Symplectic factorization, Darboux theorem and ellipticity

Bernard Dacorogna

EPFL, Switzerland bernard.dacorogna@epfl.ch

The talk is based on the joint work with Wifrid Gangbo and Olivier Kneuss

Our first result concerns the classical Darboux theorem. We prove that if ω_m is the standard symplectic form and f is a symplectic form, then we can find a diffeomorphism φ , with optimal regularity, satisfying

$$\varphi^*(\omega_m) = f$$
 and $\sum_{i=1}^m \left(\frac{\partial \varphi^{2i}}{\partial x_{2i-1}} - \frac{\partial \varphi^{2i-1}}{\partial x_{2i}}\right) = 0$

provided that f is a small perturbation of ω_m . Moreover we show that the above system is elliptic and that we have uniqueness, when coupled with a Dirichlet datum.

We then apply the above result to the so-called symplectic factorization. We show that any map φ , satisfying appropriate assumptions, can be written as

$$\varphi = \psi \circ \chi$$

where

$$\psi^*(\omega_m) = \omega_m \text{ and } \sum_{i=1}^m \left(\frac{\partial \chi^{2i}}{\partial x_{2i-1}} - \frac{\partial \chi^{2i-1}}{\partial x_{2i}} \right) = 0.$$

The analogy with mass transportation and the Monge-Ampère equation, as well as with the polar decomposition, will be emphasized.