# Quasi-Einstein metrics and affine structures 

X. Valle-Regueiro<br>(Joint work with M. Brozos-Vázquez, E. García-Río and P. Gilkey)<br>Departamento de Matemáticas, Facultade de Matemáticas, Universidade de Santiago de Compostela, Spain<br>javier.valle@usc.es


#### Abstract

A pseudo-Riemannian manifold $(M, g)$ of dimension $n$ is called quasi-Einstein if there is a solution $f \in \mathcal{C}^{\infty}(M)$ of the equation $$
\begin{equation*} \operatorname{Hes}_{f}+\rho-\mu d f \otimes d f=\lambda g \tag{1} \end{equation*}
$$ for some $\mu$ and $\lambda \in \mathbb{R}$, where $\operatorname{Hes}_{f}$ and $\rho$ denote the Hessian of $f$ and the Ricci tensor, respectively [3, 4]. This class of manifolds includes, as particular cases, Einstein metrics and gradient Ricci solitons (see [1]). For $\lambda=0$, Equation (1) has a corresponding equation in affine geometry. Let $(\Sigma, D)$ be an affine manifold with torsion-free connection $D$, and set $$
\begin{equation*} \operatorname{Hes}_{\hat{f}}^{D}+2 \rho_{\mathrm{sym}}^{D}-\mu d \hat{f} \otimes d \hat{f}=0 \tag{2} \end{equation*}
$$ where $\operatorname{Hes}_{\hat{f}}^{D}=D d \hat{f}$ is the affine Hessian of $\hat{f}$ and $\rho_{\mathrm{sym}}^{D}$ is the symmetric part of the Ricci tensor of $(\Sigma, D)$.

The two equations above are linked as follows [2]. If $\hat{f}$ is a solution to Equation (2), then the cotangent bundle $T^{*} \Sigma$ of $\Sigma$ equipped with a deformed Riemannian extension $g_{D, \Phi}$ is quasi-Einstein for $f=\pi^{*} \hat{f}$ and $\lambda=0$, where $\pi: T^{*} \Sigma \rightarrow \Sigma$ is the projection. Conversely, a self-dual quasi-Einstein manifold which is not locally conformally flat is locally isometric to $\left(T^{*} \Sigma, g_{D, \Phi}\right)$ and the potential function $f$ is the pull-back to $T^{*} \Sigma$ of a solution of (2) in ( $\Sigma, D$ ).

The purpose of the talk is to detail the above correspondence and to show some affine properties related to the solutions of Equation (2) above.


## References

[1] M. Brozos-Vázquez and E. García-Río, Indiana Univ. Math. J. 65 (2016), 1921-1943.
[2] M. Brozos-Vázquez, E. García-Río, P. Gilkey and X. Valle-Regueiro, Half conformally flat generalized quasi-Einstein manifolds, arXiv:1702.06714 [math.DG].
[3] J. Case, Y.-J. Shu, and G. Wei, Rigidity of quasi-Einstein metrics, Differential Geom. Appl. 29 (2011), 93-100.
[4] G. Catino, C. Mantegazza, L. Mazzieri and M. Rimoldi, Locally conformally flat quasi-Einstein manifolds, J. Reine Angew. Math. 675 (2013), 181-189.

