The Riemann-Hilbert problem and singularity formation in the localized induction approximation

Piotr Kokocki

We are concern with the differential equation of the form

$$
\begin{equation*}
z_{t}=-k_{s} n-\frac{1}{2} k^{2} T, \quad t, s \in \mathbb{R} \tag{1}
\end{equation*}
$$

where z is the flow of regular curves living in the complex plane, s is the arc-length parameter, T is the field of tangent vectors, $n:=i T$ is the oriented normal vector field and k is the curvature defined by $T_{s}=k n$. The equation (1) is called the localized induction approximation and can be considered as the geometric flow, whose evolution is similar to the contour dynamics of a vortex patch subjected to the 2D Euler equation (see e.g. [3]). Our aim is to show the existence of a regular family of self-similar solutions for (1), which develops a spiral singularity at finite time. To be more precise, we prove that for any $a \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\mu \in \mathbb{R}$, there are $\theta^{+}, \theta^{-} \in[0,2 \pi)$ and a self-similar solution $z^{\mu, a}$ of the equation (1), such that $\theta^{+}-\theta^{-}=2 a$ and $\lim _{t \rightarrow 0} z^{\mu, a}(t)=z_{0}^{\mu, a}$ in the space of tempered distributions, where

$$
\begin{equation*}
z_{0}^{\mu, a}(s)=\frac{s}{\sqrt{1+4 \mu^{2}}} e^{i\left(\theta^{-}-2 \mu \log |s|\right)} \chi_{(-\infty, 0)}(s)+\frac{s}{\sqrt{1+4 \mu^{2}}} e^{i\left(\theta^{+}-2 \mu \log s\right)} \chi_{(0,+\infty)}(s), \quad s \in \mathbb{R} . \tag{2}
\end{equation*}
$$

Furthermore we show that the curvature flow $k^{\mu, a}$ corresponding to the solution $z^{\mu, a}$ satisfies the modified Korteweg-de Vries (mKdV) equation

$$
\begin{equation*}
k_{t}+k_{s s s}+\frac{3}{2} k^{2} k_{s}=0 \tag{3}
\end{equation*}
$$

with the following initial condition

$$
\begin{equation*}
k^{\mu, a}(s, 0)=a \delta(s)+\mu \mathrm{p} \cdot \mathrm{v} \cdot(1 / s) \tag{4}
\end{equation*}
$$

where $\delta(s)$ is the Dirac delta function and p.v. $(1 / s)$ is the Cauchy principal value. The function (2) is called a logarithmic spiral and plays a crucial role in the fluid mechanics and turbulence modeling. The method of the proof is searching for the solutions $z^{\mu, a}$ in a class of self-similar functions, whose profiles are purely imaginary solutions of the second Painlevé (PII) equation

$$
\begin{equation*}
u^{\prime \prime}(x)=x u(x)+2 u^{3}(x)-\alpha \tag{5}
\end{equation*}
$$

with $\alpha:=-i \mu$. Following [2], each solution of the (PII) equation is determined by a Riemann-Hilbert problem whose jump function is expressed by Stokes multipliers $\left(s_{1}, s_{2}, s_{3}\right) \in \mathbb{C}^{3}$ satisfying the constraint

$$
s_{1}-s_{2}+s_{3}+s_{1} s_{2} s_{3}=-2 \sin (\pi \alpha) .
$$

After improving the integral formulas from [1], we find $m \in i \mathbb{R}$ such that the purely imaginary AblowitzSegur solution corresponding to the following choice of the Stokes data

$$
\begin{equation*}
s_{1}=-\sin (i \pi \mu)-i m, \quad s_{2}=0, \quad s_{3}=-\sin (i \pi \mu)+i m, \tag{6}
\end{equation*}
$$

is an appropriate profile in the construction of the solution $z^{\mu, a}$. The obtained results are effect of the joint work with L. Vega [4] and improves those from [5], where the authors use the perturbation argument together with the methods of ODEs to prove the existence of solutions $z^{\mu, a}$ for the parameters μ and a that are sufficiently close to zero.

References

[1] J. Baik, R. Buckingham, J. DiFranco, A. Its, Total integrals of global solutions to Painlevé II, Nonlinearity 22 (2009), no. 5, 1021-1061.
[2] A.S. Fokas, A.R. Its, A. Kapaev, V. Novokshenov, Painlevé transcendents. The Riemann-Hilbert approach, Mathematical Surveys and Monographs, 128. American Mathematical Society, RI, 2006.
[3] R.E. Goldstein, D.M. Petrich, Solitons, Euler's equation, and vortex patch dynamics, Phys. Rev. Lett. 69 (1992), no. 4, 555-558.
[4] P. Kokocki, L. Vega, The Riemann-Hilbert problem and singularity formation in the contour dynamics for the 2D Euler equation, in preparation
[5] G. Perelman, L. Vega, Self-similar planar curves related to modified Korteweg-de Vries equation, J. Differential Equations 235 (2007), no. 1, 56-73.

