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Why noncommutative minimal surfaces?

The classical theory of minimal surfaces is an old and rich subject,
and still quite active.

From a mathematical point of view, it is interesting to investigate
if one can develop a parallel theory for noncommutative geometry.

There are many explicit examples of minimal surfaces that can be
turned into noncommutative ones. In this way, one can provide a
multitude of examples of noncommutative surfaces.

Analogues of minimal surface equations appear as equations of
motion in physical models; e.g. in Membrane and String theory
one finds that the (operators corresponding to the) embedding
coordinates have to be harmonic. For physicists, the following
equation might look familiar:

n∑
k=1

[
[X i ,X k ],X k

]
= 0.
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Minimal surfaces in Euclidean space

Let Ω ⊆ R2 such that ~x : Ω→ Rn describes a surface Σ in Rn.
Classically, ~x : Ω→ Rn is called a minimal surface if it is a
stationary point of the area integral:

A[~x ] =

∫ √
gdudv

where g denotes the induced metric on Σ.This is equivalent to
demanding that the embedding coordinates x i are harmonic; i.e.

∆Σ(x i ) = 0 for i = 1, 2, . . . , n,

where ∆Σ denotes the Laplace-Beltrami operator on Σ. (There are
of course other characterizations.)
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Poisson algebraic formulation of geometry

Assume that Σ is a 2-dimensional manifold, with local coordinates
u = u1, v = u2, embedded in Rn via the embedding coordinates
x1(u, v), x2(u, v), . . . , xn(u, v), inducing on Σ the metric

gab = ∂a~x · ∂b~x ≡
n∑

i=1

(
∂ax

i
)(
∂bx

i
)

where ∂a = ∂
∂ua . We adopt the convention that indices a, b, p, q

take values in {1, 2}, and i , j , k, l run from 1 to n.
For an arbitrary density ρ, one may introduce a Poisson bracket on
C∞(Σ) via

{f , h} =
1

ρ
εab
(
∂af
)(
∂bh
)
,

and we define the function γ =
√
g/ρ, where g denotes the

determinant of the metric gab.
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Setting θab = 1
ρε

ab (the Poisson bivector) one notes that

θapθbqgpq =
1

ρ2
εapεbqgpq =

g

ρ2
gab = γ2gab (1)

since εapεbqgpq is the cofactor expansion of the inverse of the
metric. The fact that the geometry of the submanifold Σ can be
expressed in terms of Poisson brackets follows from the trivial, but
crucial, observation that the projection operator P : TRn → TΣ
(where one regards TΣ as a subspace of TRn) can be written as

P(X )i =
1

γ2

n∑
j ,k=1

{x i , xk}{x j , xk}X j

for X ∈ TRn. (It follows from relation (1).)
Multi linear formulation of differential geometry and matrix regularizations
(Arnlind, Hoppe, Huisken, J. Diff. Geom, 2012)
Pseudo-Riemannian geometry in terms of multi-linear brackets

(Arnlind, Huisken, Lett. Math. Phys, 2014)
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In the same spirit, one can easily show that the Laplace-Beltrami
operator on Σ can be written in the following two forms

∆(f ) = γ−1
n∑

i=1

{γ−1{f , x i}, x i}

∆(f ) = γ−1{γ−1{f , ua}gab, ub}.

On a surface, one may always find conformal coordinates; i.e.,
coordinates with respect to which the metric becomes
gab = E(u, v)δab for some (strictly positive) function E .
Furthermore, if we choose ρ = 1 (giving γ = E), the second
formula above can be written as

∆(f ) =
1

E
{{f , ua}δab, ub} =

1

E
{{f , u}, u}+

1

E
{{f , v}, v}
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Minimal surfaces can be characterized by the fact that their
embedding coordinates x1, . . . , xn are harmonic with respect to the
Laplace operator on the surface; i.e. ∆(x i ) = 0 for i = 1, . . . , n. In
local conformal coordinates, due to the above Poisson algebraic
formulas, one may formulate this as follows:

A surface ~x : D ⊆ R2 → Rn is minimal if

∆0(x i ) = {{x i , u}, u}+ {{x i , v}, v} = 0 for i = 1, . . . , n

~xu · ~xu = ~xv · ~xv and ~xu · ~xv = 0

We also note that the above Poisson bracket satisfies {u, v} = 1.
These formulas make up our starting point when generalizing to
noncommutative algebras.

We were aiming to solve equations.
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The Weyl algebra

In the geometrical setting, we introduced a Poisson bracket with
{u, v} = 1. Therefore, we shall be interested in a
(noncommutative) unital algebra containing two elements U,V
satisfying

[U,V ] = i~1,

for some real number ~ > 0. The associative unital algebra
generated by U,V satisfying the above relation is commonly
referred to as the Weyl algebra.

The Weyl algebra satisfies the so called Ore condition, which
implies that it can be embedded in a field of fractions by a general
procedure. By A~ we shall denote the Weyl algebra, and by F~ its
field of fractions.
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Derivations

Let us introduce the inner derivations:

∂u(A) =
1

i~
[A,V ]

∂v (A) = − 1

i~
[A,U],

from which it follows that ∂u
(
∂v (A)

)
= ∂v

(
∂u(A)

)
.

Compare with the geometric setting (with the choice ρ = 1),
where it holds that

∂f

∂u
= {f , v} and

∂f

∂v
= −{f , u}.

We also set Λ = U + iV as well as

∂ =
1

2
(∂u − i∂v ) and ∂̄ =

1

2
(∂u + i∂v ).
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We shall construct minimal surfaces by finding “embedding
coordinates”

X = (X 1, . . . ,X n) ∈ Fn
~

that are harmonic. Then we define the noncommutative minimal
surface as the algebra generated by X 1, . . . ,X n (and closed w.r.t.
∂u, ∂v ).

In analogy with the geometric equations, we demand[
[X i ,V ],V

]
+
[
[X i ,U],U

]
= 0

as well as the “conformal” condition

h(∂uX , ∂uX ) = h(∂vX , ∂vX )

h(∂uX , ∂vX ) + h(∂vX , ∂uX ) = 0

where h : Fn
~ × Fn

~ → F~ is the hermitian form

h(U,V ) =
n∑

i=1

(U i )∗V i .
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All of this can be put in a much more polished form, but as our
original emphasis lied on the equations, I wanted to give you a
down to earth presentation.

Now, is the above definition of a noncommutative minimal surface
useful? The idea of introducing minimal surfaces in this way, was
to see to what extent one may generalize the classical minimal
surfaces in R3 to noncommutative ones.

Surprisingly, one can prove an analogy of the Weierstrass
representation theorem. Recall that this theorem completely
characterizes all minimal surfaces in R3. Moreover, it gives an
explicit way to construct infinitely many minimal surfaces.
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The noncommutative Weierstrass representation theorem

Theorem

Let {X 1,X 2,X 3} be a minimal surface for which it holds that
∂(X 1 − iX 2) 6= 0. Then there exist r-holomorphic elements
f , g ∈ F~ together with x i ∈ R (for i = 1, 2, 3), such that

X 1 = x11 + Re

∫
1

2
f (1− g2)dΛ

X 2 = x21 + Re

∫
i

2
f (1 + g2)dΛ

X 3 = x31 + Re

∫
fgdΛ.

(2)

Conversely, for any r-holomorphic f and g such that f (1− g2),
f (1 + g2) and fg are integrable, the above equations define a
minimal surface.
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Algebraic minimal surfaces

As an example, one may generalize the following class of algebraic
minimal surfaces in R3 to the noncommutative setting. Namely,
for each polynomial F (Λ), the following defines a noncommutative
minimal surface:

X 1 = Re
(

(1− Λ2)∂2F (Λ) + 2Λ∂F (Λ)− 2F (Λ)
)

X 2 = Re
(
i(1 + Λ2)∂2F (Λ)− 2iΛ∂F (Λ) + 2iF (Λ)

)
X 3 = Re

(
2Λ∂2F (Λ)− 2∂F (Λ)

)
For instance, choosing F (Λ) = Λ3 one obtains a noncommutative
version of the Enneper surface

X 1 = U + UV 2 − 1

3
U3 − i~V

X 2 = −V − U2V +
1

3
V 3 + i~U

X 3 = U2 − V 2.
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Other examples?

Thus, it turns out that one may directly generate noncommutative
analogues of many minimal surfaces in R3. Of course, if we stay in
the polynomial algebra generated by U,V , only algebraic ones may
be constructed. However, if we work with representations or an
extension of the algebra, then more examples may be obtained.

In the following, a noncommutative catenoid will be constructed,
and its Riemannian aspects will be investigated, as well as a large
class of bimodules over the algebra.
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The catenoid

Catenoid – a minimal surface connecting two circles.

One radial (compact) direction, and one non-compact direction.
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The catenoid

Recall the catenoid as a parametrized minimal surface in R3:

~x(u, v) =
(

cosh(u) cos(v), cosh(u) sin(v), u
)

for −∞ < u <∞ and 0 ≤ v ≤ 2π, and the embedding coordinates
are no longer polynomials in u and v . The polynomial algebra
generated by the functions x1, x2, x3 can also be generated by u,
e±u and e±iv .

Let us therefore try to construct an algebra “generated by”

U e±U e±iV

(of course, these are only formal symbols).
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A Noncommutative Catenoid C~
We let C

〈
U,R±1,W±1

〉
be the free unital algebra generated by

these symbols where we keep in mind that

R±1 ∼ e±U W±1 ∼ e±iV

Moreover, we introduce a ∗-algebra structure via U∗ = U, R∗ = R
and W ∗ = W−1, as well as the relations

WR = e~RW , WU = UW + ~W and [U,R] = 0.

(together with the corresponding ∗-versions). Formally, they can
be “derived” by using [U,V ] = i~1; e.g.

WR = e iV eU = e iV+U+ 1
2

[iV ,U] = eU+iV+ 1
2
~ = e~eU+iV− 1

2
~

= e~eU+iV+ 1
2

[U,iV ] = e~eUe iV = e~RW .

The algebra of the noncommutative catenoid will be denoted by C~.
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A basis for C~

By using the “Diamond lemma” one can prove that the algebra is
indeed non-trivial and a basis for C~ is given by

U iR jW k

for i ≥ 0 and j , k ∈ Z.
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Derivations

One can show that there exist hermitian derivations ∂u, ∂v such
that [∂u, ∂v ] = 0 and

∂uU = 1 ∂uR = R ∂uW = 0

∂vU = 0 ∂vR = 0 ∂vW = iW

As usual, we set

∂ =
1

2
(∂u − i∂v )

∂̄ =
1

2
(∂u + i∂v ).

Finally, we let g denote the abelian complex Lie algebra generated
by ∂ and ∂̄.
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Field of fractions

Proposition

The algebra C~ has no zero-divisors.

Proposition

C~ satisfies the Ore condition.

These results imply that there exists a total field of fractions of C~
and that the injection of C~ into the fraction field is injective.

Of course, we do not want to consider the fraction field as an
algebra of global functions, since there are many elements that
should not be invertible.
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Adding more functions

The algebra generated by U,R±1,W±1 contain only a few of the
functions on the catenoid. Since the typical representations of the
algebra are given by unbounded operators, there is no natural way
to make this into a C ∗-algebra. One may extend the algebra in
several different ways to include more smooth functions. Let us do
the following.

Let Z~(U,R) denote the commutative subalgebra of C~ generated
by 1, U, R, R−1. Let us define a homomorphism (of commutative
algebras) φ : Z~(U,R)→ C∞(Σ) via

φ(1) = 1 φ(U) = u φ(R) = eu φ(R−1) = e−u.

Define the following subset of Z~(U,R):

Z+
~ (U,R) = {p ∈ Z~(U,R) : |φ(p)(u)| > 0 for all u ∈ R}.
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Adding more functions

Lemma

Z+
~ (U,R) is a multiplicative set.

Given any subset S of an algebra, one may always construct an
algebra (a “localization”) where elements of S are invertible.
However, a priori, there is no information on the kernel of the
injection map into the localization (it might be the whole algebra).

However, due to the fact that we have proven that the Ore
condition holds, and that there are no zero divisors one may
conclude that the injection map is injective. Hence, the localization

Ĉ~ = Z+
~ (U,R)−1C~

is non-trivial. That is, in Ĉ~ polynomials that are classically
non-zero are invertible. E.g. 1 + R + U2 is invertible in Ĉ~.



Introduction Noncommutative Minimal Surfaces A Noncommutative Catenoid Summary

Adding more functions

Lemma

For every p ∈ Z+
~ (U,R) there exists q ∈ Z+

~ (U,R) such that

Wp = qW

where q(U,R) = p(U + ~1, e~R).

Using the above result, one proves that every element of a ∈ Ĉ~
can be written as

a =
∑
k∈Z

akW
k

where ak is a quotient of two polynomials in U,R±1.
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Integration

The total integral of a function on the catenoid, with respect to
the induced metric can be computed in local coordinates as

τ(f ) =

∫ ∞
−∞

(∫ 2π

0
f (u, v) cosh2(u)dv

)
du

whenever the integral exists.For a function, expressible as

f (u, v) =
∑
k∈Z

fk(u, eu)e ikv

we formally get (only the k = 0 term survives)

τ(f ) = 2π

∫ ∞
−∞

f0(u, eu) cosh2(u)du.
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Integration

Let us introduce a noncommutative integral in analogy with the
classical situation. Thus, given

a =
∑
k∈Z

ak(U,R±1)W k

set

τ(a) = 2π

∫ ∞
−∞

φ(a0) cosh2(u)du

whenever the integral exists. (Recall: φ(U) = u, φ(R±1) = e±u.)

τ is not a trace: (formal computation!)

τ(WRW−1) = e~τ(R) 6= τ(R)

(One can take a real example where the integrals converge.)



Introduction Noncommutative Minimal Surfaces A Noncommutative Catenoid Summary

Curvature

For the classical catenoid, parametrized by

~x(u, v) =
(

cosh(u) cos(v), cosh(u) sin(v), u
)

the module of (complex) vector fields can be spanned by φ and φ̄,
where

φ = (sinh(z),−i cosh(z), 1) (z = u + iv).

Let {e1, e2, e3} denote the canonical basis of the free (right)
module (Ĉ~)3, and let h : (Ĉ~)3 × (Ĉ~)3 → Ĉ~ denote the bilinear
hermitian form defined by

h(X ,Y ) =
3∑

i=1

(X i )∗Y i

for X = eiX
i and Y = eiY

i .
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Module of vector fields

For the noncommutative catenoid Ĉ~ we introduce

Φ1 = 1
2e

1
2
~(RW − R−1W−1) ∼ 1

2 (eue iv − e−ue−iv ) = sinh(z)

Φ2 = − i
2e

1
2
~(RW + R−1W−1)

Φ3 = 1,

and set

Φ = e1Φ1 + e2Φ2 + e3Φ3

Φ̄ = e1(Φ1)∗ + e2(Φ2)∗ + e3(Φ3)∗,

and let X (Ĉ~) denote the (right) Ĉ~-module generated by Φ and Φ̄.

Proposition

X (Ĉ~) is a free (right) Ĉ~-module of rank 2.
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Connections

A connection on X (Ĉ~) is called hermitian if

dh(X ,Y ) = h(∇d∗X ,Y ) + h(X ,∇dY ),

for d ∈ g and X ,Y ∈ X (Ĉ~). Moreover, we say that ∇ is
torsion-free if

∇∂Φ̄ = ∇∂̄Φ.

Let us introduce an almost complex structure J : X (Ĉ~)→ X (Ĉ~)

JΦ = iΦ

JΦ̄ = −iΦ̄

and extending J to X (Ĉ~) as a (right) Ĉ~-module homomorphism.
A connection is called almost complex if

(∇dJ)(X ) ≡ ∇dJ(X )− J∇dX = 0

for all d ∈ g and X ∈ X (Ĉ~).
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Levi-Civita connection

Introduce a metric on X (Ĉ~) via

S = h(Φ,Φ), T = h(Φ̄, Φ̄) and h(Φ, Φ̄) = 0.

Theorem

There exists a unique hermitian torsion-free almost complex
connection ∇ on X (Ĉ~), given by

∇∂Φ = ΦS−1∂S

∇∂̄Φ̄ = Φ̄T−1∂̄T

∇∂̄Φ = ∇∂Φ̄ = 0.
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Curvature

The curvature R(∂a, ∂b) = ∇a∇b −∇b∇a is easily computed to be

R(∂, ∂̄)Φ = −Φ∂̄
(
S−1∂S

)
R(∂, ∂̄)Φ̄ = Φ̄∂

(
T−1∂̄T

)
and since X (Ĉ~) is a free module, one has uniquely defined
curvature components R(∂a, ∂b)Φc = ΦpR

p
cab given by

R1
112 = −∂̄

(
S−1∂S

)
R2

212 = ∂
(
T−1∂̄T

)
R1

212 = R2
112 = 0.

One may also proceed to define Rabpq = h(Φ̄a,R(∂p, ∂q)Φb),
where Φ̄1 = Φ̄ and Φ̄2 = Φ, giving

R1212 = T∂
(
T−1∂̄T

)
R2112 = −S ∂̄

(
S−1∂S

)
R1112 = R2212 = 0
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Pseudo-Riemannian calculi

The procedure of constructing a calculus over the catenoid by
choosing a “module of vector fields” and associate derivations

∂ ↔ Φ ∂̄ ↔ Φ̄

can be put in a more general context.

Riemannian curvature of the noncommutative 3-sphere
J. A. and M. Wilson. J. Noncommut. Geo. 2017

On the Chern-Gauss-Bonnet theorem for the
noncommutative 4-sphere
J. A. and M. Wilson. J. Geom. Phys. 2016.

In the setting of “Pseudo-Riemannian calculi” one may discuss
Levi-Civita connections and their corresponding curvature.
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Computing the total curvature

Let us check a Gauss-Bonnet-type theorem for the catenoid.
Assume that we have a conformal metric of the type
H = h(Φ,Φ) = h(Φ̄, Φ̄) and h(Φ̄,Φ) = 0 with H an invertible
rational function in U and R.

The determinant of the metric corresponds to H again, and we
may introduce

τH(a) = 2π

∫ ∞
−∞

φ(a0)h du

where h = φ(H). The Gaussian curvature is

K =
1

2
habRapbqh

ab = ∂̂u
(
H−1∂̂uH

)
H−1

giving

τH(K ) = 2π

∫ ∞
−∞

∂u(h−1∂uh)du
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Computing the total curvature

Is the integral independent of h?

τH(K ) = 2π

∫ ∞
−∞

∂u(h−1∂uh)du

Let h = ef (u)h0(u) = ef (u) cosh2(u):

τH(K ) = 2π
[
∂u ln

(
ef h0

)]∞
−∞

= 2π
[
∂u ln h0

]∞
−∞

+ 2π
[
∂uf
]∞
−∞

= 2π
[
∂u ln h0

]∞
−∞

= −4π

assuming that f behaves appropriately at infinity.
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Bimodules

In many ways, the algebra of the noncommutative catenoid
behaves like a “noncompact noncommutative torus”.

For the noncommutative torus, there is a class of explicit
bimodules appearing in the classification of projective modules over
the NC torus.

It may not be surprising that one can construct similar bimodules
for the noncommutative catenoid.
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Bimodules

We shall represent the algebra C~ on the following space:

Let C∞0 (R× Z) denote the space of complex valued smooth
functions on R× Z with compact support and the inner product

〈ξ, η〉 =
∞∑

k=−∞

∫ ∞
−∞

ξ(x , k)η̄(x , k)dx .
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Left C~-modules

Let λ0, λ1, ε ∈ R and r ∈ Z. If λ0ε+ λ1r = −~ then

(W ξ)(x , k) = ξ(x − ε, k − r)

(W−1ξ)(x , k) = ξ(x + ε, k + r)

(Rξ)(x , k) = eλ0x+λ1kξ(x , k)

(R−1ξ)(x , k) = e−λ0x−λ1kξ(x , k)

(Uξ)(x , k) = (λ0x + λ1k)ξ(x , k)

for ξ ∈ C∞0 (R× Z), defines a left C~-module structure on
C∞0 (R× Z) (compatible with the ∗-structure).
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Right C~-modules

Correspondingly,

(ξW )(x , k) = ξ(x − ε′, k − r ′)

(ξW−1)(x , k) = ξ(x + ε′, k + r ′)

(ξR)(x , k) = eµ0x+µ1kξ(x , k)

(ξR−1)(x , k) = e−µ0x−µ1kξ(x , k)

(ξU)(x , k) = (µ0x + µ1k)ξ(x , k)

defines a right C~-module structure on C∞0 (R× Z) (compatible
with the ∗-structure) if µ0, µ1, ε

′ ∈ R and r ′ ∈ Z such that
µ0ε
′ + µ1r

′ = ~.
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Bimodules

Bimodule conditions for a C~ − C~′-bimodule:

λ0ε+ λ1r = −~ (Left module)

µ0ε
′ + µ1r

′ = ~′ (Right module)

λ0ε
′ + λ1r

′ = 0 (Bimodule)

µ0ε+ µ1r = 0 (Bimodule)

with

λ0, λ1, ε, ε
′ ∈ R

r , r ′ ∈ Z.

Note that the above equations have solutions for arbitrary
~, ~′ ∈ R.
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Connections of constant curvature

Define linear maps ∇u,∇v : C∞0 (R× Z)→ C∞0 (R× Z) via

(∇uξ)(x , k) = α
dξ

dx
(x , k) and (∇vξ)(x , k) = βxξ(x , k)

(3)

for α, β ∈ C. It is straightforward to check that

∇u(aξ) = a∇uξ + (∂ua)ξ

∇v (aξ) = a∇vξ + (∂va)ξ

for all a ∈ C~ if and only if α = 1/λ0 and β = i/ε. Similarly, it
holds that

∇u(ξa) = (∇uξ)a + ξ(∂ua)

∇v (ξa) = (∇vξ)a + ξ(∂va)

for all a ∈ C~′ if and only if α = 1/µ0 and β = i/ε′.
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Assume that C∞0 (R× Z) is a C~ − C~′-bimodule and that

(∇uξ)(x , k) =
1

λ0

dξ

dx
(x , k)

(∇vξ(x , k)) =
i

ε
xξ(x , k)

is a bimodule connection on C∞0 (R× Z).

1 If ~ = ~′ then ~ = ~′ = 0,

2 if ~ 6= ~′ then ~/~′ ∈ Q and

λ0 = µ0 =
~r ′

ε(r − r ′)
λ1 = − ~

r − r ′
µ1 = − ~′

r − r ′

for arbitrary ε = ε′ ∈ R and r , r ′ ∈ Z such that r/r ′ = ~/~′.
Moreover,

∇u∇vξ(x , k)−∇v∇uξ(x , k) = i
~− ~′

~~′
ξ(x , k).
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Projective modules?

Are these modules projective? As far as I know, in order to prove
that the corresponding modules for the NC torus are projective,
one constructs Morita equivalence bimodules, and the projectivity
is automatic once such a structure has been set up.

Unfortunately, the same type of construction doesn’t immediately
work because of the non-periodicity of one direction of the
catenoid. However, this question together with the classification of
projective modules over the noncommutative catenoid is a very
interesting question.
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Summary

We have introduced noncommutative minimal surfaces from
an equational point of view, where we demand the embedding
coordinates to be harmonic.

This was applied to the Weyl algebra, where one may
construct infinite classes of subalgebras of the Weyl algebra by
generalizing the classical Weierstrass representation theorem.

Our hope is that these algebras enjoy properties that allows
for the construction of “nice and interesting” noncommutative
geometries.

A noncommutative catenoid was constructed, and we show
that the differential calculus is very similar to the NC torus,
and a theory of Riemannian curvature can be introduced.

There is a unique metric and torsion-free connection that is
compatible with the complex structure.

There are classes of C~ − C~′-bimodules together with
connections of constant curvature (only dependent on ~, ~′).
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