Embeddings and Mapppings into Euclidean Spaces and Products of Continua

Stanisław Spież

Institute of Mathematics PAS, Poland

1. Unstable intersection in Euclidean spaces.

The well known Menger-Nöbeling Theorem says that any (continuous) map from an *n*-dimensional compactum (i.e., a compact metric space) X into \mathbb{R}^{2n+1} can be approximated arbitrarily closely by embeddings. In the classical case that X is an *n*-dimensional polyhedron (or manifold) the dimension 2n + 1 of the Euclidean space is optimal. However, for the Boltyanski compacta (i.e., satisfying dim $(X \times X) < 2 \dim X$) the dimension of the Euclidean space can be lowered. In fact we have (see [1], [11], [16], [3]):

(*) Any map from a compactum X into \mathbb{R}^{2n} can be approximated arbitrarily closely by embeddings if and only if dim $(X \times X) < 2n$.

Compacta X and Y have unstable intersection in \mathbb{R}^n if each pair of maps $X \to \mathbb{R}^n$ and $Y \to \mathbb{R}^n$ can be approximated arbitrarily closely by maps with disjoint images. Any map from a compactum X to \mathbb{R}^n can be approximated by embeddings if and only if X has unstable intersection with itself in \mathbb{R}^n So, (*) motivated the following:

Unstable Intersection Conjecture. Compacta X and Y have unstable intersection in \mathbb{R}^n if and only if dim $X \times Y < n$.

The above conjecture holds in all cases except: n = 5, dim $X = \dim Y = 3$ and dim $X \times Y = 4$, in which it is open (cf., [17], [2], [4], [5], [13]).

2. Embeddings into Euclidean spaces

In 1933, E. R. van Kampen gave description of a certain $\mathbb{Z}/2\mathbb{Z}$ -equivariant 2*n*-dimensional cohomology class of the deleted product of an *n*-dimensional polyhedron K, which vanishes if and only if K is embeddable in \mathbb{R}^{2n} , provided $n \geq 3$. Many details were clarified by A. Shapiro and W. T. Wu.

If $f: X \to \mathbb{R}^m$ is an embedding then the map f^* from X^* into the sphere S^{m-1} defined by

$$f^*(x,y) = \frac{f(x) - f(y)}{||f(x) - f(y)||}$$
 for each $(x,y) \in X^*$.

is an equivariant map (with respect to the standard actions of $\mathbb{Z}/2\mathbb{Z}$ on X^* and S^{m-1}).

C. Weber proved a converse to this when X is a polyhedron and the dimensions are in the metastable range, which extends van Kampen's result to a wider range of dimensions and also generalizes an earlier theorem of A. Haefliger on embeddings of differentiable manifolds.

Theorem ([18]). Let K be an n-dimensional compact polyhedron and m an integer such that $2m \geq 3(n+1)$. If there exist an equivariant map $F: K^* \to S^{m-1}$ then there exists a PL-embedding $f: K \to \mathbb{R}^m$ such that f^* is equivariantly homotopic to F.

We discuss some results (e.g., [14], [6], [15]) showing that the Weber's theorem can not be extended beyond the metastable range.

3. Embeddings into product of curves

In 1958 J. Nagata proved the following remarkable modification of the Menger-Nöbeling theorem: Every n-dimensional metric space, $n \geq 2$, embeds in a product $X \times \ldots \times X_{n+1}$ of 1-dimensional metric spaces.

In 1975 K. Borsuk, answering a question of Nagata in the negative, proved that the n-sphere S^n , $n \ge 2$, does not embed in a product of n curves (1-dimensional connected compacta).

Several results dealing with embeddability of n-dimensional compacta in products of n 1-dimensional compacta where obtained by Kuperberg, Cauty, Gillman, Matveev, Rolfsen, Pol, Dydak and Koyama.

We discuss the following results proved in [8], [9], [12] and [10]. (Below, H denotes the Čech cohomology functor with the integer coefficients.)

Let X be a closed subset of the product $Y_1 \times \cdots \times Y_n$ of n curves with $H^n(X) \neq 0$. Then there is an algebraically essential map from X into the n-torus \mathbb{T}^n . Consequently, there exist elements $a_1, \cdots a_n \in H^1(X)$ whose cup product $a_1 \cdots a_n \in H^n(X)$ is non-zero. Such elements are linearly independent, hence rank $H^1(X) \geq n$. Moreover, cat X > n.

An analogous result holds for symmetric products of curves. It follows that no S^n , $n \ge 2$, can be embedded in the *n*th symmetric product of a curve, which gives the negative answer to a question posed by Illanes and Nadler. This result also implies that neither the projective plane P^2 nor the Klein bottle K can be embedded in the second symmetric product of a curve.

We distinguish and study some *n*-dimensional compacta (such as weak n-manifolds) with respect to embeddability into products of *n* curves. We show that if X is a locally connected weak *n*-manifold lying in a product of *n* curves then rank $H^1(X) \ge n$. If rank $H^1(X) = n$ then X is an *n*-torus. If rank $H^1(X) < \infty$, then X is a polyhedron.

It follows that certain 2-dimensional compact contractible polyhedra (like "dunce hat" or "Bing house") are not embeddable in products of two curves. On the other hand, any collapsible 2-dimensional polyhedron embeds in a product of two trees. We answer a question of Cauty proving that closed surfaces embeddable in a product of two curves embed in a product of two graphs. We construct a 2-dimensional polyhedron that embeds in a product of two curves but does not embed in a product of two graphes. This solves in the negative another problem of Cauty.

References

- D. McCullogh, L. RubinSome m-dimensional compacta admititing a dense set of embeddings into ^{2m}, Fund. Math. 133 (1989), 237-245.
- [2] A. N. Dranishnikov, J. West, On compacta that intersect unstably in Euclidean space, Topol. Appl. 43 (1992), 181–187.
- [3] A. N. Dranishnikov, D. Repovs, E. Scepin, On intersection of compacta of complementary dimensins in Euclidean space, Topol. Appl. 38 (1991), 237-253.
- [4] A. N. Dranishnikov, D. Repovs, E. Scepin, On intersection of compacta in Euclidean space: the metastable case, Tsukuba J.. Math. 17 (1993), 549–564.
- [5] A. N. Dranishnikov, On the dimension of the product of two compacta and the dimension of their intersection in general position in Euclidean space, Trans. Amer. Math. Soc. **352** (2000), 5599–5618.
- [6] M. H. Freedman, V. S. Krushkal, P. Teichner, Van Kampen's embedding obstruction is incomplete for 2-complexes in ℝ⁴, Math. Res. Letters 1 (1994), 167–176.
- [7] A. Haefliger, Plongements differentiables dans le domain stable, Comment. Math. Helv. 3636 (1962-63), 155-176.
- [8] A. Koyama, J. Krasinkiewicz and S. Spież, Generalized manifolds in products of curves, Trans. A.M.S. 363 (2011), 1509–1532.
- [9] A. Koyama, J. Krasinkiewicz and S. Spież, Embeddings into products and symmetric products an algebraic approach, Houston J. Math. 38 (2012), 611–641.
- [10] A. Koyama, J. Krasinkiewicz and S. Spież, Surfaces in products of two curves, Topol. and its Appl. 196 (2015), 618–640.

- [11] J. Krasinkiewicz, Imbeddings into \mathbb{R}^n and dimensin of products, Bull. Polish Acad. Sci. Math. 36 (1988), 387–402.
- [12] J. Krasinkiewicz and S. Spież, Embedding of the dunce hat, Proc. A.M.S. 141 (2013), 2537-2541.
- [13] M. Levin, On unstable intersection conjecture, Geom. and Topol. 22 (2018), 2511-2532.
- [14] J. Segal, S. Spież, Quasi-embeddings and embeddings of polyhedra in \mathbb{R}^m , Topol. Appl. 45 (1992), 275–282.
- [15] J. Segal, A. Skopenkov, S. Spież, Embeddings of polyhedra in R^m and the deleted product obstruction, Topol. Appl. 85 (1998), 335–344.
- [16] S. Spież, Some m-dimensional compacta admititing a dense set of embeddings into R^{2m}, Fund. Math. 134 (1990), 105–115.
- [17] S. Spież, H. Toruńczyk, Moving compacta in \mathbb{R}^n apart, Topol. Appl. 41 (1991), 193–204.
- [18] S. Weber Plongements de polyédres dans le domaine métastableComment. Math. Helv. 42 (1967), 1-27.