The mass of asymptotically hyperbolic manifolds

Piotr T. Chruściel

University of Vienna

Warsaw, June 2018
Total energy is useful in one-dimensional classical mechanics
1. Total energy is useful in one-dimensional classical mechanics.

2. But less so for higher dimensional gravitating systems (many body Kepler problem: Xia’s finite-time ejections to infinity).
1 Total energy is useful in one-dimensional classical mechanics

2 But less so for higher dimensional gravitating systems (many body Kepler problem: Xia’s finite-time ejections to infinity)

3 energy and mass are *not always* the same
Mass, momentum, etc., arise as obstructions in gluing problems.
Mass, momentum, etc., arise as obstructions in gluing problems

$m \geq 0$ for AF metrics \implies existence (Schoen 1984, all dim)

for the Yamabe problem
Mass or energy?
What is it good for anyway? some good news in the asymptotically flat case

1. Mass, momentum, etc., arise as obstructions in gluing problems

2. \(m \geq 0 \) for AF metrics \(\iff \) existence (Schoen 1984, all dim) and compactness (Khuri, Marques, Schoen 2018, dim \(n \leq 24 \), sharp) for the Yamabe problem
Mass or energy?
What is it good for anyway? some good news in the asymptotically flat case

1. Mass, momentum, etc., arise as obstructions in gluing problems

2. $m \geq 0$ for AF metrics \implies existence (Schoen 1984, all dim) and compactness (Khuri, Marques, Schoen 2018, dim $n \leq 24$, sharp) for the Yamabe problem

3. $m \geq 0$ for AF metrics \implies suitably regular static black holes are Schwarzschild in all dimensions
Mass or energy?
What is it good for anyway? some good news in the asymptotically flat case

1. Mass, momentum, etc., arise as obstructions in gluing problems

2. $m \geq 0$ for AF metrics \implies existence (Schoen 1984, all dim) and compactness (Khuri, Marques, Schoen 2018, dim $n \leq 24$, sharp) for the Yamabe problem

3. $m \geq 0$ for AF metrics \implies suitably regular static black holes are Schwarzschild in all dimensions

4. Hollands and Wald (2016): variational identities involving total mass for AF metrics can be used to prove existence of instabilities in “black strings”
Spacetime variational methods: “Noether charge” à la Wald (~ 1990) ≡ geometric Hamiltonian methods à la Kijowski-Tulczyjew (1979)

2. Hamiltonians for asymptotic symmetries:

\[H(\partial_t, \{ t = 0 \}) \] is the energy

If \(g \) suitably approaches a background \(g \) with a Killing vector field \(X \), then the Hamiltonian is

\[H(X, S) := \frac{1}{2} \int_{\partial S} \left(U_{\nu\lambda} - U_{\nu\lambda} \right) |g = g| dS_{\nu\lambda}, \tag{1} \]

\[U_{\nu\lambda} = \frac{1}{8} \pi \sqrt{|\det g|} g_\alpha[^{\nu\delta}]_\beta \nabla_\alpha X_\beta, \tag{2} \]

\[U_{\nu\lambda}^\beta = \frac{1}{16} \pi \sqrt{|\det g|} 2 g^{\beta\gamma} \nabla_\kappa \left(e^2 g^{\gamma[^{\lambda} g^{\nu}\kappa]} \right), \tag{3} \]

where \(\nabla \) is the covariant derivative of \(g^{\mu\nu} \) and \(e^2 = \det g \det g \). \(\tag{4} \)
How to define mass
Spacetime methods

1 Spacetime variational methods: “Noether charge” à la Wald (~ 1990) ≡ geometric Hamiltonian methods à la Kijowski-Tulczyjew (1979): “\(H(\partial_t, \{t = 0\})\)” is the energy

2 Hamiltonians for asymptotic symmetries: If \(g\) suitably approaches a background \(\bar{g}\) with a Killing vector field \(X\), then the Hamiltonian is

\[
H(X, \mathcal{I}) := \frac{1}{2} \int_{\partial \mathcal{I}} (U^{\nu\lambda} - U^{\nu\lambda}|_{g=\bar{g}}) dS_{\nu\lambda},
\]

where

\[
U^{\nu\lambda} = U^{\nu\lambda}_\beta X^\beta - \frac{1}{8\pi} \sqrt{|\det g|} g^{\alpha[\nu} \delta^{\lambda]} \nabla_\alpha X^\beta,
\]

\[
U^{\nu\lambda}_\beta = \frac{2|\det \bar{g}|}{16\pi \sqrt{|\det g|}} g_{\beta\gamma} \nabla_\kappa (e^2 g^{\gamma[\lambda} g^{\nu]\kappa}),
\]

where \(\nabla\) is the covariant derivative of \(\bar{g}_{\mu\nu}\) and

\[
e^2 \equiv \frac{\det g}{\det \bar{g}}.
\]
Asymptotically locally hyperbolic (ALH) metrics

Asymptotically hyperbolic if \((N^{n-1}, \hat{h})\) is the unit round sphere

g = \ell^2 x^{-2} \left(dx^2 + (1 - \frac{k}{4} x^2)^2 \hat{h} + x^n \mu \right) + o(x^{n-2}) dx^i dx^j,

\hat{h} = \hat{h}_{AB}(x^C) dx^A dx^B, \quad \mu = \mu_{AB}(x^C) dx^A dx^B,

\ell > 0 \text{ is a constant related to } \Lambda, \quad \hat{h} \text{ is a Riemannian metric on } N^{n-1} \text{ with scalar curvature}

R[\hat{h}] = (n - 1)(n - 2)k, \quad k \in \{0, \pm 1\}.

The mass aspect function is

\[\theta := \text{tr}_\hat{h} \mu \]

uniquely defined unless the conformal infinity is a round sphere

The total mass is

\[m_0 = c_n \int_{N^{n-1}} \theta, \quad m_i = c_n \int_{S^{n-1}} \theta x^i \]

(defines a “Minkowskian” vector on a sphere)
Asymptotically locally hyperbolic (ALH) metrics

Asymptotically hyperbolic if $(\mathcal{N}^{n-1}, \mathring{h})$ is the unit round sphere

$$
g = \ell^2 x^{-2} \left(dx^2 + \left(1 - \frac{k}{4} x^2 \right)^2 \mathring{h} + x^n \mu \right) + o(x^{n-2}) dx^i dx^j ,
$$

$$
\mathring{h} = \mathring{h}_{AB}(x^C) dx^A dx^B , \quad \mu = \mu_{AB}(x^C) dx^A dx^B ,
$$

\(\ell > 0\) is a constant related to \(\Lambda\), \(\mathring{h}\) is a Riemannian metric on \(\mathcal{N}^{n-1}\) with scalar curvature

$$
R[\mathring{h}] = (n - 1)(n - 2)k , \quad k \in \{0, \pm 1\} .
$$

The mass aspect function is

$$
\theta := \text{tr}_h \mu
$$

uniquely defined unless the conformal infinity is a round sphere.

The total mass is

$$
m_0 = c_n \int_{\mathcal{N}^{n-1}} \theta , \quad m_i = c_n \int_{S^{n-1}} \theta x^i
$$

(defines a “Minkowskian” vector on a sphere).
Asymptotically hyperbolic (ALH) metrics

Asymptotically hyperbolic if \((N^{n-1}, \hat{h})\) is the unit round sphere

\[
\begin{align*}
g &= \ell^2 x^{-2} \left(dx^2 + (1 - \frac{k}{4} x^2)^2 \hat{h} + x^n \mu \right) + o(x^{n-2}) dx^i dx^j, \\
\hat{h} &= \hat{h}_{AB}(x^C) dx^A dx^B, \quad \mu = \mu_{AB}(x^C) dx^A dx^B,
\end{align*}
\]

\(\ell > 0\) is a constant related to \(\Lambda\), \(\hat{h}\) is a Riemannian metric on \(N^{n-1}\) with scalar curvature

\[
R[\hat{h}] = (n - 1)(n - 2)k, \quad k \in \{0, \pm 1\}.
\]

\[\text{The mass aspect function is}\]

\[
\theta := \text{tr}_{\hat{h}} \mu,
\]

uniquely defined unless the conformal infinity is a round sphere

The total mass is

\[
m_0 = c_n \int_{N^{n-1}} \theta, \quad m_i = c_n \int_{S^{n-1}} \theta x^i
\]

(defines a “Minkowskian” vector on a sphere).

Piotr T. Chruściel

The mass of asymptotically hyperbolic manifolds
Asymptotically locally hyperbolic (ALH) metrics

Asymptotically hyperbolic if (N^{n-1}, \hat{h}) is the unit round sphere

\[
g = \ell^2 x^{-2} \left(dx^2 + (1 - \frac{k}{4} x^2)^2 \hat{h} + x^n \mu \right) + o(x^{n-2})dx^i dx^j,
\]

\[
\hat{h} = \hat{h}_{AB}(x^C)dx^A dx^B, \quad \mu = \mu_{AB}(x^C)dx^A dx^B,
\]

$\ell > 0$ is a constant related to Λ, \hat{h} is a Riemannian metric on N^{n-1} with scalar curvature

\[
R[\hat{h}] = (n-1)(n-2)k, \quad k \in \{0, \pm 1\}.
\]

The mass aspect function is

\[
\theta := \text{tr}_\hat{h}\mu
\]

uniquely defined unless the conformal infinity is a round sphere

The total mass is

\[
m_0 = c_n \int_{N^{n-1}} \theta, \quad m_i = c_n \int_{S^{n-1}} \theta x^i
\]

(defines a “Minkowskian” vector on a sphere)
Asymptotically locally hyperbolic (ALH) metrics

Asymptotically hyperbolic if (N^{n-1}, \hat{h}) is the unit round sphere

$$g = \ell^2 x^{-2} \left(dx^2 + \left(1 - \frac{k}{4} x^2\right)^2 \hat{h} + x^n \mu \right) + o(x^{n-2}) dx^i dx^j,$$

$$\hat{h} = \hat{h}_{AB}(x^C) dx^A dx^B, \quad \mu = \mu_{AB}(x^C) dx^A dx^B,$$

$\ell > 0$ is a constant related to Λ, \hat{h} is a Riemannian metric on N^{n-1} with scalar curvature

$$R[\hat{h}] = (n-1)(n-2)k, \quad k \in \{0, \pm 1\}.$$ \hspace{1cm} (5)

The mass aspect function is

$$\theta := \text{tr}_{\hat{h}} \mu$$

uniquely defined unless the conformal infinity is a round sphere

The total mass is

$$m_0 = c_n \int_{N^{n-1}} \theta, \quad m_i = c_n \int_{S^{n-1}} \theta x^i$$

(defines a “Minkowskian” vector on a sphere).
Asymptotically locally hyperbolic (ALH) metrics

Asymptotically hyperbolic if \((N^{n-1}, \hat{h})\) is the unit round sphere

\[
g = \ell^2 x^{-2} \left(dx^2 + (1 - \frac{k}{4} x^2)^2 \hat{h} + x^n \mu \right) + o(x^{n-2}) dx^i dx^j,
\]

\[
\hat{h} = \hat{h}_{AB}(x^C) dx^A dx^B, \quad \mu = \mu_{AB}(x^C) dx^A dx^B,
\]

\(\ell > 0\) is a constant related to \(\Lambda\), \(\hat{h}\) is a Riemannian metric on \(N^{n-1}\) with scalar curvature

\[
R[\hat{h}] = (n - 1)(n - 2)k, \quad k \in \{0, \pm 1\}.
\] (5)

The mass aspect function is

\[
\theta := \text{tr}_{\hat{h}} \mu
\]

uniquely defined unless the conformal infinity is a round sphere

The total mass is

\[
m_0 = c_n \int_{N^{n-1}} \theta, \quad m_i = c_n \int_{S^{n-1}} \theta x^i
\]

(defines a “Minkowskian” vector on a sphere).
Hyperbolic mass (also known as *holographic energy*, cf. “*holographic stress-energy tensor*”).

- We only have satisfactory understanding of mass and related invariants in the asymptotically **Euclidean** setting. (Spectacular progress by Schoen and Yau 2017.)

- Asymptotically **hyperbolic** setting: Positivity? Spin structure or other topological restrictions? Sharp and insightful inequalities in higher dim? e.g., on spin manifolds with spherical infinity, in

\[E^2 \geq |\vec{j}|^2, \quad (6) \]

where \vec{j} is the total angular momentum.
Hyperbolic mass (also known as holographic energy, cf. “holographic stress-energy tensor”).

- We only have satisfactory understanding of mass and related invariants in the asymptotically **Euclidean** setting. (Spectacular progress by Schoen and Yau 2017.)
- Asymptotically **hyperbolic** setting: Positivity? Spin structure or other topological restrictions? Sharp and insightful inequalities in higher dim? e.g., on spin manifolds with spherical infinity, in

\[
E^2 \geq |\vec{j}|^2, \quad (6)
\]

where \vec{j} is the total angular momentum.
Hyperbolic mass (also known as *holographic energy*, cf. “*holographic stress-energy tensor*”).

- We only have satisfactory understanding of mass and related invariants in the asymptotically *Euclidean* setting. (Spectacular progress by Schoen and Yau 2017.)
- Asymptotically **hyperbolic** setting: Positivity? Spin structure or other topological restrictions? Sharp and insightful inequalities in higher dim? e.g., on spin manifolds with spherical infinity, in

\[
E^2 \geq |\vec{j}|^2, \quad (6)
\]

where \(\vec{j}\) is the total angular momentum.
Hyperbolic mass (also known as \textit{holographic energy}, cf. “holographic stress-energy tensor”).

- We only have satisfactory understanding of mass and related invariants in the asymptotically \textit{Euclidean} setting. (Spectacular progress by Schoen and Yau 2017.)
- Asymptotically \textit{hyperbolic} setting: Positivity? Spin structure or other topological restrictions? Sharp and insightful inequalities in higher dim? e.g., on spin manifolds with spherical infinity, in

\[
E^2 \geq |\vec{j}|^2 ,
\]

where \vec{j} is the total angular momentum.
Hyperbolic mass (also known as *holographic energy*, cf. “holographic stress-energy tensor”).

- We only have satisfactory understanding of mass and related invariants in the asymptotically Euclidean setting. (Spectacular progress by Schoen and Yau 2017.)
- Asymptotically hyperbolic setting: Positivity? Spin structure or other topological restrictions? Sharp and insightful inequalities in higher dim? e.g., on spin manifolds with spherical infinity, in two space-dimensions
 \[E^2 \geq |\vec{j}|^2, \]
 \[(6) \]
 where \vec{j} is the total angular momentum.
Hyperbolic mass (also known as *holographic energy*, cf. “holographic stress-energy tensor”).

- We only have satisfactory understanding of mass and related invariants in the asymptotically *Euclidean* setting. (Spectacular progress by Schoen and Yau 2017.)
- Asymptotically *hyperbolic* setting:Positivity? Spin structure or other topological restrictions? Sharp and insightful inequalities in higher dim? e.g., on spin manifolds with spherical infinity, in three space-dimensions

\[E^2 - |\vec{\rho}|^2 \geq -\Lambda/3 \left(|\vec{c}|^2 + |\vec{j}|^2 + 2 |\vec{c} \times \vec{j}| \right), \quad (6) \]

where \vec{j} is the total angular momentum and \vec{c} the centre of mass.
What backgrounds g?

- For simplicity, assume vacuum Einstein equations throughout:

$$R(g)_{\mu\nu} = c_n \Lambda g_{\mu\nu}$$ \hspace{1cm} (7)
What backgrounds g?
What are the spacelike manifolds \mathcal{I} we are interested in?

- For simplicity, assume vacuum Einstein equations throughout:

\[R(g)_{\mu\nu} = c_n \Lambda g_{\mu\nu} \tag{7} \]

- This talk: mostly $\Lambda < 0$
What backgrounds g?
What are the spacelike manifolds \mathcal{I} we are interested in?

- For simplicity, assume vacuum Einstein equations throughout:
 \[R(g)_{\mu\nu} = c_n \Lambda g_{\mu\nu} \quad (7) \]
- This talk: mostly $\Lambda < 0$
- What kind of spacelike hypersurfaces are compatible with (7) when $\Lambda \neq 0$
Constraint equations, cosmological constant Λ

Does the curvature scalar know about Λ? ($\rho = j^k = 0$ in vacuum)

• The scalar constraint equation:

$$R(g) = 16\pi \rho + |K|^2 - (\text{tr}K)^2 + 2\Lambda$$ \hspace{1cm} (8)

where ρ is the energy density of matter fields, $R(g)$ is the scalar curvature of the space metric
constraint equations, cosmological constant \(\Lambda \)

Does the curvature scalar know about \(\Lambda \)? (\(\rho = j^k = 0 \) in vacuum)

- The scalar constraint equation:

\[
R(g) = 16\pi \rho \pm |K|^2 - (\text{tr}K)^2 + 2\Lambda \\
= 16\pi \rho + |\hat{K}|^2 - \left(\frac{n-1}{n}\right)(\text{tr}K)^2 + 2\Lambda,
\]

where \(\rho \) is the energy density of matter fields, \(R(g) \) is the scalar curvature of the space metric, and \(\hat{K} \) is the trace-free part of the extrinsic curvature tensor \(K \).
Constraint equations, cosmological constant Λ

Does the curvature scalar know about Λ? ($\rho = j^k = 0$ in vacuum) assume trK to be constant

- The scalar constraint equation:

$$R(g) = 16\pi\rho + |K|^2 - (\text{tr}K)^2 + 2\Lambda$$

$$= 16\pi\rho + |\hat{K}|^2 - \frac{(n-1)}{n}(\text{tr}K)^2 + 2\Lambda$$

$$=: 2\tilde{\Lambda}$$

where ρ is the energy density of matter fields, $R(g)$ is the scalar curvature of the space metric, and \hat{K} is the trace-free part of the extrinsic curvature tensor K.

Piotr T. Chruściel

The mass of asymptotically hyperbolic manifolds
Constraint equations, cosmological constant Λ

Does the curvature scalar know about Λ? ($\rho = j^k = 0$ in vacuum) assume $\text{tr} K$ to be constant

- The scalar constraint equation:

$$R(g) = 16\pi \rho + |K|^2 - (\text{tr}K)^2 + 2\Lambda$$

$$= 16\pi \rho + |\hat{K}|^2 - \frac{(n-1)}{n}(\text{tr}K)^2 + 2\Lambda,$$

where ρ is the energy density of matter fields, $R(g)$ is the scalar curvature of the space metric, and \hat{K} is the trace-free part of the extrinsic curvature tensor K.
Constraint equations, cosmological constant Λ

Does the curvature scalar know about Λ? ($\rho = j^k = 0$ in vacuum) assume $\text{tr}K$ to be constant.

- The scalar constraint equation:

$$R(g) = 16\pi \rho + |K|^2 - (\text{tr}K)^2 + 2\Lambda$$

$$= 16\pi \rho + |\hat{K}|^2 - \left(\frac{n - 1}{n}\right)(\text{tr}K)^2 + 2\Lambda,$$

where ρ is the energy density of matter fields, $R(g)$ is the scalar curvature of the space metric, and \hat{K} is the trace-free part of the extrinsic curvature tensor K.

- You can fool around with Λ by playing with the trace of K

$$K \rightarrow K + ag \quad \Rightarrow \quad \tilde{\Lambda} \rightarrow \tilde{\Lambda} - \frac{(n - 1)}{2n}(2a\text{tr}K + a^2)$$
Constraint equations, cosmological constant Λ

Does the curvature scalar know about Λ? ($\rho = j^k = 0$ in vacuum) assume $\text{tr} K$ to be constant

- The scalar constraint equation:

$$R(g) = 16\pi\rho + |K|^2 - (\text{tr} K)^2 + 2\Lambda$$

$$= 16\pi\rho + |\hat{K}|^2 - \frac{(n-1)}{n}(\text{tr} K)^2 + 2\Lambda,$$

where ρ is the energy density of matter fields, $R(g)$ is the scalar curvature of the space metric, and \hat{K} is the trace-free part of the extrinsic curvature tensor K.

- You can fool around with Λ by playing with the trace of K

$$K \rightarrow K + ag \quad \Rightarrow \quad \tilde{\Lambda} \rightarrow \tilde{\Lambda} - \frac{(n-1)}{2n}(2a\text{tr} K + a^2)$$

- This is compatible with the vector constraint equation:

$$D_i(K_{ik} - \text{tr} K g^{ik}) = 8\pi j^k$$
• **Corollary**: The Trautman-Bondi mass m_{TB} is the same as the hyperbolic mass
• **Corollary**: The Trautman-Bondi mass m_{TB} is the same as related to the hyperbolic mass (⚠️ pure trace K + constraint equations + $\Lambda = 0 \implies$ no gravitational radiation ⚠️)
• **Corollary:** The Trautman-Bondi mass m_{TB} is the same as related to the hyperbolic mass (pure trace K + constraint equations + $\Lambda = 0 \implies$ no gravitational radiation)

• **Corollary:** positivity theorems for asymptotically hyperbolic initial data ($\Lambda < 0$) translate to angular momentum bounds with $\Lambda = 0$

$$m_{TB} \geq \frac{|\text{tr}K|}{3} |\vec{J}|, \quad m_{TB} \geq \frac{|\text{tr}K|}{3} |\vec{c}|,$$

where \vec{J} is the total angular momentum and \vec{c} the centre of mass.
• **Corollary**: The Trautman-Bondi mass m_{TB} is the same as related to the hyperbolic mass (pure trace K + constraint equations + $\Lambda = 0 \implies$ no gravitational radiation)

• **Corollary**: positivity theorems for asymptotically hyperbolic initial data ($\Lambda < 0$) translate to angular momentum bounds with $\Lambda = 0$ on CMC hypersurfaces \mathcal{I} when there is no-radiation at the conformal boundary of \mathcal{I}

$$m_{TB} \geq \frac{|\text{tr}K|}{3} \, |\vec{J}|, \quad m_{TB} \geq \frac{|\text{tr}K|}{3} \, |\vec{c}|,$$

where \vec{J} is the total angular momentum and \vec{c} the centre of mass.
Asymptotically Anti-de Sitter metrics

- Asymptotically anti-de Sitter metrics:

\[g \to r \to \infty \bar{g} = -V^2 dt^2 + V^{-2} dr^2 + r^2 d\Omega^2, \quad V = r^2 + 1. \]
• Asymptotically anti-de Sitter metrics:
\[g \rightarrow r \rightarrow \infty \quad \bar{g} = -V^2 dt^2 + V^{-2} dr^2 + r^2 d\Omega^2, \quad V = r^2 + 1. \]

• Elementary positive energy theorem: in a suitable gauge, for
\[h := g - \bar{g} \text{ small, } (E := H(\partial_t, \{ t = 0 \})) \]

\[E \geq \int_M \left[R - \bar{R} + \frac{n-2}{16n} |Dh|_g^2 \right] V. \]
Asymptotically Anti-de Sitter metrics

- Asymptotically anti-de Sitter metrics:
 \[
 g \rightarrow r \rightarrow \infty \quad \bar{g} = -V^2 dt^2 + V^{-2} dr^2 + r^2 d\Omega^2, \quad V = r^2 + 1.
 \]

- Elementary positive energy theorem: in a suitable gauge, for \(h := g - \bar{g} \) small, \((E := H(\partial_t, \{ t = 0 \})) \)
 \[
 E \geq \int_M \left[R - \bar{R} + \frac{n - 2 - \epsilon}{8n} |\bar{D} tr h|^2_g + \frac{1 - \epsilon}{4} |\bar{D} \hat{h}|^2_g \right. \\
 - \left. \frac{1 + \epsilon}{1} |\hat{h}|^2_g \right] V \sqrt{\det \bar{g}} \\
 \geq \int_M \left[R - \bar{R} + \frac{n - 2}{16n} |\bar{D} h|^2_g \right] V.
 \]
• Asymptotically anti-de Sitter metrics:

\[g \rightarrow_{r \to \infty} \overline{g} = -V^2 dt^2 + V^{-2} dr^2 + r^2 d\Omega^2, \quad V = r^2 + 1. \]

• Elementary positive energy theorem: in a suitable gauge, for \(h := g - \overline{g} \) small, \((E := H(\partial_t, \{t = 0\}))\)

\[
E \geq \int_M \left[R - \overline{R} + \frac{n - 2 - \epsilon}{8n} |\overline{Dtr} h|^2_{\overline{g}} + \frac{1 - \epsilon}{4} |\overline{Dh}|^2_{\overline{g}} - \frac{1 + \epsilon}{2} |\hat{h}|^2_{\overline{g}} \right] V \sqrt{\det \overline{g}} \]

\[
\geq \int_M \left[R - \overline{R} + \frac{n - 2}{16n} |Dh|^2_{g} \right] V.
\]

• but no stability: arbitrarily small generic perturbations of initial data for the spherically symmetric Einstein-scalar field equations produce arbitrarily small black holes (?).
Asymptotically Anti-de Sitter metrics

Geometric formulae for total energy (Ashtekar Romano 1992; Herzlich 2015; PTC, Barzegar, Hörzinger 2017), space-dimension \(n \)

\[
\mathbf{g} \rightarrow_{r \rightarrow \infty} \bar{\mathbf{g}} = -V^2 dt^2 + V^{-2} dr^2 + r^2 d\Omega^2, \quad V = r^2 + 1.
\]

• For any Killing vector \(X \) of \(\bar{\mathbf{g}} \) we have

\[
H_b (X, \mathcal{L}) = \frac{1}{16(n - 2)\pi} \lim_{R \to \infty} \int_{t=0, r=R} X^\nu Z^\xi W^\alpha{}_{\beta}{}^{\nu \xi} dS_{\alpha \beta},
\]

where \(W^\alpha{}_{\beta}{}^{\nu \xi} \) is the Weyl tensor of \(\mathbf{g} \) and \(Z = r \partial_r \) is the dilation vector field.
Asymptotically Anti-de Sitter metrics

Geometric formulae for total energy (Ashtekar Romano 1992; Herzlich 2015; PTC, Barzegar, Höerzinger 2017), space-dimension n

\[
g \rightarrow_{r \rightarrow \infty} \bar{g} = -V^2 dt^2 + V^{-2} dr^2 + r^2 d\Omega^2, \quad V = r^2 + 1.
\]

- For any Killing vector X of \bar{g} we have

\[
H_b(X, \mathcal{L}) = \frac{1}{16(n-2)\pi} \lim_{R \rightarrow \infty} \int_{t=0, r=R} X^\nu Z^\xi W^{\alpha \beta}_{\nu \xi} dS_{\alpha \beta},
\]

where $W^{\alpha \beta}_{\nu \xi}$ is the Weyl tensor of g and $Z = r \partial_r$ is the dilation vector field

- Riemannian version, asymptotically hyperbolic Riemannian metrics g, R^i_j is the Ricci tensor of g:

\[
H_b(X, \mathcal{L}) = -\frac{1}{16(n-2)\pi} \lim_{R \rightarrow \infty} \int_{r=R} X^0 V Z^j (R^i_j - \frac{R}{n} \delta^i_j) dS_i.
\]
Asymptotically Anti-de Sitter metrics
Komar-type formula (PTC, Barzegar, Hörzinger 2017), space-dimension n

\[
g \to_{r \to \infty} \bar{g} = -V^2 dt^2 + V^{-2} dr^2 + r^2 d\Omega^2, \quad V = r^2 + 1.
\]

- If X is a Killing vector of both g and \bar{g} we have

\[
H_b(X, \mathcal{I}) = \lim_{R \to \infty} \left\{ \frac{n-1}{16(n-2)\pi} \int_{r=R} X^{[\alpha;\beta]} dS_{\alpha\beta} - \frac{\Lambda}{4(n-2)(n-1)n\pi} \int_{r=R} X^{\alpha} Z^{\beta} dS_{\alpha\beta} \right\},
\]

where $\Lambda < 0$ is the cosmological constant.
Other asymptotic backgrounds: Kottler-Birmingham metrics
Static vacuum solutions of Einstein equations with a negative cosmological constant

\[g_m = -V_m^2 dt^2 + V_m^{-2} dr^2 + r^2 h_\kappa, \quad V_m = r^2 + \kappa - \frac{2m}{r^{n-2}}. \]

where \(h_\kappa \) is a \(t \)- and \(r \)-independent Einstein metric on a \((n - 1)\)-dim compact manifold, with scalar curvature \(R(h) = (n - 1)(n - 2)\kappa \).

Question: Is (9) an absolute lower bound for vacuum black holes? Yes for solutions with a constant negative mass aspect function.
Other asymptotic backgrounds: Kottler-Birmingham metrics

Static vacuum solutions of Einstein equations with a negative cosmological constant

\[g_m = -V_m^2 dt^2 + V_m^{-2} dr^2 + r^2 h_\kappa, \quad V_m = r^2 + \kappa - \frac{2m}{r^{n-2}}. \]

where \(h_\kappa \) is a \(t \)- and \(r \)-independent Einstein metric on a \((n - 1) \)-dim compact manifold, with scalar curvature \(R(h) = (n - 1)(n - 2)\kappa \).

- The mass of \(g_m \) relative to \(\bar{g} := g_0 \) is proportional to \(m \)
Other asymptotic backgrounds: Kottler-Birmingham metrics

Static vacuum solutions of Einstein equations with a negative cosmological constant

\[g_m = -V_m^{-2}dt^2 + V_m^{-2}dr^2 + r^2 h_\kappa, \quad V_m = r^2 + \kappa - \frac{2m}{r^{n-2}}. \]

where \(h_\kappa \) is a \(t \)- and \(r \)-independent Einstein metric on a \((n-1)\)-dim compact manifold, with scalar curvature \(R(h) = (n-1)(n-2)\kappa \).

- The mass of \(g_m \) relative to \(\bar{g} := g_0 \) is proportional to \(m \)

- The manifolds are singular unless the \(V_m \)'s have positive zeros, which then correspond to **black hole horizons**

\[(9) \]
Other asymptotic backgrounds: Kottler-Birmingham metrics
Static vacuum solutions of Einstein equations with a negative cosmological constant

\[g_m = -V_m^2 dt^2 + V_m^{-2} dr^2 + r^2 h_\kappa, \quad V_m = r^2 + \kappa - \frac{2m}{r^{n-2}}. \]

where \(h_\kappa \) is a \(t \)- and \(r \)-independent Einstein metric on a \((n-1)\)-dim compact manifold, with scalar curvature \(R(h) = (n-1)(n-2)\kappa \).

- The mass of \(g_m \) relative to \(\bar{g} := g_0 \) is proportional to \(m \)
- The manifolds are singular unless the \(V_m \)'s have positive zeros, which then correspond to black hole horizons
- If \(\kappa \geq 0 \) the mass is positive, but if \(\kappa = -1 \) then

\[m \geq -\frac{(n-1)(n-3)/2}{(n+1)(n-1)/2}. \]
Other asymptotic backgrounds: Kottler-Birmingham metrics

Static vacuum solutions of Einstein equations with a negative cosmological constant

\[g_m = -V_m^2dt^2 + V_m^{-2}dr^2 + r^2h_\kappa, \quad V_m = r^2 + \kappa - \frac{2m}{r^{n-2}}. \]

where \(h_\kappa \) is a \(t \)- and \(r \)-independent Einstein metric on a \((n-1)\)-dim compact manifold, with scalar curvature \(R(h) = (n-1)(n-2)\kappa \).

- The mass of \(g_m \) relative to \(\mathbf{\bar{g}} := g_0 \) is proportional to \(m \)
- The manifolds are singular unless the \(V_m \)'s have positive zeros, which then correspond to black hole horizons
- If \(\kappa \geq 0 \) the mass is positive, but if \(\kappa = -1 \) then

\[m \geq -\frac{(n-1)(n-3)/2}{(n+1)(n-1)/2}. \quad (9) \]

- Question: Is (9) an absolute lower bound for vacuum black holes?
Other asymptotic backgrounds: Kottler-Birmingham metrics

Lee & Neves, n = 3, 2015
Static vacuum solutions of Einstein equations with a negative cosmological constant

\[g_m = -V_m^2 dt^2 + V_m^{-2} dr^2 + r^2 h_\kappa, \quad V_m = r^2 + \kappa - \frac{2m}{r^{n-2}}. \]

where \(h_\kappa \) is a \(t \)- and \(r \)-independent Einstein metric on a \((n - 1)\)-dim compact manifold, with scalar curvature \(R(h) = (n - 1)(n - 2)\kappa \).

- The mass of \(g_m \) relative to \(\overline{g} := g_0 \) is proportional to \(m \)
- The manifolds are singular unless the \(V_m \)'s have positive zeros, which then correspond to black hole horizons
- If \(\kappa \geq 0 \) the mass is positive, but if \(\kappa = -1 \) then

\[m \geq -\frac{(n - 1)(n - 3)/2}{(n + 1)(n - 1)/2}. \quad (9) \]

- Question: Is (9) an absolute lower bound for vacuum black holes? yes for solutions with a constant negative mass aspect function

Piotr T. Chruściel
The mass of asymptotically hyperbolic manifolds
$g_m = \pm V_m^2 dt^2 \theta^2 + V_m^{-2} dr^2 + r^2 (dr^2 - dt^2 + h_0')$, $V_m = \frac{2m}{r^{n-2}}$.

where h_0' is a t, θ, and r-independent Ricci flat metric on a $(n-3)$-dim compact manifold.

- Naked singularity for $m < 0$.
\[g_m = V_m^2 d\theta^2 + V_m^{-2} dr^2 + r^2 (-dt^2 + h'_0), \quad V_m = r^2 \left(-\frac{2m}{r^{n-2}} \right). \]

where \(h'_0 \) is a \(t-, \theta-, \text{and } r\)-independent Ricci flat metric on a \((n-3)\)-dim compact manifold.

- Naked singularity for \(m < 0 \).
- Complete cusp at infinity when \(m = 0 \).
$g_m = V_m^2 d\theta^2 + V_m^{-2} dr^2 + r^2 (-dt^2 + h'_0)$, $V_m = r^2 - \frac{2m}{r^{n-2}}$.

where h'_0 is a t, θ, and r-independent Ricci flat metric on a $(n-3)$-dim compact manifold.

- Naked singularity for $m < 0$.
- Complete cusp at infinity when $m = 0$.
- For $m > 0$ the zero-sets of V_m are smooth totally-geodesic submanifolds ("core geodesics" in $n = 3$) when the period of θ is appropriately chosen, depending upon m.
\[g_m = V_m^2 d\theta^2 + V_m^{-2} dr^2 + r^2 (-dt^2 + h'_0), \quad V_m = r^2 - \frac{2m}{r^{n-2}}. \]

where \(h'_0 \) is a \(t-, \theta-, \) and \(r- \)independent Ricci flat metric on a \((n - 3)\)-dim compact manifold.

- Naked singularity for \(m < 0 \).
- Complete cusp at infinity when \(m = 0 \).
- For \(m > 0 \) the zero-sets of \(V_m \) are smooth totally-geodesic submanifolds ("core geodesics" in \(n = 3 \)) when the period of \(\theta \) is appropriately chosen, depending upon \(m \).
- The mass relative to \(g_0 \) can be arbitrarily negative, proportional to the negative of \(m \).
Horowitz-Myers Instantons
Woolgar's version of the Horowitz-Myers conjecture

\[g_m = V_m^2 d\theta^2 + V_m^{-2} dr^2 + r^2 (-dt^2 + h'_0), \quad V_m = r^2 - \frac{2m}{r^{n-2}}. \]

where \(h'_0 \) is a \(t-, \theta-, \) and \(r- \)independent Ricci flat metric on a \((n - 3)\)-dim compact manifold.

- Naked singularity for \(m < 0 \).
- Complete cusp at infinity when \(m = 0 \).
- For \(m > 0 \) the zero-sets of \(V_m \) are smooth totally-geodesic submanifolds ("core geodesics" in \(n = 3 \)) when the period of \(\theta \) is appropriately chosen, depending upon \(m \).
- The mass relative to \(g_0 \) can be arbitrarily negative, proportional to the negative of \(m \).
- Conjecture: these are local minima of energy.
Horowitz-Myers Instantons
the Woolgar-Horowitz-Myers conjecture for nearby metrics

\[h = g - \bar{g}, \hat{h} = \text{trace-free part of } h: \]

\[
m = \int_M \left[(R - \bar{R}) V + \left(\frac{n + 2}{8n} |D \phi|^2 + \frac{1}{4} |D \hat{h}|^2 \right. \right.
\]

\[
- \frac{1}{2} \hat{h}^{i\ell} \hat{h}^{jm} \bar{R}_{\ell m ij} - \frac{n + 2}{2n} \phi \hat{h}^{ij} \bar{R}_{ij} + \frac{n(n^2 - 4)}{8n^2} \phi^2
\]

\[
- \frac{1}{2} \left(|\bar{\psi}|^2 - \bar{\psi}^i D_i \phi \right) V + \left(h^k_i \bar{\psi}^i + \frac{1}{2} \phi \bar{\psi}^k \right) D_k V
\]

\[
+ (O \left(|h|^3 \right) + O \left(|h| |Dh|^2 \right)) V
\]

\[
+ O \left(|h|^2 |Dh| |DV| \right) \sqrt{\det g}. \tag{10}
\]

$h = g - \bar{g}$, $\hat{h} =$ trace-free part of h:

$$m = \int_M \left[(R - \bar{R}) V + \left(\frac{n + 2}{8n} |D\phi|^2_g + \frac{1}{4} |D\hat{h}|^2_g
ight)
- \frac{1}{2} \hat{h}^{ie} \hat{h}^{jm} R_{\ell m ij} - \frac{n + 2}{2n} \phi \hat{h}^{ij} \bar{R}_{ij} + \frac{n(n^2 - 4)}{8n^2} \phi^2 \right) V + \left(
+ O\left(|h|^3_g \right) + O\left(|h|_g |\bar{D}h|^2_g \right) \right) V
+ O\left(|h|^2_g |\bar{D}h|_g \right) |\bar{D}V|_g \right] \sqrt{\det g}.$$

(10)

gauge terms
Horowitz-Myers Instantons
the Woolgar-Horowitz-Myers conjecture for nearby metrics

\[h = g - \bar{g}, \hat{h} = \text{trace-free part of } h:\]

\[m = \int_M \left[(R - \bar{R})V + \left(\frac{n + 2}{8n} |D\phi|^2_g + \frac{1}{4} |D\hat{h}|^2_g \right. \right. \]

\[- \frac{1}{2} \hat{h}^{ie} \hat{h}^{im} \bar{R}_{\ell m ij} - \frac{n + 2}{2n} \phi \hat{h}^{ij} \bar{R}_{ij} + \left. \frac{n(n^2 - 4)}{8n^2} \phi^2 \right) V \]

\[\sqrt{\det g}. \quad (10) \]
Horoowitz-Myers Instantons
the Woolgar-Horowitz-Myers conjecture for nearby metrics

\[h = g - \overline{g}, \; \hat{h} = \text{trace-free part of } h: \]

\[
m = \int_M \left[(R - \overline{R})V + \left(\frac{n+2}{8n} |D\phi|^2_g + \frac{1}{4} |D\hat{h}|^2_g
ight. \right.
\]
\[
- \frac{1}{2} \hat{h}^{i\ell} \hat{h}^{j\ell} \overline{R}_{\ell m ij} - \frac{n + 2}{2n} \phi \hat{h}^{ij} \overline{R}_{ij} + \frac{n(n^2 - 4)}{8n^2} \phi^2
\]
\[
\left. \right) V \right] \sqrt{\det g}. \quad (10)
\]

\textit{gauge/errror terms} ???

Piotr T. Chruściel
The mass of asymptotically hyperbolic manifolds
Horowitz-Myers Instantons
the Woolgar-Horowitz-Myers conjecture for nearby metrics

\[h = g - \bar{g}, \hat{h} = \text{trace-free part of } h: \]

\[
m = \int_M \left[(R - \bar{R}) V + \left(\frac{n+2}{8n} |D\phi|^2_g + \frac{1}{4} |D\hat{h}|^2_g \right. \right.
\]

\[- \left. \frac{1}{2} \hat{h}^i \hat{h}^m \bar{R}_{\ell m ij} - \frac{n+2}{2n} \phi \hat{h}^i \hat{R}_{ij} + \frac{n(n^2 - 4)}{8n^2} \phi^2 \right) V \]

\[\right] \sqrt{\text{det } g}. \quad (10) \]

A sharper Poincaré inequality?

gauge terms error terms ?? Sharper Poincaré inequality?
Horowitz-Myers Instantons
the Woolgar-Horowitz-Myers conjecture for nearby metrics

\[h = g - \overline{g}, \hat{h} = \text{trace-free part of } h: \]

\[
m = \int_M \left[(R - \overline{R}) V + \left(\frac{n + 2}{8n} |D\phi|^2_g + \frac{1}{4} |D\hat{h}|^2_g \right.
ight.
\]
\[
- \frac{1}{2} \hat{h}^{i\ell} \hat{h}^{jm} R_{\ell m ij} - \frac{n + 2}{2n} \phi \hat{h}^i j R_{ij} + \frac{n(n^2 - 4)}{8n^2} \phi^2
\]
\[
\left. \right) V \right] \sqrt{\det g}. \quad (10)
\]

\text{gauge/terms error/terms ??? Sharper Poincaré inequality? Incidentally: } \text{Uniqueness theorems} \text{ for the Horowitz-Myers instanton by Galloway and Woolgar, and by M. Anderson} \]
Reminder: Asymptotically locally hyperbolic (ALH) metrics

Asymptotically hyperbolic if \((N^{n-1}, \hat{h})\) is the unit round sphere

\[
g = \ell^2 x^{-2} \left(dx^2 + (1 - \frac{k}{4} x^2)^2 \hat{h} + x^n \mu \right) + o(x^{n-2}) dx^i dx^j,
\]

\[
\hat{h} = \hat{h}_{AB}(x^C) dx^A dx^B, \quad \mu = \mu_{AB}(x^C) dx^A dx^B,
\]

\(\ell > 0\) is a constant related to \(\Lambda\), \(\hat{h}\) is a Riemannian metric on \(N^{n-1}\) with scalar curvature

\[
R[\hat{h}] = (n - 1)(n - 2) k, \quad k \in \{0, \pm 1\}.
\] \(\text{(11)}\)

The mass aspect function is

\[
\theta := \text{tr}_{\hat{h}} \mu
\]

uniquely defined unless the conformal infinity is a round sphere

The total mass is

\[
m_0 = c_n \int_{N^{n-1}} \theta, \quad m_i = c_n \int_{S^{n-1}} \theta x^i
\]

(defines a “Minkowskian” vector on a sphere).
Theorem

Let \((M^n, g)\), \(4 \leq n \leq 7\), be a \(C^{n+5}\)-conformally compactifiable asymptotically locally hyperbolic (ALH) Riemannian manifold diffeomorphic to \([r_0, \infty) \times N^{n-1}\) with a compact boundary \(N_0 := \{r_0\} \times N^{n-1}\) and with well defined total mass. Suppose that:

1. The mean curvature of \(N_0\) satisfies \(H < n - 1\), where \(H\) is the divergence \(D_i n^i\) of the unit normal \(n^i\) pointing into \(M\).
2. The scalar curvature \(R = R[g]\) of \(M\) satisfies \(R \geq -n(n - 1)\).
3. Either \((N, \hat{h})\) is a flat torus, or \((N, \hat{h})\) is a nontrivial quotient of a round sphere.

Then the mass of \((M^n, g)\) is nonnegative, \(m \geq 0\).
Theorem

Let \((M^n, g)\), \(4 \leq n \leq 7\), be a \(C^{n+5}\)-conformally compactifiable asymptotically locally hyperbolic (ALH) Riemannian manifold diffeomorphic to \([r_0, \infty) \times N^{n-1}\) with a compact boundary \(N_0 := \{r_0\} \times N^{n-1}\) and with well defined total mass. Suppose that:

1. The mean curvature of \(N_0\) satisfies \(H < n - 1\), where \(H\) is the divergence \(D_i n^i\) of the unit normal \(n^i\) pointing into \(M\).
2. The scalar curvature \(R = R[g]\) of \(M\) satisfies \(R \geq -n(n - 1)\).
3. Either \((N, \hat{g})\) is a flat torus, or \((N, \hat{g})\) is a nontrivial quotient of a round sphere.

Then the mass of \((M^n, g)\) is nonnegative, \(m \geq 0\).
Theorem

Let \((M^n, g), 4 \leq n \leq 7\), be a \(C^{n+5}\)-conformally compactifiable asymptotically locally hyperbolic (ALH) Riemannian manifold diffeomorphic to \([r_0, \infty) \times N^{n-1}\) with a compact boundary \(N_0 := \{r_0\} \times N^{n-1}\) and with well defined total mass. Suppose that:

1. The mean curvature of \(N_0\) satisfies \(H < n - 1\), where \(H\) is the divergence \(D_i n^i\) of the unit normal \(n^i\) pointing into \(M\).

2. The scalar curvature \(R = R[g]\) of \(M\) satisfies \(R \geq -n(n - 1)\).

3. Either \((N, \hat{h})\) is a flat torus, or \((N, \hat{h})\) is a nontrivial quotient of a round sphere.

Then the mass of \((M^n, g)\) is nonnegative, \(m \geq 0\).
Theorem

Let \((M^n, g)\), \(4 \leq n \leq 7\), be a \(C^{n+5}\)–conformally compactifiable asymptotically locally hyperbolic (ALH) Riemannian manifold diffeomorphic to \([r_0, \infty) \times N^{n-1}\) with a compact boundary \(N_0 := \{r_0\} \times N^{n-1}\) and with well defined total mass. Suppose that:

1. The mean curvature of \(N_0\) satisfies \(H < n - 1\), where \(H\) is the divergence \(D_i n^i\) of the unit normal \(n^i\) pointing into \(M\).
2. The scalar curvature \(R = R[g]\) of \(M\) satisfies \(R \geq -n(n - 1)\).
3. Either \((N, \hat{h})\) is a flat torus, or \((N, \hat{h})\) is a nontrivial quotient of a round sphere.

Then the mass of \((M^n, g)\) is nonnegative, \(m \geq 0\).
Theorem

Let \((M^n, g)\), \(4 \leq n \leq 7\), be a \(C^{n+5}\)–conformally compactifiable asymptotically locally hyperbolic (ALH) Riemannian manifold diffeomorphic to \([r_0, \infty) \times N^{n-1}\) with a compact boundary \(N_0 := \{r_0\} \times N^{n-1}\) and with well defined total mass. Suppose that:

1. The mean curvature of \(N_0\) satisfies \(H < n - 1\), where \(H\) is the divergence \(D_i n^i\) of the unit normal \(n^i\) pointing into \(M\).
2. The scalar curvature \(R = R[g]\) of \(M\) satisfies \(R \geq -n(n-1)\).
3. Either \((N, \mathring{h})\) is a flat torus, or \((N, \mathring{h})\) is a nontrivial quotient of a round sphere.

Then the mass of \((M^n, g)\) is nonnegative, \(m \geq 0\).
Theorem

Let \((M^n, g)\) be an ALH manifold, \(n \geq 4\). For all \(\epsilon > 0\) there exists a metric \(g_\epsilon\) which coincides with \(g\) outside of an \(\epsilon\)-neighborhood of the conformal boundary at infinity, satisfies \(R[g_\epsilon] \geq R[g]\), such that

1. \(g_\epsilon\) has a pure monopole-dipole mass aspect function \(\Theta_\epsilon\) if \((N^{n-1}, \hat{h})\) is conformal to the standard sphere, and has constant mass aspect function otherwise;
2. the associated energy-momentum satisfies

\[
\lim_{\epsilon \to 0} m_0^c = m_0, \quad m_i^c = m_i, \quad \text{if } (N^{n-1}, \hat{h}) \text{ round } S^{n-1};
\]

\[
\lim_{\epsilon \to 0} m^c = m, \quad \text{otherwise.}
\]
Theorem

Let \((M^n, g)\) be an ALH manifold, \(n \geq 4\). For all \(\epsilon > 0\) there exists a metric \(g_\epsilon\) which coincides with \(g\) outside of an \(\epsilon\)-neighborhood of the conformal boundary at infinity, satisfies \(R[g_\epsilon] \geq R[g]\), such that

1. \(g_\epsilon\) has a pure monopole-dipole mass aspect function \(\Theta_\epsilon\) if \((N^{n-1}, \hat{h})\) is conformal to the standard sphere, and has constant mass aspect function otherwise;

2. the associated energy-momentum satisfies

\[
\begin{align*}
\lim_{\epsilon \to 0} m^c_0 &= m_0, & m^c_i &= m_i, & \text{if } (N^{n-1}, \hat{h}) \text{ round } S^{n-1}; \\
\lim_{\epsilon \to 0} m^c &= m, & \text{otherwise.}
\end{align*}
\]
Let \((M^n, g)\) be an ALH manifold, \(n \geq 4\). For all \(\epsilon > 0\) there exists a metric \(g_\epsilon\) which coincides with \(g\) outside of an \(\epsilon\)-neighborhood of the conformal boundary at infinity, satisfies \(R[g_\epsilon] \geq R[g]\), such that

1. \(g_\epsilon\) has a pure monopole-dipole mass aspect function \(\Theta_\epsilon\) if \((N^{n-1}, \hat{h})\) is conformal to the standard sphere, and has constant mass aspect function otherwise;

2. the associated energy-momentum satisfies

\[
\begin{align*}
\lim_{\epsilon \to 0} m_0^\epsilon &= m_0, \quad m_i^\epsilon = m_i, \quad \text{if } (N^{n-1}, \hat{h}) \text{ round } S^{n-1}; \\
\lim_{\epsilon \to 0} m^\epsilon &= m, \quad \text{otherwise.}
\end{align*}
\]
Theorem

Let \((M^n, g)\) be an ALH manifold, \(n \geq 4\). For all \(\epsilon > 0\) there exists a metric \(g_\epsilon\) which coincides with \(g\) outside of an \(\epsilon\)-neighborhood of the conformal boundary at infinity, satisfies \(R[g_\epsilon] \geq R[g]\), such that

1. \(g_\epsilon\) has a pure monopole-dipole mass aspect function \(\Theta_\epsilon\) if \((N^{n-1}, \hat{h})\) is conformal to the standard sphere, and has constant mass aspect function otherwise;

2. the associated energy-momentum satisfies

\[
\begin{align*}
\lim_{\epsilon \to 0} m_0^\epsilon &= m_0, \\
\lim_{\epsilon \to 0} m_i^\epsilon &= m_i, \\
\lim_{\epsilon \to 0} m^\epsilon &= m,
\end{align*}
\]

if \((N^{n-1}, \hat{h})\) round \(S^{n-1}\);

otherwise.

(12)
Theorem

Let \((M^n, g)\) be an ALH manifold, \(n \geq 4\). For all \(\epsilon > 0\) there exists a metric \(g_\epsilon\) which coincides with \(g\) outside of an \(\epsilon\)-neighborhood of the conformal boundary at infinity, satisfies \(R[g_\epsilon] \geq R[g]\), such that

1. \(g_\epsilon\) has a pure monopole-dipole mass aspect function \(\Theta_\epsilon\) if \((N^{n-1}, \hat{h})\) is conformal to the standard sphere, and has constant mass aspect function otherwise;

2. the associated energy-momentum satisfies

\[
\begin{align*}
\lim_{\epsilon \to 0} m^c_0 &= m_0, & m^c_i &= m_i, & \text{if } (N^{n-1}, \hat{h}) \text{ round } S^{n-1}; \\
\lim_{\epsilon \to 0} m^c &= m, & \text{otherwise.}
\end{align*}
\]
Theorem

Let \((M^n, g)\) be an ALH manifold, \(n \geq 4\). For all \(\epsilon > 0\) there exists a metric \(g_\epsilon\) which coincides with \(g\) outside of an \(\epsilon\)-neighborhood of the conformal boundary at infinity, satisfies \(R[g_\epsilon] \geq R[g]\), such that

1. \(g_\epsilon\) has a pure monopole-dipole mass aspect function \(\Theta_\epsilon\) if \((N^{n-1}, \hat{h})\) is conformal to the standard sphere, and has constant mass aspect function otherwise;

2. the associated energy-momentum satisfies

\[
\begin{align*}
\lim_{\epsilon \to 0} m_0^\epsilon &= m_0, \\
m_i^\epsilon &= m_i, & \text{if } (N^{n-1}, \hat{h}) \text{ round } S^{n-1}; \\
\lim_{\epsilon \to 0} m^\epsilon &= m, & \text{otherwise}.
\end{align*}
\]

(12)