On a PDEs system with gradient dependent chemotactic coefficient

José Ignacio Tello

Universidad Politécnica de Madrid, Spain

Abstract

We consider a second order PDEs system of Parabolic-Elliptic type with chemotactic terms. The system describes the evolution of a biological species "u" moving towards a higher concentration of a chemical stimuli "v" in a bounded and open domain of \mathbb{R}^N . In the system considered, the chemotaxis sensitivity depends on the gradient of v, i.e., the chemotaxis term has the following expression

$$-div\left(\chi u|\nabla v|^{p-2}\nabla v\right),\,$$

where χ is a positive constant and p satisfies

$$p \in (1, \infty)$$
, if $N = 1$ and $p \in \left(1, \frac{N}{N-1}\right)$, if $N \ge 2$.

We obtain uniform bounds in $L^{\infty}(\Omega)$ and the existence of global in time solutions. For the onedimensional case we prove the existence of infinitely many non-constant steady-states for $p \in (1, 2)$ for any χ positive and a given positive mass.

This is a joint work with M. Negreanu.