CURVATURE PROPERTIES OF SOME WARPED PRODUCT MANIFOLDS

Ryszard Deszcz, Małgorzata Głogowska, Marian Hotloś, Jan Jełowicki and Georges Zafindratafa

Dedicated to the memory of Professor Witold Roter

ABSTRACT

In this poster we will present curvature properties of pseudosymmetry type of the warped product manifolds $\overline{M} \times_F \widetilde{N}$ with *p*-dimensional base manifold $(\overline{M}, \overline{g})$, p = 1, 2, (n - p)-dimensional fiber $(\widetilde{N}, \widetilde{g}), n \ge 4$, and the warping function F. These conditions are formed from the metric tensor g, the Riemann-Christoffel curvature tensor R, the Ricci tensor S and the Weyl conformal curvature tensor C of the considered manifolds. For instance, if p = 1 and the fiber $(\widetilde{N}, \widetilde{g}),$ $n \ge 5$, is an Einstein manifold, not of constant curvature, then $\overline{M} \times_F \widetilde{N}$ is a non-conformally flat quasi-Einstein Ricci-pseudosymmetric manifold and its difference tensor $R \cdot C - C \cdot R$ is a linear combination of the Tachibana tensors Q(S, R) and Q(g, R). If p = 2 and the fiber $(\widetilde{N}, \widetilde{g}), n \ge 5$, is a space of constant curvature then the (0, 6)-tensors $R \cdot R - Q(S, R)$ and $C \cdot C$ of such warped product manifolds are proportional to the Tachibana tensor Q(g, C), and the tensor C is a linear combination of some Kulkarni-Nomizu products formed from the tensors g, S and S^2 .¹

¹Mathematics Subject Classification (2010): Primary 53B20, 53B25, 53B30, 53B50, 83C15; Secondary 53C25, 53C40, 53C80.

Key words and phrases: Einstein manifold, quasi-Einstein manifold, 2-quasi-Einstein manifold, warped product manifold, spacetime, Friedmann-Lemaître-Robertson-Walker spacetime, generalized Robertson-Walker spacetime, Reissner-Nordström, Reissner-Nordström-(anti-)de Sitter, Gödel spacetime, hypersurface, 2-quasi-umbilical hypersurface, pseudosymmetric manifold, manifold with pseudosymmetric Weyl tensor, peudosymmetry type curvature condition.

Department of Mathematics, Wrocław University of Environmental and Life Sciences Grunwaldzka 53, 50-357 Wrocław, Poland

E-mail: Ryszard.Deszcz@upwr.edu.pl, Malgorzata.Glogowska@upwr.edu.pl, Jan.Jełowicki@upwr.edu.pl

Department of Applied Mathematics, Wrocław University of Science and Technology

Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

E-mail: Marian.Hotlos@pwr.edu.pl

Laboratoire de Mathématiques et Applications de Valenciennes

Université de Valenciennes et du Hainaut-Cambrésis

Le Mont Houy, Lamath-ISTV2, 59313 Valenciennes Cedex 9, France

E-mail: Georges.Zafindratafa@univ-valenciennes.fr