Infinitesimal conformal transformations of the second degree in the Riemannian space of the second approximation

We consider a Riemannian space V_n , related to an arbitrary system of coordinates $\{x^1, x^2, ..., x^n\}$. In the neighborhood of any fixed point $M_0(x_0^n)$, we construct the second approximation space $\tilde{V}_n^2(y^n; \tilde{g}_{ij}(y))$ by defining its metric tensor $\tilde{g}_{ij}(y)$ as:

$$\tilde{g}_{ij}(y) = g_{ij} + \frac{1}{3} R_{i\alpha\beta j} y^{\alpha} y^{\beta}$$
(1)

where $g_{ij} = g_{ij}(M_0)$, $R_{i\alpha\beta j} = R_{i\alpha\beta j}(M_0)$.

In the space \tilde{V}_n^2 , we consider infinitesimal conformal transformations of the second degree:

$$y'^{h} = y^{h} + \tilde{\xi}^{h}(y)\delta t \tag{2}$$

Definition. The transformations (2) are called transformations of the second degree, ([2]) if the displacement vector $\xi \wedge h(y)$ has the following form:

$$\tilde{\xi}^{h}(y) = a^{h} + a^{h}_{.l} y^{l} + a^{h}_{.l_{1}l_{2}} y^{l_{1}l_{2}}$$
(3)

where a^{h} , $a^{h}_{.l}y^{l}$, $a^{h}_{.l_{1}l_{2}}y^{l_{1}l_{2}}$.

We research generalized Killing equations ([1]):

$$\nabla_{(i\xi j)} \psi(y) \tilde{g}_{ij},\tag{4}$$

We get the following results.

Theorem 1. In the space of the second approximation \tilde{V}_n^2 for a Riemannian space V_n of nonzero constant curvature K, there exist infinitesimal conformal transformations of the second degree with the displacement vector $\tilde{\xi}^h(y)$ of the form:

$$\tilde{\xi}^h(y) = a^h + a^h_{,l} y^l - \frac{\kappa}{2} a_l y^l y^h \tag{5}$$

where a_{l}^{h} satisfies the following condition:

$$a^{\alpha}_{.(i^{g}_{\circ}j)\alpha}=0,$$

where a^h_{\cdot} is an arbitrary constant.

Theorem 2. The second-approximation space \tilde{V}_n^2 for a space of nonzero curvature admits a Lie group G₂of infinitesimal conformal transformations of the second degree of order r, where $r = \frac{n(n+1)}{2}$. The structure of this group is founded.

References

- 1. L. P. Eisenhart "Continuous transformation groups", M, IL, 1947, 359 p.
- 2. S. M. Pokas "Infinitely small conformal transformations in the Riemannian space of the second approximation", Proceedings of the International Geometry Center, Vol. 7 №2, 2014 pp. 36-50
- 3. S. M. Pokas, A. V. Krutoholova "Geometry of the Riemannian space of the second approximation", Proceedings of the International Geometry Center, Vol. 8 №3-4, 2015 pp. 53-59