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In this talk some results concerning topological aspects of continuous parametrized families
of dissipative flows are presented. Dissipative flows are those which have a global attractor (see
[6]). This attractor continues to a family of attractors that are not global in general. We present
a necessary and sufficient condition to ensure that the global attractor continues to a global
attractor and we show, using this result, that the global attractor of the Lorenz system continues
to a global attractor. We also study the bifurcation global to non-global using shape theory and
the Conley index theory.
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