Systems of reflected BSDEs with oblique reflection

Mateusz Topolewski, Nicolaus Copernicus University

Let $U=\left(U^{1}, U^{2}, \ldots, U^{N}\right)$ be an N-dimensional progressively measurable (with respect to some filtration F) càdlàg process on $[0, T]$. Let us consider a system of reflected BSDEs defined by

$$
\begin{gathered}
Y_{t}^{j}=\xi^{j}+\int_{t}^{T} f^{j}\left(s, Y_{s}\right) d s+\int_{t}^{T} d K_{s}^{j}-\int_{t}^{T} d A_{s}^{j}-\int_{t}^{T} d M_{s}^{j}, \quad t \in[0, T] \\
\int_{0}^{T}\left(Y_{t-}^{j}-H_{t-}^{j}\left(Y_{t-}\right)\right) d K_{t}^{j}=\int_{0}^{T}\left(U_{t-}^{j}-Y_{t-}^{j}\right) d A_{t}^{j}=0 \\
H_{t}^{j}\left(Y_{t}\right) \leq Y_{t}^{j} \leq U_{t}^{j}, \quad t \in[0, T]
\end{gathered}
$$

for $j=1,2, \ldots, N$. In the equation the random vector $\xi=\left(\xi^{1}, \xi^{2}, \ldots, \xi^{N}\right)$ is a given terminal condition, $f=$ $\left(f^{1}, f^{2}, \ldots, f^{N}\right)$ is a given function (the generator of the equation), and $H=\left(H^{1}, H^{2}, \ldots, H^{N}\right)$ is a function which drives the oblique reflection. We say that a quadruple $(Y, M, K, A)=\left\{\left(Y^{j}, M^{j}, K^{j}, A^{j}\right)\right\}_{j=1,2 \ldots N}$ of càdlàg processes is a solution of the system if Y is a process of Doob's class D, M is a local martingale such that $M_{0}=0, K, A$ are predictable increasing processes with $K_{0}=A_{0}=0$, and the above equation is satisfied almost surely.
This problem was investigated by Tang et al. [2] in special case when F is a Brownian filtration and the barrier U is continuous. They showed the existence and uniqueness of a solution with Lipschitz continuous generator f and oblique function H of the form

$$
H_{t}^{j}(y)=\max _{k \neq j} h_{j, k}\left(t, y^{k}\right), \quad j=1,2, \ldots, N
$$

where $\left\{h_{j, k}\right\}_{j, k=1 \ldots N}$ are some continuous functions such that $h_{j, k}(t, y) \leq y$ for $y \in R$. On the other hand, Klimsiak [1] considered system of equations without upper barrier U on the general filtered space. He proved the existence result for a quasi-monotone generator f and H being an increasing continuous function. He also showed that if H is given by the above, then the solution is unique.
In the talk we will show that the results of [2] can be generalized to the setting considered in [1]. Moreover, we will present an application of our result to the general optimal switching problem for one-dimensional reflected BSDE, where the generator, the terminal value and the upper barrier are all switched with positive costs.

References:

[1] T. Klimsiak, Systems of quasi-variational inequalities related to the switching problem, arXiv:1609.02221 v2 (2016).
[2] S. Tang, W. Zhong, H. K. Koo, Optimal switching of one-dimensional reflected BSDEs and associated multidimensional BSDEs with oblique reflection, SIAM J. Control Optim., 49 (2011), 2279-2317.

