On the biconservative surfaces in Euclidean spaces

Rüya Yeğin Şen

Istanbul Medeniyet University, Faculty of Engineering and Natural Sciences, Department of Mathematics, TURKEY, e-mail: ruya.yegin@medeniyet.edu.tr

Nurettin Cenk Turgay

Istanbul Technical University, Faculty of Science and Letters, Department of Mathematics, TURKEY, e-mail: turgayn@itu.edu.tr

Abstract

An isometric immersion $f: M^m \to N^n$ between two Riemannian manifolds is called *biconservative* if its stress-energy tensor S_2 is conservative, i.e., $\tau_2(f)^{\tau} = 0$, where $\tau_2(f)$ is the bitension field of f. By considering the definition of τ_2 , it is obtained that f is biconservative if and only if

$$m\nabla \|H\|^2 + 4\operatorname{trace} A_{\nabla^{\perp} H}(\cdot) + 4\operatorname{trace} \left(\tilde{R}(\cdot, H) \cdot\right)^T = 0,$$

where H, A and ∇^{\perp} are the mean curvature, shape operator and normal connection of M^m and \tilde{R} is the curvature tensor of N^n .

In this talk, we would like to present our recent results on the biconservative surfaces in Euclidean spaces. We consider biconservative surfaces with parallel normalized mean curvature vector in Euclidean spaces.

2000 MSC Codes. 53C42

Keywords: Biconservative surfaces, parallel normalized mean curvature vector

R.Yeğin Şen and N.C. Turgay