Convergence of attractors for a nonautonomous perturbed semilinear parabolic equation

Piotr Kalita *

Abstract

We consider the initial and boundary value problem governed by the equation $u_t - \Delta u = f_0(u)$ on a bounded domain $\Omega \subset \mathbb{R}^3$ with the homogeneous Dirchlet conditions and cubic nonlinearity f_0 . We compare the global attractor of the semiflow governed by the above equation with uniform, pullback, and cocycle attractors of the process governed by its nonautonomous perturbation $\epsilon u_{tt} + u_t - \Delta u = f_{\epsilon}(t,u)$, where the type of equation changes from parabolic to hyperbolic. We prove that all three types of nonautonomous attractors converge both upper- and lower-semicontinuously to the global attractor for the unperturbed problem as $\epsilon \to 0$.

^{*}Faculty of Mathematics and Computer Science, Jagiellonian University