WORST SINGULARITIES OF PLANE CURVES OF GIVEN DEGREE

IVAN CHELTSOV

Abstract

We prove that $\frac{2}{d}, \frac{2 d-3}{(d-1)^{2}}, \frac{2 d-1}{d(d-1)}, \frac{2 d-5}{d^{2}-3 d+1}$ and $\frac{2 d-3}{d(d-2)}$ are the smallest \log canonical thresholds of reduced plane curves of degree $d \geqslant 3$, and we describe reduced plane curves of degree d whose log canonical thresholds are these numbers. As an application, we prove that $\frac{2}{d}, \frac{2 d-3}{(d-1)^{2}}, \frac{2 d-1}{d(d-1)}, \frac{2 d-5}{d^{2}-3 d+1}$ and $\frac{2 d-3}{d(d-2)}$ are the smallest values of the α-invariant of Tian of smooth surfaces in \mathbb{P}^{3} of degree $d \geqslant 3$. We also prove that every reduced plane curve of degree $d \geqslant 4$ whose \log canonical threshold is smaller than $\frac{5}{2 d}$ is GIT-unstable for the action of the group $\mathrm{PGL}_{3}(\mathbb{C})$, and we describe GIT-semistable reduced plane curves with log canonical thresholds $\frac{5}{2 d}$.

All varieties are assumed to be algebraic, projective and defined over \mathbb{C}.

1. Introduction

Let C_{d} be a reduced plane curve in \mathbb{P}^{2} of degree $d \geqslant 3$, and let P be a point in C_{d}. The curve C_{d} can have any given plane curve singularity at P provided that its degree d is sufficiently big. Thus, it is natural to ask

Question 1.1. What is the worst singularity that C_{d} can have at P ?
Denote by m_{P} the multiplicity of the curve C_{d} at the point P, and denote by $\mu(P)$ the Milnor number of the point P. If we use m_{P} to measure the singularity of C_{d} at the point P, then a union of d lines passing through P is an answer to Question 1.1, since $m_{P} \leqslant d$, and $m_{P}=d$ if and only if C_{d} is a union of d lines passing through P. If we use the Milnor number $\mu(P)$, then the answer would be the same, since $\mu(P) \leqslant(d-1)^{2}$, and $\mu(P)=(d-1)^{2}$ if and only if C_{d} is a union of d lines passing through P. Alternatively, we can use the number

$$
\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)=\sup \left\{\lambda \in \mathbb{Q} \mid \text { the log pair }\left(\mathbb{P}^{2}, \lambda C_{d}\right) \text { is log canonical at } P\right\},
$$

which is known as the log canonical threshold of the \log pair $\left(\mathbb{P}^{2}, C_{d}\right)$ at the point P or the \log canonical threshold of the curve C_{d} at the point P (see [4, Definition 6.34]). The smallest $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)$ when P runs through all points in C_{d} is usually denoted by $\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}\right)$. Note that

$$
\frac{1}{m_{P}} \leqslant \operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right) \leqslant \frac{2}{m_{P}} .
$$

This is well-known (see, 4, Exercise 6.18] and [4, Lemma 6.35]). So, the smaller $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)$, the worse singularity of the curve C_{d} at the point P is.
Example 1.2. Suppose that C_{d} is given by $x_{1}^{n_{1}} x_{2}^{n_{2}}\left(x_{1}^{m_{1}}+x_{2}^{m_{2}}\right)=0$ up to analytic change of local coordinates, where m_{1} and m_{2} are non-negative integers, and $n_{1}, n_{2} \in\{0,1\}$. Then

$$
\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)=\min \left\{1, \frac{\frac{1}{m_{1}}+\frac{1}{m_{2}}}{1+\frac{n_{1}}{m_{1}}+\frac{n_{2}}{m_{2}}}\right\}
$$

by [8, Proposition 2.2].
Log canonical thresholds of plane curves have been intensively studied (see, for example, 8]). Surprisingly, they give the same answer to Question 1.1 by

[^0]Key words and phrases. Log canonical threshold, plane curve, GIT-stability, α-invariant of Tian, smooth surface.

Theorem 1.3 ([1, Theorem 4.1]). One has $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right) \geqslant \frac{2}{d}$. Moreover, $\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}\right)=\frac{2}{d}$ if and only if C_{d} is a union of d lines that pass through P.

In this paper we want to address
Question 1.4. What is the second worst singularity that C_{d} can have at P ?
To give a reasonable answer to this question, we have to disregard m_{P} by obvious reasons. Thus, we will use the numbers $\mu(P)$ and $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, \mathbb{C}_{d}\right)$. For cubic curves, they give the same answer.

Example 1.5. Suppose that $d=3, m_{P}<3$ and P is a singular point of C_{3}. Then P is a singular point of type $\mathbb{A}_{1}, \mathbb{A}_{2}$ or \mathbb{A}_{3}. Moreover, if C_{3} has singularity of type \mathbb{A}_{3} at P, then $C_{3}=L+C_{2}$, where C_{2} is a smooth conic, and L is a line tangent to C_{2} at P. Furthermore, we have

$$
\mu(P)=\left\{\begin{array}{l}
1 \text { if } C_{3} \text { has } \mathbb{A}_{1} \text { singularity at } P, \\
2 \text { if } C_{3} \text { has } \mathbb{A}_{2} \text { singularity at } P, \\
3 \text { if } C_{3} \text { has } \mathbb{A}_{3} \text { singularity at } P .
\end{array}\right.
$$

Similarly, we have

$$
\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{3}\right)=\left\{\begin{array}{l}
1 \text { if } C_{3} \text { has } \mathbb{A}_{1} \text { singularity at } P \\
\frac{5}{6} \text { if } C_{3} \text { has } \mathbb{A}_{2} \text { singularity at } P, \\
\frac{3}{4} \text { if } C_{3} \text { has } \mathbb{A}_{3} \text { singularity at } P
\end{array}\right.
$$

For quartic curves, the numbers $\mu(P)$ and $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, \mathbb{C}_{d}\right)$ give different answers to Question 1.4.
Example 1.6. Suppose that $d=4, m_{P}<4$ and P is a singular point of C_{4}. Going through the list of all possible singularities that C_{P} can have at P (see, for example, [6]), we obtain

$$
\mu(P)=\left\{\begin{array}{l}
6 \text { if } C_{4} \text { has } \mathbb{D}_{6} \text { singularity at } P, \\
6 \text { if } C_{4} \text { has } \mathbb{A}_{6} \text { singularity at } P, \\
6 \text { if } C_{4} \text { has } \mathbb{E}_{6} \text { singularity at } P, \\
7 \text { if } C_{4} \text { has } \mathbb{A}_{7} \text { singularity at } P, \\
7 \text { if } C_{4} \text { has } \mathbb{E}_{7} \text { singularity at } P,
\end{array}\right.
$$

and $\mu(P)<6$ in all remaining cases. Similarly, we get

$$
\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{4}\right)=\left\{\begin{array}{l}
\frac{5}{8} \text { if } C_{4} \text { has } \mathbb{A}_{7} \text { singularity at } P \\
\frac{5}{8} \text { if } C_{4} \text { has } \mathbb{D}_{5} \text { singularity at } P \\
\frac{3}{5} \text { if } C_{4} \text { has } \mathbb{D}_{6} \text { singularity at } P \\
\frac{7}{12} \text { if } C_{4} \text { has } \mathbb{E}_{6} \text { singularity at } P \\
\frac{5}{9} \text { if } C_{4} \text { has } \mathbb{E}_{7} \text { singularity at } P
\end{array}\right.
$$

and $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{4}\right)>\frac{5}{8}$ in all remaining cases.
Recently, Arkadiusz Płoski proved that $\mu(P) \leqslant(d-1)^{2}-\left\lfloor\frac{d}{2}\right\rfloor$ provided that $m_{P}<d$. Moreover, he described C_{d} in the case when $\mu(P)=(d-1)^{2}-\left\lfloor\frac{d}{2}\right\rfloor$. To present his description, we need
Definition 1.7. The curve C_{d} is an even Ptoski curve if d is even, the curve C_{d} has $\frac{d}{2} \geqslant 2$ irreducible components that are smooth conics passing through P, and all irreducible components of C_{d} intersect each other pairwise at P with multiplicity 4. The curve C_{d} is an odd Ptoski
curve if d is odd, the curve C_{d} has $\frac{d+1}{2} \geqslant 2$ irreducible components that all pass through $P, \frac{d-1}{2}$ irreducible component of the curve C_{d} are smooth conics that intersect each other pairwise at P with multiplicity 4 , and the remaining irreducible component is a line in \mathbb{P}^{2} that is tangent at P to all other irreducible components. We say that C_{d} is Ptoski curve if it is either an even Płoski curve or an odd Płoski curve.

Each Płoski curve has unique singular point. If $d=4$, then C_{4} is a Płoski curve if and only if it has a singular point of type \mathbb{A}_{7}. Thus, if $d=4$, then $\mu(P)=(d-1)^{2}-\left\lfloor\frac{d}{2}\right\rfloor=7$ if and only if either C_{4} is a Płoski curve and P is its singular point or C_{4} has singularity \mathbb{E}_{7} at the point P (see Example (1.6). For $d \geqslant 5$, Płoski proved

Theorem 1.8 ([10, Theorem 1.4]). If $d \geqslant 5$, then $\mu(P)=(d-1)^{2}-\left\lfloor\frac{d}{2}\right\rfloor$ if and only if C_{d} is a Płoski curve and P is its singular point.

This result gives a very good answer to Question 1.4. The main goal of this paper is to give an answer to Question 1.4, using log canonical thresholds. Namely, we will prove that

$$
\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right) \geqslant \frac{2 d-3}{(d-1)^{2}}
$$

provided that $m_{P}<d$, and we will describe C_{d} in the case when $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)=\frac{2 d-3}{(d-1)^{2}}$. To present this description, we need
Definition 1.9. The curve C_{d} has singularity of type \mathbb{T}_{r} (resp., $\mathbb{K}_{r}, \widetilde{\mathbb{T}}_{r}, \widetilde{\mathbb{K}}_{r}$) at the point P if the curve C_{d} can be given by $x_{1}^{r}=x_{1} x_{2}^{r}$ (resp., $x_{1}^{r}=x_{2}^{r+1}, x_{2} x_{1}^{r-1}=x_{1} x_{2}^{r}, x_{2} x_{1}^{r-1}=x_{2}^{r+1}$) up to analytic change of coordinates at the point P.

Note that $\mathbb{T}_{2}=\mathbb{A}_{3}, \mathbb{K}_{2}=\mathbb{A}_{2}, \widetilde{\mathbb{T}}_{2}=\widetilde{\mathbb{K}}_{2}=\mathbb{A}_{1}, \widetilde{\mathbb{K}}_{3}=\mathbb{D}_{5}, \widetilde{\mathbb{T}}_{3}=\mathbb{D}_{6}, \mathbb{K}_{3}=\mathbb{E}_{6}$ and $\mathbb{T}_{3}=\mathbb{E}_{7}$. Furthermore, since we assume that $d \geqslant 3$, the formula in Example 1.2 gives

$$
\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)=\left\{\begin{array}{l}
\frac{2 d-3}{(d-1)^{2}} \text { if } C_{d} \text { has } \mathbb{T}_{d-1} \text { singularity at } P \\
\frac{2 d-1}{d(d-1)} \text { if } C_{d} \text { has } \mathbb{K}_{d-1} \text { singularity at } P \\
\frac{2 d-5}{d^{2}-3 d+1} \text { if } C_{d} \text { has } \widetilde{\mathbb{T}}_{d-1} \text { singularity at } P \\
\frac{2 d-3}{d(d-2)} \text { if } C \text { has } \widetilde{\mathbb{K}}_{d-1} \text { singularity at } P
\end{array}\right.
$$

where $\frac{2}{d}<\frac{2 d-3}{(d-1)^{2}}<\frac{2 d-1}{d(d-1)}<\frac{2 d-5}{d^{2}-3 d+1} \leqslant \frac{2 d-3}{d(d-2)}$. In this paper we will prove
Theorem 1.10. Suppose that $d \geqslant 4$ and $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right) \leqslant \frac{2 d-3}{d(d-2)}$. Then one of the following holds:
(1) $m_{P}=d$,
(2) the curve C_{d} has singularity of type $\mathbb{T}_{d-1}, \mathbb{K}_{d-1}, \widetilde{\mathbb{T}}_{d-1}$ or $\widetilde{\mathbb{K}}_{d-1}$ at the point P,
(3) $d=4$ and C_{d} is a Płoski quartic curve (in this case $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)=\frac{5}{8}$).

This result describes the five worst singularities that C_{d} can have at the point P. In particular, Theorem 1.10 answers Question [1.4. This answer is very different from the answer given by Theorem 1.8, Indeed, if C_{d} is a Płoski curve and P is its singular point, then the formula in Example 1.2 gives

$$
\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)=\frac{5}{2 d}>\frac{2 d-3}{(d-1)^{2}}
$$

The proof of Theorem 1.10 implies one result that is interesting on its own. To describe it, let us identify the curve C_{d} with a point in the space $\left|\mathcal{O}_{\mathbb{P}^{2}}(d)\right|$ that parameterizes all (not necessarily reduced) plane curves of degree d. Since the group $\mathrm{PGL}_{3}(\mathbb{C})$ acts on $\left|\mathcal{O}_{\mathbb{P}^{2}}(d)\right|$, it is natural to ask whether C_{d} is GIT-stable (resp., GIT-semistable) for this action or not. For small d, its answer is classical and immediately follows from the Hilbert-Mumford criterion (see [9, Chapter 2.1]).

Example 1.11 (9 , Chapter 4.2]). If $d=3$, then C_{3} is GIT-stable (resp., GIT-semistable) if and only if C_{3} is smooth (resp., C_{3} has at most \mathbb{A}_{1} singularities). If $d=4$, then C_{4} is GIT-stable (resp., GIT-semistable) if and only if C_{4} has at most \mathbb{A}_{1} and \mathbb{A}_{2} singularities (resp., C_{4} has at most singular double points and C_{4} is not a union of a cubic with an inflectional tangent line).

Paul Hacking, Hosung Kim and Yongnam Lee noticed that the log canonical threshold $\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}\right)$ and GIT-stability of the curve C_{d} are closely related. In particular, they proved
Theorem 1.12 ([5, Propositions 10.2 and 10.4], [7, Theorem 2.3]). If $\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}\right) \geqslant \frac{3}{d}$, then the curve C_{d} is GIT-semistable. If $d \geqslant 4$ and $\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}\right)>\frac{3}{d}$, then the curve C_{d} is GIT-stable.

This gives a sufficient condition for the curve C_{d} to be GIT-stable (resp, GIT-semistable). However, this condition is not a necessary condition. Let us give two examples that illustrate this.
Example 1.13 ([13, p. 268], [5, Example 10.5]). Suppose that $d=5$, the quintic curve C_{5} is given by

$$
x^{5}+\left(y^{2}-x z\right)^{2}\left(\frac{x}{4}+y+z\right)=x^{2}\left(y^{2}-x z\right)(x+2 y),
$$

and $P=[0: 0: 1]$. Then C_{5} is irreducible and has singularity \mathbb{A}_{12} at the point P. In particular, it is rational. Furthermore, the curve C_{5} is GIT-stable (see, for example, [9, Chapter 4.2]). On the other hand, it follows from Example 1.2 that

$$
\operatorname{lct}\left(\mathbb{P}^{2}, C_{5}\right)=\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{5}\right)=\frac{1}{2}+\frac{1}{13}=\frac{15}{26}<\frac{3}{5} .
$$

Example 1.14. Suppose that C_{d} is a Płoski curve. Let P be its singular point, and let L be a general line in \mathbb{P}^{2}. Then

$$
\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}+L\right)=\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}\right)=\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)=\frac{5}{2 d}<\frac{3}{d} .
$$

On the other hand, if d is even, then C_{d} is GIT-semistable, and $C_{d}+L$ is GIT-stable. This follows from the Hilbert-Mumford criterion. Similarly, if d is odd, then C_{d} is GIT-unstable, and $C_{d}+L$ is GIT-semistable.

In this paper we will prove the following result that complements Theorem 1.12,
Theorem 1.15. If $\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}\right)<\frac{5}{2 d}$, then C_{d} is GIT-unstable. Moreover, if $\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}\right) \leqslant \frac{5}{2 d}$, then C_{d} is not GIT-stable. Furthermore, if $\operatorname{lct}\left(\mathbb{P}^{2}, C_{d}\right)=\frac{5}{2 d}$, then C_{d} is GIT-semistable if and only if C_{d} is an even Płoski curve.

Example 1.14shows that this result is sharp. Surprisingly, its proof is very similar to the proof of Theorem 1.10. In fact, we will give a combined proof of both these theorems in Section 3 ,

In this paper we will also prove one application of Theorem 1.10. To describe it, we need
Definition 1.16 ([12, Appendix A], [3, Definition 1.20]). For a given smooth variety V equipped with an ample \mathbb{Q}-divisor H_{V}, let $\alpha_{V}^{H_{V}}: V \rightarrow \mathbb{R}_{\geqslant 0}$ be a function defined as

$$
\alpha_{V}^{H_{V}}(O)=\sup \left\{\lambda \in \mathbb{Q} \left\lvert\, \begin{array}{l}
\text { the pair }\left(V, \lambda D_{V}\right) \text { is log canonical at } O \\
\text { for every effective } \mathbb{Q} \text {-divisor } D_{V} \sim_{\mathbb{Q}} H_{V}
\end{array}\right.\right\} .
$$

Denote its infimum by $\alpha\left(V, H_{V}\right)$.
Let S_{d} be a smooth surface in \mathbb{P}^{3} of degree $d \geqslant 3$, let $H_{S_{d}}$ be its hyperplane section, let O be a point in S_{d}, and let T_{O} be the hyperplane section of S_{d} that is singular at O. Similar to $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)$, we can define

$$
\operatorname{lct}_{O}\left(S_{d}, T_{O}\right)=\sup \left\{\lambda \in \mathbb{Q} \mid \text { the log pair }\left(S_{d}, \lambda T_{O}\right) \text { is } \log \text { canonical at } O\right\} .
$$

Then $\alpha_{S_{d}}^{H_{S_{d}}}(O) \leqslant \operatorname{lct}_{O}\left(S_{d}, T_{O}\right)$ by Definition 1.16. Note that T_{O} is reduced, since the surface S_{d} is smooth. In this paper we prove

Theorem 1.17. If $\alpha_{S_{d}}^{H_{S_{d}}}(O)<\frac{2 d-3}{d(d-2)}$, then

$$
\alpha_{S_{d}}^{H_{S_{d}}}(O)=\operatorname{lct}_{O}\left(S_{d}, T_{O}\right) \in\left\{\frac{2}{d}, \frac{2 d-3}{(d-1)^{2}}, \frac{2 d-1}{d(d-1)}, \frac{2 d-5}{d^{2}-3 d+1}\right\}
$$

Similarly, if $\alpha\left(S_{d}, H_{S_{d}}\right)<\frac{2 d-3}{d(d-2)}$, then

$$
\alpha\left(S_{d}, H_{S_{d}}\right)=\inf _{O \in S_{d}}\left\{\operatorname{lct}_{O}\left(S_{d}, T_{O}\right)\right\} \in\left\{\frac{2}{d}, \frac{2 d-3}{(d-1)^{2}}, \frac{2 d-1}{d(d-1)}, \frac{2 d-5}{d^{2}-3 d+1}\right\}
$$

If $d=3$, then we can drop the condition $\alpha_{S_{d}}^{H_{S_{d}}}(O)<\frac{2 d-3}{d(d-2)}$ in Theorem 1.17, since $\frac{2 d-3}{d(d-2)}=1$ in this case. Thus, Theorem 1.17 implies
Corollary 1.18 ([3, Corollary 1.24]). Suppose that $d=3$. Then $\alpha_{S_{3}}^{H_{S_{3}}}(O)=\operatorname{lct}_{O}\left(S_{3}, T_{O}\right)$.
If $d \geqslant 4$, we cannot drop the condition $\alpha_{S_{d}}^{H_{S_{d}}}(O)<\frac{2 d-3}{d(d-2)}$ in Theorem 1.17 in general. Let us give two examples that illustrate this.

Example 1.19. Suppose that $d=4$. Let S_{4} be a quartic surface in \mathbb{P}^{3} that is given by

$$
t^{3} x+t^{2} y z+x y z(y+z)=0
$$

and let O be the point $[0: 0: 0: 1]$. Then S_{4} is smooth, and T_{O} has singularity \mathbb{A}_{1} at O, which implies that $\operatorname{lct}_{O}\left(S_{4}, T_{O}\right)=1$. Let L_{y} be the line $x=y=0$, let L_{z} be the line $x=z=0$, and let C_{2} be the conic $y+z=x t+y z=0$. Then L_{y}, L_{z} and C_{2} are contained in S_{4}, and $O=L_{y} \cap L_{z} \cap C_{2}$. Moreover,

$$
L_{y}+L_{z}+\frac{1}{2} C_{2} \sim 2 H_{S_{4}}
$$

because the divisor $2 L_{y}+2 L_{z}+C_{2}$ is cut out on S_{4} by $t x+y z=0$. Furthermore, the log pair $\left(S_{4}, L_{y}+L_{z}+\frac{1}{2} C_{2}\right)$ is not \log canonical at O, so that $\alpha_{S_{4}}^{H_{S_{4}}}(O)<1$ by Definition 1.16,
Example 1.20. Suppose that $d \geqslant 5$ and T_{O} has \mathbb{A}_{1} singularity at O. Then $\operatorname{lct}_{O}\left(S_{d}, T_{O}\right)=1$. Let $f: \widetilde{S}_{d} \rightarrow S_{d}$ be a blow up of the point O. Denote by E its exceptional curve. Then

$$
\left(f^{*}\left(H_{S_{d}}\right)-\frac{11}{5} E\right)^{2}=5-\frac{121}{25}>0
$$

Hence, it follows from Riemann-Roch theorem there is an integer $n \geqslant 1$ such that the linear system $\left|f^{*}\left(5 n H_{S_{d}}\right)-11 n E\right|$ is not empty. Pick a divisor \widetilde{D} in this linear system, and denote by D its image on S_{d}. Then $\left(S_{d}, \frac{1}{5 n} D\right)$ is not \log canonical at P, since $\operatorname{mult}_{P}(D) \geqslant 11 n$. On the other hand, $\frac{1}{5 n} D \sim_{\mathbb{Q}} H_{S_{d}}$ by construction, so that $\alpha_{S_{d}}^{H_{d}}(O)<1$ by Definition 1.16.

This work was was carried out during the author's stay at the Max Planck Institute for Mathematics in Bonn in 2014. We would like to thank the institute for the hospitality and very good working condition. We would like to thank Michael Wemyss for checking the singularities of the curve C_{5} in Example 1.13. We would like to thank Alexandru Dimca, Yongnam Lee, Jihun Park, Hendrick Süß and Mikhail Zaidenberg for very useful comments.

2. Preliminaries

In this section, we present results that will be used in the proof of Theorems $1.10,1.15,1.17$, Let S be a smooth surface, let D be an effective non-zero \mathbb{Q}-divisor on the surface S, and let P be a point in the surface S. Write

$$
D=\sum_{i=1}^{r} a_{i} C_{i}
$$

where each C_{i} is an irreducible curve on the surface S, and each a_{i} is a non-negative rational number. Let us recall

Definition 2.1 ([4, §6]). Let $\pi: \widetilde{S} \rightarrow S$ be a birational morphism such that \widetilde{S} is smooth. Then π is a composition of blow ups of smooth points. For each C_{i}, denote by \widetilde{C}_{i} its proper transform on the surface \widetilde{S}. Let F_{1}, \ldots, F_{n} be π-exceptional curves. Then

$$
K_{\widetilde{S}}+\sum_{i=1}^{r} a_{i} \widetilde{C}_{i}+\sum_{j=1}^{n} b_{j} F_{j} \sim_{\mathbb{Q}} \pi^{*}\left(K_{S}+D\right)
$$

for some rational numbers b_{1}, \ldots, b_{n}. Suppose, in addition, that $\sum_{i=1}^{r} \widetilde{C}_{i}+\sum_{j=1}^{n} F_{j}$ is a divisor with simple normal crossings. Then the \log pair (S, D) is said to be \log canonical at P if and only if the following two conditions are satisfied:

- $a_{i} \leqslant 1$ for every C_{i} such that $P \in C_{i}$,
- $b_{j} \leqslant 1$ for every F_{j} such that $\pi\left(F_{j}\right)=P$.

Similarly, the \log pair (S, D) is said to be Kawamata \log terminal at P if and only if $a_{i}<1$ for every C_{i} such that $P \in C_{i}$, and $b_{j}<1$ for every F_{j} such that $\pi\left(F_{j}\right)=P$.

Using just this definition, one can easily prove
Lemma 2.2. Suppose that $r=3, P \in C_{1} \cap C_{2} \cap C_{3}$, the curves C_{1}, C_{2} and C_{3} are smooth at P, $a_{1}<1, a_{2}<1$ and $a_{3}<1$. Moreover, suppose that both curves C_{1} and C_{2} intersect the curve C_{3} transversally at P. Furthermore, suppose that (S, D) is not Kawamata \log terminal at P. Put $k=\operatorname{mult}_{P}\left(C_{1} \cdot C_{2}\right)$. Then $k\left(a_{1}+a_{2}\right)+a_{3} \geqslant k+1$.
Proof. Put $S_{0}=S$ and consider a sequence of blow ups

$$
S_{k} \xrightarrow{\pi_{k}} S_{k-1} \xrightarrow{\pi_{k-1}} \cdots \xrightarrow{\pi_{3}} S_{2} \xrightarrow{\pi_{2}} S_{1} \xrightarrow{\pi_{1}} S_{0},
$$

where each π_{j} is the blow up of the intersection point of the proper transforms of the curves C_{1} and C_{2} on the surface S_{j-1} that dominates P (such point exists, since $k=\operatorname{mult}_{P}\left(C_{1} \cdot C_{2}\right)$). For each π_{j}, denote by E_{j}^{k} the proper transform of its exceptional curve on S_{k}. For each C_{i}, denote by C_{i}^{k} its proper transform on the surface S_{k}. Then

$$
K_{S_{k}}+\sum_{i=1}^{n} a_{i} C_{i}^{k}+\sum_{j=1}^{k}\left(j\left(a_{1}+a_{2}\right)+a_{3}-j\right) E_{j}^{k} \sim_{\mathbb{Q}}\left(\pi_{1} \circ \pi_{2} \circ \cdots \circ \pi_{k}\right)^{*}\left(K_{S}+D\right),
$$

and $\sum_{i=1}^{n} C_{i}^{k}+\sum_{j=1}^{k} E_{j}$ is a simple normal crossing divisor in every point of $\cup_{j=1}^{k} E_{j}$. Thus, it follows from Definition [2.1] that there exists $l \in\{1, \ldots, k\}$ such that $l\left(a_{1}+a_{2}\right)+a_{3} \geqslant l+1$, because (S, D) is not Kawamata \log terminal at P. If $l=k$, then we are done. So, we may assume that $l<k$. If $k\left(a_{1}+a_{2}\right)+a_{3}<k+1$, then $a_{1}+a_{2}<1+\frac{1}{k}-a_{3} \frac{1}{k}$, which implies that
$l+1 \leqslant l\left(a_{1}+a_{2}\right)+a_{3}<\left(l+\frac{l}{k}-a_{3} \frac{l}{k}\right)+a_{3}=l+\frac{l}{k}+a_{3}\left(1-\frac{l}{k}\right) \leqslant l+\frac{l}{k}+\left(1-\frac{l}{k}\right)=l+1$, because $a_{3}<1$. Thus, the obtained contradiction shows that $k\left(a_{1}+a_{2}\right)+a_{3} \geqslant k+1$.

Corollary 2.3. Suppose that $r=2, P \in C_{1} \cap C_{2}$, the curves C_{1} and C_{2} are smooth at P, $a_{1}<1$ and $a_{2}<1$. Put $k=\operatorname{mult}_{P}\left(C_{1} \cdot C_{2}\right)$. If (S, D) is not Kawamata log terminal at P, then $k\left(a_{1}+a_{2}\right) \geqslant k+1$.

The log pair (S, D) is called \log canonical if it is \log canonical at every point of S. Similarly, the log pair (S, D) is called Kawamata log terminal if it is Kawamata log terminal at every point of the surface S.

Remark 2.4. Let R be any effective \mathbb{Q}-divisor on S such that $R \sim_{\mathbb{Q}} D$ and $R \neq D$. Put

$$
D_{\epsilon}=(1+\epsilon) D-\epsilon R,
$$

where ϵ is a non-negative rational number. Then $D_{\epsilon} \sim_{\mathbb{Q}} D$. Moreover, since $R \neq D$, there exists the greatest rational number $\epsilon_{0} \geqslant 0$ such that the divisor $D_{\epsilon_{0}}$ is effective. Then $\operatorname{Supp}\left(D_{\epsilon_{0}}\right)$
does not contain at least one irreducible component of $\operatorname{Supp}(R)$. Moreover, if (S, D) is not \log canonical at P, and (S, R) is \log canonical at P, then $\left(S, D_{\epsilon_{0}}\right)$ is not \log canonical at P by Definition 2.1, because

$$
D=\frac{1}{1+\epsilon_{0}} D_{\epsilon_{0}}+\frac{\epsilon_{0}}{1+\epsilon_{0}} R
$$

and $\frac{1}{1+\epsilon_{0}}+\frac{\epsilon_{0}}{1+\epsilon_{0}}=1$. Similarly, if the \log pair (S, D) is not Kawamata \log terminal at P, and (S, R) is Kawamata \log terminal at P, then $\left(S, D_{\epsilon_{0}}\right)$ is not Kawamata log terminal at P.

The following result is well-known.
Lemma 2.5 ([4, Exercise 6.18]). If (S, D) is not \log canonical at P, then $\operatorname{mult}_{P}(D)>1$. Similarly, if (S, D) is not Kawamata \log terminal at P, then $\operatorname{mult}_{P}(D) \geqslant 1$.

Combining with
Lemma 2.6 ([4, Lemma 5.36]). Suppose that S is a smooth surface in \mathbb{P}^{3}, and $D \sim_{\mathbb{Q}} H_{S}$, where H_{S} is a hyperplane section of S. Then each a_{i} does not exceed 1 .

Lemma 2.5 gives
Corollary 2.7. Suppose that S is a smooth surface in \mathbb{P}^{3}, and $D \sim_{\mathbb{Q}} H_{S}$, where H_{S} is a hyperplane section of S. Then (S, D) is \log canonical outside of finitely many points.

The following result is a special case of a much more general result, which is known as Shokurov's connectedness principle (see, for example, [4, Theorem 6.3.2]).
Lemma 2.8 ([11, Theorem 6.9]). If $-\left(K_{S}+D\right)$ is big and nef, then the locus where (S, D) is not Kawamata log terminal is connected.
Corollary 2.9. Let C_{d} be a reduced curve in \mathbb{P}^{2} of degree d, let O and Q be two points in C_{d} such that $O \neq Q$. If $\operatorname{lct}_{O}\left(\mathbb{P}^{2}, C_{d}\right)<\frac{3}{d}$, then $\operatorname{lct}_{Q}\left(\mathbb{P}^{2}, C_{d}\right) \geqslant \frac{3}{d}$.

Let $\pi_{1}: S_{1} \rightarrow S$ be a blow up of the point P, and let E_{1} be the π_{1}-exceptional curve. Denote by D^{1} the proper transform of the divisor D on the surface S_{1} via π_{1}. Then the \log pair $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1}\right)$ is often called the log pull back of the \log pair (S, D), because

$$
K_{S_{1}}+D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1} \sim_{\mathbb{Q}} \pi_{1}^{*}\left(K_{S}+D\right)
$$

This \mathbb{Q}-rational equivalence implies that the \log pair (S, D) is not \log canonical at P provided that $\operatorname{mult}_{P}(D)>2$. Similarly, if $\operatorname{mult}_{P}(D) \geqslant 2$, then the singularities of the \log pair (S, D) are not Kawamata \log terminal at the point P.
Remark 2.10. The \log pair (S, D) is \log canonical at P if and only if $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1}\right)$ is \log canonical at every point of the curve E_{1}. Similarly, the \log pair (S, D) is Kawamata \log terminal at P if and only if $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1}\right)$ is Kawamata \log terminal at every point of the curve E_{1}.

Let Z be an irreducible curve on S that contains P. Suppose that Z is smooth at P, and Z is not contained in $\operatorname{Supp}(D)$. Let μ be a non-negative rational number. The following result is a very special case of a much more general result known as Inversion of Adjunction (see, for example, [11, § 3.4] or [4, Theorem 6.29]).
Theorem 2.11 ([11, Corollary 3.12], 4, Exercise 6.31], [2, Theorem 7]). Suppose that the log pair $(S, \mu Z+D)$ is not \log canonical at P and $\mu \leqslant 1$. Then $\operatorname{mult}_{P}(D \cdot Z)>1$.

This result implies
Theorem 2.12. Suppose that $(S, \mu Z+D)$ is not Kawamata \log terminal at P, and $\mu<1$. Then $\operatorname{mult}_{P}(D \cdot Z)>1$.
Proof. The \log pair $(S, Z+D)$ is not \log canonical at P, because $\mu<1$, and $(S, \mu Z+D)$ is not Kawamata \log terminal at P. Then $\operatorname{mult}_{P}(D \cdot Z)>1$ by Theorem [2.11]

Theorems 2.11 and 2.12 imply
Lemma 2.13. If (S, D) is not \log canonical at P and $\operatorname{mult}_{P}(D) \leqslant 2$, then there exists a unique point in E_{1} such that $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1}\right)$ is not \log canonical at it. Similarly, if (S, D) is not Kawamata \log terminal at P, and $\operatorname{mult}_{P}(D)<2$, then there exists a unique point in E_{1} such that $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1}\right)$ is not Kawamata log terminal at it.

Proof. If mult $P(D) \leqslant 2$ and $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1}\right)$ is not \log canonical at two distinct points P_{1} and \widetilde{P}_{1}, then

$$
2 \geqslant \operatorname{mult}_{P}(D)=D^{1} \cdot E_{1} \geqslant \operatorname{mult}_{P_{1}}\left(D^{1} \cdot E_{1}\right)+\operatorname{mult}_{\widetilde{P}_{1}}\left(D^{1} \cdot E_{1}\right)>2
$$

by Theorem 2.11, By Remark 2.10, this proves the first assertion. Similarly, we can prove the second assertion using Theorem 2.12 instead of Theorem 2.11.

The following result can be proved similarly to the proof of Lemma 2.5, Let us show how to prove it using Theorem 2.12.

Lemma 2.14. Suppose that (S, D) is not Kawamata \log terminal at P, and (S, D) is Kawamata \log terminal in a punctured neighborhood of the point P, then $\operatorname{mult}_{P}(D)>1$.
Proof. By Remark 2.10, the log pair $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1}\right)$ is not Kawamata log terminal at some point $P_{1} \in E_{1}$. Moreover, if $\operatorname{mult}_{P}(D)<2$, then $\left(S_{1}, D^{1}+\left(\operatorname{mult}_{P}(D)-1\right) E_{1}\right)$ is Kawamata \log terminal at a punctured neighborhood of the point P_{1}. Thus, if mult ${ }_{P}(D) \leqslant 1$, then $\operatorname{mult}_{P}(D)=D^{1} \cdot E_{1}>1$ by Theorem 2.12, which is absurd.

Let Z_{1} and Z_{2} be two irreducible curves on the surface S such that Z_{1} and Z_{2} are not contained in $\operatorname{Supp}(D)$. Suppose that $P \in Z_{1} \cap Z_{2}$, the curves Z_{1} and Z_{2} are smooth at P, the curves Z_{1} and Z_{2} intersect each other transversally at P. Let μ_{1} and μ_{2} be non-negative rational numbers.

Theorem 2.15 ([2, Theorem 13]). Suppose that the \log pair $\left(S, \mu_{1} Z_{1}+\mu_{2} Z_{2}+D\right)$ is not \log canonical at the point P, and $\operatorname{mult}_{P}(D) \leqslant 1$. Then either mult ${ }_{P}\left(D \cdot Z_{1}\right)>2\left(1-\mu_{2}\right)$ or $\operatorname{mult}_{P}\left(D \cdot Z_{2}\right)>2\left(1-\mu_{1}\right)$ (or both).

This result implies
Theorem 2.16. Suppose that $\left(S, \mu_{1} Z_{1}+\mu_{2} Z_{2}+D\right)$ is not Kawamata \log terminal at P, and $\operatorname{mult}_{P}(D)<1$. Then either $\operatorname{mult}_{P}\left(D \cdot Z_{1}\right) \geqslant 2\left(1-\mu_{2}\right)$ or $\operatorname{mult}_{P}\left(D \cdot Z_{2}\right) \geqslant 2\left(1-\mu_{1}\right)$ (or both).

Proof. Let λ be a rational number such that

$$
\frac{1}{\operatorname{mult}_{P}(D)} \geqslant \lambda>1
$$

Then $\left(S, D+\lambda \mu_{1} Z_{1}+\lambda \mu_{2} Z_{2}\right)$ is not \log canonical at P. Now it follows from Theorem 2.15 that either $\operatorname{mult}_{P}\left(D \cdot Z_{1}\right)>2\left(1-\lambda \mu_{2}\right)$ or $\operatorname{mult}_{P}\left(D \cdot Z_{2}\right)>2\left(1-\lambda \mu_{1}\right)$ (or both). Since we can choose λ to be as close to 1 as we wish, this implies that either mult ${ }_{P}\left(D \cdot Z_{1}\right) \geqslant 2\left(1-\mu_{2}\right)$ or $\operatorname{mult}_{P}\left(D \cdot Z_{2}\right) \geqslant 2\left(1-\mu_{1}\right)$ (or both).

3. REDUCED PLANE CURVES

The purpose of this section is to prove Theorems 1.10 and 1.15. Let C_{d} be a reduced plane curve in \mathbb{P}^{2} of degree $d \geqslant 4$, and let P be a point in C_{d}. Put $\lambda_{1}=\frac{2 d-3}{d(d-2)}$ and $\lambda_{2}=\frac{5}{2 d}$. To prove Theorem 1.10, we have to show that if the \log pair $\left(\mathbb{P}^{2}, \lambda_{1} C_{d}\right)$ is not Kawamata log terminal at the point P, then one of the following assertions hold:

- $\operatorname{mult}_{P}\left(C_{d}\right)=d$,
- C_{d} has singularity $\mathbb{T}_{d-1}, \mathbb{K}_{d-1}, \widetilde{T}_{d-1}$ or $\widetilde{\mathbb{K}}_{d-1}$ at the point P,
- $d=4$ and C_{4} is a Płoski curve (see Definition 1.7).

To prove Theorem 1.15, we have to show that if $\left(\mathbb{P}^{2}, \lambda_{2} C_{d}\right)$ is not Kawamata log terminal, then either C_{d} is GIT-unstable or C_{d} is an even Płoski curve. In the rest of the section, we will do this simultaneously. Let us start with few preliminary results.
Lemma 3.1. The following inequalities hold:
(i) $\lambda_{1}<\frac{2}{d-1}$,
(ii) $\lambda_{1}<\frac{2 k+1}{k d}$ for every positive integer $k \leqslant d-3$,
(iii) if $d \geqslant 5$, then $\lambda_{1}<\frac{2 k+1}{k d+1}$ for every positive integer $k \leqslant d-4$,
(iv) $\lambda_{1}<\frac{3}{d}$,
(v) $\lambda_{1}<\frac{2}{d-2}$,
(vi) $\lambda_{1}<\frac{6}{3 d-4}$,
(vii) if $d \geqslant 5$, then $\lambda_{1}<\lambda_{2}$.

Proof. The equality $\frac{2}{d-1}=\lambda_{1}+\frac{d-3}{d(d-1)(d-2)}$ implies (i). Let k be positive integer. If $k=d-2$, then $\lambda_{1}=\frac{2 k+1}{k d}$. This implies (ii), because $\frac{2 k+1}{k d}=\frac{2}{d}+\frac{1}{k d}$ is a decreasing function on k for $k \geqslant 1$. Similarly, if $k=d-4$ and $d \geqslant 4$, then $\lambda_{1}=\frac{2 k+1}{k d+1}-\frac{3}{d(d-2)\left(d^{2}-4 d+1\right)}<\frac{2 k+1}{k d+1}$. This implies (iii), since $\frac{2 k+1}{k d+1}=\frac{2}{d}+\frac{d-2}{d(k d+1)}$ is a decreasing function on k for $k \geqslant 1$. The equality $\lambda_{1}=\frac{3}{d}-\frac{d-3}{d(d-2)}$ proves (iv). Note that (v) follows from (i). Since $\frac{6}{3 d-4}>\frac{2}{d-1}$, (vi) also follows from (i). Finally, the equality $\lambda_{1}=\lambda_{2}-\frac{d-4}{2 d(d-2)}$ implies (vii).

We may assume that $P=[0: 0: 1]$. Then C_{d} is given by $F_{d}(x, y, z)=0$, where $F_{d}(x, y, z)$ is a homogeneous polynomial of degree d. Put $x_{1}=\frac{x}{z}, x_{2}=\frac{y}{z}$ and $f_{d}\left(x_{1}, x_{2}\right)=F_{d}\left(x_{1}, x_{2}, 1\right)$. Then

$$
f_{d}\left(x_{1}, x_{2}\right)=\sum_{\substack{i \geqslant 0, j \geqslant 0, m_{0} \leqslant i+j \leqslant d}} \epsilon_{i j} x_{1}^{i} x_{2}^{j},
$$

where each $\epsilon_{i j}$ is a complex number. For every positive integers a and b, define the weight of the polynomial $f_{d}\left(x_{1}, x_{2}\right)$ as

$$
\mathrm{wt}_{(a, b)}\left(f_{d}\left(x_{1}, x_{2}\right)\right)=\min \left\{a i+b j \mid \epsilon_{i j} \neq 0\right\} .
$$

Then the Hilbert-Mumford criterion implies
Lemma 3.2 ([7], Lemma 2.1]). Let a and b be positive integers. If C_{d} is GIT-stable, then

$$
\mathrm{wt}_{(a, b)}\left(f_{d}\left(x_{1}, x_{2}\right)\right)<\frac{d}{3}(a+b) .
$$

Similarly, if C_{d} is GIT-semistable, then $\operatorname{wt}_{(a, b)}\left(f_{d}\left(x_{1}, x_{2}\right)\right) \leqslant \frac{d}{3}(a+b)$.
Let $f_{1}: S_{1} \rightarrow \mathbb{P}^{2}$ be a blow up of the point P. Denote by E_{1} the exceptional curve of the blow up f_{1}. Denote by C_{d}^{1} the proper transform on S_{1} of the curve C_{d}.
Lemma 3.3. If mult $P_{P}\left(C_{d}\right)>\frac{2 d}{3}$, then C_{d} is GIT-unstable. Let O be a point in E_{1}. If

$$
\operatorname{mult}_{P}\left(C_{d}\right)+\operatorname{mult}_{O}\left(C_{d}^{1}\right)>d,
$$

then C_{d} is GIT-unstable.
Proof. Since $\operatorname{mult}_{P}\left(C_{d}\right)=\operatorname{wt}_{(1,1)}\left(f_{d}\left(x_{1}, x_{2}\right)\right)$, the first assertion follows from Lemma 3.2, Let us prove the second assertion. We may assume that O is contained in the proper transform of the line in \mathbb{P}^{2} that is given by $x=0$. Then

$$
\mathrm{wt}_{(2,1)}\left(f_{d}\left(x_{1}, x_{2}\right)\right)=\operatorname{mult}_{P}\left(C_{d}\right)+\operatorname{mult}_{O}\left(C_{d}^{1}\right),
$$

so that the second assertion also follows from Lemma 3.2.
Now we are ready to prove Theorems 1.10 and 1.15. To do this, we may assume that C_{d} is not a union of d lines passing through the point P. Suppose, in addition, that
(A) either $\left(\mathbb{P}^{2}, \lambda_{1} C_{d}\right)$ is not Kawamata log terminal at P,
(\mathbf{B}) or $\left(\mathbb{P}^{2}, \lambda_{2} C_{d}\right)$ is not Kawamata log terminal at P.
We will show that (\mathbf{A}) implies that either C_{d} has singularity $\mathbb{T}_{d-1}, \mathbb{K}_{d-1}, \widetilde{\mathbb{T}}_{d-1}$ or $\widetilde{\mathbb{K}}_{d-1}$ at the point P, or C_{d} is a Płoski quartic curve. Similarly, we will show that (B) implies that either C_{d} is GIT-unstable (i.e. C_{d} is not GIT-semistable), or C_{d} is an even Płoski curve. If (A) holds, let $\lambda=\lambda_{1}$. If (\mathbf{B}) holds, let $\lambda=\lambda_{2}$.

If $d=4$, then $\lambda_{1}=\lambda_{2}$. If $d \geqslant 5$, then $\lambda_{1}<\lambda_{2}$ by Lemma 3.1(vii). Since C_{d} is reduced and $\lambda<1$, the log pair $\left(\mathbb{P}^{2}, \lambda C_{d}\right)$ is Kawamata log terminal outside of finitely many points. Thus, it is Kawamata \log terminal outside of P by Lemma 2.8,

Put $m_{0}=\operatorname{mult}_{P}\left(C_{d}\right)$. Then the log pair $\left(S_{1}, \lambda C_{d}^{1}+\left(\lambda m_{0}-1\right) E_{1}\right)$ is not Kawamata log terminal at some point $P_{1} \in E_{1}$ by Remark [2.10. Note that we have

$$
K_{S_{1}}+\lambda C_{d}^{1}+\left(\lambda m_{0}-1\right) E_{1} \sim_{\mathbb{Q}} f_{1}^{*}\left(K_{\mathbb{P}^{2}}+\lambda C_{d}\right)
$$

Let $f_{2}: S_{2} \rightarrow S_{1}$ be a blow up of the point P_{1}, and let E_{2} be its exceptional curve. Denote by C_{d}^{2} the proper transform on S_{2} of the curve C_{d}, and denote by E_{1}^{2} the proper transform on S_{2} of the curve E_{1}. Put $m_{1}=\operatorname{mult}_{P_{1}}\left(C_{d}^{1}\right)$. Then

$$
K_{S_{2}}+\lambda C_{d}^{2}+\left(\lambda m_{0}-1\right) E_{1}^{2}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2} \sim_{\mathbb{Q}} f_{2}^{*}\left(K_{S_{1}}+\lambda C_{d}^{1}+\left(\lambda m_{0}-1\right) E_{1}\right) .
$$

By Remark 2.10, the \log pair $\left(S_{2}, \lambda C_{d}^{2}+\left(\lambda m_{0}-1\right) E_{1}^{2}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2}\right)$ is not Kawamata \log terminal at some point $P_{2} \in E_{2}$. Let $f_{3}: S_{3} \rightarrow S_{2}$ be a blow up of this point, and let E_{3} be the f_{3}-exceptional curve. Denote by C_{d}^{3} the proper transform on S_{3} of the curve C_{d}, denote by E_{1}^{3} the proper transform on S_{3} of the curve E_{1}, and denote by E_{2}^{3} the proper transform on S_{3} of the curve E_{2}. Put $m_{2}=\operatorname{mult}_{P_{2}}\left(C_{d}^{2}\right)$. Then

$$
\begin{aligned}
& K_{S_{3}}+\lambda_{2} C_{d}^{3}+\left(\lambda_{2} m_{0}-1\right) E_{1}^{3}+ \\
&+\left(\lambda _ { 2 } \left(m_{0}+\right.\right.\left.\left.m_{1}\right)-2\right) E_{2}^{3}+\left(\lambda_{2}\left(2 m_{0}+m_{1}+m_{2}\right)-4\right) E_{3} \sim_{\mathbb{Q}} \\
& \sim_{\mathbb{Q}} f_{3}^{*}\left(K_{S_{2}}+\lambda_{2} C_{d}^{2}+\left(\lambda_{2} m_{0}-1\right) E_{1}^{2}+\left(\lambda_{2}\left(m_{0}+m_{1}\right)-2\right) E_{2}\right) .
\end{aligned}
$$

Thus, the log pair $\left(S_{3}, \lambda_{2} C_{d}^{3}+\left(\lambda_{2} m_{0}-1\right) E_{1}^{3}+\left(\lambda_{2}\left(m_{0}+m_{1}\right)-2\right) E_{2}^{3}+\left(\lambda_{2}\left(2 m_{0}+m_{1}+m_{2}\right)-4\right) E_{3}\right)$ is not Kawamata \log terminal at some point $P_{3} \in E_{3}$ by Remark 2.10. Note that the divisor $\lambda_{2} C_{d}^{3}+\left(\lambda_{2} m_{0}-1\right) E_{1}^{3}+\left(\lambda_{2}\left(m_{0}+m_{1}\right)-2\right) E_{2}^{3}+\left(\lambda_{2}\left(2 m_{0}+m_{1}+m_{2}\right)-4\right) E_{3}$ is effective by Lemma 2.5.

Lemma 3.4. One has $\lambda m_{0}<2$.
Proof. Since C_{d} is not a union of d lines passing through P, we have $m_{0} \leqslant d-1$. Thus, if (A) holds, then $\lambda m_{0}<2$ by Lemma 3.1(i), because $d \geqslant 4$. Similarly, if (B) holds, then $m_{0} \leqslant \frac{2 d}{3}$ by Lemma 3.3, which implies that $\lambda m_{0} \leqslant \frac{10}{6}<2$.

Thus, the \log pair $\left(S_{1}, \lambda C_{d}^{1}+\left(\lambda m_{0}-1\right) E_{1}\right)$ is Kawamata \log terminal outside of P_{1} by Lemma 2.13. Note that $P_{1} \in C_{d}^{1}$, because the \log pair $\left(S_{1},\left(\lambda m_{0}-1\right) E_{1}\right)$ is not Kawamata \log terminal at P_{1}. Thus, we have $m_{1}>0$.

Let L be the line in \mathbb{P}^{2} whose proper transform on S_{1} contains the point P_{1}. Such a line exists and it is unique. By a suitable linear change of coordinates, we may assume that L is given by $x=0$. Denote by L^{1} the proper transform of the line L on the surface S_{1}.
Lemma 3.5. Suppose that (A) holds and $m_{0}=d-1$. Then C_{d} has singularity $\mathbb{K}_{d-1}, \widetilde{\mathbb{K}}_{d-1}$, \mathbb{T}_{d-1} or $\widetilde{\mathbb{T}}_{d-1}$ at the point P.

Proof. Suppose that L is not an irreducible component of the curve C_{d}. Then $m_{0}+m_{1} \leqslant d$, because

$$
d-1-m_{0}=C_{d}^{1} \cdot L^{1} \geqslant m_{1}
$$

Since $m_{0}=d-1$, this gives $m_{1}=1$. Then $P_{1} \in C_{d}^{1}$ and the curve C_{d}^{1} is smooth at P_{1}. Put $k=\operatorname{mult}_{P_{1}}\left(C_{d}^{1} \cdot E_{1}\right)$. Applying Corollary 2.3 to the \log pair $\left(S_{1}, \lambda_{1} C_{d}^{1}+\left(\lambda_{1} m_{0}-1\right) E_{1}\right)$ at the point P_{1}, we get

$$
k \lambda_{1} m_{0} \geqslant k+1,
$$

which gives $\lambda_{1} \geqslant \frac{2 k+1}{k d}$. Then $k \geqslant d-2$ by Lemma 3.1(ii). Since

$$
k \leqslant C_{d}^{1} \cdot E_{1}=m_{0}=d-1,
$$

either $k=d-1$ or $k=d-2$. If $k=d-1$, then C_{d} has singularity \mathbb{K}_{d-1} at P. If $k=d-2$, then C_{d} has singularity $\widetilde{\mathbb{K}}_{d-1}$ at the point P.

To complete the proof, we may assume that L is an irreducible component of the curve C_{d}. Then $C_{d}=L+C_{d-1}$, where C_{d-1} is a reduced curve in \mathbb{P}^{2} of degree $d-1$ such that L is not its irreducible component. Denote by C_{d-1}^{1} its proper transform on S_{1}. Put $n_{0}=\operatorname{mult}_{P}\left(C_{d-1}\right)$ and $n_{1}=\operatorname{mult}_{P_{1}}\left(C_{d-1}^{1}\right)$. Then $n_{0}=m_{0}-1=d-2$ and $n_{1}=m_{1}-1$. This implies that $P_{1} \in C_{d-1}^{1}$, since the \log pair $\left(S_{1}, \lambda_{1} L^{1}+\left(\lambda_{1} m_{0}-1\right) E_{1}\right)$ is Kawamata \log terminal at P. Hence, $n_{1} \geqslant 1$. One the other hand, we have

$$
d-1-n_{0}=C_{d-1}^{1} \cdot L^{1} \geqslant n_{1},
$$

which implies that $n_{0}+n_{1} \leqslant d-1$. Then $n_{1}=1$, since $n_{0}=d-2$.
We have $P_{1} \in C_{d-1}^{1}$ and C_{d-1}^{1} is smooth at P_{1}. Moreover, since

$$
1=d-1-n_{0}=L^{1} \cdot C_{d-1}^{1} \geqslant n_{1}=1
$$

the curve C_{d-1}^{1} intersects the curve L^{1} transversally at the point P_{1}. Put $k=\operatorname{mult}_{P_{1}}\left(C_{d-1}^{1} \cdot E_{1}\right)$. Then $k \geqslant 1$. Applying Lemma 2.2 to the \log pair $\left(S_{1}, \lambda_{1} C_{d-1}^{1}+\lambda_{1} L^{1}+\left(\lambda_{1}\left(n_{0}+1\right)-1\right) E_{1}\right)$ at the point P_{1}, we get

$$
k\left(\lambda_{1}\left(n_{0}+2\right)-1\right)+\lambda_{1} \geqslant k+1
$$

Then $\lambda_{1} \geqslant \frac{2 k+1}{k d+1}$. Then $k \geqslant d-3$ by Lemma 3.1(iii). Since

$$
k \leqslant E_{1} \cdot C_{d-1}^{1}=n_{0}=d-2,
$$

either $k=d-2$ or $k=d-3$. In the former case, C_{d} has singularity \mathbb{T}_{d-1} at the point P. In the latter case, C_{d} has singularity $\widetilde{\mathbb{T}}_{d-1}$ at the point P.

Lemma 3.6. Suppose that (A) holds and $m_{0} \leqslant d-2$. Then the line L is not an irreducible component of the curve C_{d}.

Proof. Suppose that L is an irreducible component of the curve C_{d}. Let us see for a contradiction. Put $C_{d}=L+C_{d-1}$, where C_{d-1} is a reduced curve in \mathbb{P}^{2} of degree $d-1$ such that L is not its irreducible component. Denote by C_{d-1}^{1} its proper transform on S_{1}. Put $n_{0}=\operatorname{mult}_{P}\left(C_{d-1}\right)$ and $n_{1}=\operatorname{mult}_{P_{1}}\left(C_{d-1}^{1}\right)$. Then $\left(S_{1},\left(\lambda_{1}\left(n_{0}+1\right)-1\right) E_{1}+\lambda_{1} L^{1}+\lambda_{1} C_{d-1}^{1}\right)$ is not Kawamata \log terminal at P_{1} and is Kawamata \log terminal outside of the point P_{1}. In particular, $n_{1} \neq 0$, because $\left(S_{1},\left(\lambda_{1}\left(n_{0}+1\right)-1\right) E_{1}+\lambda_{1} L^{1}\right)$ is Kawamata \log terminal at P_{1}. On the other hand,

$$
d-1-n_{0}=L^{1} \cdot C_{d-1}^{1} \geqslant n_{1}
$$

which implies that $n_{0}+n_{1} \leqslant d-1$. Furthermore, we have $n_{0}=m_{0}-1 \leqslant d-3$.
Since $n_{0}+n_{1} \geqslant 2 n_{1}$, we have $n_{1} \leqslant \frac{d-1}{2}$. Then $\lambda n_{1}<1$ by Lemma3.1(i). Thus, we can apply Theorem [2.16 to the \log pair $\left(S_{1},\left(\lambda_{1}\left(n_{0}+1\right)-1\right) E_{1}+\lambda_{1} L^{1}+\lambda_{1} C_{d-1}^{1}\right)$ at the point P_{1}. This gives either

$$
\lambda_{1}\left(d-1-n_{0}\right)=\lambda_{1} C_{d-1}^{1} \cdot L^{1} \geqslant 2\left(2-\lambda_{1}\left(n_{0}+1\right)\right)
$$

or

$$
\lambda_{1} n_{0}=\lambda_{1} C_{d-1}^{1} \cdot E_{1} \geqslant 2\left(1-\lambda_{1}\right)
$$

(or both). In the former case, we have $\lambda_{1}\left(d+1+n_{0}\right) \geqslant 4$. In the latter case, we have $\lambda_{1}\left(n_{0}+2\right)>2$. Thus, in both cases we have $\lambda_{1}(d-1) \geqslant 2$, since $n_{0} \leqslant d-3$. But $\lambda_{1}(d-1)<2$ by Lemma 3.1(i). This is a contradiction.

If the curve C_{d} is GIT-semistable, then $m_{0} \leqslant d-2$ by Lemma 3.3. Thus, it follows from Lemma 3.5 that we may assume that

$$
m_{0} \leqslant d-2
$$

in order to complete the proof of Theorems 1.10 and 1.15. Moreover, if L is not an irreducible component of the curve C_{d}, then

$$
d-m_{0}=C_{d}^{1} \cdot L^{1} \geqslant m_{1} .
$$

Thus, if (\mathbf{A}) holds, then $m_{0}+m_{1} \leqslant d$ by Lemma 3.6. Similarly, if the curve C_{d} is GIT-semistable, then $m_{0}+m_{1} \leqslant d$ by Lemma 3.3. Thus, to complete the proof of Theorems 1.10 and 1.15, we may also assume that

$$
\begin{equation*}
m_{0}+m_{1} \leqslant d \tag{3.7}
\end{equation*}
$$

Then $\lambda\left(m_{0}+m_{1}\right)<3$ by Lemma 3.1(v), so that $\left(S_{2}, \lambda C_{d}^{2}+\left(\lambda m_{0}-1\right) E_{1}^{2}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2}\right)$ is Kawamata \log terminal outside of the point P_{2} by Lemma 2.13. Furthermore, we have

Lemma 3.8. Suppose that $P_{2}=E_{1}^{2} \cap E_{2}$. Then (A) does not hold and C_{d} is GIT-unstable.
Proof. We have $m_{0}-m_{1}=E_{1}^{2} \cdot C_{d}^{2} \geqslant m_{2}$, so that

$$
\begin{equation*}
m_{2} \leqslant \frac{m_{0}}{2} \tag{3.9}
\end{equation*}
$$

because $2 m_{2} \leqslant m_{1}+m_{2}$. On the other hand, $m_{0} \leqslant d-2$ by assumption. Thus, we have $m_{2} \leqslant \frac{d-2}{2}$.

Suppose that (A) holds. Then $\lambda=\lambda_{1}$ and $\lambda_{1} m_{2}<1$ by Lemma 3.1(v). Thus, we can apply Theorem 2.16 to the \log pair $\left(S_{2}, \lambda_{1} C_{d}^{2}+\left(\lambda_{1} m_{0}-1\right) E_{1}^{2}+\left(\lambda_{1}\left(m_{0}+m_{1}\right)-2\right) E_{2}\right)$. This gives either

$$
\lambda_{1}\left(m_{0}-m_{1}\right)=\lambda_{1} C_{d}^{2} \cdot E_{1}^{2} \geqslant 2\left(3-\lambda_{1}\left(m_{0}+m_{1}\right)\right)
$$

or

$$
\lambda_{1} m_{1}=\lambda_{1} C_{d}^{2} \cdot E_{2} \geqslant 2\left(2-\lambda_{1} m_{0}\right)
$$

(or both). The former inequality implies $\lambda_{1}\left(3 m_{0}+m_{1}\right) \geqslant 6$. The latter inequality implies $\lambda_{1}\left(2 m_{0}+m_{1}\right) \geqslant 4$. On the other hand, $m_{0}+m_{1} \leqslant d$ by (3.7), and $m_{0} \leqslant d-2$ by assumption. Thus, $3 m_{0}+m_{1} \leqslant 3 d-4$ and $2 m_{0}+m_{1} \leqslant 2 d-2$. Then $\lambda_{1}\left(3 m_{0}+m_{1}\right)<6$ by Lemma 3.1(vi), and $\lambda_{1}\left(2 m_{0}+m_{1}\right)<4$ by Lemma 3.1(i). The obtained contradiction shows that (A) does not hold.

We see that (B) holds. We have to show that C_{d} is GIT-unstable. Suppose that this is not the case, so that C_{d} is GIT-semistable. Let us seek for a contradiction.

By Lemma 3.2, we have $2 m_{0}+m_{1}+m_{2} \leqslant \frac{5 d}{3}$, because

$$
\mathrm{wt}_{(3,2)}\left(f_{d}\left(x_{1}, x_{2}\right)\right)=2 m_{0}+m_{1}+m_{2} .
$$

Thus, we have $\lambda_{2}\left(2 m_{0}+m_{1}+m_{2}\right)-4<1$ by Lemma 3.1(v). Hence, the log pair ($S_{3}, \lambda_{2} C_{d}^{3}+$ $\left.\left(\lambda_{2} m_{0}-1\right) E_{1}^{3}+\left(\lambda_{2}\left(m_{0}+m_{1}\right)-2\right) E_{2}^{3}+\left(\lambda_{2}\left(2 m_{0}+m_{1}+m_{2}\right)-4\right) E_{3}\right)$ is Kawamata log terminal outside of the point P_{3} by Remark 2.10.

If $P_{3}=E_{1}^{3} \cap E_{3}$, then it follows from Theorem 2.12 that

$$
\lambda_{2}\left(m_{0}-m_{1}-m_{2}\right)=\lambda_{2} C_{d}^{3} \cdot E_{1}^{3}>5-\lambda_{2}\left(2 m_{0}+m_{1}+m_{2}\right),
$$

which implies that $m_{0}>\frac{5}{3 \lambda_{2}}=\frac{2 d}{3}$, which is impossible by Lemma 3.3. If $P_{3}=E_{2}^{3} \cap E_{3}$, then it follows from Theorem 2.12 that

$$
\lambda_{2}\left(m_{1}-m_{2}\right)=\lambda_{2} C_{d}^{3} \cdot E_{2}^{3}>5-\lambda_{2}\left(2 m_{0}+m_{1}+m_{2}\right)
$$

which implies that $m_{0}+m_{1}>\frac{5}{2 \lambda_{2}}=d$, which is impossible by Lemma 3.3. Thus, we see that $P_{3} \notin E_{1}^{3} \cup E_{2}^{3}$. Then the \log pair $\left(S_{3}, \lambda_{2} C_{d}^{3}+\left(\lambda_{2}\left(2 m_{0}+m_{1}+m_{2}\right)-4\right) E_{3}\right)$ is not Kawamata log terminal at P_{3}. Hence, Theorem [2.12 gives

$$
\underset{12}{\lambda_{2} m_{2}}=\underset{d}{\lambda_{2} C_{d}^{3}} \cdot E_{3}>1,
$$

which implies that $m_{2}>\frac{1}{\lambda_{2}}=\frac{2 d}{5}$. Then $m_{0}>\frac{4 d}{5}$ by (3.9), which is impossible by Lemma 3.3,
Thus, to complete the proof of Theorems 1.10 and 1.15, we may assume that

$$
P_{2} \neq E_{1}^{2} \cap E_{2} .
$$

Denote by L^{2} the proper transform of the line L on the surface S_{2}.
Lemma 3.10. One has $P_{2} \neq L^{2} \cap E_{2}$.
Proof. Suppose that $P_{2}=L^{2} \cap E_{2}$. If L is not an irreducible component of the curve C_{d}, then

$$
d-m_{0}-m_{1}=L^{2} \cdot E_{2} \geqslant m_{2},
$$

which implies that $m_{0}+m_{1}+m_{2} \leqslant d$. Thus, if (A) holds, then $\lambda=\lambda_{1}$ and L is not an irreducible component of the curve C_{d} by Lemma 3.6, which implies that

$$
\lambda_{1} d \geqslant \lambda_{1}\left(m_{0}+m_{1}+m_{2}\right)>3
$$

by Lemma 2.14. On the other hand, $\lambda_{1} d<3$ by Lemma 3.1(iv). This shows that (B) holds.
Since $\lambda=\lambda_{2}=\frac{5}{2 d}<\frac{3}{d}$ and $\lambda_{2}\left(m_{0}+m_{1}+m_{2}\right)>3$ by Lemma [2.14, we have $m_{0}+m_{1}+m_{2}>d$. In particular, the line L must be an irreducible component of the curve C_{d}.

Put $C_{d}=L+C_{d-1}$, where C_{d-1} is a reduced curve in \mathbb{P}^{2} of degree $d-1$ such that L is not its irreducible component. Denote by C_{d-1}^{1} its proper transform on S_{1}, and denote by C_{d-1}^{2} its proper transform on S_{2}. Put $n_{0}=\operatorname{mult}_{P}\left(C_{d-1}\right), n_{1}=\operatorname{mult}_{P_{1}}\left(C_{d-1}^{1}\right)$ and $n_{2}=\operatorname{mult}_{P_{2}}\left(C_{d-1}^{2}\right)$. Then $\left(S_{2},\left(\lambda_{2}\left(n_{0}+n_{1}+2\right)-2\right) E_{2}+\lambda_{2} L^{1}+\lambda_{2} C_{d-1}^{1}\right)$ is not Kawamata log terminal at P_{2} and is Kawamata \log terminal outside of the point P_{2}. Then Theorem 2.12 implies

$$
\lambda_{2}\left(d-1-n_{0}-n_{1}\right)=\lambda_{2} C_{d-1}^{2} \cdot L^{2}>1-\left(\lambda_{2}\left(n_{0}+n_{1}+2\right)-2\right)=3-\lambda_{2}\left(n_{0}+n_{1}+2\right),
$$

which implies that $\frac{5(d+1)}{2 d}=\lambda_{2}(d+1)>3$. Hence, $d=4$. Then $\lambda=\lambda_{2}=\frac{5}{8}$.
By (3.7), $n_{0}+n_{1} \leqslant 2$. Thus, $n_{0}=n_{1}=n_{2}=1$, since

$$
\frac{5}{8}\left(n_{0}+n_{1}+n_{2}+3\right)=\lambda_{2}\left(m_{0}+m_{1}+m_{2}\right)>3
$$

by Lemma 2.14. Then C_{3} is a irreducible cubic curve that is smooth at P, the line L is tangent to the curve C_{3} at the point P, and P is an inflexion point of the cubic curve C_{3}. This implies that $\operatorname{lct}_{P}\left(\mathbb{P}^{2}, C_{d}\right)=\frac{2}{3}$. Since $\frac{2}{3}>\frac{5}{8}=\lambda_{2}$, the log pair $\left(\mathbb{P}^{2}, \lambda_{2} C_{d}\right)$ must be Kawamata log terminal at the point P, which contradicts (B).

Recall that $m_{0}+m_{1} \leqslant d$ by (3.7). Then $m_{1} \leqslant \frac{d}{2}$, since $2 m_{1} \leqslant m_{0}+m_{1}$. Thus, we have

$$
\begin{equation*}
\lambda\left(m_{0}+m_{1}+m_{2}\right) \leqslant \lambda\left(m_{0}+2 m_{1}\right) \leqslant \lambda \frac{3 d}{2} \leqslant \lambda_{2} \frac{3 d}{2}=\frac{15}{4}<4 . \tag{3.11}
\end{equation*}
$$

Therefore, the log pair $\left(S_{3}, \lambda C_{d}^{3}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2}^{3}+\left(\lambda\left(m_{0}+m_{1}+m_{2}\right)-3\right) E_{3}\right)$ is Kawamata \log terminal outside of the point P_{3} by Lemma 2.13.
Lemma 3.12. One has $P_{3} \neq E_{2}^{3} \cap E_{3}$.
Proof. If $P_{3}=E_{2}^{3} \cap E_{3}$, then Theorem 2.12 gives

$$
\lambda\left(m_{1}-m_{2}\right)=\lambda C_{d}^{3} \cdot E_{2}^{3}>1-\left(\lambda\left(m_{0}+m_{1}+m_{2}\right)-3\right)=4-\lambda\left(m_{0}+m_{1}+m_{2}\right)
$$

which implies that $\lambda\left(m_{0}+2 m_{1}\right)>4$. But $\lambda\left(m_{0}+2 m_{1}\right)<4$ by (3.11).
Let $f_{4}: S_{4} \rightarrow S_{3}$ be a blow up of the point P_{3}, and let E_{4} be its exceptional curve. Denote by C_{d}^{4} the proper transform on S_{4} of the curve C_{d}, denote by E_{3}^{4} the proper transform on S_{4} of the curve E_{3}, and denote by L^{4} the proper transform of the line L on the surface S_{4}. Then $\left(S_{4}, \lambda C_{d}^{4}+\left(\lambda\left(m_{0}+m_{1}+m_{2}\right)-3\right) E_{3}^{4}+\left(\lambda\left(m_{0}+m_{1}+m_{2}+m_{3}\right)-4\right) E_{4}\right)$ is not Kawamata \log terminal at some point $P_{4} \in E_{4}$ by Remark [2.10. Moreover, we have
$2 L^{4}+E_{1}+2 E_{2}+E_{3} \sim\left(f_{1} \circ f_{2} \circ f_{3} \circ f_{4}\right)^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}(2)\right)-\left(f_{2} \circ f_{3} \circ f_{4}\right)^{*}\left(E_{1}\right)-\left(f_{3} \circ f_{4}\right)^{*}\left(E_{2}\right)-f_{4}^{*}\left(E_{3}\right)-E_{4}$.

Lemma 3.13. The linear system $\left|2 L^{4}+E_{1}+2 E_{2}+E_{3}\right|$ is a pencil that does not have base points. Moreover, every divisor in $\left|2 L^{4}+E_{1}+2 E_{2}+E_{3}\right|$ that is different from $2 L^{4}+E_{1}+2 E_{2}+E_{3}$ is a smooth curve whose image on \mathbb{P}^{2} is a smooth conic that is tangent to L at the point P.
Proof. All assertions follows from $P_{2} \notin E_{1}^{2} \cup L^{2}$ and $P_{3} \notin E_{2}^{3}$.
Let C_{2}^{4} be a general curve in $\left|2 L^{4}+E_{1}+2 E_{2}+E_{3}\right|$. Denote by C_{2} its image on \mathbb{P}^{2}, and denote by \mathcal{L} the pencil generated by $2 L$ and C_{2}. Then P is the only base point of the pencil \mathcal{L}, and every conic in \mathcal{L} except $2 L$ and C_{2} intersects C_{2} at P with multiplicity 4 (cf. [3, Remark 1.14]).

Lemma 3.14. One has $m_{0}+m_{1}+m_{2}+m_{3} \leqslant m_{0}+m_{1}+2 m_{2} \leqslant \frac{5}{\lambda}$. If $m_{0}+m_{1}+m_{2}+m_{3}=\frac{5}{\lambda}$, then d is even and C_{d} is a union of $\frac{d}{2} \geqslant 2$ smooth conics in \mathcal{L}, where $d=4$ if (\mathbf{A}) holds.
Proof. By (3.7), we have $m_{2}+m_{3} \leqslant 2 m_{2} \leqslant m_{0}+m_{1} \leqslant d$. This gives

$$
m_{0}+m_{1}+m_{2}+m_{3} \leqslant m_{0}+m_{1}+2 m_{2} \leqslant 2 d=\frac{5}{\lambda_{2}} \leqslant \frac{5}{\lambda} .
$$

To complete the proof, we may assume that $m_{0}+m_{1}+m_{2}+m_{3}=\frac{5}{\lambda}$. Then all inequalities above must be equalities. Thus, we have $m_{2}=m_{3}=\frac{d}{2}$ and $\lambda_{1}=\lambda_{2}$. In particular, if (A) holds, then $d=4$, because $\lambda_{1}<\lambda_{2}=\frac{5}{2 d}$ for $d \geqslant 5$ by Lemma 3.1(vii). Moreover, since $m_{0} \geqslant m_{1} \geqslant m_{2}=\frac{d}{2}$ and $m_{0}+m_{1} \leqslant d$, we see that $m_{0}=m_{1}=\frac{d}{2}$. Thus, d is even and

$$
C_{d}^{4} \sim \frac{d}{2}\left(2 L^{4}+E_{1}+2 E_{2}+E_{3}\right)
$$

where $d=4$ if (\mathbf{A}) holds. Since $\left|2 L^{4}+E_{1}+2 E_{2}+E_{3}\right|$ is a free pencil and C_{d}^{4} is reduced, it follows from Lemma 3.13 that C_{d}^{4} is a union of $\frac{d}{2}$ smooth curves in $\left|2 L^{4}+E_{1}+2 E_{2}+E_{3}\right|$. In particular, L^{4} is not an irreducible component of C_{d}^{4}. Thus, the curve C_{d} is a union of $\frac{d}{2}$ smooth conics in \mathcal{L}, where $d=4$ if (A) holds.

We see that $m_{0}+m_{1}+m_{2}+m_{3} \leqslant \frac{5}{\lambda}$. Moreover, if $m_{0}+m_{1}+m_{2}+m_{3}=\frac{5}{\lambda}$, then C_{d} is an even Płoski curve. Furthermore, if $m_{0}+m_{1}+m_{2}+m_{3}=\frac{5}{\lambda}$ and (A) holds, then $d=4$. Thus, to prove Theorems 1.10 and 1.15 , we may assume that

$$
m_{0}+m_{1}+m_{2}+m_{3}<\frac{5}{\lambda}
$$

Let us show that this assumption leads to a contradiction. By Lemma 2.13, this inequality implies that the log pair $\left(S_{4}, \lambda C_{d}^{4}+\left(\lambda\left(m_{0}+m_{1}+m_{2}\right)-3\right) E_{3}^{4}+\left(\lambda\left(m_{0}+m_{1}+m_{2}+m_{3}\right)-4\right) E_{4}\right)$ is Kawamata \log terminal outside of the point P_{4}.
Lemma 3.15. One has $P_{4} \neq E_{3}^{4} \cap E_{4}$.
Proof. By Lemma 3.14, $m_{0}+m_{1}+2 m_{2} \leqslant \frac{5}{\lambda}$. If $P_{4}=E_{3}^{4} \cap E_{4}$, then Theorem 2.12 gives

$$
\lambda\left(m_{2}-m_{3}\right)=\lambda C_{d}^{4} \cdot E_{3}^{4}>5-\lambda\left(m_{0}+m_{1}+m_{2}+m_{3}\right)
$$

which implies that $m_{0}+m_{1}+2 m_{2}>\frac{5}{\lambda}$. This shows that $P_{4} \neq E_{3}^{4} \cap E_{4}$.
Thus, the \log pair $\left(S_{4}, \lambda C_{d}^{4}+\left(\lambda\left(m_{0}+m_{1}+m_{2}+m_{3}\right)-4\right) E_{4}\right)$ is not Kawamata log terminal at P_{4} and is Kawamata log terminal outside of the point P_{4}.

Let Z^{4} be the curve in $\left|2 L^{4}+E_{1}+2 E_{2}+E_{3}\right|$ that passes through the point P_{4}. Then Z^{4} is a smooth irreducible curve by Lemma 3.10. Denote by Z the proper transform of this curve on \mathbb{P}^{2}. Then Z is a smooth conic in the pencil \mathcal{L} by Lemma 3.13, If Z is not an irreducible component of the curve C_{d}, then

$$
2 d-\left(m_{0}+m_{1}+m_{2}+m_{3}\right)=Z^{4} \cdot C_{d}^{4} \geqslant \operatorname{mult}_{P_{4}}\left(C_{d}^{4}\right)
$$

On the other hand, it follows from Lemma 2.14 that

$$
\operatorname{mult}_{P_{4}}\left(C_{d}^{4}\right)+m_{0}+m_{1}+m_{2}+m_{3}>\frac{5}{\lambda}
$$

This shows that Z is an irreducible component of the curve C_{d}, since $\lambda \leqslant \lambda_{2}=\frac{5}{2 d}$.
Put $C_{d}=Z+C_{d-2}$, where C_{d-2} is a reduced curve in \mathbb{P}^{2} of degree $d-2$ such that Z is not its irreducible component. Denote by $C_{d-2}^{1}, C_{d-2}^{2}, C_{d-2}^{3}$ and C_{d-2}^{4} its proper transforms on the surfaces S_{1}, S_{2}, S_{3} and S_{4}, respectively. Put $n_{0}=\operatorname{mult}_{P}\left(C_{d-2}\right), n_{1}=\operatorname{mult}_{P_{1}}\left(C_{d-2}^{1}\right)$, $n_{2}=\operatorname{mult}_{P_{2}}\left(C_{d-2}^{2}\right), n_{3}=\operatorname{mult}_{P_{3}}\left(C_{d-2}^{3}\right)$ and $n_{4}=\operatorname{mult}_{P_{4}}\left(C_{d-2}^{4}\right)$. Then

$$
\left(S_{4}, \lambda C_{d-2}^{4}+\lambda Z^{4}+\left(\lambda\left(n_{0}+n_{1}+n_{2}+n_{3}+4\right)-4\right) E_{4}\right)
$$

is not Kawamata \log terminal at P_{4} and is Kawamata \log terminal outside of the point P_{4}. Thus, applying Theorem 2.12, we get

$$
\lambda\left(2(d-2)-n_{0}-n_{1}-n_{2}-n_{3}\right)=\lambda C_{d-2}^{4} \cdot Z^{4}>5-\lambda\left(n_{0}+n_{1}+n_{2}+n_{3}+4\right)
$$

which implies that $\lambda>\frac{5}{2 d}$. This is impossible, since $\lambda \leqslant \lambda_{2}=\frac{5}{2 d}$.
The obtained contradiction completes the proof of Theorems 1.10 and 1.15 ,

4. Smooth surfaces in \mathbb{P}^{3}

The purpose of this section is to prove Theorem 1.17. Let S be a smooth surface in \mathbb{P}^{3} of degree $d \geqslant 3$, let H_{S} be its hyperplane section, let P be a point in S, let T_{P} be the hyperplane section of the surface S that is singular at P. Note that T_{P} is reduced by Lemma 2.6. Put $\lambda=\frac{2 d-3}{d(d-2)}$. Then Theorem 1.17 follows from Theorem 1.10, Remark 2.4 and

Proposition 4.1. Let D be any effective \mathbb{Q}-divisor on S such that $D \sim_{\mathbb{Q}} H_{S}$. Suppose that $\operatorname{Supp}(D)$ does not contain at least one irreducible component of the curve T_{P}. Then $(S, \lambda D)$ is log canonical at P.

For $d=3$, this result is just [3, Corollary 1.13]. In the remaining part of the section, we will prove Proposition 4.1. Note that we will do this without using [3, Corollary 1.13]. Let us start with

Lemma 4.2. The following assertions hold:
(i) $\lambda \leqslant \frac{2}{d-1}$,
(ii) if $d \geqslant 5$, then $\lambda \leqslant \frac{3}{d+1}$,
(iii) if $d \geqslant 5$, then $\lambda \leqslant \frac{4}{d+3}$,
(iv) If $d \geqslant 6$, then $\lambda \leqslant \frac{3}{d+2}$,
(v) $\lambda \leqslant \frac{4}{d+1}$,
(vi) $\lambda \leqslant \frac{3}{d}$.

Proof. The equality $\frac{2}{d-1}=\lambda+\frac{d-3}{d(d-1)(d-2)}$ implies (i), $\frac{4}{d+1}=\lambda+\frac{d^{2}-5 d+3}{d(d+1)(d-2)}$ implies (ii), and $\frac{4}{d+3}=\lambda+\frac{2 d^{2}-11 d+9}{d(d+3)(d-2)}$ implies (iii). Similarly, (iv) follows from $\frac{3}{d+2}=\lambda+\frac{d^{2}-7 d+6}{d\left(d^{2}-4\right)}$, (v) follows from $\frac{4}{d+1}=\lambda+\frac{2 d^{2}-7 d+3}{d(d+1)(d-2)}$, and (vi) follows from $\frac{3}{d}=\lambda+\frac{d-3}{d(d-2)}$.

Let n be the number of irreducible components of the curve T_{P}. Write

$$
T_{P}=T_{1}+\cdots+T_{n},
$$

where each T_{i} is an irreducible curve on the surface S. For every curve T_{i}, we denote its degree by d_{i}, and we put $t_{i}=\operatorname{mult}_{P}\left(T_{i}\right)$.
Lemma 4.3. Suppose that $n \geqslant 2$. Then

$$
T_{i} \cdot T_{i}=-d_{i}\left(d-d_{i}-1\right)
$$

for every T_{i}, and $T_{i} \cdot T_{j}=d_{i} d_{j}$ for every T_{i} and T_{j} such that $T_{i} \neq T_{j}$.

Proof. The curve T_{P} is cut out on S by a hyperplane $H \subset \mathbb{P}^{3}$. Then $H \cong \mathbb{P}^{2}$. Hence, for every T_{i} and T_{j} such that $T_{i} \neq T_{j}$, we have $\left(T_{i} \cdot T_{j}\right)_{S}=\left(T_{i} \cdot T_{j}\right)_{H}=d_{i} d_{j}$. In particular, we have

$$
d_{1}=T_{P} \cdot T_{1}=T_{1}^{2}+\sum_{i=2}^{n} T_{i} \cdot T_{1}=T_{1}^{2}+\sum_{i=2}^{n} d_{i} d_{1}=T_{1}^{2}+\left(d-d_{1}\right) d_{1},
$$

which gives $T_{1} \cdot T_{1}=-d_{1}\left(d-d_{1}-1\right)$. Similarly, we see that $T_{i} \cdot T_{i}=-d_{i}\left(d-d_{i}-1\right)$ for every curve T_{i}.

Let D be any effective \mathbb{Q}-divisor on S such that $D \sim_{\mathbb{Q}} H_{S}$. Write

$$
D=\sum_{i=1}^{n} a_{i} T_{i}+\Delta,
$$

where each a_{i} is a non-negative rational number, and Δ is an effective \mathbb{Q}-divisor on S whose support does not contain the curves T_{1}, \ldots, T_{n}. To prove Proposition 4.1, it is enough to show that the \log pair $(S, \lambda D)$ is \log canonical at P provided that at least one number among a_{1}, \ldots, a_{n} vanishes.

Without loss of generality, we may assume that $a_{n}=0$. Suppose that the \log pair $(S, \lambda D)$ is not \log canonical at P. Let us seek for a contradiction.

Lemma 4.4. Suppose that $n \geqslant 2$. Then

$$
\sum_{i=1}^{k} a_{i} d_{i} d_{n} \leqslant d_{n}-t_{n} \operatorname{mult}_{P}(\Delta)
$$

In particular, $\sum_{i=1}^{k} a_{i} d_{i} \leqslant 1$ and each a_{i} does not exceed $\frac{1}{d_{i}}$.
Proof. One has

$$
d_{n}=T_{n} \cdot D=T_{n} \cdot\left(\sum_{i=1}^{n} a_{i} T_{i}+\Delta\right)=\sum_{i=1}^{n} a_{i} d_{i} d_{n}+T_{n} \cdot \Delta \geqslant \sum_{i=1}^{n} a_{i} d_{i} d_{n}+t_{n} \operatorname{mult}_{P}(\Delta),
$$

which implies the required inequality.
Put $m_{0}=\operatorname{mult}_{P}(D)$.
Lemma 4.5. Suppose that $P \in T_{n}$. Then $d_{n}>\frac{d-1}{2}$. If $n \geqslant 2$, then T_{n} is smooth at P.
Proof. Since T_{n} is not contained in the support of the divisor D, we have

$$
d \geqslant d_{n}=T_{n} \cdot D \geqslant t_{n} m_{0},
$$

which implies that $m_{0} \leqslant \frac{d_{n}}{t_{n}}$. Since $m_{0}>\frac{1}{\lambda}$ by Lemma 2.5, we have $d_{n}>\frac{d-1}{2}$ by Lemma 4.2(i). Moreover, if $n \geqslant 2$ and $t_{n} \geqslant 2$, then it follows from Lemma 2.5 that

$$
\frac{1}{\lambda}<m_{0} \leqslant \frac{d_{n}}{t_{n}} \leqslant \frac{d-1}{t_{n}} \leqslant \frac{d-1}{2},
$$

which is impossible by Lemma 4.2 (i).
Now we are going to use Theorem 2.15 to prove
Lemma 4.6. Suppose that $n \geqslant 3$ and P is contained in at least two irreducible components of the curve T_{P} that are different from T_{n} and that are both smooth at P. Then they are tangent to each other at P.

Proof. Without loss of generality, we may assume that $P \in T_{1} \cap T_{2}$ and $t_{1}=t_{2}=1$. Suppose that T_{1} and T_{2} are not tangent to each other at P. Put $\Omega=\sum_{i=3}^{n} a_{i} T_{i}+\Delta$, so that $D=a_{1} T_{1}+a_{2} T_{2}+\Omega$. Then $a_{1} d_{1}+a_{2} d_{2} \leqslant 1$ by Lemma 4.4.

Put $k_{0}=\operatorname{mult}(\Omega)$. Then

$$
d_{1}+a_{1} d_{1}\left(d-d_{1}-1\right)-a_{2} d_{1} d_{2}=\Omega \cdot T_{1} \geqslant k_{0}
$$

by Lemma 4.3. Similarly, we have

$$
d_{2}-a_{1} d_{1} d_{2}+a_{2} d_{2}\left(d-d_{2}-1\right)=\Omega \cdot T_{2} \geqslant k_{0}
$$

Adding these two inequalities together and using $a_{1} d_{1}+a_{2} d_{2} \leqslant 1$, we get

$$
2 k_{0} \leqslant d_{1}+d_{2}+\left(a_{1} d_{1}+a_{2} d_{2}\right)\left(d-d_{1}-d_{2}-1\right) \leqslant d_{1}+d_{2}+\left(d-d_{1}-d_{2}-1\right)=d-1
$$

Thus, $k_{0} \leqslant \frac{1}{\lambda}$ by Lemma $4.2(\mathrm{i})$.
Since $\lambda k_{0} \leqslant 1$, we can apply Theorem 2.15 to the log pair $\left(S, \lambda a_{1} T_{1}+\lambda a_{2} T_{2}+\lambda \Omega\right)$ at the point P. This gives either $\lambda \Omega \cdot T_{1}>2\left(1-\lambda a_{2}\right)$ or $\lambda \Omega \cdot T_{2}>2\left(1-\lambda a_{1}\right)$. Without loss of generality, we may assume that $\lambda \Omega \cdot T_{2}>2\left(1-\lambda a_{1}\right)$. Then

$$
\begin{equation*}
d_{2}+a_{2} d_{2}\left(d-d_{2}-1\right)-a_{1} d_{1} d_{2}=\Omega \cdot T_{2}>\frac{2}{\lambda}-2 a_{1} \tag{4.7}
\end{equation*}
$$

Applying Theorem 2.12 to the \log pair $\left(S, \lambda a_{1} T_{1}+\lambda b_{1} T_{2}+\lambda \Omega\right)$ and the curve T_{1} at the point P, we get

$$
d_{1}+a_{1} d_{1}\left(d-d_{1}-1\right)=\left(\lambda a_{2} T_{2}+\lambda \Omega\right) \cdot T_{1}>\frac{1}{\lambda}
$$

Adding this inequality to (4.7), we get

$$
d+1 \geqslant d-1+2 a_{1} \geqslant d_{1}+d_{2}+\left(a_{1} d_{1}+a_{2} d_{2}\right)\left(d-d_{1}-d_{2}-1\right)+2 a_{1}>\frac{3}{\lambda}
$$

because $a_{1} d_{1}+a_{2} d_{2} \leqslant 1$. Thus, it follows from Lemma 4.2(ii) that either $d=3$ or $d=4$.
If $d=3$, then $n=3$ and $d_{1}=d_{2}=d_{3}=\lambda=1$, which implies that $a_{1}+a_{2}>1$ by (4.7). On the other hand, we know that $a_{1} d_{1}+a_{2} d_{2} \leqslant 1$, so that $a_{1}+a_{2} \leqslant 1$. This shows that $d \neq 3$.

We see that $d=4$. Then $\lambda=\frac{5}{8}$ and $d_{1}+d_{2} \leqslant 3$. If $d_{1}=d_{1}=1$, then (4.7) gives $2 a_{2}+a_{1}>\frac{11}{5}$. If $d_{1}=1$ and $d_{2}=2$, then (4.7) gives $a_{2}>\frac{3}{5}$. If $d_{1}=2$ and $d_{2}=1$, then (4.7) gives $a_{2}>\frac{11}{5}$. All these three inequalities are inconsistent, because $a_{1} d_{1}+a_{2} d_{2} \leqslant 1$. The obtained contradiction completes the proof of the lemma.

Note that every line contained in the surfaces S that passes through P must be an irreducible component of the curve T_{P}. Moreover, the curve T_{n} cannot be a line by Lemma 4.5. Thus, Lemma 4.6 implies that there exists at most one line in S that passes through P. In particular, we see that $n<d$.

Lemma 4.8. Suppose that $n \geqslant 3$ and P is contained in at least two irreducible components of the curve T_{P} that are different from T_{n}. Then these curves are smooth at P.

Proof. Without loss of generality, we may assume that $P \in T_{1} \cap T_{2}$ and $t_{1} \leqslant t_{2}$. We have to show that $t_{1}=t_{2}=1$. We may assume that $d \geqslant 5$, because the required assertion is obvious in the cases $d=3$ and $d=4$.

Put $\Omega=\sum_{i=3}^{n} a_{i} T_{i}+\Delta$ and put $k_{0}=\operatorname{mult}_{P}(\Omega)$. Then $m_{0}=k_{0}+a_{1} t_{1}+a_{2} t_{2}$. Moreover, we have $a_{1} d_{1}+a_{2} d_{2} \leqslant 1$ by Lemma 4.4. On the other hand, it follows from Lemma 4.3 that

$$
d-1 \geqslant d_{1}+d_{2}+\left(a_{1} d_{1}+a_{2} d_{2}\right)\left(d-d_{1}-d_{2}-1\right)=\Omega \cdot\left(T_{1}+T_{2}\right) \geqslant k_{0}\left(t_{1}+t_{2}\right)
$$

because $a_{1} d_{1}+a_{2} d_{2} \leqslant 1$. Thus, we have $k_{0} \leqslant \frac{d-1}{t_{1}+t_{2}}$. Hence, if $t_{1}+t_{2} \geqslant 4$, then

$$
m_{0}=k_{0}+a_{1} t_{1}+a_{2} t_{2} \leqslant k_{0}+a_{1} d_{1}+a_{2} d_{2} \leqslant \frac{d-1}{t_{1}+t_{2}}+a_{1} d_{1}+a_{2} d_{2} \leqslant \frac{d-1}{t_{1}+t_{2}}+1 \leqslant \frac{d+3}{4}
$$

because $a_{1} d_{1}+a_{2} d_{2} \leqslant 1$. Since $m_{0}>\frac{1}{\lambda}$ by Lemma 2.5 , the inequality $m_{0} \leqslant \frac{d+3}{4}$ gives $\lambda>\frac{d+3}{4}$, which is impossible by Lemma 4.2(iii). Thus, $t_{1}+t_{2} \leqslant 3$. Since $t_{1} \leqslant t_{2}$, we have $t_{1}=1$ and $t_{2} \leqslant 2$.

To complete the proof of the lemma, we have to prove that $t_{2}=1$. Suppose $t_{2} \neq 1$. Then $t_{2}=2$, since $t_{1}+t_{2} \leqslant 3$. Since $k_{0} \leqslant \frac{d-1}{t_{1}+t_{2}}=\frac{d-1}{3}$ and $a_{1} d_{1}+a_{2} d_{2} \leqslant 1$, we have

$$
m_{0}=k_{0}+a_{1} t_{1}+a_{2} t_{2} \leqslant k_{0}+a_{1} d_{1}+a_{2} d_{2} \leqslant \frac{d-1}{32}+a_{1} d_{1}+a_{2} d_{2} \leqslant \frac{d-1}{t_{1}+t_{2}}+1=\frac{d+2}{3}
$$

On the other hand, $m_{0}>\frac{1}{\lambda}$ by Lemma 2.5, so that $\lambda>\frac{3}{d+2}$. Then $d=5$ by Lemma 4.2(iv).
Since $d=5, t_{1}=1$ and $t_{2}=2$, we have $n=3, d_{1}=1, d_{2}=3$ and $d_{3}=1$. Applying Theorem [2.12 to the \log pair $\left(S, \lambda a_{1} T_{1}+\lambda a_{2} T_{2}+\lambda \Omega\right)$, we get

$$
1+3 a_{1}=d_{1}+a_{2} d_{1}\left(d-d_{1}-1\right)=\left(\lambda a_{2} T_{2}+\lambda \Omega\right) \cdot T_{1}>\frac{1}{\lambda}=\frac{15}{7},
$$

which gives $a_{1}>\frac{8}{21}$. On the other hand, $a_{1}+3 a_{2} \leqslant 1$, because $a_{1} d_{1}+a_{2} d_{2} \leqslant 1$. Since $m_{0}>\frac{1}{\lambda}=\frac{15}{7}$ by Lemma 2.5, we see that

$$
\begin{aligned}
& \frac{15}{7}-\frac{1}{9}=\frac{128}{63}>\frac{8-5 a_{1}}{3}=\frac{3-a_{1}+\frac{7\left(1-a_{1}\right)}{3}}{2}=\frac{3-a_{1}+7 a_{2}}{2}=\frac{3-3 a_{1}+3 a_{2}}{2}+a_{1}+2 a_{2}= \\
& =\frac{\Delta \cdot T_{2}}{2}+a_{1}+2 a_{2} \geqslant \frac{\operatorname{mult}_{P}\left(\Delta \cdot T_{2}\right)}{2}+a_{1}+2 a_{2} \geqslant \frac{t_{2} k_{0}}{2}+a_{1}+2 a_{2}=k_{0}+a_{1}+2 a_{2}=m_{0}>\frac{15}{7},
\end{aligned}
$$

which is absurd.
Now we are ready to prove
Lemma 4.9. One has $m_{0} \leqslant \frac{d+1}{2}$.
Proof. Suppose that $m_{0}>\frac{d+1}{2}$. Let us seek for a contradiction. If $n=1$, then

$$
d=T_{n} \cdot D \geqslant 2 m_{0},
$$

which implies that $m_{0} \leqslant \frac{d}{2}$. Thus, have $n \geqslant 2$. Then $a_{1} \leqslant \frac{1}{d_{1}}$ by Lemma 4.4. Moreover, either $t_{n}=0$ or $t_{n}=1$ by Lemma 4.5. Hence, there is an irreducible component of T_{P} that passes through P and is different from T_{n}, because T_{P} is singular at P. Without loss of generality, we may assume that $t_{1} \geqslant 1$.

Put $\Upsilon=\sum_{i=2}^{n} a_{i} T_{i}+\Delta$, so that $D=a_{1} T_{1}+\Upsilon$. Put $n_{0}=\operatorname{mult}_{P}(\Upsilon)$, so that $m_{0}=n_{0}+a_{1} t_{1}$. Then $t_{n} n_{0} \leqslant d_{n}-a_{1} d_{1} d_{n}$ by Lemma 4.4, and

$$
\begin{equation*}
d_{1}+a_{1} d_{1}\left(d-d_{1}-1\right)=\Upsilon \cdot T_{1} \geqslant t_{1} n_{0} \tag{4.10}
\end{equation*}
$$

by Lemma 4.3, Adding these two inequalities, we get $\left(t_{1}+t_{n}\right) n_{0} \leqslant d_{1}+d_{n}+a_{1} d_{1}\left(d-d_{1}-d_{n}-1\right)$. Hence, if $n \geqslant 3$ and $t_{n}=1$, then

$$
2 n_{0} \leqslant\left(t_{1}+t_{n}\right) n_{0} \leqslant d_{1}+d_{n}+a_{1} d_{1}\left(d-d_{1}-d_{n}-1\right) \leqslant d-1 \leqslant d-a_{1} d_{1},
$$

because $a_{1} \leqslant \frac{1}{d_{1}}$. Similarly, if $n=2$ and $t_{n}=1$, then

$$
2 n_{0} \leqslant\left(t_{1}+t_{n}\right) n_{0} \leqslant d_{1}+d_{2}+a_{1} d_{1}\left(d-d_{1}-d_{2}-1\right)=d_{1}+d_{2}-a_{1} d_{1}=d-a_{1} d_{1} .
$$

Thus, if $t_{n}=1$, then $n_{0} \leqslant \frac{d-a_{1} d_{1}}{2}$, which is impossible. Indeed, the inequality $n_{0} \leqslant \frac{d-a_{1} d_{1}}{2}$ gives

$$
\frac{d+1}{2}<m_{0}=n_{0}+a_{1} t_{1} \leqslant n_{0}+a_{1} d_{1} \leqslant \frac{d-a_{1} d_{1}}{2}+a_{1} d_{1}=\frac{d+a_{1} d_{1}}{2} \leqslant \frac{d+1}{2},
$$

because $a_{1} \leqslant \frac{1}{d_{1}}$. This shows that $t_{n}=0$.
If $t_{1} \geqslant 2$, then it follows from (4.10) that

$$
\frac{d+1}{2}<m_{0} \leqslant n_{0}+a_{1} d_{1} \leqslant \frac{d_{1}+a_{1} d_{1}\left(d-d_{1}-1\right)}{2}+a_{1} d_{1}=\frac{d_{1}+a_{1} d_{1}\left(d-d_{1}+1\right)}{2} \leqslant \frac{d+1}{2},
$$

because $a_{1} \leqslant \frac{1}{d_{1}}$. This shows that $t_{1}=1$.
Since $t_{1}=1$ and $t_{n}=0$, there exists an irreducible component of the curve T_{P} that passes through P and is different from T_{1} and T_{n}. In particular, we have $n \geqslant 3$. Without loss of generality, we may assume $P \in T_{2}$. Then T_{2} is smooth at P by Lemma 4.8,

Put $\Omega=\sum_{i=3}^{n} a_{i} T_{i}+\Delta$ and put $k_{0}=\operatorname{mult}_{P}(\Omega)$. Then $a_{1} d_{1}+a_{2} d_{2} \leqslant 1$ by Lemma 4.4. Thus, it follows from Lemma 4.3 that

$$
2 k_{0} \leqslant \Omega \cdot\left(T_{1}+T_{2}\right)=d_{1}+d_{2}+\left(a_{1} d_{1}+a_{2} d_{2}\right)\left(d-d_{1}-d_{2}-1\right) \leqslant d-1,
$$

which implies $k_{0} \leqslant \frac{d-1}{2}$. Then
$\frac{d+1}{2}<m_{0}=k_{0}+a_{1} t_{1}+a_{2} t_{2} \leqslant k_{0}+a_{1} d_{1}+a_{2} d_{2} \leqslant \frac{d-1}{2}+a_{1} d_{1}+a_{2} d_{2} \leqslant \frac{d-1}{2}+1=\frac{d+1}{2}$, because $a_{1} d_{1}+a_{2} d_{2} \leqslant 1$. The obtained contradiction completes the proof of the lemma.

Let $f_{1}: S_{1} \rightarrow S$ be a blow up of the point P, and let E_{1} be its exceptional curve. Denote by D^{1} the proper transform of the \mathbb{Q}-divisor D on the surface S_{1}. Then

$$
K_{S_{1}}+\lambda D^{1}+\left(\lambda m_{0}-1\right) E_{1} \sim_{\mathbb{Q}} f_{1}^{*}\left(K_{S}+\lambda D\right)
$$

which implies that $\left(S_{1}, \lambda D^{1}+\left(\lambda m_{0}-1\right) E_{1}\right)$ is not \log canonical at some point $P_{1} \in E_{1}$.
By Lemma 4.9, we have $m_{0} \leqslant \frac{d+1}{2}$. By Lemma 4.2(v), we have $\lambda \leqslant \frac{4}{d+1}$. This gives $\lambda m_{0} \leqslant 2$. Thus, the \log pair $\left(S_{1}, \lambda D^{1}+\left(\lambda m_{0}-1\right) E_{1}\right)$ is \log canonical at every point of the curve E_{1} that is different from P_{1} by Lemma 2.13,

Put $m_{1}=\operatorname{mult}_{P_{1}}\left(D^{1}\right)$. Then Lemma 2.5 gives

$$
\begin{equation*}
m_{0}+m_{1}>\frac{2}{\lambda} \tag{4.11}
\end{equation*}
$$

For each curve T_{i}, denote by T_{i}^{1} its proper transform on S_{1}. Put $T_{P}^{1}=\sum_{i=1}^{n} T_{i}^{1}$.
Lemma 4.12. One has $P_{1} \notin T_{P}^{1}$.
Proof. Suppose that $P_{1} \in T_{P}^{1}$. Let us seek for a contradiction. If T_{P} is irreducible, then

$$
d-2 m_{0}=T_{P}^{1} \cdot D^{1} \geqslant m_{1},
$$

so that $m_{1}+2 m_{0} \leqslant d$. This inequality gives

$$
\frac{3}{\lambda}<m_{1}+2 m_{0} \leqslant d
$$

because $2 m_{0} \geqslant m_{0}+m_{1}>\frac{2}{\lambda}$ by (4.11). This shows that T_{P} is reducible, because $\lambda \leqslant \frac{3}{d}$ by Lemma $4.2(\mathrm{vi})$.

We see that $n \geqslant 2$. If $P_{1} \in T_{n}^{1}$, then

$$
d-1-m_{0} \geqslant d_{n}-m_{0}=d_{n}-m_{0} t_{n}=T_{n}^{1} \cdot D^{1} \geqslant m_{1}
$$

which is impossible, because $m_{0}+m_{1}>\frac{2}{\lambda}$ by (4.11), and $\lambda \leqslant \frac{2}{d-1}$ by Lemma 4.2(i). Thus, we see that $P_{1} \notin T_{n}^{1}$.

Without loss of generality, we may assume that $P_{1} \in T_{1}^{1}$. Put $\Upsilon=\sum_{i=2}^{n} a_{i} T_{i}+\Delta$, and denote by Υ^{1} the proper transform of the \mathbb{Q}-divisor Ω on the surface S_{1}. Put $n_{0}=\operatorname{mult}_{P}(\Upsilon)$, put $n_{1}=\operatorname{mult}_{P_{1}}\left(\Omega^{1}\right)$ and put $t_{1}^{1}=\operatorname{mult}_{P_{1}}\left(T_{1}^{1}\right)$. Then

$$
d_{1}+a_{1} d_{1}\left(d-d_{1}-1\right)-n_{0} t_{1}=T_{1}^{1} \cdot \Upsilon^{1} \geqslant t_{1}^{1} n_{1}
$$

which implies that $n_{0} t_{1}+n_{1} t_{1}^{1} \leqslant d_{1}+a_{1} d_{1}\left(d-d_{1}-1\right)$.
Note that $t_{1}^{1} \leqslant t_{1}$. Moreover, we have $a_{1} \leqslant \frac{1}{d_{1}}$ by Lemma 4.4. Thus, if $t_{1}^{1} \geqslant 2$, then

$$
2\left(n_{0}+n_{1}\right) \leqslant t_{1}^{1}\left(n_{0}+n_{1}\right) \leqslant n_{0} t_{1}+n_{1} t_{1}^{1} \leqslant d_{1}+a_{1} d_{1}\left(d-d_{1}-1\right) \leqslant d_{1}+\left(d-d_{1}-1\right)=d-1,
$$

which implies that $n_{0}+n_{1} \leqslant \frac{d-1}{2}$. Moreover, if $n_{0}+n_{1} \leqslant \frac{d-1}{2}$, then it follows from (4.11) that

$$
\frac{d+3}{2}=2+\frac{d-1}{2} \geqslant 2 a_{1} d_{1}+\frac{d-1}{2} \geqslant 2 a_{1} t_{1}+\frac{d-1}{2} \geqslant a_{1}\left(t_{1}+t_{1}^{1}\right)+n_{0}+n_{1}=m_{0}+m_{1}>\frac{2}{\lambda}
$$

which gives $d \leqslant 4$ by Lemma 4.2(iii). Thus, if $d \geqslant 5$, then $t_{1}^{1}=1$. Furthermore, if $d \leqslant 4$, then $d_{1} \leqslant 3$, which implies that $t_{1}^{1} \leqslant 1$. This shows that $t_{1}^{1}=1 \mathrm{in}$ all cases. Thus, the curve T_{1}^{1} is smooth at P_{1}.

Applying Theorem 2.11 to the log pair $\left(S_{1}, \lambda \Upsilon^{1}+\lambda a_{1} T_{1}^{1}+\left(\lambda\left(n_{0}+a_{1} t_{1}\right)-1\right) E_{1}\right)$, we see that

$$
\lambda\left(d-1-n_{0} t_{1}\right) \geqslant \lambda\left(d_{1}+a_{1} d_{1}\left(d-d_{1}-1\right)-n_{0} t_{1}\right)=\lambda \Omega^{1} \cdot T_{1}^{1}>2-\lambda\left(n_{0}+a_{1} t_{1}\right)
$$

because $a_{1} \leqslant \frac{1}{d_{1}}$. Thus, we have $d-1+a_{1} t_{1}-n_{0}\left(t_{1}-1\right)>\frac{2}{\lambda}$. But $m_{0}=a_{1} t_{1}+n_{0}>\frac{1}{\lambda}$ by Lemma 2.5. Adding these inequalities together, we obtain

$$
\begin{equation*}
d-1+2 a_{1} t_{1}-n_{0}\left(t_{1}-2\right)>\frac{3}{\lambda} . \tag{4.13}
\end{equation*}
$$

If $t_{1} \geqslant 2$, this gives

$$
d+1 \geqslant d-1+2 a_{1} d_{1} \geqslant d-1+2 a_{1} t_{1} \geqslant d-1+2 a_{1} t_{1}-n_{0}\left(t_{1}-2\right)>\frac{3}{\lambda} .
$$

because $a_{1} \leqslant \frac{1}{d_{1}}$. One the other hand, if $d \geqslant 5$, then $\lambda \leqslant \frac{3}{d+1}$ by Lemma 4.2(ii). Thus, if $d \geqslant 5$, then $t_{1}=1$. Moreover, if $d=3$, then $d_{1} \leqslant 2$, which implies that $t_{1}=1$ as well. Furthermore, if $d=4$ and $t_{1} \neq 1$, then $d_{1}=3, t_{1}=2, \lambda=\frac{5}{8}$, which implies that

$$
\frac{1}{3}=\frac{1}{d_{1}} \geqslant a_{1}>\frac{9}{20}
$$

by (4.13). Thus, we see that $t_{1}=1 \mathrm{in}$ all cases. This simply means that the curve T_{1} is smooth at the point P.

Since $a_{1} \leqslant \frac{1}{d_{1}}$, we have

$$
d-1-n_{0} \geqslant d_{1}+a_{1} d_{1}\left(d-d_{1}-1\right)-n_{0}=\Omega^{1} \cdot T_{1}^{1} \geqslant n_{1},
$$

which implies that $n_{1} \leqslant \frac{n_{0}+n_{1}}{2} \leqslant \frac{d-1}{2}$. Then $\lambda n_{1} \leqslant 1$ by Lemma 4.2(i). Hence, we can apply Theorem 2.15 to the \log pair $\left(S_{1}, \lambda \Upsilon^{1}+\lambda a_{1} T_{1}^{1}+\left(\lambda\left(n_{0}+a_{1} t_{1}\right)-1\right) E_{1}\right)$ at the point P_{1}. This gives either

$$
\Upsilon^{1} \cdot T_{1}^{1}>\frac{4}{\lambda}-2\left(n_{0}+a_{1}\right)
$$

or $\Upsilon^{1} \cdot E_{1}>\frac{2}{\lambda}-2 a_{1}$ (or both). Since $a_{1} \leqslant \frac{1}{d_{1}}$, the former inequality gives

$$
d-1-n_{0} \geqslant d_{1}+a_{1} d_{1}\left(d-d_{1}-1\right)-n_{0}=\Upsilon^{1} \cdot T_{1}^{1}>\frac{4}{\lambda}-2\left(n_{0}+a_{1}\right)
$$

Similarly, the latter inequality gives

$$
n_{0}=\lambda \Upsilon^{1} \cdot E_{1}>\frac{2}{\lambda}-2 a_{1} .
$$

Thus, either $d-1+2 a_{1}+n_{0}>\frac{4}{\lambda}$ or $2 a_{1}+n_{0}>\frac{2}{\lambda}$ (or both).
If $t_{n} \geqslant 1$, then $d_{n} \neq 1$ by Lemma 4.5. Thus, if $t_{n} \geqslant 1$, then

$$
d-1 \geqslant d_{n} \geqslant a_{1} d_{1} d_{n}+n_{0} \geqslant 2 a_{1}+n_{0}
$$

by Lemma 4.4. Therefore, if $t_{n} \geqslant 1$, then

$$
2(d-1) \geqslant d-1+2 a+n_{0}>\frac{4}{\lambda}
$$

or $d-1 \geqslant 2 a+n_{0}>\frac{2}{\lambda}$, because $d-1+2 a+n_{0}>\frac{4}{\lambda}$ or $2 a+n_{0}>\frac{2}{\lambda}$. In both cases, we get $\lambda>\frac{d-1}{2}$, which is impossible by Lemma 4.2(i). This shows that $t_{n}=0$, so that $P \notin T_{n}$.

Since T_{1} is smooth at P and $P \notin T_{n}$, there must be another irreducible component of T_{P} passing through P that is different from T_{1} and T_{n}. In particular, we see that $n \geqslant 3$. Without loss of generality, we may assume that $P \in T_{2}$. Then T_{2} is smooth at P by Lemma 4.8, so that $t_{2}=1$. Moreover, the curves T_{1} and T_{2} are tangent at P by Lemma 4.6, which implies that $d \geqslant 4$. Since $P_{1} \in T_{1}^{1}$, we see that $P_{1} \in T_{2}^{1}$ as well.

Put $\Omega=\sum_{i=3}^{n} a_{i} T_{i}+\Delta$ and $k_{0}=\operatorname{mult}_{P}(\Omega)$, so that $m_{0}=k_{0}+a_{1}+a_{2}$. Then $a_{1} d_{1}+a_{2} d_{2} \leqslant 1$ by Lemma 4.4 .

Denote by Ω^{1} the proper transform of the \mathbb{Q}-divisor Ω on the surface S_{1}. Put $k_{1}=\operatorname{mult}_{P_{1}}\left(\Omega^{1}\right)$. Then

$$
d-1-2 k_{0} \geqslant d_{1}+d_{2}+\left(a_{1} d_{1}+a_{2} d_{2}\right)\left(d-d_{1}-d_{2}-1\right)-2 k_{0}=\Omega^{1} \cdot\left(T_{1}^{1}+T_{2}^{1}\right) \geqslant 2 k_{1}
$$

because $a_{1} d_{1}+a_{2} d_{2} \leqslant 1$ and $d \geqslant d_{1}+d_{2}+d_{n} \geqslant d_{1}+d_{2}+1$. This gives $k_{0}+k_{1} \leqslant \frac{d-1}{2}$. On the other hand, we have

$$
2 a_{1}+2 a_{2}+k_{0}+k_{1}=m_{0}+m_{1}>\frac{2}{\lambda}
$$

by (4.11). Thus, we have

$$
\frac{d+3}{2}=2+\frac{d-1}{2} \geqslant 2\left(a_{1} d_{1}+a_{2} d_{2}\right)+\frac{d-1}{2} \geqslant 2 a_{1}+2 a_{2}+\frac{d-1}{2} \geqslant 2 a_{1}+2 a_{2}+k_{0}+k_{1}>\frac{2}{\lambda}
$$

because $a_{1} d_{1}+a_{2} d_{2} \leqslant 1$. By Lemma 4.2(iii) this gives $d=4$. Thus, we have $\lambda=\frac{5}{8}$.
Since $d=4>n \geqslant 3$, we have $n=3$. Without loss of generality, we may assume that $d_{1} \leqslant d_{2}$. By Lemma4.6, there exists at most one line in S that passes through P. This shows that $d_{1}=1$, $d_{2}=2$ and $d_{3}=1$. Thus, T_{1} and T_{3} are lines, T_{2} is a conic, T_{1} is tangent to T_{2} at P, and T_{3} does not pass through P. In particular, the curves T_{1}^{1} and T_{1}^{2} intersect each other transversally at P_{1}.

By Lemma 4.3, we have $T_{1} \cdot T_{1}=T_{2} \cdot T_{2}=-2$ and $T_{1} \cdot T_{2}=2$. On the other hand, the log pair $\left(S_{1}, \lambda a_{1} T_{1}^{1}+\lambda a_{2} T_{2}^{1}+\lambda \Omega^{1}+\left(\lambda\left(a_{1}+a_{2}+k_{0}\right)-1\right) E_{1}\right)$ is not \log canonical at the point P_{1}. Thus, applying Theorem 2.11 to this \log pair and the curve T_{1}^{1}, we get

$$
\lambda\left(1+2 a_{1}-2 a_{2}-k_{0}\right)=\lambda \Omega^{1} \cdot T_{1}^{1}>2-\lambda\left(a_{1}+a_{2}+k_{0}\right)-\lambda a_{2},
$$

which implies that $3 a_{1}>\frac{2}{\lambda}-1=\frac{11}{5}$, because $\lambda=\frac{5}{8}$. Similarly, applying Theorem 2.11 to this \log pair and the curve T_{2}^{1}, we get

$$
\lambda\left(2-2 a_{1}+2 a_{2}-k_{0}\right)=\lambda \Omega^{1} \cdot T_{2}^{1}>2-\lambda\left(a_{1}+a_{2}+k_{0}\right)-\lambda a_{1},
$$

which implies that $3 a_{2}>\frac{2}{\lambda}-2=\frac{6}{5}$. Hence, we have $a_{1}>\frac{11}{15}$ and $a_{2}>\frac{2}{5}$, which is impossible, since $a_{1}+2 a_{2}=a_{1} d_{1}+a_{2} d_{2} \leqslant 1$. The obtained contradiction completes the proof of the lemma.

Now we are going to show that the curve T_{P} has at most two irreducible components. This follows from

Lemma 4.14. One has $n \geqslant 2$ and $\operatorname{mult}_{P}\left(T_{P}\right)=2$. Moreover, if $n=2$, then $P \in T_{1} \cap T_{2}$, both curves T_{1} and T_{2} are smooth at P, and $d_{1} \leqslant d_{2}$.
Proof. If T_{P} is irreducible and mult $P_{P}\left(T_{P}\right) \geqslant 3$, then Lemma 2.5 gives

$$
d=T_{P} \cdot D \geqslant 3 m_{0}>\frac{3}{\lambda}
$$

which is impossible by Lemma 4.2(vi). Thus, if $n=1$, then $\operatorname{mult}_{P}\left(T_{P}\right)=2$.
To complete the proof, we may assume that $n \geqslant 2$. Then $t_{n}=0$ or $t_{n}=1$ by Lemma 4.5, In particular, there exists an irreducible component of the curve T_{P} different from T_{n} that passes through P. Without loss of generality, we may assume that $P \in T_{1}$.

Put $\Upsilon=\sum_{i=2}^{n} a_{i} T_{i}+\Delta$, and denote by Υ^{1} the proper transform of the \mathbb{Q}-divisor Ω on the surface S_{1}. Put $n_{0}=\operatorname{mult}_{P}(\Upsilon)$. Then the log pair $\left(S_{1}, \lambda \Upsilon^{1}+\left(\lambda\left(n_{0}+a_{1} t_{1}\right)-1\right) E_{1}\right)$ is not log canonical at P_{1}, since $P_{1} \notin T_{1}^{1}$ by Lemma 4.12. In particular, it follows from Theorem 2.12 that

$$
\lambda n_{0}=\lambda \Upsilon^{1} \cdot E_{1}>1,
$$

which implies that $n_{0}>\frac{1}{\lambda}$. Thus, if $t_{1} \geqslant 2$, then it follows from Lemma 4.3 that

$$
\frac{1}{\lambda} \geqslant \frac{d-1}{2} \geqslant \frac{d_{1}+a_{1} d_{1}\left(d-d_{1}-1\right)}{2}=\frac{\Upsilon \cdot T_{1}}{2} \geqslant \frac{t_{1} n_{0}}{2} \geqslant n_{0}>\frac{1}{\lambda},
$$

because $a_{1} \leqslant \frac{1}{d_{1}}$ by Lemma 4.4, and $\lambda \leqslant \frac{2}{d-1}$ by Lemma 4.2(i). This shows that $t_{1}=1$, so that the curve T_{1} is smooth at P.

If $t_{n}=1$ and $n \geqslant 3$, then

$$
\frac{2}{\lambda} \geqslant d-1 \geqslant d_{1}+d_{n}+a d_{1}\left(d-d_{1}-d_{n}-1\right)=\Upsilon \cdot\left(T_{1}+T_{n}\right) \geqslant 2 n_{0}>\frac{2}{\lambda}
$$

Thus, if $t_{n}=1$, then $n=2$. Vice versa, if $n=2$, then $t_{n}=1$, because T_{1} is smooth at P. Furthermore, if $n=2$, then $d_{1} \leqslant d_{n}$, because $d_{n}>\frac{d-1}{2}$ by Lemma 4.5. Therefore, to complete the proof, we must show that $n=2$.

Suppose that $n \geqslant 3$. Let us seek for a contradiction. We know that $P \notin T_{n}$, so that $t_{n}=0$. Then every irreducible component of the curve T_{P} that contain P is smooth at P by Lemma 4.8 , Hence, there should be at least one irreducible component of the curve T_{P} containing P that is different from T_{1} and T_{n}. Without loss of generality, we may assume that $P \in T_{2}$.

Put $\Omega=\sum_{i=3}^{n} a_{i} T_{i}+\Delta$ and $k_{0}=\operatorname{mult}_{P}(\Omega)$. By Lemma 4.4, we have $a_{1} d_{1}+a_{2} d_{2} \leqslant 1$. Thus, it follows from Lemma 4.3 that
$2 k_{0} \leqslant \Delta \cdot\left(T_{1}+T_{2}\right)=d_{1}+d_{2}+\left(a_{1} d_{1}+a_{2} d_{2}\right)\left(d-d_{1}-d_{2}-1\right) \leqslant d_{1}+d_{2}+\left(d-d_{1}-d_{2}-1\right)=d-1$.
Hence, we have $k_{0} \leqslant \frac{d-1}{2}$.
Denote by Ω^{1} the proper transform of the \mathbb{Q}-divisor Ω on the surface S_{1}. Then the \log pair $\left(S_{1}, \lambda \Omega^{1}+\left(\lambda\left(k_{0}+a_{1}+a_{2}\right)-1\right) E_{1}\right)$ is not \log canonical at P_{1}, because $P_{1} \notin T_{1}^{1}$ and $P_{1} \notin T_{2}^{1}$ by Lemma 4.12. In particular, it follows from Theorem 2.11 that

$$
\lambda k_{0}=\lambda \Omega^{1} \cdot E_{1}>1
$$

which implies that $k_{0}>\frac{1}{\lambda}$. This contradicts Lemma 4.2 (i), because $k_{0} \leqslant \frac{d-1}{2}$.
Later, we will need the following simple
Lemma 4.15. Suppose that $d=4$. Then $m_{0} \leqslant \frac{11}{5}$.
Proof. If $n=1$, then

$$
2 t_{n} \geqslant d_{n}=T_{n} \cdot D \geqslant t_{n} m_{0}
$$

so that $m_{0} \leqslant 2<\frac{11}{5}$. Thus, we may assume that $n \neq 1$. Then it follows from Lemma 4.14 that $n=2, P \in T_{1} \cap T_{2}$, both curves T_{1} and T_{2} are smooth at P, and $d_{1} \leqslant d_{2}$.

If $d_{2}=2$, then $m_{0} \leqslant 2<\frac{11}{5}$, because

$$
2=T_{2} \cdot D \geqslant m_{0}
$$

Thus, we may assume that $d_{2} \neq 2$. Then $d_{1}=1$ and $d_{2}=3$. Then mult ${ }_{P}(\Delta)+3 a_{1} \leqslant 3$ by Lemma 4.4. Moreover, we have

$$
1+2 a_{1}=T_{1} \cdot \Delta \geqslant \operatorname{mult}_{P}(\Delta)
$$

The obtained inequalities give $m_{0}=\operatorname{mult}_{P}(\Delta)+a_{1} \leqslant \frac{11}{5}$.
Let $f_{2}: S_{2} \rightarrow S_{1}$ be a blow up of the point P_{1}. Denote by E_{2} the f_{2}-exceptional curve, denote by E_{1}^{2} the proper transform of the curve E_{1} on the surface S_{2}, and denote by D^{2} the proper transform of the \mathbb{Q}-divisor D on the surface S_{2}. Then

$$
K_{S_{2}}+\lambda D^{2}+\left(\lambda m_{0}-1\right) E_{1}^{2}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2} \sim_{\mathbb{Q}} f_{2}^{*}\left(K_{S_{1}}+\lambda D^{1}+\left(\lambda m_{0}-1\right) E_{1}\right)
$$

By Remark 2.10, the \log pair $\left(S_{2}, \lambda D^{2}+\left(\lambda m_{0}-1\right) E_{1}^{2}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2}\right)$ is not log canonical at some point $P_{2} \in E_{1}$.
Lemma 4.16. One has $m_{0}+m_{1} \leqslant \frac{3}{\lambda}$.
Proof. Suppose that $m_{0}+m_{1}>\frac{3}{\lambda}$. Then $2 m_{0} \geqslant m_{0}+m_{1}>\frac{3}{\lambda}$. But $m_{0} \leqslant \frac{d+1}{2}$ by Lemma 4.9. Then $\lambda>\frac{3}{d+1}$. Thus, we have $d \leqslant 4$ by Lemma4.2(ii). Moreover, if $d=4$, then

$$
\frac{22}{5} \geqslant 2 m_{0} \geqslant m_{0}+m_{1}>\frac{3}{\lambda}=\frac{24}{5}
$$

by Lemma 4.15. This shows that $d=3$.
We have $\lambda=1$. If $n=1$, then

$$
3=T_{P} \cdot D \geqslant 2 m_{0} \geqslant m_{1}+m_{0}>\frac{3}{\lambda}=3
$$

which is absurd. Hence, it follows from Lemma 4.14 that $n=2, d_{1}=1, d_{2}=2$ and $P \in T_{1} \cap T_{2}$.

We have $m_{0}=\operatorname{mult}_{P}(\Delta)+a_{1}$. On the other hand, we have $\operatorname{mult}_{P}(\Delta)+2 a_{1} \leqslant 2$ by Lemma 4.4. Moreover, we have

$$
1+a_{1}=T_{1} \cdot \Omega \geqslant \operatorname{mult}_{P}(\Delta),
$$

which implies that $\operatorname{mult}_{P}(\Delta)-a_{1} \leqslant 1$. Adding these inequalities, we get

$$
3 \geqslant 2 \operatorname{mult}_{P}(\Delta)+a=\operatorname{mult}_{P}(\Delta)+m_{0} \geqslant m_{1}+m_{0}>\frac{3}{\lambda}=3
$$

because $\operatorname{mult}_{P}(\Delta) \geqslant m_{1}$, since $P_{1} \notin T_{1}^{1}$ by Lemma 4.12,
Thus, the log pair $\left(S_{2}, \lambda D^{2}+\left(\lambda m_{0}-1\right) E_{1}^{2}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2}\right)$ is log canonical at every point of the curve E_{2} that is different from the point P by Lemma [2.13,

Lemma 4.17. One has $P_{2} \neq E_{1}^{2} \cap E_{2}$.
Proof. Suppose that $P_{2}=E_{1}^{2} \cap E_{2}$. Then Theorem [2.11 gives

$$
\lambda\left(m_{0}-m_{1}\right)=\lambda D^{2} \cdot E_{1}^{2}>3-\lambda\left(m_{0}+m_{1}\right),
$$

which implies that $m_{0}>\frac{3}{2 \lambda}$. But $m_{0} \leqslant \frac{d+1}{2}$ by Lemma 4.9. Therefore, we have $\lambda>\frac{3}{d+1}$, which implies that $d \leqslant 4$ by Lemma 4.2(ii). If $d=4$, then

$$
\frac{12}{5}=\frac{3}{2 \lambda}<m_{0} \leqslant \frac{11}{5}
$$

by Lemma 4.15. Thus, we have $d=3$.
One has $\lambda=1$. If $n=1$, then

$$
3=T_{P} \cdot D \geqslant 2 m_{0}>\frac{3}{\lambda}=3
$$

which is absurd. Hence, it follows from Lemma 4.14 that $n=2, d_{1}=1, d_{2}=2$ and $P \in T_{1} \cap T_{2}$.
We have $m_{0}=\operatorname{mult}_{P}(\Delta)+a_{1}$. Moreover, we have $\operatorname{mult}_{P}(\Delta)+2 a_{1} \leqslant 2$ by Lemma 4.4. Then 2 mult $_{P}(\Delta)+a_{1} \leqslant 3$, because

$$
1+a_{1}=T_{1} \cdot \Delta \geqslant \operatorname{mult}_{P}(\Delta)
$$

Denote by Δ^{1} the proper transform of the divisor Δ on the surface S_{1}, and denote by Δ^{2} the proper transform of the divisor Δ on the surface S_{2}. Then $m_{1}=\operatorname{mult}_{P_{1}}\left(\Delta^{1}\right)$, because $P_{1} \notin T_{1}^{1}$ by Lemma 4.12. Thus, the log pair $\left(S_{2}, \lambda \Delta^{2}+\left(m_{0}-1\right) E_{1}^{2}+\left(m_{0}+m_{1}-2\right) E_{2}\right)$ is not log canonical at P_{2}. Applying Theorem 2.11 to this pair and the curve E_{1}^{2}, we get

$$
\operatorname{mult}_{P}(\Delta)-m_{1}=\Delta^{2} \cdot E_{1}^{2}>3-m_{0}-m_{1},
$$

which implies that $2 \operatorname{mult}_{P}(\Delta)+a_{1}>3$. The latter is impossible, because we already proved that $2 \operatorname{mult}_{P}(\Delta)+a_{1} \leqslant 3$.

Thus, the \log pair $\left(S_{2}, \lambda D^{2}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2}\right)$ is not \log canonical at P_{2}. Then Lemma 2.5 gives

$$
\begin{equation*}
m_{0}+m_{1}+m_{2}>\frac{3}{\lambda} \tag{4.18}
\end{equation*}
$$

Denote by T_{P}^{2} the proper transform of the curve T_{P} on the surface S^{2}. Then

$$
T_{P}^{2}+E_{1}^{2} \sim\left(f_{1} \circ f_{2}\right)^{*}\left(\mathcal{O}_{S}(1)\right)-f_{2}^{*}\left(E_{1}\right)-E_{2},
$$

because $T_{P}^{1} \sim f_{1}^{*}\left(\mathcal{O}_{S}(1)\right)-2 E_{1}$ by Lemma 4.14, and $P_{1} \notin T_{P}^{1}$ by Lemma 4.12,
Lemma 4.19. The linear system $\left|T_{P}^{2}+E_{1}^{2}\right|$ is a pencil that does not have base points in E_{2}.

Proof. Since $\left|T_{P}^{1}+E_{1}\right|$ is a two-dimensional linear system that does not have base points, $\left|T_{P}^{2}+E_{1}^{2}\right|$ is a pencil. Let C be a curve in $\left|T_{P}^{1}+E_{1}\right|$ that passes through P_{1} and is different from $T_{P}^{1}+E_{1}$. Then C is smooth at P, since $P \in f_{1}(C)$ and $f_{1}(C)$ is a hyperplane section of the surface S that is different from T_{P}. Since $C \cdot E_{1}=1$, we see that $T_{P}^{1}+E_{1}$ and C intersect transversally at P_{1}. Thus, the proper transform of the curve C on the surface S_{2} is contained in $\left|T_{P}^{1}+E_{1}\right|$ and have no common points with $T_{P}^{2}+E_{1}^{2}$ in E_{2}. This shows that the pencil $\left|T_{P}^{1}+E_{1}\right|$ does not have base points in E_{2}.

Let Z^{2} be the curve in $\left|T_{P}^{2}+E_{2}\right|$ that passes through the point P_{2}. Then

$$
Z^{2} \neq T_{P}^{2}+E_{1}^{2}
$$

because $P_{2} \neq E_{1}^{2} \cap E_{2}$ by Lemma 4.17. Then Z_{2} is smooth at P_{2}. Put $Z=f_{1} \circ f_{2}\left(Z^{2}\right)$ and $Z^{1}=f_{2}\left(Z^{2}\right)$. Then $P \in Z$ and $P_{1} \in Z^{1}$. Moreover, the curve Z is smooth at P, and the curve Z_{1} is smooth at P_{1}. Furthermore, the curve Z is reduced by Lemma 2.6,

The \log pair $(S, \lambda Z)$ is \log canonical at P, because Z is smooth at P. Note that

$$
Z \sim_{\mathbb{Q}} D .
$$

Thus, we may assume that $\operatorname{Supp}(D)$ does not contain at least one irreducible component of the curve Z by Remark [2.4. Denote this irreducible component by \bar{Z}, and denote its degree in \mathbb{P}^{3} by \bar{d}. Then $\bar{d} \leqslant d$.
Lemma 4.20. One has $P \notin \bar{Z}$.
Proof. Suppose that $P \in \bar{Z}$. Let us seek for a contradiction. Denote by \bar{Z}^{2} the proper transform of the curve \bar{Z} on the surface S_{2}. Then

$$
d-m_{0}-m_{1} \geqslant \bar{d}-m_{0}-m_{1}=\bar{Z}^{2} \cdot D^{2} \geqslant m_{2},
$$

which implies that $m_{0}+m_{1}+m_{2} \leqslant d$. One the other hand, $m_{0}+m_{1}+m_{2}>\frac{3}{\lambda}$ by (4.18). This gives $\lambda>\frac{3}{d}$, which is impossible by Lemma 4.2(vi).

In particular, the curve Z is reducible. Denote by \widehat{Z} its irreducible component that passes through P, denote its proper transform on the surface S_{1} by \widehat{Z}^{1}, and denote its proper transform on the surface S_{2} by \widehat{Z}^{2}. Then $\bar{Z} \neq \widehat{Z}, P_{1} \in \widehat{Z}^{1}$ and $P_{2} \in \widehat{Z}^{2}$. Denote by \hat{d} the degree of the curve \widehat{Z} in \mathbb{P}^{3}. Then $\hat{d}+\bar{d} \leqslant d$. Moreover, the intersection form of the curves \widehat{Z} and \bar{Z} on the surface S is given by
Lemma 4.21. One has $\bar{Z} \cdot \bar{Z}=-\bar{d}(d-\bar{d}-1), \widehat{Z} \cdot \widehat{Z}=-\hat{d}(d-\hat{d}-1)$ and $\bar{Z} \cdot \widehat{Z}=\bar{d} \hat{d}$.
Proof. See the proof of Lemma 4.3,
Put $D=a \widehat{Z}+\Omega$, where a is a positive rational number, and Ω is an effective \mathbb{Q}-divisor on the surface S whose support does not contain the curve \widehat{Z}. Denote by Ω^{1} the proper transform of the divisor Ω on the surface S_{1}, and denote by Ω^{2} the proper transform of the divisor Ω on the surface S_{2}. Put $n_{0}=\operatorname{mult}_{P}(\Omega), n_{1}=\operatorname{mult}_{P_{1}}\left(\Omega^{1}\right)$ and $n_{2}=\operatorname{mult}_{P_{2}}\left(\Omega^{2}\right)$. Then $m_{0}=n_{0}+a$, $m_{1}=n_{1}+a$ and $m_{2}=n_{2}+a$. Then the log pair $\left(S_{2}, \lambda a \widehat{Z}^{2}+\lambda \Omega^{2}+\left(\lambda\left(n_{0}+n_{1}+2 a\right)-2\right) E_{2}\right)$ is not \log canonical at P_{2}, because $\left(S_{2}, \lambda D^{2}+\left(\lambda\left(m_{0}+m_{1}\right)-2\right) E_{2}\right)$ is not \log canonical at P_{2}. Thus, applying Theorem 2.11, we see that

$$
\lambda\left(\Omega \cdot \widehat{Z}-n_{0}-n_{1}\right)=\lambda \Omega^{2} \cdot Z^{2}>1-\left(\lambda\left(n_{0}+n_{1}+2 a\right)-2\right)=3-\lambda\left(n_{0}+n_{1}+2 a\right)
$$

which implies that

$$
\begin{equation*}
\Omega \cdot \widehat{Z}>\frac{3}{\lambda}-2 a . \tag{4.22}
\end{equation*}
$$

On the other hand, we have

$$
\bar{d}=D \cdot \bar{Z}=(a \widehat{Z}+\underset{24}{\Omega)} \cdot \bar{Z} \geqslant a \widehat{Z} \cdot \bar{Z}=a \hat{d} \bar{d}
$$

by Lemma 4.21, This gives

$$
\begin{equation*}
a \leqslant \frac{1}{\hat{d}} . \tag{4.23}
\end{equation*}
$$

Thus, it follows from (4.22), (4.23) and Lemma 4.21 that

$$
\frac{3}{\lambda}-2 \leqslant \frac{3}{\lambda}-2 a<\Omega \cdot \widehat{Z}=\hat{d}+a \hat{d}(d-\hat{d}-1) \leqslant d-1,
$$

which implies that $\lambda>\frac{3}{d+1}$. Then $d \leqslant 4$ by Lemma 4.2(ii).
Lemma 4.24. One has $d \neq 4$.
Proof. Suppose that $d=4$. Then $\lambda=\frac{5}{8}$ and $\hat{d} \leqslant 3$. By Lemma4.12, \widehat{Z} is not a line, since every line passing through P must be an irreducible component of the curve T_{P}. Thus, either \widehat{Z} is a conic or \widehat{Z} is a plane cubic curve. If \widehat{Z} is a conic, then $\widehat{Z}^{2}=-2$ and $a \leqslant \frac{1}{2}$ by (4.23). Thus, if \widehat{Z} is a conic, then

$$
2+2 a=\Omega \cdot \widehat{Z}>\frac{3}{\lambda}-2 a=\frac{24}{5}-2 a,
$$

which implies that $\frac{1}{2} \geqslant a>\frac{7}{10}$. This shows that \widehat{Z} is a plane cubic curve. Then $\widehat{Z}^{2}=0$. Since $a \leqslant \frac{1}{3}$ by (4.23), we have

$$
3=\Omega \cdot \widehat{Z}>\frac{3}{\lambda}-2 a=\frac{24}{5}-2 a \geqslant \frac{24}{5}-\frac{2}{3}=\frac{62}{15},
$$

which is absurd.
Thus, we see that $d=3$. Then \widehat{Z} us either a line or a conic. But every line passing through P must be an irreducible component of T_{P}. Since \widehat{Z} is not an irreducible component of T_{P} by Lemma 4.12, the curve \widehat{Z} must be a conic. Then $\widehat{Z}^{2}=0$. Therefore, it follows from (4.22) that

$$
3-2 a=\frac{3}{\lambda}-2 a<\Omega \cdot \widehat{Z}=\hat{d}+a \hat{d}(d-\hat{d}-1)=\hat{d}=2,
$$

which implies that $a>\frac{1}{2}$. But $a \leqslant \frac{1}{d}=\frac{1}{2}$ by (4.23). The obtained contradiction completes the proof of Theorem 1.17

References

[1] I. Cheltsov, Log canonical thresholds on hypersurfaces, Sb. Math. 192 (2001), 1241-1257.
[2] I. Cheltsov, Del Pezzo surfaces and local inequalities, Proceedings of the Trento conference "Groups of Automorphisms in Birational and Affine Geometry", October 2012, Springer (2014), 83-101.
[3] I. Cheltsov, J. Park, J. Won, Affine cones over smooth cubic surfaces, to appear in J. of EMS.
[4] A. Corti, J. Kollár, K. Smith, Rational and nearly rational varieties, Cambridge Studies in Advanced Mathematics 92 (2004), Cambridge University Press.
[5] P. Hacking, Compact moduli of plane curves, Duke Math. J. 124 (2004), 213-257.
[6] C.-M. Hui, Plane quartic curves, Ph.D. Thesis, University of Liverpool, 1979.
[7] H. Kim, Y. Lee, Log canonical thresholds of semistable plane curves, Math. Proc. Cambridge Philos. Soc. 137 (2004), 273-280.
[8] T. Kuwata, On log canonical thresholds of reducible plane curves, American J. of Math., 121 (1999), 701-721.
[9] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergeb. Math. Grenzgeb. 34, Springer, Berlin, 1994.
[10] A. Płoski, A bound for the Milnor number of plane curve singularities, Cent. Eur. J. Math. 12 (2014), 688-693.
[11] V. Shokurov, Three-dimensional log perestroikas, Russian Acad. Sci. Izv. Math. 40 (1993), 95-202.
[12] G. Tian, Kähler-Einstein metrics on algebraic manifolds, Metric and Differential Geometry, Progress in Mathematics 297 (2012), 119-159.
[13] C. Wall, Highly singular quintic curves, Math. Proc. Cambridge Philos. Soc. 119 (1996), 257-277.

[^0]: 2010 Mathematics Subject Classification. 14H20, 14H50, 14J70 (primary), and 14E05, 14L24, 32Q20 (secondary).

