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The following is my report on the thesis of Tomasz Odrzygóźdź:

Bent walls in random groups

When studying any mathematical object, in addition to asking what properties
are possible it is also natural to ask what properties are typical. In the case of
groups, such questions have been a field of rapid development and interest over the
past four decades, with particular momentum given by Gromov’s introduction in
1993 of the “density model” for random groups. This model, in a fashion analogous
to the idea of a random graph, considers groups defined by presentations chosen
at random from all presentations with m generators and n relations of length k,
where m ≥ 2 is fixed, k is a parameter that goes to infinity, and n = (2m − 1)kd

grows exponentially with k at a rate determined by a fixed ‘density’ d ∈ (0, 1). If
a property holds with probability going to 1 as k →∞ one says that the property
holds “asymptotically almost surely” (a.a.s.).

A source of great interest in this model is the fact that different properties
appear at different densities: for example such groups are (a.a.s.) trivial or C2 at
d > 1/2 while they are infinite hyperbolic groups at densities d < 1/2 [Gromov
1993, Ollivier 2004]. Another dichotomy appears when considering Kazhdan’s
property (T): at densities d > 1/3 a.a.s. there is property (T) [Żuk 2003, Kotowski-
Kotowski 2013], while at densities d < 5/24 there is no property (T) [Ollivier-Wise
2011, Mackay-Przytycki 2015]. Exactly when property (T) appears remains an
important open question, which leads to the topic of Odrzygóźdź’s thesis.

The way in which property (T) is shown for the Gromov density model is
via a different random group model studied by Żuk, called the “triangular density
model”: here relations are all of length k = 3, and one lets the number of generators
m go to infinity (with n = (2m − 1)kd as before). One can show that, roughly,
groups in the Gromov density model are quotients of groups in the triangular
model at the same density.
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By work of Żuk [2003] and Antoniuk- Luczak-Świa̧tkowski [2015] at densities
d > 1/3 random triangular groups have property (T) (and with work the result for
the Gromov model follows), while at d < 1/3 they are free, and so have a strong
negation of property (T), the Haagerup or a-T-menable property: they have a
proper affine isometric action on Hilbert space.

Given the success of the triangular density model in shedding light on random
groups, it is an interesting and important question to consider what can be under-
stood by using random relations of other fixed lengths, hence the “k-gonal model”
considered by Odrzygóźdź.

The first main result of the thesis, Theorem A, is the existence of a sharp
threshold in the hexagonal model (k = 6), at densities d > 1/3 the group has
property (T) while at densities d < 1/3 is does not (a.a.s.). A general strategy to
show that a group G does not have property (T) is to find a non-trivial action of
G on a CAT(0) cube complex [Niblo-Roller 1998]. Such actions can be found
using Sageev’s construction from an action of G on a space with walls. The
prototypical construction of such walls in this area is found in Wise’s proof of
cubulation for small cancellation groups [2004]: join antipodal edges of faces in the
Cayley complex of the group. The problem with this strategy at higher densities is
that the resulting ‘walls’ are not embedded. Odrzygóźdź’s solution is to ‘bend’ the
walls at collision points by modifying their construction. Up to density d < 1/3
he shows the resulting walls are embedded trees, giving the desired result. (That
these groups have property (T) for d > 1/3 follows fairly quickly by considering
the hexagonal model groups as, roughly, quotients of triangular groups.)

This result is interesting, original and technically challenging. I fully expect
it to be publishable in a leading international journal. While the idea of modify-
ing walls in a different model had appeared before [Mackay-Przytycki 2015], the
methods required to study this model are significantly different. Odrzygóźdź has
to set up a sophisticated machine to deal with walls with self-intersections, using
new variations of Ollivier’s linear isoperimetric inequality for random groups, and
careful arguments with not-necessarily-planar diagrams.

The techniques developed also apply to the square model (k = 4), giving the
new result that property (T) fails for d < 3/8, Theorem B. This strengthens the
author’s earlier bound of d < 1/3 [2014], which was achievable with Ollivier-Wise
walls, but could not be improved without his new ‘bent’ wall approach. Again,
this is state-of-the-art for this model. It is the first time in this family of models
that we can see behaviour ‘non-monotonic’ in k: when 1/3 < d < 3/8 in the case
k = 3 or 6 we have (T) but for k = 4 we do not.

The final main result of the thesis, Theorem C, shows that one can go further
than just show failure of property (T) in the square model, and show the strong
negation of property (T), the Haagerup property. This follows by finding walls so
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Minor comments and corrections

The following are minor comments and corrections.

Page 4, Problem 1.2.3 I don’t think the existence of a sharp threshold (in your
sense) is known in the Gromov model? There’s some threshold function by
general random structures results, but I don’t know why it must be of the
form f(l) = (2m− 1)dl(1+o(1)).

Page 5, Theorem 1.2.4 You have geometric dimension at most 2.

Page 8, Line 24 “any subcomplex of a diagram with K-small hull is also a dia-
gram with K-small hull” — not clear what exactly you mean here

Page 9, (2.6) “Cancel(Y ) ≤
∑

f∈Y (2) δ(f)...” to cover the case some edges have
degree 0.

Page 11 Proof of Lemma 2.1.2: “there are finitely many k-gonal complexes with
at most B faces” — what if there are edges with degree 0?

Line 19: C(K,m) should be C(B,m)

Page 12 Line 13: One ‘∂Z’ should be ‘|∂Z|’
Line -5: “..., so kA ≤ |∂Z| ≤ k|Y |, thus...”

Page 14, Line 4 Add something like “Later we use the following lemma.”

Page 15 ‘cocylces’

Page 17 Definition 3.2.4: Clarify if you allow multiple edges between x and y if
there are multiple 2-cells?

Definition 3.2.5: For 1 ≤ i < n, xi and xi+1 are antipodal midpoints. And
Λint = λint?

Page 21 Lines 17, -4: cA is c′?

Page 24, line 3 “G+ =”

Page 25, line 13 ‘where’ is ‘were’

Page 34 Line 2: ‘Bu’ is ‘By’

Proof of 4.2.2.: Some confusion between ‘D’ and ‘D’

Page 35 Line 13: “...and A′′. Since”

Line 15: Worth clarifying where 2|γ|+ 6(2|γ|+ 2) comes from.
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Page 38, line -2,-1 “not more than 1
2(1−3δ−ε) 2-cells, for any fixed ε > 0, w.o.p..”

or similar.

The same change on Page 46, line -4.

Page 40, line -15 “exactly one edge of three distinct standard hypergraphs”?

Page 41, Remark 4.2.10 Why if they are connected by a standard hypergraph
must they be connected by a bent hypergraph?

Page 43, line -9 ‘end’ should be ‘and’

Page 44, line 20 m := (2n− 2) safer

Page 45, line 1 I suppose also without loss of generality the neutral element is
the first vertex of e?

Page 46, line -6 Could clarify “considering a boundary deviation of |∂̃DT |− |D|
instead”

Page 48, line 4 “join x, y ∈ V by an edge”

Page 52, line -9 “of {E1, E2, . . . , El} in blue.”

Page 54, line -1 “all distinguished 2-cells c in ∂2(D)”

Page 55 Line 3 “for each c ∈ ∂s2(D) we glue”

Line 19: “projection map p : Y ′ ∪ Y ′′ → Dh” ?

Line 22: “Since horns have disjoint edges” – explain why

Line 23: “4(|γ|+ 1)”?

Page 57 Line 24: “|A| = 2”

Line -12: No “Proposition Proposition”

Page 58 Line 2: “adding horns” – clarify you add them to the carrier only? Or
also 2-cells adjacent to γ if that’s what you want.

Line -10: “will be called a”

Page 61 Line -10: “are dual to”

Lines -6 to -4: |∂E| should be |∂̃E|

Page 63 Are Λ′ and Λ equal?
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Page 66 Lines -8,-2: Is it possible that c, although in the carrier of Λy, is not in
the carrier of Λsy?

Lines -4,-2: Λx,Λy are Λx,Λy

Page 67, line 4 “according to Proposition 5.1.1. and Theorem 2.0.6”?
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