Biconservative submanifolds with higher codimension in Riemannian space-forms

Nurettin Cenk Turgay

Istanbul Technical University, Faculty of Science and Letters, Department of Mathematics, TURKEY, e-mail: turgayn@itu.edu.tr

Abstract

An isometric immersion $f: M \to N$ between two Riemannian manifolds is biconservative if the tangent component of $\tau_2(f)$ vanishes identically, where τ_2 is the bitension field of M in N. By considering the definition of τ_2 , one can see that this condition is equivalent to

$$m\nabla \|H\|^2 + 4\operatorname{trace} A_{\nabla^{\perp}_{+}H}(\cdot) + 4\operatorname{trace} \left(\tilde{R}(\cdot, H) \cdot\right)^T = 0,$$

where H, A and ∇^{\perp} are the mean curvature, shape operator and normal connection of f and \tilde{R} is the curvature tensor of N.

In this talk, we would like to present a survey our recent results on biconservative submanifolds. We consider submanifolds with higher codimension in the Riemannian space-form \mathbb{S}^n and in the product space $\mathbb{S}^n \times \mathbb{R}$.

2000 MSC Codes. Primary 53C50; Secondary 53C42

Keywords: Biconservative submanifolds, The product space $\mathbb{S}^n \times \mathbb{R}$, Riemannian space-forms