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1. Unstable intersection in Euclidean spaces.

The well known Menger-Nöbeling Theorem says that any (continuous) map from an n�
dimensional compactum (i.e., a compact metric space) X into R2n+1 can be approximated arbi-
trarily closely by embeddings. In the classical case that X is an n-dimensional polyhedron (or
manifold) the dimension 2n + 1 of the Euclidean space is optimal. However, for the Boltyanski
compacta (i.e., satisfying dim(X ×X) < 2 dimX) the dimension of the Euclidean space can be
lowered. In fact we have (see [1], [11], [16], [3]):
(∗) Any map from a compactum X into R2n can be approximated arbitrarily closely by embeddings

if and only if dim(X ×X) < 2n.

Compacta X and Y have unstable intersection in Rn if each pair of maps X → Rn and
Y → Rn can be approximated arbitrarily closely by maps with disjoint images. Any map from
a compactum X to Rn can be approximated by embeddings if and only if X has unstable
intersection with itself in Rn So, (∗) motivated the following:
Unstable Intersection Conjecture. Compacta X and Y have unstable intersection in Rn if

and only if dimX × Y < n.

The above conjecture holds in all cases except: n = 5, dimX = dimY = 3 and dimX×Y = 4,
in which it is open (cf., [17], [2], [4], [5], [13]).

2. Embeddings into Euclidean spaces

In 1933, E. R. van Kampen gave description of a certain Z/2Z-equivariant 2n-dimensional
cohomology class of the deleted product of an n-dimensional polyhedron K, which vanishes if
and only if K is embeddable in R2n, provided n ≥ 3. Many details were clari�ed by A. Shapiro
and W. T. Wu.

If f : X → Rm is an embedding then the map f∗ from X∗ into the sphere Sm−1 de�ned by

f∗(x, y) =
f(x)− f(y)

||f(x)− f(y)||
for each (x, y) ∈ X∗ ,

is an equivariant map (with respect to the standard actions of Z/2Z on X∗ and Sm−1).
C. Weber proved a converse to this when X is a polyhedron and the dimensions are in the

metastable range, which extends van Kampen's result to a wider range of dimensions and also
generalizes an earlier theorem of A. Hae�iger on embeddings of di�erentiable manifolds.

Theorem ([18]). Let K be an n−dimensional compact polyhedron and m an integer such that

2m ≥ 3(n + 1). If there exist an equivariant map F : K∗ → Sm−1 then there exists a PL-

embedding f : K → Rm such that f∗ is equivariantly homotopic to F .

We discuss some results (e.g., [14], [6], [15]) showing that the Weber's theorem can not be
extended beyond the metastable range.

3. Embeddings into product of curves

In 1958 J. Nagata proved the following remarkable modi�cation of the Menger-Nöbeling
theorem: Every n-dimensional metric space, n ≥ 2, embeds in a product X × . . . × Xn+1 of

1-dimensional metric spaces.



In 1975 K. Borsuk, answering a question of Nagata in the negative, proved that the n-sphere
Sn, n ≥ 2, does not embed in a product of n curves (1-dimensional connected compacta).

Several results dealing with embeddability of n-dimensional compacta in products of n 1-
dimensional compacta where obtained by Kuperberg, Cauty, Gillman, Matveev, Rolfsen, Pol,
Dydak and Koyama.

We discuss the following results proved in [8], [9], [12] and [10]. (Below, H denotes the �ech
cohomology functor with the integer coe�cients.)

Let X be a closed subset of the product Y1 × · · · × Yn of n curves with Hn(X) 6= 0. Then

there is an algebraically essential map from X into the n-torus Tn. Consequently, there exist

elements a1, · · · an ∈ H1(X) whose cup product a1 · · · an ∈ Hn(X) is non-zero. Such elements

are linearly independent, hence rankH1(X) ≥ n. Moreover, catX > n.

An analogous result holds for symmetric products of curves. It follows that no Sn, n ≥ 2,
can be embedded in the nth symmetric product of a curve, which gives the negative answer to a
question posed by Illanes and Nadler. This result also implies that neither the projective plane
P 2 nor the Klein bottle K can be embedded in the second symmetric product of a curve.

We distinguish and study some n-dimensional compacta (such as weak n-manifolds) with
respect to embeddability into products of n curves. We show that if X is a locally connected
weak n-manifold lying in a product of n curves then rankH1(X) ≥ n. If rankH1(X) = n then
X is an n-torus. If rankH1(X) <∞, then X is a polyhedron.

It follows that certain 2-dimensional compact contractible polyhedra (like "dunce hat" or
"Bing house") are not embeddable in products of two curves. On the other hand, any collapsible
2-dimensional polyhedron embeds in a product of two trees. We answer a question of Cauty
proving that closed surfaces embeddable in a product of two curves embed in a product of two
graphs. We construct a 2-dimensional polyhedron that embeds in a product of two curves but
does not embed in a product of two graphes. This solves in the negative another problem of
Cauty.
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