 Example 3.46).
Moreover, the above notation is complementary to the language of A-free measures ([15])
- see Section 3.4 for the explanation. On the other hand, as crucial roles in proofs of the
mentioned properties ofBV gradients are played by the de Giorgi’s characterization of sets
with �nite perimeter and by the coarea formula, in the general case we cannot make a use
of the ideas from those classical proofs due to the absence of su�ciently general coarea
formula.

In this chapter, for the sake of simplicity, unless explicitly stated otherwise, we treat by
default the case of line bundles (m = 1). In other cases all reasonings can be adapted with
straightforward modi�cations and we sketch appropriate changes in suitable places.

We propose a conjecture that links antisymmetry of a bundle with the dimension of
vector measures.
De�nition 3.3. We say that a nonconstant line bundle φ is antisymmetric on l-dimensional
subspheres or l-antisymmetric (l = 0, 1, ..., n − 1), if for each (l + 1)-dimensional subspace
V ⊂ Rn there exist ξ1, ξ2 ∈ V ∩ Sn−1 such that φ(ξ1) 6= φ(ξ2). Denote

a(φ) = min{l : φ is l-antisymmetric}.

Conjecture 3.4 ([6]). If µ is a bundle measure subordinated to a smooth, nonconstant bundle
φ, then

dimH(µ) > n− a(φ).

Our �rst result con�rms correctness of Conjecture 3.4 under some additional geometric
assumptions. Though not being trivial, it should be considered rather as a motivating ex-
ample. It also gives some insight how reasonable bundle measures may look like. To prove
this, we use the classical measure-theoretic method of blowing-up measures, modi�ed for
dealing with Fourier transforms. Similarly as in the classical version of this method, we
relate the recti�able dimension of a measure (which we de�ne below) to the algebraic di-
mension of tangent spaces to the measure at points belonging to a given set. However, the
fact that we deal with measures under Fourier analytic constraints forces us to modify the
notion of tangent measure in a way that convergence in the vague topology of blow-ups of
measures is replaced by the weak-∗ convergence in S ′(Rn). This requires replacing Cc(Rn)
with S(Rn) as the set of test functions, and is absolutely necessary not only for the the-
oretical reasons, but also because of existence of measures for which Fourier transform is
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not well-de�ned and which are tangent measures in the classical sense (see Example 3.17).
Though those modi�cations are relatively simple, we decided to include a detailed presen-
tation in Section 3.2, because to our best knowledge this type of tangent space is absent in
the literature.
De�nition 3.5. By the recti�able dimension of a scalar or vector measure µ we understand

dimrect(µ) := min{k : ∃k-recti�able measure ν
s.t. µ ¬F = ν 6= 0 for some Borel set F}

if the set on the right-hand side is non-empty, or dimrect(µ) := +∞ otherwise.

In the above de�nition we use a stronger than the usual de�nition of a recti�able mea-
sure (see De�nition 3.13).
Theorem 3.6. a) Suppose that µ is a bundle measure subordinated to a smooth, nonconstant
bundle φ. Then

dimrect(µ) > n− a(φ).

b) If µ is recti�able then either
dimH(µ) >

n

2
or µ can be identi�ed with a scalar measure (its values belong to some one-dimensional space).

Unfortunately, this result is non-trivial only for measures whose part is described by
some analytic formula. In particular, it gives no information when µ is singular with respect
to all Hk, for k = 0, . . . , n. This issue is partially bypassed in Section 3.3, where we prove
two theorems concerning the Hausdor� dimension. They can be treated as extensions of
the main result from [69] (Theorem 3.10).

Perhaps, the most signi�cant theorem of this chapter is the following:
Theorem 3.7. Suppose that µ is subordinated to a Lipschitz bundle φ. If there exist
2−dimensional spaces V1, . . . , VJ such that ∩i span{φ(Vi \ {0})} = {0}, then

dimH(µ) > 2.

The above condition is related to the k-wave cone scale introduced in [5] (see also Ex-
ample 3.48 for the discussion). We prove also a recti�ability result which, together with
Theorem 3.10 may be treated as an analogue of the Federer-Volpert theorem ([4], Theorem
3.78., Proposition 3.92.).
Theorem 3.8. Let φ be a homogeneous bundle which is Hölder regular with exponent > 1

2
and suppose that φ is (n− 1)-antisymmetric, i.e.⋂

ξ∈Rn\{0}

φ(ξ) = {0}.

Then, for any µ ∈ Mφ(Rn, E) and any 1-purely unrecti�able set F satisfying H1(F ) < ∞
we have µ ¬F ≡ 0.
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Proofs of both results are based on the theory of s-Riesz sets from [69]. Informally, a
subset A ⊂ Rn is called an s-Riesz set, if dimH(µ) > s for any measure µ whose Fourier
transform is small on A (cf. De�nition 1.4). Typically, ’small’ means being equal to zero
or µ̂|A ∈ L2(Rn). In Section 3.3, by suitable use of properties of Salem sets, we show that
’small’ may be interpreted as µ̂|A ∈ ∩ε>0W

−ε,2(Rn). Here W s,2(Rn) means an L2-based
Sobolev space with order of smoothness s ∈ R. With this knowledge, to prove Theorem 3.7,
for each vector measure µ satisfying its assumptions we �nd a scalar measure ν with a
comparable dimension and a 2-Riesz set A such that ν̂|A ∈ ∩ε>0W

−ε,2(Rn). The existence
of such ν and A is provided by the structural condition from Theorem 3.7.

The recti�ability theorem is obtained by an application of the Besicovitch-Federer pro-
jection theorem, which seems to be a new approach for this type of problems.

Section 3.4 contains examples and comparison with some known results about measures
satisfying di�erential equations.

3.1.1 Motivation and brief history of the problem

Conjecture 3.4 is inspired by Uchiyama’s theorem on multiplier characterization of Hardy
spaces (Theorem 3.12) which gives a proof when a(φ) = 0. It appeared while an attempt to
answer a question from [69]:
Conjecture 3.9. ([69], Conjecture 1) If the Fourier transform of a bundle measure µ contains
n linearly independent vectors and µ ∈ Mφ(Rn, E) for some line bundle φ, then dimH(µ) >
n− 1.

Theorem 3.10. ([69]) Let φ be a nonconstant line bundle, Hölder with exponent > 1
2
. Then

dimH(µ) > 1 for each µ ∈Mφ(Rn, E).

Theorem 3.10, which is a particular case of Theorem 3 from [69], covers the case ’a(φ) =
n− 1’ which is on the endpoint opposite to Uchiyama’s theorem ([78]). In this chapter we
focus on the intermediate points of the scale. Conjecture 3.9 was inspired by the example
of measures derived from BV , that is satisfying equation ∇f = µ for some f ∈ L1(Rn)
in the sense of distributions. This result shows, in particular, that if in such problem we
replace∇ by any so called canceling operator (see [79] and Example 3.46), then the resulting
measure has lower Hausdor� dimension at least 1. Let us also mention that a particular
case of the main result from [75] is a proof of the above conjecture for measures given by
(Ds

1f, ..., D
s
nf) = µ for some natural s and f ∈ L1(Rn) (φ(ξ) = spanC{(ξs1, ξs2, . . . , ξsn)}).

In this situation we have a(φ) = 1.

The technique used in [75] revealed strong connections of dimension estimates with
embedding theorems. Brie�y: the better range of an embedding connected with a di�er-
ential operator, the higher lower bound of dimension it gives. It is worth mentioning that
canceling and elliptic operators (see [79] or Example 3.46 for de�nitions) are precisely those
for which critical Sobolev embedding holds true:
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Theorem3.11. ([79], Theorem 1.3.) Suppose thatA(D) is a homogeneous di�erential operator
of rank s on Rn from V toW . Then the estimate

‖Ds−1f‖
L

n
n−1

6 C‖A(D)f‖L1

holds for f ∈ C∞c (Rn;V ) if and only if A(D) is elliptic and canceling.

Let us also underline that the theorem of Uchiyama gives the answer when the Hardy
space H1(Rn) norm is equivalent to a norm given by a family of multipliers.

Theorem 3.12 ([78]). Let θ1(ξ), . . . , θn(ξ) ∈ C∞(Sn−1) and let Kθif =
F−1(θi(

ξ
|ξ|)F(f)). Then the inequality

1

C
‖f‖H1 6

n∑
i=1

‖Kθif‖L1 6 C‖f‖H1

is true for some constant C if and only if

rank

[
θ1(ξ) θ2(ξ) . . . θn(ξ)
θ1(−ξ) θ2(−ξ) . . . θn(−ξ)

]
≡ 2

for ξ ∈ Sn−1.

The above remarks suggest that the mechanism of creating singularities and validity of
some norm inequalities are governed by the same phenomenon. We hope that the study of
bundle measures may give also some heuristics to the study of embedding theorems.

Conjecture 3.4 was considered also by other authors in di�erent contexts: B. Raita (inde-
pendently) in [67] posed a question analogous to Conjecture 3.4 for measures solving di�er-
ential equations. For this setting there was a substantial progress: article [5] yielded dimen-
sion estimates and recti�ability results in terms of other type of antisymmetry/cancelation.
Condition appearing in Theorem 3.7 (result later in time than [5]) is close to one point of
an antisymmetry scale from [5] (cf. Example 3.48).

3.1.2 Conventions

Throughout this chapter, we use the following notation:
n – dimension of the ambient space Rn,
d – dimension of E, i.e. space containing values of bundle measures,
l – degree of antisymmetry/dimension of the wave cone.

While assuming Lipschitz or Hölder continuity of a bundle we mean a suitable property
of its restriction to the unit sphere.
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For f ∈ L1(Rn) and µ ∈ M(Rn) we choose the following normalization of the Fourier
transform:

f̂(ξ) =

∫
Rn
e−2πi〈ξ,x〉f(x)dx,

µ̂(ξ) =

∫
Rn
e−2πi〈ξ,x〉dµ(x).

If f ∈ L1
loc(µ), then by fµ we understand the measure ν given by dν = fdµ.

In this chapter we use the below de�nition of recti�ability

De�nition 3.13. A set E ⊂ Rn is called k-recti�able, if there exist Lipschitz functions fi :
Rk → Rn, i = 1, 2, ..., such that

Hk(E \
∞⋃
i=1

fi(Rk)) = 0.

A set F ⊂ Rn is called purely k-unrecti�able if Hk(F ∩E) = 0 for every k-recti�able E. We
call a (scalar or vector) measure µ k-recti�able if there exist a k-recti�able set E and a Borel
function (scalar or vector) f such that µ = fHk ¬

E
and f is locally integrable with respect to

Hk ¬
E
.

For a vector space V and a vector u we denote ΠV ,Πu orthogonal projections on V
and on span{u} respectively. A symbol D(Rn) means for us the space of smooth functions
with compact support. By the spectrum of a tempered Radon measure we understand the
support of its distributional Fourier transform. We denote it by spec(·).

3.2 Estimates for the recti�able part

3.2.1 Tangent measures and recti�ability

The notion of tangent measure (see [66]) is extremely useful in Geometric Measure Theory.
However, one has to be careful while using it in Fourier analysis. For example, it is not
hard to construct a measure whose one of tangent measures, in the classical sense (see the
de�nition below), is not a tempered distribution (see Example 3.17 and also [62] for even
more pathological example). In this and the next subsection we present how to preserve
Fourier analytic constraints in the limit, by modifying the de�nition of tangency.

De�nition 3.14. We say that a sequence of Radon measures (µj)
∞
j=0 converges to a Radon

measure ν in the vague topology if

lim
j→∞

∫
φ dµj =

∫
φ dν
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for any φ ∈ Cc(Rn). Here Cc(Rn) stands for the space of compactly supported, continuous
functions on Rn.

De�nition 3.15. ([66], p. 539) For a given r > 0 and a Radon measure µwe de�ne its blow-up
at point x by the formula µr,x(A) = µ(x+ rA). Any measure ν which is a limit in the vague
topology of a sequence of the type

ciµx,ri (3.1)
for some ri ↓ 0 and ci > 0 we call a tangent measure to µ at point x. We denote the set of those
measures by Tan(µ, x).

The above de�nition can be easily extended to vector measures (in this case, conver-
gence is understood as the coordinate-wise convergence in the vague topology). For recti-
�able measures it su�ces to consider normalizaitons of blow-ups given by suitable power
functions.

De�nition 3.16. For a �xed α > 0, by Tanα(µ, x) we denote the subset of Tan(µ, x)
obtained by taking ci = r−αi . By Tan∗(µ, x) and Tan∗α(µ, x) we denote subsets of Tan(µ, x)
and Tanα(µ, x), respectively, consisting of tempered Radon measures which are limits of blow-
ups in in the sense of weak-* topology on S ′(Rn).

In the next few steps we show that Tan∗α and Tanα coincide for some regular measures
(e.g. recti�able measures or measures of strictly positive dimension) at generic points. How-
ever, the example below shows that Tan and Tan∗ may be di�erent.

Example 3.17. For j = 1, 2, . . . let us denote [aj, bj] := [ 1

2j2
, 1

2j2−j
] and let us take

µ =
∞∑
j=1

λj2
x
aj χ[aj ,bj ](x)dx, (3.2)

where λj is de�ned by the formula λj2
bj
aj = exp(− 1

bj
). Then µ is a �nite, absolutely continuous

measure. Moreover,
1

λjaj
µ0,aj → 2xχ[1,+∞)(x)dx (3.3)

in the vague topology, so Tan(µ, 0) contains a measure which is not a tempered distribution.

A straightforward generalization of Theorem 4.8 from [14] or Theorem 2.83 from [4] is
the following fact:

Theorem 3.18. Let µ = fHk ¬
E
be a k-recti�able vector measure. Then, for Hk-a.e. x ∈ E,

there exists a k−dimensional vector space Vx such that

r−kµx,r → f(x)Hk ¬
Vx
, (3.4)

in the vague topology as r ↓ 0.
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From the de�nition of the vague convergence we can easily get the following local
growth estimate:

Lemma 3.19. Suppose that µ ∈ M(Rn) and for x ∈ E, |µ|(E) > 0, there exist tempered
Radon measures νx such that we have

r−αµx,r → νx,

as r ↓ 0 in the sense of vague topology. Then |µ|(B(x, r)) 6 Cxr
α for |µ| − a.e. x ∈ E.

Proof. Because µ is �nite, it su�ces to prove the above for small r. Take for the test func-
tion a smooth approximation of χB(0,1) which is constant and equal to one on B(0, 1),
and vanishes outside B(0, 2). If µ is positive, then convergence gives µ(B(x, r)) 6
(νx(B(0, 2)) + δ)rα for some positive δ. In the general case we use Hahn decomposition
and locality of tangent measures (Proposition 3.12. in [14])).

Convergence from Theorem 3.18 is tested on functions from Cc(Rn). However, for our
applications we need convergence in S ′(Rn). This requires extending the class of test func-
tions to S(Rn) and can be achieved with the following lemma:

Lemma 3.20. Suppose that µ ∈M(Rn) is as in the previous lemma. Then: a) Tan∗α(µ, x) =
Tanα(µ, x) for |µ|-a.e. x ∈ E. b) If g ∈ L1(µ) then Tan∗α(gµ, x) = g(x)Tan∗α(µ, x) for
|µ|-a.e. x ∈ E.

Proof. Let us notice that b) is implied by a) and an analogous property of Tanα(µ, x) (Propo-
sition 3.12. in [14]).

To prove a) it su�ces to use Lemma 3.19. Choose any ϕ ∈ S(Rn). We can write ϕ =∑∞
i=1 ϕi, whereϕi ∈ C∞, supp(ϕi) ⊂ B(0, i)\B(0, i−1) for i > 1 and supp(ϕ1) ⊂ B(0, 1).

Moreover, we can assume that ‖ϕi‖∞ 6 ‖ϕ|B(0,i)\B(0,i−1)‖∞. Then∣∣∣∣ 1

rα

∫
ϕdµx,r −

∫
ϕdνx

∣∣∣∣ 6 ∣∣∣∣ 1

rα

∫ j∑
i=1

ϕidµx,r −
∫ j∑

i=1

ϕidνx

∣∣∣∣+
+

∣∣∣∣ 1

rα

∫ ∑
i>j

ϕidµx,r

∣∣∣∣+

∫ ∑
i>j

|ϕi|d|νx|.

Second term can be majorized by∑
i>j

‖ϕi‖∞|µ|(B(x, ir))

rα
6 C

∑
i>j

iα‖ϕi‖∞,

(we used Lemma 3.19) and the third one is a tail of a convergent series. After taking su�-
ciently big j and then choosing suitable r0, we see that for r < r0 the starting expression is
smaller than any a priori given positive number.
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3.2.2 Distributional de�nition of bundle measures

As tangent measures are in general unbounded, we need to extend the de�nition of bundle
measures to the case of general tempered Radon measures. To achieve this, we exploit the
observation that measures subordinated to φ ’annihilate’ vector-valued functions taking
values in φ⊥.

We say that a bundle φ : Rn \ {0} → G(m,E) is C∞ if (locally) φ(x) =
spanC{e1(x), ..., em(x)}, where (e1(x), ..., em(x)) is an orthonormal system and ei(x) are
C∞ functions. For a bundle φ we can de�ne pointwise its orthogonal complement by
φ⊥(x) := φ(x)⊥. Of course, if φ is C∞, then so is φ⊥ (one can see it while applying Gram-
Schmidt orthogonalization). In this section all bundles are C∞. For the sake of presentation
we assume that (E, 〈·, ·〉E) is isometric to Cd equipped with the standard Hermitian dot
product.

De�nition 3.21. For a C∞-bundle φ, by Sφ(Rn, E) we denote the set of vector-valued
Schwartz functions f such that f(x) ∈ φ(x) for x ∈ Rn \ {0}.

De�nition 3.22. By S ′φ(Rn, E) we understand the class of vectors of tempered distributions
(Λ1, ...,Λd) (d = dimE) satisfying

d∑
i=1

〈Λ̂i, fi〉 = 0

for an arbitrary (f1, ..., fd) ∈ Sφ⊥(Rn, E) . This is equivalent to

d∑
i=1

〈Λi, f̂i〉 = 0.

Further we prove that this class contains bundle measures and that it is preserved by
taking limits of blow-up processes. We use translation and dilation invariance of Mφ, and
Parseval’s identity (see [50], p. 145):

Theorem 3.23. If µ ∈M(Rn) and f ∈ S(Rn), then

〈f, µ〉 =

∫
f(x)dµ(x) =

∫
f̂(ξ)µ̂(ξ)dξ.

Lemma 3.24. Let µ ∈Mφ(Rn, E). If at some point x there exists a tangent (vector) measure
ν ∈ Tan∗(µ, x), then it belongs to S ′φ(Rn, E).

Proof. Step 1. We have ckµx,rk ∈Mφ(Rn, E):
Indeed, for a �xed coordinate µ(j) we have

ckµ̂
(j)
x,rk

(ξ) = ck

∫
Rn
e
−2πi〈ξ, y−x

rk
〉
dµ(j)(y) =
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cke
2πi〈ξ, x

rk
〉
∫
Rn
e
−2πi〈 ξ

rk
,y〉
dµ(j)(y) = cke

2πi〈ξ, x
rk
〉
µ̂(j)
( ξ
rk

)
,

hence, by homogenity of the bundle, ckµ̂x,rk(ξ) ‖ µ̂(ξ).

Step 2. If θ = (θ1, ..., θd) ∈Mφ(Rn, E), then θ ∈ S ′φ(Rn, E):
Let (f1, ..., fd) ∈ Sφ⊥(Rn, E). By Parseval’s identity we get

d∑
i=1

〈θi, f̂i〉 =

∫ d∑
i=1

fi(ξ)θ̂i(ξ)dξ = 0,

because (f1, ..., fd)(ξ) and (θ̂1, ..., θ̂d)(ξ) are orthogonal at each ξ 6= 0.

Step 3. Let (f1, ..., fd) ∈ Sφ⊥(Rn, E). By previous steps we obtain

0 = lim
rj↓0

r−αj

d∑
i=1

〈µ(i)
x,rj

, f̂i〉 =
d∑
i=1

〈ν(i), f̂i〉.

3.2.3 Proof of Theorem 3.6

We begin with invoking a well-known fact, whose proof can be found in [43] (Theorem
7.1.25).

Lemma 3.25. If V ⊂ Rn is a k-dimensional linear subspace, thenHk ¬
V̂

= Hn−k¬
V ⊥

.

Now, by using Lemma 3.20, we can reduce our considerations to the case of �at measures.
In the next two lemmas V is a �xed, k-dimensional linear subspace of Rn.

Lemma 3.26. Suppose that a measure µ ∈ Mφ(Rn, E) has a tangent measure in Tan∗ of
the form vHk ¬

V
, where V is a linear subspace and v is some �xed non-zero vector. Then φ ≡

spanC{v} on V ⊥ \ {0}.

Proof. Denote k = dimV . Let us take any vector-valued function F ∈ Sφ⊥(Rn, E). Then,
by the preceeding lemma and the de�nition of Sφ⊥(Rn, E) we obtain∫

Rn
〈F (x), v〉dHn−k¬

V ⊥
(x) = 0

(here brackets under integral sign denote the standard Hermitian dot product in Cd). Let us
assume that at some x0 ∈ V ⊥ \ {0} we have φ(x0) 6= spanC{v}. This implies the existence
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of w ∈ φ⊥(x0) such that 〈w, v〉 6= 0, say 〈w, v〉 > 0. Take any function g ∈ Sφ⊥(Rn, E)
such that g(x0) = w. Obviously, 〈g(x), v〉 > 0 in some neighbourhood Ux0 of x0. After
multiplying g coordinatewise by a suitable molli�er supported at Ux0 and substituting it in
place of F we get a contradiction.

Our e�orts may be summarized as follows:

Lemma 3.27. Suppose that µ is subordinated to φ and it has at x a non-zero tangent measure
(in Tan∗) of the form vHk ¬

V
. Then we have

dimV > n− a(φ).

Proof. By using Lemma 3.26 we get dimV ⊥ 6 a(φ).

Now we prove the main result of this chapter.

Proof. of Theorem 3.6 Let us recall, that for recti�able measures, the unique tangent measure
at a generic point x is of the form f(x)Hk ¬

Vx
, where f(x) is the density with respect to the

Hausdor� measure and Vx is the tangent plane to µ at x (see Theorem 3.18). Moreover, by
Lemma 3.20, those tangent measures belong to Tan∗.

a) Let ν and F be such that µ ¬F = ν and ν is k-recti�able. By Lemma 3.20 b) we can
assume that µ = ν, just by applying it with g = χF . The result follows from Lemma 3.27.

b) Let µ = fHk ¬
E

be such a measure and assume k < n
2
. Let us observe that, by

Lemma 3.26 for Hk ¬
E

-a.e. x from the set {y : f(y) 6= 0} we have φ ≡ spanC{f(x)} on
V ⊥x \{0}. But dimV ⊥x > n

2
, which means V ⊥x ∩V ⊥y 6= {0} and consequently spanC{f(x)} =

spanC{f(y)} for any two such points. Hence, the density f(x) isHk ¬
E

- a.e. parallel to some
�xed vector, which shows that µ can be identi�ed with a scalar measure.

3.3 Two extensions of Theorem 3.10

3.3.1 Remarks on a theorem concerning s-Riesz sets

Next theorems give examples of Riesz sets.

Theorem 3.28. (F. and M. Riesz) If a measure µ ∈ M(R) has its spectrum inside some
half-line, then it is absolutely continuous with respect to the Lebesgue measure.
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Theorem 3.29. Suppose that a measure µ ∈ M(R2) has its spectrum inside some angle
of measure strictly smaller than π. Then it is absolutely continuous with respect to the full
Lebesgue measure.

Both theorems have its higher dimensional analogues; Theorem 0.3. from [70] (see also
the Introduction, p. 2) generalizes all cases mentioned above. To construct examples of
s-Riesz sets, in [69] the authors used the following slicing property.

Theorem 3.30. ([69], Theorem 1) Let A ⊂ Rn. If there exists a k-dimensional subspace
V ⊂ Rn such that ∀a ∈ Rn (V + a) ∩ A is a Riesz set on V + a, then A is a k-Riesz set.

Because the argument in this theorem is based on the fact that orthogonal projections
do not increase Hausdor� dimension, its easy modi�cation gives a control on projections
of sets:

Theorem 3.31. Let A ⊂ Rn and suppose that µ ∈M(Rn) has its spectrum inside A. If there
exists a k-dimensional subspace V ⊂ Rn such that ∀a ∈ Rn (V +a)∩A is a Riesz set on V +a,
then µ(F ) = 0 for each F such that λV (ΠV (F )) = 0, where λV is the Lebesgue measure on
V .

We postpone the proof of the above theorem to the Chapter 5, where the complete ar-
gument is presented �rst for a particular example of set A; see Theorem 5.10.

Example 3.32. Bounded sets are Riesz sets. Indeed, let A be a bounded set and let f ∈ S(Rn)

be such that f̂ ≡ 1 on some ball containing A. Then we have an identity µ = µ ∗ f ∈ L1(Rn)
for any µ with spectrum inside A.

Example 3.33. Our model set is the following: let V ⊂ Rn be a k-dimensional subspace
and let f : R → R be any strictly increasing function such that limx→+∞ f(x) = +∞. In
coordinates ξ = (ξ1, ξ2) ∈ V × V ⊥ let us denote

Bf = {(ξ1, ξ2) : |ξ1| > 1, |ξ2| 6 f(|ξ1|)}.

Then Rn \ Bf is a k-Riesz set. This is a consequence of Theorem 3.31, previous example and
the fact that slices of Rn \Bf with a�ne subspaces parallel to V are bounded.

Next we present a stronger version of Theorem 3.31 for tempered measures. Namely, we
allow µ̂ to be an L2 function outside s-Riesz sets. In exchange, we require certain stability
with respect to taking ε-neighbourhoods.

Corollary 3.34. Let A ⊂ Rn and µ be a tempered Radon measure. Suppose that:

1. restriction (in the sense of distributions) of µ̂ to Rn \ A is an L2 function,

2. there exists a k-dimensional subspace V ⊂ Rn such that for some small ε > 0, ∀a ∈ Rn

(V + a) ∩ (A+B(0, ε)) is a Riesz set on V + a,
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then µ(F ) = 0 for each F such that λV (ΠV (F )) = 0. In particular, we have dimH(µ) > k.

Proof. Suppose that there exists a bounded set F contradicting the thesis. Assume �rst that
µ̂ = 0 outside A. For any δ > 0 we can �nd a function f ∈ S(Rn) such that f̂ ∈ D(Rn)
and |f(x)− 1| < δ for x ∈ F .

Construction: Take g ∈ D(Rn) such that
∫
g = 1 and denote f = qg. Then f(0) = 1

and there exists U , a neighbourhood of 0, such that |f(x) − 1| < δ for x ∈ U . Of course
∀r>0 f(x

r
)̂ ∈ D(Rn). Taking big r such that F ⊂ rU we get a suitable function. Also, for

su�ciently large r, spec(f) is contained in arbitrarily small ball.

Denote ν = fdµ. For su�ciently small δ, ν(F ) 6= 0, ν is a �nite measure and spec(ν) ⊂
spec(µ) + spec(f) (ν is a product of a tempered distribution µ and a Schwartz function f ).
Hence, the spectrum of ν is as in the Theorem 3.31, which gives a contradiction.

Now, if µ̂ = h 6= 0 outside A for some h ∈ L2, then it su�ces to apply previous rea-
soning for µ−qh (changing µ by absolutely continuous measures has no impact on singular
sets).

Remark 3.35. Sets Bf clearly satisfy assumption (2) of Corollary 3.34.

Let us go further in weakening assumptions and ask what can be said if the restriction
of µ̂ to Rn \ A is close to an L2 function in some sense? For example if it is a Fourier
transform of a distribution from the fractional Sobolev spaceW−s,2? If the negaitve order of
smoothness−smay be taken arbitrarily close to zero, then the lower bound of the Hausdor�
dimension remains the same (though this trade-o� formally costs us expected results about
projections). This answer is obtained by the following lemma which employs a technique
used in [54] and involves using properties of Salem sets.

Lemma 3.36. Let µ ∈ M(Rn) and F be a Borel set such that dimH(F ) = α and µ(F ) 6= 0.
Then, for any 0 < η 6 1 there exists a probability measure on Rn satisfying the following
properties:

a) |ν̂(ξ)| . |ξ|− η4 ,

b) ν is supported on a compact set G s.t. dimM(G) 6 2η,

c) there exists F̃ such that µ ∗ ν(F̃ ) 6= 0 and dimH(F̃ ) 6 α + 2η.

Proof. To get �rst two properties it su�ces to consider an image of a uniform measure on
η-dimensional Cantor subset on R by the n-dimensional Brownian motion. Theorem 12.1.
from [58] or Theorem 1 from Chapter 17 in [48] gives a), while b) is implied by a well known
fact that trajectories of the Brownian motion are almost surely β-Hölder continuous with
0 < β < 1

2
.
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Now let us prove c). For simplicity, suppose that µ is real-valued and µ(F ) > 0. By
regularity and Jordan decomposition theorem for measures, we may assume that F is com-
pact and, for some δ > 0, its δ-neighbourhood Fδ satis�es µ−(Fδ) <

1
100
µ(F ). It su�ces to

rescale previously obtained ν so that G ⊂ B(0, δ
2
) and take F̃ = F +G. Indeed

µ ∗ ν(F +G) =

∫
G

µ(F +G− x)dν(x)

and F ⊂ F +G− x ⊂ Fδ for any x ∈ G, so the integral is positive. Moreover, dimH(F +
G) 6 dimH(F ) + dimM(G) 6 α + 2η, ([54], Lemma 1.3.) which proves the lemma.

The above immediately leads to the announced corollary:

Corollary 3.37. Let A ⊂ Rn and µ be a tempered Radon measure. Suppose that:

1. for an arbitrary s > 0 restriction (in the sense of distributions) of µ̂ toRn \A is a Fourier
transform of an element ofW−s,2,

2. there exists a k-dimensional subspace V ⊂ Rn such that for some small ε > 0 ∀a ∈ Rn

(V + a) ∩ (A+B(0, ε)) is a Riesz set on V + a,

then dimH(µ) > k.

Proof. Suppose that µ(F ) 6= 0, and η > 0 is such that dimH(F ) + 2η < k. For this η, take ν
from Lemma 3.36 and convolve it with µ. Then, the restriction of µ̂ ∗ ν to Rn \ A is in L2,
but (c) from Lemma 3.36 and Corollary 3.34 give a contradiction.

3.3.2 Proof of Theorem 3.7

Before giving the proof in full generality we show how it works in the simplest case of a
line bundle connected with gradients on R3, i.e. when µ = ∇f for f ∈ BV (R3).

Proof. (of Theorem 3.7: the case of gradients) Suppose that there exists a set F such that
dimH(F ) < 2 and µ(F ) = e 6= 0. Without loss of generality we can assume that e =
(0, 0, 1). Let ν be a scalar measure given by the equation:

ν(E) = 〈Πspan{e}(E), (0, 0, 1)〉 for E ⊂ R3.

Then ν(F ) = 1 and for ξ 6= 0 we have

|ν̂(ξ)| = |µ̂(ξ)| · | sin∠(ξ, span{(1, 0, 0), (0, 1, 0)})| = |µ̂(ξ)| · |ξ3|
|ξ|

6 ‖µ‖ · |ξ3|
|ξ|

. (3.5)
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Let us denote

B =
{

(ξ1, ξ2, ξ3) : ξ2
1 + ξ2

2 > 1, |ξ3| 6 log(1 +
√
ξ2

1 + ξ2
2)
}

and
Rj = B ∩

{
(ξ1, ξ2, ξ3) : 2j 6

√
ξ2

1 + ξ2
2 < 2j+1

}
for j = 0, 1, . . .

Thus, for any s > 0:∫
B

|ν̂(ξ)|2|ξ|−2sdξ =
∞∑
j=0

∫
Rj

|ν̂(ξ)|2|ξ|−2sdξ
(3.5)

.
∞∑
j=0

∫
Rj

|ξ3|2

|ξ|2+2s
dξ

6
∞∑
j=0

|Rj| log(1 + 2
j+1
2 )2 · 2−j(2+2s) .

∞∑
j=0

log(1 + 2
j+1
2 )3 · 2−j(2+2s) · 22j

=
∞∑
j=0

log(1 + 2
j+1
2 )3 · 2−2sj < +∞.

By the inequality above and Corollary 3.37 applied to the set A = Rn \ B, we obtain that
dimH(ν) > 2, which gives a contradiction.

Now we will show the proof for general Lipschitz bundles φ : Rn \ {0} → G(m,E).
Let us recall that in fact we assume Lipschitz continuity of the restriction of φ to the unit
sphere. We use the standard metric on G(m,E), that is

dG(m,E)(V,W ) = sup
z∈V ∩Sd−1

dE(z,W ).

Proof. (of Theorem 3.7) For i = 1, . . . , J let us denote Wi = span{φ(Vi \ {0})}. Let us
assume that for some S ⊂ Rn such that dimH(S) < 2, we have µ(S) = e 6= 0, and take j
satisfying e /∈ Wj . There exists a functional θ ∈ E∗ satisfyingWj ⊂ ker θ and θ(e) 6= 0. Its
value on v may be computed as follows: project v on spanC{e} along a subspace containing
Wj (but not e) and take scalar product with e. Let ν ∈ M(Rn) be de�ned by the formula
ν = θ(µ). Then we have ν̂ = θ(µ̂(ξ)), ν(S) 6= 0 and for some constant C = C(ker θ, e)
the following estimate holds

|ν̂(ξ)| 6 C|µ̂(ξ)| · | sin∠(φ(ξ),Wj)| = C|µ̂(ξ)| · sup
z∈φ(ξ)∩Sd−1

dE(z,Wj) 6 (3.6)

6 C‖µ‖ · sup
z∈φ(ξ)∩Sd−1

dE(z,Wj)

This is obvious if e is orthogonal toWj (we can take C = 1). If not, we use the fact that two
functionals with the same kernel are proportional. Moreover, using the inclusion

φ(ξ0) ⊂ span{φ(Vj \ {0})} = Wj ∀ξ0∈Vj∩Sn−1 ,
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homogenity and Lipschitz continuity of a bundle, respectively, we obtain

sup
z∈φ(ξ)∩Sd−1

dE(z,Wj) 6 sup
z∈φ(ξ)∩Sd−1

dE(z, φ(ξ0)) = dG(m,E)(φ(ξ), φ(ξ0)) =

dG(m,E)

(
φ

(
ξ

|ξ|

)
, φ(ξ0)

)
. dRn

(
ξ

|ξ|
, ξ0

)

By taking ξ0 ∈ Vj ∩ Sn−1 such that dRn
(

ξ
|ξ| , ξ0

)
= dRn

(
ξ
|ξ| , Vj ∩ S

n−1

)
, and using above

inequalities we �nally get

|ν(ξ)| . dRn

(
ξ

|ξ|
, ξ0

)
' dRn

(
ξ

|ξ|
, Vj

)
. (3.7)

In coordinates ξ = (ξ1, ξ2) ∈ Vj × V ⊥j let Bf be given by

Bf = {(ξ1, ξ2) : |ξ1| > 1, |ξ2| 6 f(|ξ1|)},

where f(t) = log(1 + t). Then Rn \Bf is a 2-Riesz set (see Example 3.33) and we can apply
Corollary 3.37. Indeed, we will show that the inverse Fourier transform of a distribution
(ν̂1Bf ) is in W−s,2 for an arbitrary s > 0.

By the inequality (3.7) we obtain∫
Bf

|ν̂(ξ)|2|ξ|−2sdξ .

(3.7)

.
∫
{16|ξ1|<∞}

∫
{|ξ2|6f(|ξ1|)}

dRn
( ξ
|ξ|
, Vj

)2

|ξ|−2sdξ2dξ1

.
∫
{16|ξ1|<∞}

f(|ξ1|)(n−2)

(
f(|ξ1|)
|ξ1|

)2

|ξ1|−2sdξ1

For an arbitrary γ > 0, f(u) 6 Cγu
γ when u > 1, so the last integral may be majorized,

up to a constant, by ∫
16|ξ1|<∞

|ξ1|γn−2−2sdξ1 = 2π

∫ ∞
1

tγn−1−2sdt,

which is �nite for γ < 2s
n

. Choosing such γ we obtain ‖(ν̂1Bf )q‖W−s,2 < ∞, so by Corol-
lary 3.37 we get ν(S) = 0, which gives a contradiction.

Remark 3.38. The proof works if we assume Lipschitz continuity of φ at points from ∪iVi ∩
Sn−1 only.

Remark 3.39. The structural assumption in Theorem 3.7 is, by a simple compactness argu-
ment, equivalent to the condition (1.3) discussed in the Introduction.

27



3.3.3 Proof of Theorem 3.8

As we have seen in the proof of Theorem 3.6, the homogenity condition gives us a possibil-
ity to relate geometry of singular sets with values of bundles measures. Proof of Theorem
3.8, which employs similar principles, is a consequence of the following qualitative refor-
mulation of Theorem 3 in [69]:

De�nition 3.40. For A ⊂ Rn, by N(A) we denote the set

{v ∈ Rn : ‖v‖ = 1, λv(Πv(A)) = 0}.

Here λv stands for the 1-dimensional Lebesgue measure on span{v}.

Theorem3.41. Ifφ : Rn\{0} → G(m,E) is a homogeneous bundle, Hölder with an exponent
> 1

2
, then for each µ ∈Mφ(Rn, E) and an arbitrary Borel set A ⊂ Rn we have

N(A) ⊂ φ−1(µ(A)) := {u ∈ Rn : ‖u‖ = 1, µ(A) ∈ φ(u)}.

Note that it proves Conjecture 3.4 if we replace dimH by the lowest dimension of an
a�ne subspace on which a measure does not vanish. Next we sketch the proof for general
bundles.

Proof. (Sketch) Let A ⊂ Rn, µ(A) = e, λ(Πv(A)) = 0 and assume that the thesis does not
hold, i.e. v /∈ φ−1(e) for some v. We can choose a functional θ ∈ E∗ satisfying φ(v) ⊂ ker θ
and θ(e) 6= 0. The rest of the proof goes similarly as in Theorem 3.7. We replace Vj by
span{v} and, by making a use of Hölder continuity, we prove that µ̂ is square summable in
Bf . Instead of Corollary 3.37 we invoke Corollary 3.34.

To prove Theorem 3.8, we will need a part of Besicovitch-Federer projection theorem
(see Theorem 18.1 in [57]):

Theorem 3.42. Let A ⊂ Rn be a Borel set with Hm(A) < ∞, where m < n is an integer.
ThenA is purelym-unrecti�able if and only ifHm(ΠV (A)) = 0 for almost all V ∈ G(m,Rn)
(with respect to the natural measure on the Grassmannian).

Proof. (of Theorem 3.8) Suppose that µ(F ′) 6= 0 for some F ′ ⊂ F . Then, by Theorem 3.41,
N(F ′) ⊂ φ−1(µ(F ′)). But, by Besicovitch-Federer theorem, N(F ′) is a dense subset of
Sn−1 so, by the continuity of the bundle,⋂

ξ∈Rn\{0}

φ(ξ) 6= {0}.

which gives a contradiction.

Remark 3.43. Because in the proof of Corollary 3.37 we modi�ed a measure by convolving it
with a Salem measure, analogous method does not give recti�ability in Theorem 3.7.
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Remark 3.44. Theorems 3.7 and 3.8 can be proved for more general class than homogeneous
bundles. For example, since addition of square-summable functions do not have any in�uence
on singular sets of measures, we may admit certain error in the sense of L2 norm (cf. original
formulation of Theorem 3.10 in [69]).

3.4 Connections with PDE-constrainted measures

In this section we show applications of our results to measures naturally arising in some
classical di�erential problems.
Example 3.45. If (Ds

1f,D
s
2f,D

s
3f) = µ ∈ M(R3,R3) for some natural number s and f ∈

L1(R3), then we have µ̂(ξ) = (2πi)s(ξs1, ξ
s
2, ξ

s
3)f̂(ξ), so φ(ξ) = spanC{(ξs1, ξs2, ξs3)} and E =

C3. Let us take

V1 = span{e2, e3}, V2 = span{e1, e3}, V3 = span{e1, e2}.

Then φ(Vj \ {0}) = Vj ⊗ C and ∩3
i=1Vi = {0}, so assumptions of Theorem 3.7 are ful�lled.

In particular, we obtained a purely Fourier analytic proof of dimension estimate for gradients
from BV (R3).

Example 3.46. (cf. [79]) Let V,W be some �nitely dimensional vector spaces, n > 1 and
s ∈ N. Suppose that A(D) is a homogeneous di�erential operator of order s on Rn from V to
W , that is

A(D)u =
∑

α∈Nn,|α|=s

Aα(∂αu)

for u ∈ C∞(Rn, V ), where Aα ∈ L(V,W ). We say that A(D) is canceling if⋂
ξ∈Rn\{0}

A(ξ)[V ] = {0},

where A(ξ) stands for the symbol of A. Assume that in the above dim V = 1 and for some
f ∈ L1(Rn) we have

A(D)f = µ (3.8)
in the sense of distributions. If A is elliptic (A(ξ) 6= 0 for ξ 6= 0), then the measure µ is subor-
dinated to a nonconstant bundle φ(ξ) = spanC{A(ξ)}. In this setting, canceling condition is
equivalent to non-constancy of φ.

In the case of general bundles with values in G(m,E), the l-antisymmetry condition
can be formulated as follows: for each (l + 1)-dimensional subspace V ⊂ Rn there exist
ξ1, ..., ξj ∈ V ∩ Sn−1 such that φ(ξ1) ∩ ... ∩ φ(ξj) = {0}.
Example 3.47. (Continuation of Example 3.46) Let us assume that A is as in Example 3.46
and dimV = m, i.e.

A(ξ) =

 | |
A1(ξ) . . . Am(ξ)
| |


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and A1(ξ), ...,Am(ξ) are linearly independent. Then the operator A satis�es the canceling
condition if and only if the bundle

φ(ξ) = spanC{A1(ξ), ...,Am(ξ)}

is (n− 1)-antisymmetric.

Example 3.48. ([5], Theorem 1.3., Corollary 1.4.) Suppose that for A(D) as before we have

A(D)µ = 0

in the weak sense. If A(ξ) has constant rank, then any such measure belongs to the class given
by the bundle φ(ξ) = ker{A(ξ)} and the empty l-wave cone condition from [5] reads as⋂

U∈G(l,V )

φ(U \ {0}) = {0}. (3.9)

In the mentioned paper it is proved, among other things, that under this assumption, any
such measure is at least l-dimensional. Hence, in this setting the constraint in Theorem 3.7 is
a particular case of the 2-wave cone condition. However, we do not require any connections
with di�erential operators or even smoothness of the bundle. In fact, our proof requires only
Lipschitz continuity of φ at points from ∪iVi ∩ Sn−1.

The next example contains even more concrete application of the above.
Example 3.49. (cf. [73]) Let µ = (µ1, . . . , µn) ∈ M(Rn,Rn) be a divergence-free measure,
i.e. a measure satisfying the equation

div µ = 0 (3.10)
in the sense of distributions. Below we compute a bundle φ to which µ is subordinated. By
taking the Fourier transform of (3.10) we obtain

ξ1µ̂1 + ξ2µ̂2 + · · ·+ ξnµ̂n = 0, (3.11)
hence 〈ξ, µ̂〉Cn = 0. This shows that φ(ξ) = (spanC{ξ})⊥. Obviously, we have a(φ) = 1, so
Theorem 3 from [69] and Theorem 3.8 can be applied. In particular, dimH(µ) > 1.

Methods of this chapter can also be easily adapted to the study of the matrix-valued
measures.
Example 3.50. Let f = (f1, . . . , fd) ∈ BV (Rn)d be a vector-valued function with bounded
variation. We have

∇̂f(ξ) =

ξ1f̂1 . . . ξnf̂1
... . . .

ξ1f̂d ξnf̂d

 =


f̂1

f̂2
...
f̂d

 ·

ξ1

ξ2
...
ξn


t

. (3.12)

Thus,∇f is subordinated to the bundle given by the formula

φ(ξ) = spanC{v · ξt : v ∈ Cd}.
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Example 3.51 (cf. [5], Subsection 3.2.). Suppose that f = (f1, . . . , fn) ∈ BD(Rn) is a
function with bounded deformation, i.e. a function whose symmetrized gradient is a �nite,
matrix-valued measure:

∇f + (∇f)t

2
∈M(Rn,Rn×n). (3.13)

By (3.12), we have that this measure is subordinated to the bundle

φ(ξ) = spanC{
v · ξt + ξ · vt

2
: v ∈ Cn} = spanC{

v ⊗ ξ + ξ ⊗ v
2

: v ∈ Cn}. (3.14)

Below, for n = 3, we will show that assumptions of Theorem 3.7 hold. From the formula (3.12),
the Fourier transform of the symmetrized gradient of f is the following 3× 3 matrix: ξ1f̂1

ξ1f̂2+ξ2f̂1
2

ξ1f̂3+ξ3f̂1
2

ξ1f̂2+ξ2f̂1
2

ξ2f̂2
ξ2f̂3+ξ3f̂2

2
ξ1f̂3+ξ3f̂1

2
ξ2f̂3+ξ3f̂2

2
ξ3f̂3

 . (3.15)

Let us take for Vi i = 1, 2, 3 the same spaces as in Example 3.45 and de�ne W1,2,W2,3,W3,1

by
W1,2 = {(ξ1, ξ2, ξ3) ∈ R3 : ξ1 = ξ2}, (3.16)

W2,3 = {(ξ1, ξ2, ξ3) ∈ R3 : ξ2 = ξ3}, (3.17)

W3,1 = {(ξ1, ξ2, ξ3) ∈ R3 : ξ3 = ξ1}. (3.18)
We see that V = ∩3

i=1φ(Vi \ {0}) contains matrices with zeros on the diagonal. Moreover,
entries indexed with (i, j) and (j, i) of any matrix from
V ∩ φ(Wi,j \ {0}) must be equal to zero. Thus V1, V2, V3,W1,2,W2,3,W3,1 are the desired
2-dimensional subspaces.
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Chapter 4

Hausdor� dimension of measures with
arithmetically restricted spectrum

In this chapter we provide an estimate from below for the lower Hausdor� dimension of
measures on the unit circle based on the arithmetic properties of their spectra. We obtain
those bounds via adaptation of results from [7] for vector-valued martingales on q-regular
trees to a speci�c backwards martingale. To show the sharpness of our method, we im-
prove the best numerical lower bound known for the Hausdor� dimension of certain Riesz
products.

4.1 Preliminaries and motivation

The most common way to estimate the lower Hausdor� dimension of a measure using Har-
monic Analysis tools is the so-called energy method. It involves examination of the summa-
bility properties of the Fourier coe�cients of a measure. In general, however, the energy
and Hausdor� dimensions may be di�erent (see e.g. Proposition 3.4 in [37] or Chapter 13
in [57]). In this chapter, we investigate not only the size of the spectrum, but also its arith-
metic properties.

By T = R/Z we denote the circle group.

De�nition 4.1. Let A ⊂ Z. We denote by MA(T) the set of �nite Borel measures satisfying
µ̂(n) = 0 for any n ∈ Z \ A.

Throughout this chapter q is a �xed integer greater than 2. The symbol ‖ means the
relation of exact division of integers. That is an ‖ b if and only if an|b but an+1 - b. For any
B ⊂ {1, 2, . . . , q − 1}, let us de�ne

CB = {kqn : k ∈ Z, k mod q ∈ B, n > 0} ∪ {0}.
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We denote the group of residues modulo q by Zq and identify the set {0, 1, . . . , q−1}with it
in the natural way. Our �rst result may be thought of as an uncertainty principle (see [52]).

Theorem 4.2. Let B ⊂ Zq \ {0} and let µ ∈ MCB(T) be a �nite non-negative measure. If
B ⊂ H \ {0} for some subgroup H ⊂ Zq, then

dimH(µ) > 1− log |H|
log q

.

Moreover, if the inclusion B ⊂ H \ {0} is proper, then the above inequality is strict in the
following sense: there exists δ > 0 independent of µ such that

dimH(µ) > 1− log |H|
log q

+ δ.

In particular, if B 6= Zq \ {0}, then dimH(µ) > δ for any non-negative µ ∈MCB(T).

This theorem is a corollary of more general Theorem 4.17 below. The latter theorem
provides better bounds based on the arithmetic structure of the set B. In particular, it de-
livers simple numeric bounds for δ in Theorem 4.2. However, Theorem 4.17 requires more
notation, so we leave its formulation for a while.

We confront our methods with the question about determining the dimension of Riesz
products. For convenience, let us focus on the class given by

µa,q =
∞∏
k=0

(
1 + a cos(2πqkx)

)
, (4.1)

where a ∈ [−1, 1]. One of the most important advances in the mentioned problem is con-
tained in the seminal work [65] of Peyrière. In this paper, among other things, he proved
the identity

dimH(µa,q) = 1−
∫ 1

0
log(1 + a cos(2πx))dµa,q

log q
. (4.2)

We note that Peyrière considered Riesz products of more general type. Results of his work go
beyond Hausdor� dimension estimates and shed light on random nature of those measures.
Connections between random and deterministic measures were studied in a systematic way
by Fan (cf. [25],[29],[26],[28]). In particular, in [28] he gave an approximation result using
probabilistic methods∣∣∣∣ dimH(µa,q)−

(
1− 1

log q

1∫
0

log
(
1 + a cos(2πx)

)(
1 + a cos(2πx)

)
dx
)∣∣∣∣ 6 8π2a

(q + 3)2 log q
,

(4.3)
when |a| 6 cos

(
π

b q+1
2
c+1

)
.

In contrast to the above, we are mainly interested in the case of (heuristically) the most
singular Riesz products, i.e when |a| is close or equal to 1. For |a| su�ciently close to 1 and
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su�ciently big q’s, we improve the best numerical lower bounds for dimH(µa,q) derived
directly from formula (4.2) (by straithforward estimates of the integral from (4.2)) and those
obtained by potential-theoretic methods (see [37], Corollary 3.2. and [57], Corollary 13.4).
The following theorem is a corollary of the already mentioned Theorem 4.17 below.

Theorem 4.3. For any integer q > 4 and a ∈ [−1, 1], we have

dimH(µa,q) > 1− 1

q log q

q−2∑
j=1

(
1−

cos (2j+1)π
q

cos π
q

)
log
(

1−
cos (2j+1)π

q

cos π
q

)

Theorem 4.3 delivers bounds which may be thought of as extensions of (4.3).

Lemma 4.4. For any even q > 4, the following identity holds:

q−2∑
j=1

(
1−

cos (2j+1)π
q

cos π
q

)
log
(

1−
cos (2j+1)π

q

cos π
q

)
=

(1− log 2)q + 2 log 2 +
2

q cos π
q

qπ
4∫

π
2

log(cos2 z) sin
2z

q
dz − q log cos

π

q
. (4.4)

Proposition 4.5. For any even integer q > 4 and a ∈ [−1, 1], we have

dimH(µa,q) >

1− 1− log 2

log q
− 1

q log q

(
2 log 2 +

2

q cos π
q

qπ
4∫

π
2

log(cos2 z) sin
2z

q
dz

)
+

log cos π
q

log q
.

Proposition 4.6. For any integer q > 4 and a ∈ [−1, 1], we have

dimH(µa,q) > 1− 1− log 2

log q
−

4π + π2

2e

q log q
− 1

log q

( 1

cos π
q

− 1
)
.

By virtue of the identity
∫ 1

0
(1+cos 2πx) log(1+cos 2πx) dx = 1− log 2, when a = ±1,

the above expressions agree with the bound that one would expect from (4.3) up to asymp-
totically the most signi�cant terms. In Proposition 4.5, the expression in the parentheses is
of order O(1

q
), so in the case of even q we have the same asymptotics as in (4.3) also up to

lower order terms (see Remark 4.22).

We remark that the papers [9], [26], [28], [37], [47], [57], [65] treat the case of more
general Riesz products

∞∏
k=0

(1 + ak cos(2πqkx)), {qk}k ⊂ N, ak ∈ [−1, 1],
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assuming various size or divisibility constraints on {qk}k. In the most general case, the result
obtained by Hare and Roginskaya in [37] assumes that {qk}k is a dissociate and increasing
sequence of integers. It seems impossible to get any result without the assumption qk|qk+1

by adapting methods from this chapter in a straightforward way. In [37] and [57] the
authors already relaxed this constraint. Moreover, in the case qk = qk and ak ≡ a our
bounds are worse than most of those already known in the literature when the number a is
close to zero.

Our methods are quite di�erent from that of [26], [28], [47], and [65]; the proofs pre-
sented here are self-contained. In particular, we do not use any sort of an ergodic theo-
rem. We adjust the methods for estimating the lower Hausdor� dimension of the so-called
Sobolev martingales from [7]. Those martingales are vector-valued. The reasoning sim-
pli�es signi�cantly in the present case of non-negative scalar measures. More speci�cally,
we will relate a backwards martingale of periodic functions to a measure µ ∈MCB(T) and
extract the estimate for dimH(µ) from the growth bounds for the corresponding martingale.

4.2 Transference of results from martingale spaces

We will be representing the points of T in the q-ary system. We denote by x(j) the j-th
digit of x ∈ T, that is,

x =
∞∑
j=1

x(j)

qj
, x(j) ∈ {0, 1, 2, . . . , q − 1},

with the convention that if there are two such representations, then we choose the �nite
one.

4.2.1 Approximating trees and the backwards martingale

Before we give precise formulas for the martingale of periodizations, let us brie�y discuss
our strategy.

Our purpose is to de�ne, for any natural N , a tree TN that will be used to sample mea-
sures up to the scale ∼ q−N . Namely, the root of the tree will encode T, the set of leaves
will represent the arcs of length ∼ q−N , and the intermediate vertices will correspond to
some periodic sets. This discretization procedure will allow us to obtain a bound for martin-
gale approximations of a given measure (Lemma 4.19 below), depending on certain space of
admissible martingale di�erences (which is computable in terms of Fourier coe�cients, cf.
Lemma 4.9 below). The obtained inequality will allow us to use a Frostman-type Lemma 2.4
from [75]. Unfortunately, we cannot simply refer to that lemma, so we adjust its proof to
our case; in fact, the proof of Theorem 4.17 presented at the end of this section follows the
lines of the proof of the said lemma.
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De�nition 4.7. Let us introduce the set

αN ;∅ = {x ∈ T : x(j) = 0 for j > N}.

For any sequence (i1, . . . , ik) with k 6 N and ij ∈ {0, 1, . . . , q − 1} for j = 1, 2, . . . , k, we
also introduce the set

αN ;i1,i2,...,ik = {x ∈ αN ;∅ : x(N − j + 1) = ij for all j = 1, 2, . . . , k}.

The above sets will be the vertices of the tree TN described in the forthcoming de�nition.
This tree will be regular (each parent has q children) and moreover, the sons of a parent will
be enumerated by numbers from 0 to q − 1.

De�nition 4.8. We de�ne the tree TN according to the following rules:

1. the root of TN is the set {αN ;∅},

2. the j-th child of the root is αN ;j , here j = 0, . . . , q − 1,

3. the j-th child of the vertex corresponding to αN ;i1,...,ik−1
is αN ;i1,...,ik−1,j , here j =

0, . . . , q − 1.

For a vertex α, we denote its j-th child by α[j]. Let us call the set of vertices whose distance
from the root is exactly k by Tk,N , where 0 6 k 6 N .

Note that TN is a q-regular tree of heigth N such that the elements of Tk,N are qk−N -
periodic subsets of T.

We recollect some basic facts about backwards martingales of periodic functions
(see [13] and [35]). Consider the discrete probability space (αN ;∅, 2

αN ;∅ , νN), where νN is
the uniform probability measure on αN,∅:

νN =
1

qN

qN−1∑
j=0

δ j

qN
. (4.5)

Pick a function f ∈ C1(T) and de�ne

fk(x) =
1

qN−k

qN−k−1∑
j=0

f
(
x+

j

qN−k

)
, k = 0, 1 . . . , N, x ∈ αN,∅. (4.6)

We restrict our attention to x ∈ αN,∅ only, even though the previous formula makes sense
for arbitrary x ∈ T. The function fk is qk−N - periodic, so, it is constant on each of the
sets corresponding to the vertices in Tk,N . That means we can identify fk with a function
on Tk,N . One may verify that the sequence f0, f1, . . . , fN is a martingale with respect to the
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�ltration {σ(Tk,N)}Nk=0, where σ(Tk,N) is the algebra of all qk−N -periodic subsets of αN,∅.
Note that the elements of Tk,N are the atoms of σ(Tk,N).

We may express the fk in Fourier terms:

fk(x) =
1

qN−k

qN−k−1∑
j=0

∑
l∈Z

f̂(l)e
2πil(x+ j

qN−k
)

=
∑
l∈Z

(
f̂(l)e2πilx · 1

qN−k

qN−k−1∑
j=0

e
2πi lj

qN−k
)
=
∑
qN−k|l

f̂(l)e2πilx, (4.7)

for any x ∈ αN ;∅ (this relation also holds true for any x ∈ T). Hence, the k-th martingale
di�erence may be expressed as

dfk(x) = fk(x)− fk−1(x) =
∑
qN−k‖l

f̂(l)e2πilx, x ∈ αN ;∅. (4.8)

We use the notation

Rq
0 =

{
(x0, . . . , xq−1) ∈ Rq :

q−1∑
j=0

xj = 0
}

and identify vectors x ∈ Rq with functions on Zq in the natural way.

Lemma 4.9. For any α ∈ Tk−1,N we have(
dfk(α[0]), dfk(α[1]), . . . , dfk(α[q − 1])

)
=

q−1∑
m=1

(∑
n∈Z

f̂
(
(m+ nq)qN−k

)
e2πi(m+nq)qN−kx0

)
ωm,

where x0 ∈ α and

ωm := (ωmj)q−1
j=0 :=

(
e

2πimj
q

)q−1

j=0
, j = 0, 1, . . . , q − 1.

De�nition 4.10. By the Discrete Fourier transform on Zq (henceforth called Zq-Fourier
transform for convenience) we understand the linear operator on Cq given by the matrix(

1
q
e−

2πi
q
mn
)q−1

m,n=0
.

Remark 4.11. Vectors ωm are the rows of the inverse q × q Fourier matrix (DFT matrix).
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Remark 4.12. In other words, the vector (dfk(α[0]), dfk(α[1]), . . . , dfk(α[q−1])) is the inverse
Zq-Fourier transform of the vector (e0, e1, . . . , eq−1) with e0 = 0 and

em =
∑
n∈Z

f̂((m+ nq)qN−k)e2πi(m+nq)qN−kx0 , m = 1, 2, . . . , q − 1.

The above lemma is standard, see, e.g. [13]. We provide its proof for completeness.

Proof of Lemma 4.9. Let us prove our formula for each coordinate individually. For any j,
j = 0, 1, . . . , q − 1, we would like to show

dfk(α[j]) =

q−1∑
m=1

∑
n∈Z

f̂
(
(m+ nq)qN−k

)
e2πi(m+nq)qN−kx0e

2πimj
q .

Note that this expression does not depend on x0 ∈ α since qN−k(x0 − x′0) ∈ Z for any
other x′0 ∈ α. On the other hand, we may use (4.8) by representing x ∈ α[j] as x =
x0 + j

qN−k+1 , where x0 ∈ α:

dfk(x) =
∑
qN−k‖l

f̂(l)e2πilx =

q−1∑
m=1

∑
n∈Z

f̂
(
(m+ nq)qN−k

)
e2πi(m+nq)qN−kx =

q−1∑
m=1

∑
n∈Z

f̂
(
(m+ nq)qN−k

)
e

2πi(m+nq)(x0+ j

qN−k+1 )qN−k
=

q−1∑
m=1

∑
n∈Z

f̂
(
(m+ nq)qN−k

)
e2πi(m+nq)qN−kx0e

2πimj
q .

De�nition 4.13. Let WB be the linear subspace of Rq
0 consisting of vectors dwhoseZq-Fourier

transform vanishes outside B:

WB =
{
d ∈ Rq

0 : ∀m ∈ Zq \B
q−1∑
j=0

e−
2πimj
q dj = 0

}
.

Lemma 4.14. Let f ∈ C1(T) be such that f dx ∈ MCB(T). For any α ∈ TN , we have the
inclusion (

dfk(α[0]), dfk(α[1]), . . . , dfk(α[q − 1])
)
∈ WB.

Proof. In view of Remark 4.12, em = 0 for any m ∈ B in the terminology of that remark,
provided f dx ∈MCB(T).
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4.2.2 A general dimension estimate

Consider an auxillary function κ : R+ → R de�ned by the rule

κ(θ) = sup
{
θ log

(1

q

q∑
j=1

|1 + vj|
1
θ

)
: v ∈ WB and ∀j vj > −1

}
. (4.9)

Note that κ is continuous and convex, and therefore, has the left derivative at 1. Indeed, by
the Hölder’s inequality, for a �xed v ∈ WB , the function

θ 7→ θ log
(1

q

q∑
j=1

|1 + vj|
1
θ

)
(4.10)

is convex, and so is κ as a pointwise supremum of convex functions. Using this, we may
compute its left derivative:
Lemma 4.15. We have

κ′(1) = inf
{
− 1

q

q∑
j=1

(1 + vj) log(1 + vj) : v ∈ WB and ∀j vj > −1
}
, (4.11)

where the derivative means the left derivative.

Proof. Let us call S = {v ∈ WB : vj > −1} and for a �xed v ∈ WB denote κv the function
given by (4.10). It is easy to verify that the right-hand side of (4.11) is equal to infv∈S κ

′
v(1)

and that κ(1) = κv(1) = 0. By the convexity of κv, we have

κv(θ)− κv(1)

θ − 1
6 κ′v(1),

where θ ∈ (0, 1). Thus,
κ(θ)− κ(1)

θ − 1
6 inf

v∈S
κ′v(1)

and
κ′(1) 6 inf

v∈S
κ′v(1).

Now we will prove the reverse inequality. In view of the fact that κ′(1) exists, for any ε > 0
we can �nd vε ∈ S, such that for some θ we have

κ′(1) >
κ(θ)− κ(1)

θ − 1
> κ′vε(1)− ε.

Indeed, the �rst inequality follows from convexity. To get the second, we replace κ with
κvε(for a suitable choice of vε we make arbitrarily small error), use the mean value theorem
and the fact that κ′v(θ) tends to κ′v(1) as θ → 1 uniformly with respect to parameters v ∈ S.
This obviously gives

κ′(1) > inf
v∈S

κ′v(1).
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The next lemma is simply a reformulation of the de�nition of κ.

Lemma 4.16. For any a > 0 and any vector b = (bi)i ∈ WB such that bj > −a for
any j = 0, 1, . . . , q − 1, we have(

1

q

q∑
j=1

|a+ bj|p
) 1

p

6 aeκ(p−1).

Our main tool is the following principle established in [7] and adjusted to our case.

Theorem 4.17. For any �nite non-negative measure µ ∈MCB(T), we have

dimH(µ) > 1 +
κ′(1)

log q
.

Let {ΦN}N>1 be a sequence of non-negative and smooth functions with the following
properties:

ΦN(x) =


qN on [− 1

2qN
, 1

2qN
];

6 qN on [− 1
2qN−1 ,

1
2qN−1 ] \ [− 1

2qN
, 1

2qN
];

0 otherwise.

Observe that

µ
([
x− 1

2qN
, x+

1

2qN

])
6

1

qN
ΦN ∗ µ(x) 6 µ

([
x− 1

2qN−1
, x+

1

2qN−1

])
(4.12)

for any x ∈ T, in particular, for x ∈ αN ;∅. The inequalities (4.12) establish a relationship
between metric measure structures on TN and T. Henceforth, we will be using results
concerning the backwards martingale generated by the continuous function f = ΦN ∗ µ.
Note that f dx ∈MCB(T) provided µ ∈MCB(T).

Lemma 4.18. Consider the martingale {fk}Nk=0 generated by f = ΦN ∗ µ via formula (4.6).
If µ ∈MCB(T), then

‖f‖Lp(νN ) 6 eκ(p−1)N‖f0‖Lp(νN ) 6 (q + 1)eκ(p−1)N‖µ‖. (4.13)

We recall that νN is the counting measure de�ned in (4.5).

Proof. Let us prove the �rst inequality in (4.13). This inequality will follow provided we
justify the single step bound

‖fk‖Lp(νN ) 6 eκ(p−1)‖fk−1‖Lp(νN )
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for any k = 1, 2 . . . , N . This inequality, in its turn, follows from even more localized ones:
for any α ∈ Tk−1,N , we have(∑

x∈α

|fk(x)|p
) 1
p
6 eκ(p−1)

(∑
x∈α

|fk−1(x)|p
) 1
p
.

To prove this inequality, we note that since µ > 0, the sequence {fk}k consists of non-
negative functions. What is more, fk = fk−1 + dfk and the vector

dfk|α =
(
dfk(α[0]), dfk(α[1]), . . . , dfk(α[q − 1])

)
lies inWB by Lemma 4.14. So, the desired inequality is proved by application of Lemma 4.16
with a = fk−1(α) and b = dfk|α.

To prove the second inequality in (4.13), we use that f0 ≡ 1
qN

∑
x∈TN,N ΦN∗µ(x) onαN ;∅:

‖f0‖Lp(νN ) =
1

qN

∑
x∈TN,N

ΦN ∗ µ(x)
(4.12)
6

∑
x∈TN,N

µ
([
x− 1

2qN−1
, x+

1

2qN−1

])
6 (q + 1)‖µ‖.

Lemma 4.19. For any any β < 1 + κ′(1)
log q

, there exists γ such that

1

qN

∑
x∈C

f(x) .
(
#C q−βN

)γ‖µ‖ (4.14)

for any C ⊂ αN ;∅, with the constant independent of N .

Proof. Let p ∈ (1,∞) be a real to be chosen later. By Hölder’s inequality and Lemma 4.18,
we obtain

1

qN

∑
x∈C

f(x) 6 ‖f‖Lp(νN )‖χC‖Lp′ (νN ) = ‖f‖Lp(νN )(q
−N#C)

p−1
p .

eκ(p−1)Nq−
p−1
p
N(#C)

p−1
p ‖µ‖ = eκ(p−1)Nq

p−1
p

(β−1)N(q−βN#C)
p−1
p ‖µ‖. (4.15)

Hence (4.14) is true with γ = p−1
p

when eκ(p−1)q
p−1
p

(β−1) < 1, that is if

κ(p−1) + (β − 1)
p− 1

p
log q < 0.

This holds true when (β − 1) log q < κ′(1) and p is su�ciently close to 1.
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As we have already said, the reasoning presented below is very much similar to the
proof of Lemma 2.4 in [75].

Proof of Theorem 4.17. Assume the contrary: there exists a Borel set F such that

dimH(F ) < β1 < 1 +
κ′(1)

log q
and µ(F ) = c1 > 0.

For each su�ciently small δ > 0, there exists a covering C of F by the arcs B(xi, ri) with
centers xi and radii ri such that ri < δ and

∑
i r
β1
i = c2 <∞. For j = 1, 2 . . . let

Cj =
{
B(xi, ri) ∈ C : q−j 6 ri < q−j−1

}
.

We have ∑
rβ1i '

∑
j

q−jβ1#Cj,

so, in particular, #Cj . c2q
jβ1 for all j. By the pigeonhole principle, there existsN & log 1

δ
such that

µ
(
F
⋂( ⋃

B(xi,ri)∈CN

B(xi, ri)
))

>
6

π2

c1

N2
.

Since any B(xi, ri) ∈ CN can be covered by at most q + 1 arcs from the collection {x +
[− 1

2qN
, 1

2qN
] : x ∈ TN,N}, there exists a covering

C̃N ⊂
{
x+

[
− 1

2qN
,

1

2qN

]
: x ∈ TN

}
such that #C̃N 6 #CN and

µ
(
∪L∈C̃N L

)
>

1

q + 1
µ
(
F
⋂( ⋃

B(xi,ri)∈CN

B(xi, ri)
))
.

Let us call Mid(C̃N) the set of midpoints of arcs from C̃N . For the previously obtained N ,
we apply (4.12) and Lemma 4.19 with β > β1 and obtain

6

π2

c1

N2(q + 1)
6 µ(∪L∈C̃NL) 6

1

qN

∑
x∈Mid(C̃N )

f(x) .
(
#CN q−βN

)γ‖µ‖ .
cγ2q

γ(β1−β)N .

Hence we have N2q−c3N > c4 > 0 for some positive constants c3, c4, independent of δ and
N . On the other hand, we have N →∞ when δ → 0, which leads to a contradiction.
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4.3 Proof of Theorem 4.2

Proof of Theorem 4.2. In view of Theorem 4.17, it su�ces to show the inequality

κ′(1) > − log |H|

providedB ⊂ H\{0} and κ′(1) > − log |H| in the case where the latter inclusion is proper.
We will show that

κ
(1

p

)
6
p− 1

p
log |H| (4.16)

for any p ∈ (1,∞) and this inequality is strict if B 6= H . Until the end of the proof the
Fourier transform means the Fourier transform on Zq. The normalization is the same as in
the De�nition 4.10.

Let v ∈ WB . Then, v is the Zq-Fourier transform of a vector supported on H , so v =
v ∗ qχH = |H| · v ∗ χH⊥ . Here, χA stands for the characteristic function of a set A and by
H⊥ we understand the annihilator of H , i.e.

H⊥ = {m ∈ Zq : e
2πi
q
mx = 1 ∀x ∈ H}.

It is easy to check that H⊥ is a subgroup of Zq, that Zq/H⊥ ' H and that |H| · |H⊥| =
q. Hence, in the coordinates (h, h′) ∈ Zq/H⊥ × H⊥ ' Zq (here the isomorphism sign
means the natural bijection corresponding to the partition of Zq by cosets of H⊥) we have
v(h, h′) = v(h, 0) for all (h, h′) in Zq, i.e. v depends on the �rst coordinate only. We see
that each extremal point x0 of the set{

x ∈ Rq
0 : ∀(h, h′) ∈ Zq x(h, h′) = x(h, 0); x(h, h′) > −1

}
(4.17)

is characterized by the property that the function Zq/H⊥ 3 h 7→ x0(h, 0) attains the value
|H| − 1 at some h and −1 at the remaining |H| − 1 elements. From this, the convexity of
the p-norm, and formula (4.9), we get

κ
(1

p

)
6

1

p
log
( |H⊥|

q
|H|p

)
=
p− 1

p
log |H|.

This and the strict convexity of the Lp-norm proves that (4.16) is strict provided the
inclusion B ⊂ H \ {0} is proper. In this case, κ′(1) > − log |H| since the function κ is
convex.

Remark 4.20. Theorem 4.2 is not true if we consider all complexmeasures; the counterexample
is B = {l} and µ = 1

q

∑q−1
k=0 ω

klδ{ωk}.
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4.4 Proof of Theorem 4.3

We will rely upon the simple observation thatµa,q ∈MC{1,q−1}(T). So, our aim is to compute
the value κ′(1) for the case B = {1, q − 1}. In this case, any v ∈ WB is of the form

v = aω1 + āωq−1, for some a ∈ C.

The above gives

WB =

{
c
(

cos
(2πj

q
+ ϕ

))q−1

j=0
: c ∈ R, ϕ ∈ [−π, π]

}
.

According to (4.11), we want to maximize a convex function

Rq
0 3 x 7→

q−1∑
j=0

(1 + xi) log(1 + xi)

over a convex region

C = WB ∩ {x ∈ Rq
0 : xj > −1, j = 0, . . . , q − 1}.

The function above is convex because t → t log t is convex for positive reals. Thus, our
purpose is to maximize the quantity

q−1∑
j=0

(
1− γ cos

(2πj

q
+ ϕ

))
log
(

1− γ cos
(2πj

q
+ ϕ

))
, (4.18)

where γ is chosen in such a way that all the summands are well-de�ned (the quantity we
compute the logarithm of is non-negative) and ϕ ∈ [−π

q
, π
q
] (by periodicity). The change of

sign inside summands is legal since we can replace ϕwith ϕ+π. Without loss of generality,
we may assume that at least one of the summands vanishes (as this holds for extremal points
of −C). Since ϕ ∈ [−π

q
, π
q
] this leads to γ = (cosϕ)−1.

Therefore, the supremum of (4.18) equals

sup
ϕ∈[−π

q
,π
q

]

q−1∑
j=0

(
1−

cos(2πj
q

+ ϕ)

cosϕ

)
log
(

1−
cos(2πj

q
+ ϕ)

cosϕ

)
=

sup
ϕ∈[−π

q
,π
q

]

q−1∑
j=0

(
1− cos

2πj

q
+ sin

2πj

q
tanϕ

)
log
(

1− cos
2πj

q
+ sin

2πj

q
tanϕ

)
. (4.19)

Consider the function g:

g(x) =

q−1∑
j=0

(aj + bjx) log(aj + bjx), x ∈
[
− tan

π

q
, tan

π

q

]
where aj = 1− cos 2πj

q
and bj = sin 2πj

q
.
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Lemma 4.21. For any q > 3,

sup
x∈[− tan π

q
,tan π

q
]

g(x) = g
(

tan
π

q

)

In particular, the supremum in (4.19) is attained at the endpoints since tan is a monotone
function on [−π

q
, π
q
].

Proof of Lemma 4.21. Note that g is convex since the expressions aj + bjx are linear and
non-negative when x ∈ [− tan π

q
, tan π

q
], and the function t 7→ t log t is convex on the

positive semi-axis. It remains to add that g is symmetric.

Proof of Theorem 4.3. The result follows from Theorem 4.17 and the already proved formula

κ′(1) = −1

q

q−2∑
j=1

(
1−

cos (2j+1)π
q

cos π
q

)
log
(

1−
cos (2j+1)π

q

cos π
q

)
(4.20)

for the case B = {1, q − 1}.

4.5 Proof of Proposition 4.5

Proof of Lemma 4.4. Consider the function f : R→ R de�ned as follows:

f(a) =

q−1∑
j=0

(
a− cos

(2j + 1)π

q

)
log
∣∣∣a− cos

(2j + 1)π

q

∣∣∣.
The sum on the left hand-side of (4.4) is then equal to

f(cos π
q
)

cos π
q

− q log cos
π

q
.

The function f is absolutely continuous and

f ′(a) = log

q−1∏
j=0

∣∣∣a− cos
(2j + 1)π

q

∣∣∣+ q = log
(

2−q+2T 2
p (a)

)
+ q,

where q = 2p, by our assumptions, p ∈ N, and Tp is the Chebyshev polynomial of order p,
that is

Tp(x) = cos(p arccosx) = 2p−1

p−1∏
j=0

(
x− cos

((j + 1
2
)π

p

))
, x ∈ [−1, 1].
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Note that by symmetry (here we heavily use that q is even), f(0) = 0. Thus, since f is
an absolutely continuous function,

f
(

cos
π

q

)
=

cos π
q∫

0

(
log
(

2−q+2T 2
p (a)

)
+ q
)
da =

(1− log 2)q cos
π

q
+ (2 log 2) cos

π

q
+

cos π
q∫

0

log cos2(p arccos a) da =

(1− log 2)q cos
π

q
+ (2 log 2) cos

π

q
+

π
2∫

π
q

log cos2(px) sinx dx =

(1− log 2)q cos
π

q
+ (2 log 2) cos

π

q
+

2

q

qπ
4∫

π
2

log cos2 z sin
2z

q
dz.

So, the sum on the left hand-side of (4.4) equals

(1− log 2)q + 2 log 2 +
2

q cos π
q

qπ
4∫

π
2

log cos2 z sin
2z

q
dz − q log cos

π

q
.

Proof of Proposition 4.5. Since µa,q ∈MC{1,q−1}(T), Theorem 4.17 says that

dimH(µa,q) > 1 +
κ′(1)

log q
.

Thus, it remains to combine this estimate with formula (4.20) and Lemma 4.4.

Remark 4.22. Proposition 4.5 shows that in Theorem 4.3, in the case of even q’s, our method
gives the same asymptotics as we would expect from (4.3). Indeed, the integral

2

q

qπ
4∫

π
2

log(cos2 z) sin
2z

q
dz

is equal, up to an error of size O(1
q
), to the integral

2

π

∫ π
2

0

log(cos2 z)dz = −2 log 2,
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and thus it cancels with 2 log 2. To prove this, it su�ces to observe that

∣∣∣∣
q
2
−1∑
j=1

sin
(jπ
q

)
·
∫ (j+1)π

2

jπ
2

log(cos2 z) dz −

qπ
4∫

π
2

log(cos2 z) sin
2z

q
dz

∣∣∣∣ 6
q
2
−1∑
j=1

∫ (j+1)π
2

jπ
2

∣∣∣ log(cos2 z)
∣∣∣∣∣∣ sin(2

q
· j · π

2

)
− sin

2z

q

∣∣∣ dz 6
(
q

2
− 1) · π log 2 · 2

q
· π

2
6
π2

2
log 2,

and that the expression

π

q

q
2
−1∑
j=1

sin
(jπ
q

)
is a Riemann sum of ∫ π

2

0

sinx dx = 1.

4.6 Proof of Proposition 4.6

Proof of Proposition 4.6. In view of the identity

1

2π

∫ 2π

0

(1− cosx) log(1− cosx)dx = 1− log 2,

we need to bound the expression below:

∣∣∣∣1q
q−2∑
j=1

(
1−

cos (2j+1)π
q

cos π
q

)
log
(

1−
cos (2j+1)π

q

cos π
q

)
− 1

2π

∫ 2π

0

(1− cosx) log(1− cosx)dx

∣∣∣∣ 6∣∣∣∣1q
q−2∑
j=1

(
1−

cos (2j+1)π
q

cos π
q

)
log
(

1−
cos (2j+1)π

q

cos π
q

)
−

1

q

q−2∑
j=1

(
1− cos

(2j + 1)π

q

)
log
(

1− cos
(2j + 1)π

q

)∣∣∣∣+∣∣∣∣1q
q−2∑
j=1

(
1−cos

(2j + 1)π

q

)
log
(

1−cos
(2j + 1)π

q

)
− 1

2π

∫ 2π

0

(1−cosx) log(1−cosx)dx

∣∣∣∣
=: I + II
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Let us denote h(t) = (1− t) log(1− t), θq = 1
cos π

q
, and let us de�ne the numbers mq,j and

Mq,j by

mq,j = min{cos
(2j + 1)π

q
, θq cos

(2j + 1)π

q
}

and
Mq,j = max{cos

(2j + 1)π

q
, θq cos

(2j + 1)π

q
}.

By the mean value theorem, for some Θq,j ∈
[
mq,j,Mq,j

]
, j = 1, . . . , q − 2, we have:

I =
1

q

∣∣∣∣ q−2∑
j=1

h
(

cos
((2j + 1)π

q

))
− h
(
θq cos

((2j + 1)π

q

))∣∣∣∣
6

1

q

q−2∑
j=1

|1− θq| ·
∣∣∣ cos

((2j + 1)π

q

)∣∣∣ · |h′(Θq,j)|

6
q − 2

q
|1− θq|+

|1− θq|
q

q−2∑
j=1

| log(1−Θq,j)| 6

q − 2

q

(
|1− θq|+ |1− θq| ·

∣∣∣ log
(

1− θq cos
(3π

q

))∣∣∣).
In the remaining part of calculations we will use the following three elementary inequalities:

1− cosx 6
x2

2
, x ∈ R, (4.21)

sinx >
2

π
x, x ∈ [0,

π

2
], (4.22)

|x log x| 6 1

e
, x ∈ [0, 1]. (4.23)

The �rst one implies the following bound

|1− θq| =
1− cos π

q

cos π
q

6

1
2

(
π
q

)2

1− 1
2

(
π
q

)2 6
(π
q

)2

.

On the other hand, by (4.22) we get

1− θq cos
(3π

q

)
=

2 sin π
q

sin 2π
q

cos π
q

>
16

q2
.

By combining the above estimates we obtain

I 6 θq − 1 +
(π
q

)2∣∣∣ log
16

q2

∣∣∣ (4.23)
6 θq − 1 +

π2

2e
· 1

q
.
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Thus, it remains to prove that
II 6

4π

q
.

This is a consequence of the following bound∣∣∣ d
dx

(1− cosx) log(1− cosx)
∣∣∣ = | sinx(1 + log(1− cosx))| 6 2.

To prove the last inequality, we estimate sinx by one and 1− cosx by e.

4.7 Further examples and comments

A more general form of the backwards martingale that we used appears also as an element
of the proof of the dimension estimate in [65]. In that paper, it is used to prove a version of
the pointwise ergodic theorem with respect to Riesz products.

The assumption of being a non-negative measure from MB(T) implies the symmetry
of B. Theorems corresponding to the case when B is (strongly) antisymmetric were con-
sidered in [13].
Remark 4.23. For a �xed q we can de�ne δq as the best constant such that the inequality

dimH(µ) > δq > 0

is true for any �nite non-negative measure from MCB(T) and B 6= Zq \ {0}. If q is small,
then the constant δq may be estimated by a direct computation of the extremal points of

span{ωm}m∈B ∩ {x ∈ Rq
0 : ∀j xj > −1},

for all possible choices of symmetric sets B 6= Zq \ {0}. Namely, for any choice of such B, the
function κ′(1) can be bounded from below by the smallest value of

x 7→ −1

q

q∑
j=1

(1 + xi) log(1 + xi)

on the set of all such extremal points.

For example, if q = 4 then we may take B = {2} or B = {1, 3}. In the
�rst case, the extremal points are ±(1,−1, 1,−1), while for the second choice they are
±(1, 1,−1,−1),±(1,−1,−1, 1). This gives δ4 > 1

2
.

An obvious converse of Theorem 4.2 says that singular measures have rich spectrum in
the arithmetical sense.
Corollary 4.24. Let µ ∈M(T) be a non-negative �nite measure such that

dimH(µ) < δq,

where δq is as in the above remark. Then for eachm ∈ {1, . . . , q−1} there exists n ∈ spec(µ)
such that n has a divisor with residuem modulo q.
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4.8 Appendix: applications of an entropic uncertainty principle

The main result of this section is the following improvement of Theorem 4.2

Theorem 4.25. Let B ⊂ Zq \ {0} and let µ ∈ MCB(T) be a �nite non-negative measure.
Then

dimH(µ) > 1− log(#B + 1)

log q
.

The proof is an immediate consequence of Theorem 4.17, Lemma 4.15 and the lemma
below. The symbols dh and dm stand for the probability Haar measure and the counting
measure on Zq, respectively. For convenience, we will be writing ‖·‖p := ‖·‖Lp(Zq ,dh).

Lemma 4.26. Suppose that f ∈ L1(Zq, dh) satis�es ‖f‖1 = 1 and f > 0. Then

−1

q

∑
m∈Zq

f(m) log f(m) > − log(# spec(f)). (4.24)

We proceed as in [46], but instead of di�erentiating the Hausdor�-Young inequality,
we di�erentiate, in a sense, the Young convolution inequality. Let us recall that the Dis-
crete Fourier transform on Cq is the linear operator F : Cq → Cq given by the matrix(

1
q
e−

2πi
q
mn
)q−1

m,n=0
and we denote by ̂ the operator arising from F via identi�cation of Cq

with the space of complex-valued functions on the cyclic groupZq. With this normalization,̂ : L2(Zq, dh)→ L2(Zq, dm) is an isometry.

Proof. Denote A = spec(f). We have f̂ = f̂ · 1A, so f = f ∗|1A. By the Young convolution
inequality we have

‖f‖2 = ‖f ∗|1A‖2 6 ‖f‖1 · ‖|1A‖2 = ‖|1A‖2.

Moreover, by the Plancharel theorem,

‖|1A‖2 =
√

#A.

Thus, by the Hölder inequality, for 1 6 p 6 2 we have

‖f‖p 6 ‖f‖1−θ
1 ‖f‖θ2,

where
1

p
=

1− θ
1

+
θ

2
⇒ θ = 2 · p− 1

p
.

This implies that
‖f‖p 6 (#A)

p−1
p . (4.25)
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Let us de�ne G(p) = log‖f‖p. By (4.25) we have

G(p)−G(1)

p− 1
=
G(p)

p− 1
6

1

p
log #A,

hence
G′+(1) 6 log #A,

where G′+ stands for the derivative from the right. On the other hand −G′+(1) is equal to
the left-hand side of (4.24), so the theorem follows.

An immediate consequence of Theorem 4.25 is the estimate of δq, de�ned in the Re-
mark 4.23

Corollary 4.27. For any q > 4 we have

δq > 1− log(q − 2)

log q
.

In particular, if µ ∈M+(T) and

dimH(µ) < 1− log(q − 2)

log q
,

then for eachm ∈ {1, . . . , q} there exists n ∈ spec(µ), such that n has a divisor with residue
m modulo q.
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Chapter 5

Microlocal approach to the Hausdor�
dimension of measures

In this chapter we study the dependence of geometric properties of Radon measures, such
as the Hausdor� dimension and recti�ability of singular sets, on the wave front set. We
prove our results by adapting the method of Brummelhuis to the non-analytic case. As an
application we obtain a general form of uncertainty principle for measures on the complex
sphere which subsumes certain classical results about pluriharmonic measures.

5.1 Preliminaries and motivation

The purpose of this chapter is to extend the programme of [11] to the case of singular mea-
sures in a quantitative way. Namely, in the mentioned paper it is presented how to derive
analyticity of measures (in the sense of belonging to the local Hardy-Goldberg space) from
the knowledge about their wave front sets ([11], Theorem 1.4.). This was obtained by trans-
lating properties of Riesz sets to the microlocal setting. The key point in our modi�cation
is the replacement of this notion by the notion of s-Riesz sets. This operation yields the fol-
lowing uncertainty principle which expresses a duality between the size of the wave front
set and the Hausdor� dimension:

De�nition 5.1. We say that a set F has a k–dimensional gap if there exists a k–dimensional
linear space V ⊂ Rn with a conic neighbourhood NV such that

F ∩NV \B(0, r) = ∅

for some ball B(0, r).

Theorem 5.2. Let µ be a Radon measure on Rn such that WFx(µ) has a k–dimensional gap
at µ–almost every x ∈ Rn. Then

dimH(µ) > k. (5.1)
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Moreover, if a k–dimensional Borel set E ⊂ Rn satis�esHk(E) < +∞ and µ(E) 6= 0, then
there exists a k–recti�able set Er ⊂ E such that |µ|(E \ Er) = 0.

For the basic properties of recti�able sets we refer the reader to Chapter 18 in [57]. The
second part of the theorem asserts about additional regularity of sets minimizing (5.1). The
above may be thought as a substitute of k-Riesz sets in non-Euclidean settings. In particular,
it has several consequences in the study of measures on the complex sphere. Fine properties
of such measures were studied, among others, in [3], [17], [18], [19], [31], [32], [40], [44]
and [71] .

To state our results, we need to recall some basic notions from the Harmonic Analysis
on S2n−1 = {z ∈ Cn : |z| = 1} (see Chapter 12 in [72] for detailed informations about this
topic). In the considerations below we treat S2n−1 as a (2n− 1)–dimensional submanifold
of R2n and the Hausdor� dimension is computed with respect to the Euclidean metric on
R2n. As previously, we denote by M(S2n−1) the set of �nite, Borel regular measures on
S2n−1. By Z+ we understand the set of non-negative integers, and for (p, q) ∈ Z2

+ the
symbol H(p, q) stands for the space of restrictions to S2n−1 of all harmonic homogeneous
polynomials in Cn which are of degree p in z1, . . . , zn and of degree q in z̄1, . . . , z̄n. Those
spaces form an orthogonal decomposition L2(S2n−1, σ) =

⊕
p,q>0H(p, q), where σ is the

(2n− 1)-dimensional Hausdor� measure on S2n−1. We call πp,q : L2(S2n−1, σ)→ H(p, q)
the orthogonal projection onto H(p, q). This transformation is given by the reproducing
kernel Kp,q (see [3], p. 118 for the explicit formula) and can be continued to the space of
�nite measures. This leads to the below de�nition of spectrum (which will be used by us
until the end of the chapter):

De�nition 5.3. For any µ ∈M(S2n−1) we de�ne

spec(µ) =
{

(p, q) ∈ Z2
+ : πp,qµ(z) =

∫
S2n−1

Kp,q(z, w) dµ(w) 6≡ 0
}
.

Theorem 5.2 applies to this setting as follows:

De�nition 5.4. For E ⊂ S2n−1 we write T · E := {eitz : z ∈ E and t ∈ [0, 2π]}.

De�nition 5.5. For any 0 < ε < 1 we denote

κ(ε) :=
{

(x, y) ∈ (0,+∞)2 : 1− ε < y

x
<

1

1− ε

}
.

Theorem 5.6. Let µ ∈ M(S2n−1) be a measure such that spec(µ) ∩ κ(ε) is �nite or empty
for some 0 < ε < 1. Then µ satis�es the following regularity property:

|µ|(T · E) = 0 if H2n−2(E) = 0. (5.2)

Moreover, if µ(E) 6= 0 for some (2n − 2)–dimensional Borel set E ⊂ S2n−1 such that
H2n−2(E) < +∞, then there exists a (2n−2)–recti�able setEr ⊂ E such that |µ|(E \Er) =
0.
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Corollary 5.7. For any µ ∈M(S2n−1) satisfying the assumptions of Theorem 5.6 we have

dimH(µ) > 2n− 2.

In comparison with Theorem 2.1. in [11], the above says that, even after dropping the
assumption about strong antisymmetry of spectrum, we can still maintain high regularity
under relatively weak Fourier constraints. Natural examples of measures that satisfy them
are the so-called pluriharmonic measures . They correspond to the case when the spectrum
lies in the sum of horizontal and vertical ray, i.e.

spec(µ) ⊂ {(p, 0) : p ∈ Z+} ∪ {(0, q) : q ∈ Z+}

(cf. also Example 5.20 in the last section of this chapter). For this case, property (5.2) was
proved in full generailty by Aleksandrov ([3], Theorem 3.1.2.), and by Forelli under addi-
tional assumption about positivity ([31], Corollary 1.11.). Let us point out that, by Propo-
sition 3.3.1. in [3], positive pluriharmonic measures must vanish on (2n− 2)–dimensional
C1 submanifolds of S2n−1. This and Theorem 5.6 imply
Corollary 5.8. If µ is a positive pluriharmonic measure, then µ(E) = 0 for any (2n − 2)–
dimensional set E such thatH2n−2(E) < +∞.

5.2 More on properties of s-Riesz sets

In this section we list several theorems that we microlocalize in further steps.
Theorem 5.9. Let V ⊂ Rn be a k–dimensional subspace, α, β ∈ (0,+∞) and let SV,α,β be
the complement of the set

{(ξ1, ξ2) ∈ V × V ⊥ : |ξ1| > α, |ξ2| 6 β|ξ1|}.

Then SV,α,β is a k–Riesz set.

This is a direct consequence of Theorem 1 in [69] and is su�cient for proving (5.1) and
Corollary 5.7. However, for our other purposes we need also a slightly stronger form which
also follows from the methods applied in [69]. We enclose its proof for completeness.
Theorem 5.10. Let V, α, β be as in Theorem 5.9. If µ ∈ M(Rn) satis�es supp(µ̂) ⊂ SV,α,β ,
then

Hk ¬
V

(ΠV (E)) = 0 ⇒ |µ|(E) = 0. (5.3)

Proof. Denote by π(µ) = (ΠV )∗µ the pushforward of µ by ΠV , that is the measure satisfying
π(µ)(A) = µ(A × V ⊥) for A ⊂ V . For a ∈ Rn let us de�ne τaµ by the formula d τaµ =
e−2π〈a,·〉 dµ. For ξ = (ξ′, 0), t = (t′, 0) ∈ V × V ⊥ we have

π(τaµ)̂(ξ′) =

∫
V

e−2πi〈ξ′,t′〉 d π(τaµ)(t′) =

∫
Rn
e−2πi〈ξ,s〉 d τaµ(s) = µ̂(ξ + a).
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Since SV,α,β ∩ (V + a) is a bounded set, it is also a Riesz set (folklore, see Example 3.32
in Chapter 3), which implies absolute continuity of π(τaµ) with respect to the Lebesgue
measure on V . In particular, for E ′ = ΠV (E) such thatHk ¬

V
(E ′) = 0 we get

τaµ(E ′ × V ⊥) = π(τaµ)(E ′) = 0.

Thus, for any a ∈ Rn

µ ¬E′×V ⊥̂(a) =

∫
E′×V ⊥

e−2πi〈a,s〉dµ(s) = τaµ(E ′ × V ⊥) = 0,

and �nally µ ¬E′×V ⊥ ≡ 0 by the uniqueness theorem.

Proof. (of Theorem 3.31, cf. also [34]) The same as above: in the previous reasoning we
replace boundednes of a slice SV,α,β ∩ (V + a) with the property that A∩ (V + a) is a Riesz
set.

With a little help of the Besicovitch-Federer projection theorem ([57], Theorem 18.1) we
can adjust the above for dealing with recti�ability of singular sets.

Theorem 5.11. Let µ ∈M(Rn) be as in the previous theorem. Then, for any k–dimensional
Borel set E such that Hk(E) < +∞ and µ(E) 6= 0 there exists a k–recti�able set Er ⊂ E
such that |µ|(E \ Er) = 0.

Proof. Let us begin with an observation that, for k–dimensional vector spaces
W ∈ G(k,Rn), satisfying the formula

∀a ∈ Rn SV,α,β ∩ (W + a) is a bounded set (5.4)

is an open condition in the natural topology on the Grassmannian G(k,Rn). Thus, the same
proof as in Theorem 5.10 gives even stronger statement: There exists OV ⊂ G(k,Rn), a
neighbourhood of V of positive Haar measure, such that

Hk ¬
W

(ΠW (F )) = 0 ⇒ |µ|(F ) = 0 (5.5)

is true for W ∈ OV and any µ satisfying supp(µ) ⊂ SV,α,β .

By Theorem 18.1. in [57] we can decompose E = Er ∪ Eu into disjoint sum of k–
recti�able and k–unrecti�able set. It su�es to apply the Besicovitch-Federer projection
theorem and (5.5) to obtain |µ|(Eu) = 0.

5.3 Basic notions and facts from Microlocal Analysis

For the convenience of the reader we recall some basic facts from Microlocal Analysis. Let
us start from the de�nition of the wave front set (see Chapter 8 in [43] or [77]).
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If ν ∈ E ′(Rn), then we de�ne Σ(ν) as the set of those ξ ∈ Rn \ {0}, for which there is
no conic neighbourhood C such that

∀N∈N∃CN>0 |ν̂(ξ′)| 6 CN(1 + |ξ′|)−N for ξ′ ∈ C. (5.6)

For an arbitrary ν ∈ D′(Rn) we de�ne

WFx(ν) =
⋂
φ

{
Σ(φν) : φ ∈ C∞c (Rn), φ(x) 6= 0

}
. (5.7)

A very important property of WFx is the following: for any set V ⊂ Rn which is a conic
neighbourhood of WFx(ν), there exists a neighbourhood of x, say Ux such that

WFx(ν) ⊂ Σ(φν) ⊂ V for any φ ∈ C∞c (Ux), φ(x) 6= 0. (5.8)

This object can be also introduced for distributions on manifolds, namely by the follow-
ing de�nition of a pullback: If Φ: M → N is a C∞–di�eomorphism between manifolds M
and N , then Wx of the pullback Φ∗ν is described by

WFx(Φ
∗ν) = {DΦt(x)η : η ∈WFΦ(x)(ν)}. (5.9)

De�nition 5.12. For any distribution ν ∈ D′(M) on a manifoldM , we de�ne the wave front
set of ν by

WF(ν) = {(x, ξ) ∈ T ∗M \ {0} : ξ ∈WFx(ν)}.
where WFx(ν) is de�ned locally, by the above formula for a pullback, with local maps taken
for Φ.

Now let us brie�y discuss the notions of pseudodi�erential operator and its principal
symbol.

De�nition 5.13. Let Ω ⊂ Rn be an open set and S̄ ⊂ C∞(Ω × Rn) be some set of func-
tions. We say that the operator p(x,D) : D(Ω) → C∞(Rn) is a pseudodi�erential operator
belonging to the class OP S̄ if and only if

p(x,D)f(x) =

∫
p(x, ξ)f̂(ξ)e2πi〈x,ξ〉dξ

for some p(x, ξ) ∈ S̄.

The set S̄ from the de�nition above is called a symbol class. The most frequently used
are the following:

• Let Ω ⊂ Rn be an open set, m ∈ R and 0 6 ρ, δ 6 1. We call Smδ,ρ(Ω) the set of those
p(x, ξ) ∈ C∞(Ω× Rn) for which the following property holds: for each compact set
K ⊂ Ω and all multi-indices α, β there exists a constant C = C(K,α, β) such that

∀x∈Ω,ξ∈Rn |Dβ
xD

α
ξ p(x, ξ)| 6 C(1 + |ξ|)m−ρ|α|+δ|β|.
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• The set Sm1,0(Ω) is often denoted by Sm(Ω).

• We denote Smcl (Ω) the class of functions p(x, ξ) ∈ Sm(Ω) for which there exist
pm−j(x, ξ) ∈ C∞(Ω× Rn) j = 0, 1, . . . (5.10)

such that
pm−j(x, rξ) = rm−jpm−j(x, ξ) for |ξ|, r > 1

and

∀N > 0 p(x, ξ)−
N∑
j=0

pm−j(x, ξ) ∈ Sm−N−1(Ω).

The last relation is usually denoted

p(x, ξ) ∼
∑
j>0

pm−j(x, ξ)

and elements of Smcl (Ω) are called classical (or polyhomogeneous) symbols.

If a pseudodi�erential operator T belongs to any of sets given by the above symbol classes,
then we refer to the index m as the order of T .
De�nition 5.14. Let Ω ⊂ Rn be an open set and p(x,D) ∈ OPSmρ,δ(Ω). We call a principal
symbol of p(x,D) any member of equivalence class of p(x, ξ) in Smρ,δ(Ω)/S

m−(2ρ−1)
ρ,δ (Ω). We

denote any �xed representative of this class by σ(p).

For example, if p(x,D) is a di�erential operator on Rn of order m

p(x,D) =
∑
|α|6m

aα(x)
∂|α|

∂xα1
1 ∂x

α2
2 . . . ∂xαnn

,

then for its principal symbol we can take

σ(p(x,D))(x, ξ) = (2πi)|m|
∑
|α|=m

aα(x)ξα.

Pseudodi�erential operators can be de�ned on manifolds, by the use of local maps (see
[77] Chapter II or [42] Chapter XVIII), which leads to the de�nition of a symbol as a function
on the cotangent bundle. In particular, if (M, g) is a Riemannian manifold then the principal
symbol of the Laplace-Beltrami operator is equal to σ(∆M)(x, ξ) = −c‖ξ‖2

g for some c > 0
depending on the normalization of the Fourier transform (we identify tangent and cotangent
bundle by g).
De�nition 5.15. Let T be a pseudodi�erential operator of order m on a manifoldM , with a
principal symbol σ(T )(x, ξ) homogeneous in ξ in the sense that

σ(T )(x, rξ) = rmσ(T )(x, ξ) for |ξ|, r > 1.

Then we de�ne the characteristic set of T by

Char(T ) = {(x, ξ) ∈ T ∗M : σ(T )(x, ξ) = 0}.
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5.4 Proofs

Proof. (of Theorem 5.2) Let us begin with proving the dimension bound. We may assume
that our measure has a k–dimensional gap at every x. By the property (5.8) and the as-
sumptions we have that for each x ∈ Rn there exists a neighbourhood Ux such that
Σ(φµ) ⊂ SV (x),α(x),β(x) for some k–dimensional space V (x), some α(x), β(x) ∈ (0,+∞),
and any φ ∈ C∞c (Ux) such that φ(x) 6= 0. Let us �x φ. After slight change of α(x) and
β(x), if needed, we can construct a function η ∈ C∞(Rn) such that

η(ξ) =

{
0 on Σ(φµ),

1 on Rn \ SV (x),α(x),β(x).

From this and (5.6) we obtain that f(x) = (η · φ̂µ)q∈ S(Rn) and the measure φµ − fdx
satis�es the assumptions of Theorem 5.9. Since modi�cations of measures by absolutely
continuous ones do not have any in�uence on singular sets, we get that

∀x∃ a neighbourhood Ux s.t. dimH(φµ) > k for φ ∈ C∞c (Ux), φ(x) 6= 0. (5.11)

Suppose by contradiction that there exists F such that dimH F < k and µ(F ) 6= 0. By
the regularity of µ, we may assume that F is compact, which provides the existence of a
�nite cover F ⊂ ∪Nj Uxj with sets Uxj satisfying (5.11). Let {φj}Nj=1 be a smooth partition
of unity inscribed in {Uxj}Nj=1. We have

µ(F ) =
N∑
j=1

φjµ(F ) = 0,

which gives the �rst part of the theorem. To get the recti�ability part we simply replace the
use of Theorem 5.9 by Theorem 5.11 in the reasoning above.

Before proving Theorem 5.2 let us remark that, since di�eomorphisms are locally bi-
Lipschitz, we can obtain full information about dimension and recti�ability of µ from the
knowledge about pushforward measures Φ∗µ, provided that we have su�ciently many good
maps Φ: S2n−1 → R2n−1. Having in mind Theorem 5.10 and the fact that the action of T
de�nes a foliation of S2n−1, we can construct maps tailored to the proof of Theorem 5.6.

Recall ([3], Subsection 1.4.) that the (real) tangent space TzS2n−1 can be decomposed
into an orthogonal sum TC

z S
2n−1 ⊕ Riz, where

TC
z S

2n−1 = {ξ ∈ Cn : 〈ξ, z〉Cn = 0}.

We introduce coordinates (ξ1, ξ2) ∈ TC
z S

2n−1 × R ∼= TzS
2n−1 accordingly to this splitting:

ξ = ξ1 + ξ2iz.
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Lemma 5.16. Suppose that Φ: S2n−1 → Rn is a smooth di�eomorphism and µ ∈M(S2n−1).
Let ν1 = Φ∗µ (understood as a pushforward measure) and ν2 = (Φ−1)∗µ (understood as a
pullback of a distribution). Then ν1 and ν2 are mutually absolutely continuous and WF(ν1) =
WF(ν2).

Proof. It follows from the formula d ν2 = | detDΦ| d ν1.

Lemma5.17. Suppose thatE ⊂ S2n−1 satis�esH2n−2(E) = 0 . Then, for anyµ ∈M(S2n−1)
and z0 ∈ S2n−1 there exists an open neighbourhoodUz0 ⊂ S2n−1 and a smooth di�eomorphism
Φ: Uz0 → Ũ ⊂ Tz0S

2n−1, such that

1. Φ(z0) = 0 and WF0(Φ∗µ) = WFz0(µ),

2. H2n−2(ΠV Φ(T · E ∩ Uz0)) = 0 for V = TC
z0
S2n−1.

Proof. Let ψ : S2n−1 ∩ B(z0, ε) → Tz0S
2n−1 be the orthogonal projection onto Tz0S2n−1.

Here we choose small ε so that ψ was a bi-Lipschitz di�eomorphism. As we have already
mentioned, since T acts on S2n−1 (freely) by multiplication, S2n−1 is foliated by leaves of the
form {eitξ}t∈[0,2π] (see Theorem 11.3.9. in [12]). Thus, imψ is foliated by leaves {ψ(eitξ)}.

Let us de�ne a function γ on imψ so that p = (ξ1, ξ2) ∈ imψ ⊂ Tz0S
2n−1 is mapped

to a point (ξ̃1, ξ2), where (ξ̃1, 0) is the intersection point of the leaf {ψ(eitξ)} containing
p with TC

z0
S2n−1. If ε is small enough, then γ is well de�ned as the leaves of foliation are

transversal to TC
z0
S2n−1 near 0. Moreover, γ is a di�eomorphism and Φ = γ ◦ ψ is the

desired map. Indeed, point (2) is satis�ed because Φ and ΠV are Lipschitz. To prove (1),
let us observe that Dψ(z0) = Id (since Dψ−1(0) = Id) and Dγ(0) = Id, as we have
d
dξ2
γ(0) = (0, 1) and γ|TC

z0
S2n−1 = Id|TC

z0
S2n−1 . It remains to use the previous lemma and

(5.9).

Proof. (of Theorem 5.6) We essentially follow the steps of the proof of Theorem 2.1. in [11].
Our aim is to show that at each point z, WFz(µ) has a (2n − 2)–dimensional gap given
by TC

z S
2n−1. We consider S2n−1 with Euclidean metric inherited from R2n and we identify

TS2n−1 with T ∗S2n−1 using this metric. Take two commuting, �rst order pseudodi�erential
operators

T1f(z) =
1

i

d

dt
f(eitz)

∣∣∣
t=0

and
T2 =

√
−∆S2n−1 + (n− 1)2Id− (n− 1)Id.

The symbol ∆S2n−1 stands for the spherical Laplacian. The eigenspaces of ∆S2n−1 are
H(j) =

⊕
p+q=j H(p, q) and the corresponding eigenvalues λj = −j(j+2n−2). Principal

symbols of T1 and T2 are
σ(T1)(z, ξ1, ξ2) = ξ2
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and
σ(T2)(z, ξ1, ξ2) = c

√
|ξ1|2 + |ξ2|2

for some constant c. The space H(p, q) can be described as the common eigenspace of T1

and T2 with eigenvalues p − q and p + q, respectively. Let χ ∈ C∞(R2) be any function
having the following properties:

1. χ(x, y) is 0–homogeneous on κ(ε),

2. χ(x, y) 6= 0 on κ(ε),

3. χ(x, y) = 0 outside κ(ε) ∪B(0, δ), for some small δ.

By the functional calculus from [76] (cf. also [77], Chapter 12), the operator

T3 = χ
(T1 + T2

2
,
T2 − T1

2

)
,

de�ned by the spectral theorem is equal to a 0–th order pseudo-di�erential operator with
principal symbol

σ(T3)(z, ξ1, ξ2) = χ
(c√|ξ1|2 + |ξ2|2 + ξ2

2
,
c
√
|ξ1|2 + |ξ2|2 − ξ2

2

)
. (5.12)

Moreover, by the assumptions we have

T3µ =
∑
p,q>0

χ(p, q)πp,qµ ∈ C∞(S2n−1). (5.13)

Theorem 18.1.28 from [42] says that

WF(µ) ⊂WF(T3µ) ∪ Char(T3). (5.14)

From this and (5.13) we obtain that WF(µ) is contained in Char(T3), i.e. the set of (z, ξ) ∈
T ∗S2n−1 \ {0} such that

σ(T3)(z, ξ1, ξ2) = 0. (5.15)
It su�ces then to show that

Char(T3)(z, ·) ⊂ STC
z (S2n−1),α,β

for parameters α, β depending on ε only. Suppose by contradiction that there exists a se-
quence ξ(n) = ξ

(n)
1 + izξ

(n)
2 ∈ Char(T3)(z, ·) such that |ξ(n)

2 | 6 βn|ξ(n)
1 | with βn ↓ 0. This

means that
yn
xn

:=
c

√
|ξ(n)

1 |2 + |ξ(n)
2 |2 − ξ

(n)
2

c

√
|ξ(n)

1 |2 + |ξ(n)
2 |2 + ξ

(n)
2

→ 1

as n→ +∞ and χ(xn
2
, yn

2
) = 0. This cannot hold by the de�nition of χ.

To �nish the proof, it remains to use Lemma 5.17 in combination with Theorem 5.10,
Theorem 5.11 and an argument analogous to the covering argument from the proof of The-
orem 5.2.
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Proof. (of Corollary 5.8) By Theorem 5.6, we may assume that E is recti�able. Whitney
extension theorem ([30], Theorem 3.1.16.) says that E is contained in a countable union
of (2n − 2)–dimensional C1–submanifolds, thus in view of Proposition 3.3.1. from [3] we
have µ(E) = 0.

5.5 Examples

Example 5.18. Letµ ∈M(Rn) be the uniformHausdor�measure on a smooth k–dimensional
manifold M . Then, at each x ∈ M , WFx(µ) has a k-dimensional gap given by the tangent
space.

Example 5.19. (cf. [10], p. 140) For any ξ ∈ S2n−1, the one-dimensional Hausdor� measure
on the set T ·{ξ} has its spectrum inside {(p, p) : p ∈ Z+}. Thus, in Theorem 5.6, the semi-axis
{(x, x) : x ∈ (0,+∞)} cannot be replaced by any other one.

Example 5.20. Our results can be applied to the study of the so-called d–pluriharmonic mea-
sures, introduced in [17]. They are those measures fromM(S2n−1), whose spectrum lies inside

{(p, q) ∈ Z2
+ : (p− d)(q − d) = 0 and p, q > d}.

In particular, the above class contains the classical pluriharmonic measures as 0–pluriharmonic
measures.

We would like to �nish the chapter by leaving the following open problem:

Question 5.21. Is the dimension bound from Corollary 5.7 sharp?
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