COMPLETE DENSE MINIMAL SURFACES IN ANY DOMAIN OF \mathbb{R}^n

Ildefonso Castro-Infantes,

Given an open Riemann surface M and an integer $n \geq 3$, we prove on [1] that the set of complete conformal minimal immersions $M \to \mathbb{R}^n$ with $\overline{X(M)} = \mathbb{R}^n$ forms a dense subset in the space of all conformal minimal immersions $M \to \mathbb{R}^n$ endowed with the compact-open topology. Furthermore, we show that given a domain in \mathbb{R}^n we may find a complete minimal surface which is dense on it and has arbitrary orientable topology (possibly infinite); we also provide such surfaces whose complex structure is any given bordered Riemann surface.

Analogous results for non-orientable minimal surfaces in \mathbb{R}^n $(n \geq 3)$, complex curves in \mathbb{C}^n $(n \geq 2)$, holomorphic null curves in \mathbb{C}^n $(n \geq 3)$, and holomorphic Legendrian curves in \mathbb{C}^{2n+1} $(n \in \mathbb{N})$ may be proved adapting the used techniques.

Referencias

 A. Alarcón, I. Castro-Infantes. Complete minimal surfaces densely lying in arbitrary domains of ℝⁿ arXiv:1611.05029.

Departamento de Geometría y Topología. University of Granada. Granada (Spain). icastroinfantes@ugr.es