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Doctoral dissertation summary

The dissertation is devoted to a classical problem of Homotopy Theory, namely homotopy
classification of maps between classifying spaces of compact Lie groups. The main result is a
construction of new exotic maps between classifying spaces of the unitary groups BU,, — BU,,.
If n > 18 and m < t(n) := $n(n — 1)(n + 2) we obtain certain classification of such maps.

Let G be a compact connected Lie group. A (homotopy class) of a map f: BG — BU,, will
be called a homotopy representation of the group G. For a prime p, a p-toral group is a group
whose identity component is a torus and group of connected components is a finite p-group.
According to the Dwyer-Zabrodsky-Notbohm Theorem [IT], 26] a homotopy representation f
restricted to any p-toral subgroup P C G is induced by a group homomorphism p{;: P — Uy,

ie. flpp ~ Bpé. In particular, if P = Tg C G is a maximal torus we obtain a representation

péG: Te — U, which is invariant (up to an isomorphism) under the action of the Weyl gro-

up Wg := Ng(Tg)/ Te on Tg. Thus the homotopy representation f defines a Wg-invariant
element in R(T¢) — the representation ring of the torus. Since the restriction homomorphism
res%cz R(G) — R(T)"¢ is an isomorphism [5], we can associate to every homotopy represen-
tation f its character p/f € R(G). The construction obviously generalizes the construction of
a character of a linear representation.

The main question is: what characters u € R(G) are homotopy characters? The Dwyer-
Zabrodsky-Notbohm Theorem implies that for any p-toral subgroup P restriction u|p € R (P)
must be a genuine representation of P. Characters of G having such property we will call
p-characters, and those which are p-characters for every prime p will be called P-characters.
Thus the first step in classification of maps BU,, — BU,, is a characterisation of P-characters
of U,,. This purely algebraic question is considered in Chapters 1-4.

We begin Chapter 1 with recalling basic definitions in representation theory and then define
p-characters and prove their elementary properties. In Section 1.5 we define a slant-product in
representation ring of a product of two groups which, in subsequent sections, is used for reduction
from larger to smaller subgroups. In some special cases the operation is called a reduction of
a character.

In Chapter 2 we apply reduction of characters to formulate criteria when a virtual character
of a unitary group is a p-character. For that we need a careful description of the maximal p-toral
subgroup of U,, as an iterated wreath product of one-dimensional torus and cyclic groups (Sec.
2.2) and study its representations (Sec. 2.3). In Sec. 2.4 the main characterization theorems
of p-characters of the unitary groups [?7], [??] are proved. Detailed study of the case of U, is
carried on in Sec. 2.5 resulting in a simple characterization of p-characters of U, ?77. In Sec. 2.6
we describe a group endomorphism of the maximal p-toral subgroup N C U, which defines
the Adams operation ¥*: R(N}) — R(Ny). In general, effect of the k-th Adams operation on
a character we call its k-twisting.

In Chapter 3 we construct families of P-characters of U,. In Sect. 3.1 we describe some
representations of U, which are used for construction of p-characters of U,,. In Section 3.2 we
list candidates for P-characters and check which of them actually are P-characters. In last



Section 3.3 we describe examples showing that a decomposition of p-characters into sum of the
indecomposable p-characters is not unique.

In Chapter 4 we show that for unitary group U, such that n > 18, P-characters of dimension
< t(n) are exactly the ones constructed in Chapter 3. A proof relies on a careful analysis of
dimensions of the symmetrized weights of the torus which can occur in decompositions of P-
characters restricted to the maximal torus. Proof of the main algebraic result is presented in
Section 4.4.

The last Chapter 5 is devoted to topological application of the algebraic result which occu-
pies Chapters 1-4. The main result says that all P-characters listed in Section 4.4 are indeed
homotopy characters. The key idea is a splitting property of characters recalled in Sec. 5.2. We
say that a (homotopy) character v € R(G) has a splitting property if any character x such
that x + u is a homotopy character is also a homotopy character. Results of [19], and a recent
paper [2I] imply that the trivial character and characters of the Adams operations have splitting
property. We are lucky since the results, combined with other results of [15], suffice to prove
that all our P-characters are indeed homotopy characters of U,,.

All the groups considered in this dissertation are compact Lie; all subgroups considered are
closed. We denote by Grp the category of compact Lie groups and their homomorphisms.
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